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01000 México, DF, México
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Abstract
We study the motion of a quantum charged particle, constrained on the surface
of a cylinder, in the presence of a radial magnetic field. When the spin of
the particle is neglected, the system essentially reduces to an infinite family
of simple harmonic oscillators, equally spaced along the axis of the cylinder.
Interestingly enough, it can be used as a quantum Fourier transformer, with
convenient visual output. When the spin-1/2 of the particle is taken into
account, a non-conventional perturbative analysis results in a recursive closed
form for the corrections to the energy and the wavefunction, for all eigenstates,
to all orders in the magnetic moment of the particle. A simple two-state
system is also presented, the time evolution of which involves an approximate
precession of the spin perpendicularly to the magnetic field. A number of plots
highlight the findings while several three-dimensional animations have been
made available on the web.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The quantum mechanical description of the motion of charged particles in a magnetic field is a
classic application of the theory, having given rise to some of its most striking results. Among
them, the seminal analysis by Dirac [5], of the motion in the field of a magnetic monopole,
continues to inspire decades after its inception, and motivates the study of similar quantum
systems that share the characteristic of providing insights into the fundamentals without
too much distraction by analytical complexity. Such systems are invaluable pedagogically,
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as they furnish a manageable, yet captivating testing ground of the fundamentals of the
theory.

The problem of the motion of a non-relativistic quantum particle in a plane, in the presence
of a perpendicular homogeneous magnetic field is presented in several textbooks (see, e.g., [13],
ch. XV, p 456)—nevertheless, it seems to be the only standard example of this type available.
The main purpose of this paper is to draw attention to the fact that the analogous problem for
the cylinder is also manageable, even when augmented to include a spin-1/2. In the latter
case, we also show how the use of the creation and annihilation operator machinery greatly
simplifies the perturbative analysis of the problem, in comparison with the standard textbook
procedure. We emphasize that, although a cylindrically radial magnetic field inevitably brings
to mind a monopole distribution as its source, it can actually be approximated in the laboratory
by a particular current distribution (see section 2.1).

Despite the simplicity of the problem and it being an obvious variation on the monopole
theme, we have not been able to find a treatment in the literature. It is then our hope that the
use of the above simple system will help enhance the exposition of this fascinating part of
the theory. It should also be of interest in practical applications, such as constrained quantum
mechanics and carbon nanotube physics.

Consider a classical charged particle, constrained to move on the surface of an infinite
cylinder, in the presence of a radial magnetic field,

�B(ρ = a, φ, z) = B0ρ̂, (1)

where a is the radius of the cylinder and B0 is the field strength on its surface. As mentioned
above, such a radial field can be thought to be produced by a homogeneous linear magnetic
charge density or by an infinite solenoid with a particular surface current distribution. The
equations of motion for the particle imply that

mv̇z = −qB0vφ, mv̇φ = qB0vz, (2)

where m, q are the mass and charge of the particle respectively and {ρ̂, φ̂, ẑ} is a right-handed
orthonormal basis. The solutions to (2) are two simultaneous oscillations: the momentum pz

of the particle oscillates like, say, cos(ωt) (with ω = qB0/mc) while its angular momentum
along the z-axis oscillates like sin(ωt). Thus, the particle’s kinetic energy oscillates between
a linear and a rotational form, becoming, for example, purely rotational at the turning points
of the oscillation along z.

We study, in this paper, the quantum mechanical version of the above problem, adding,
at a later stage, a spin-1/2 to the particle. The treatment of the spinless case, contained in
section 2, is exact—the problem separates and reduces to an infinite collection of harmonic
oscillators along z. We find, nevertheless, the resulting quantum system particularly rich
and with surprising properties—it functions, for example, as a quantum Fourier transformer
with convenient visual output (see section 2.3). The addition of spin is treated perturbatively
in section 3, with a non-conventional method that greatly simplifies the calculations. We
are able to give recursion relations for the corrections to the wavefunctions and the energy
to all orders, for all unperturbed eigenstates, and apply the results to compute second-
order corrections to the ground state. Several plots highlight the findings. We also make
available on the web several three-dimensional colour animations of the time evolution of
the wavefunction, with or without spin, and corresponding to various initial conditions (see
http://www.nuclecu.unam.mx/∼chrss). The appendix shows how the standard perturbation
theory treatment of the problem reproduces, albeit laboriously, our first-order results.
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2. The spinless case: reduction to the harmonic oscillator

2.1. The magnetic field

Before analysing the problem presented above, we would like to point out that, apart from
the obvious (but experimentally unattainable) realization of the magnetic field (1) by a
linear magnetic monopole distribution, there exists actually an experimental setup that can
approximate this field in the laboratory. Indeed, consider a cylindrical solenoid in the interior
of the cylinder where the particle lives, with its axis along ẑ, carrying a surface current
distribution �J given by

�J = − 2B0a

µ0R2
zφ̂, (3)

where R < a is the radius of the solenoid. The field produced by the above �J is

�B(�r) =




B0a

R2
(ρ, 0,−2z) for ρ < R

B0a

(
1

ρ
, 0, 0

)
for ρ > R,

(4)

coinciding with that in (1) at ρ = a. That the field outside of the solenoid is radial can be
deduced from symmetry arguments and the principle of superposition alone—we invite the
reader to construct such a proof, considering the above current distribution as the superposition
of an infinite sequence of semi-infinite solenoids, each carrying an infinitesimal uniform current
density and displaced infinitesimally w.r.t. the previous one along ẑ.

The corresponding vector potential �A, such that �B = ∇ × �A, is

�A(�r) =




−B0a

R2
(0, ρz, 0) for ρ < R

−B0a

(
0,

z

ρ
, 0

)
for ρ > R.

(5)

The second line of (5) gives the functional form of �A in the vicinity of the surface of the
cylinder and is therefore the one that should be used in the Hamiltonian. Note that the line
integral of �A around a constant-z circle is nonzero and equal to the flux of the magnetic field
through the disc bounded by the circle, the latter coming entirely from the field in the interior of
the solenoid. Had we worked with a linear monopole density, instead of a current distribution,
we could still have used the above form of �A, everywhere except along the z-axis, but then it
would not be clear how to account for the nonzero line integral mentioned above.

The above might be mathematically sound, but infinite solenoids are hard to come by in a
laboratory. What is still left to show is that truncating the solenoid down to a (sufficiently long)
finite size does not essentially alter the above results. More precisely, we need to consider the
contribution to the field at, say, z = 0, of the semi-infinite parts of the solenoid with |z| > L

and show that it can be made arbitrarily small for L sufficiently large. This follows easily
from the fact that the field produced at the origin by a circular ring of small width �z, located
at z, falls off like z−2, for z large enough (being the field of a dipole with current that increases
like z). Integrating from z = ±L to ±∞ we find that the above contributions fall off like L−1

and hence a sufficiently long solenoid can approximate arbitrarily well, near its centre, the
field given in (4).
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2.2. The spectrum

The Hamiltonian for a quantum spinless particle constrained to move on the surface of the
cylinder is given by

Ĥ = 1

2m
( �p − q �A)2

= − h̄2

2m

(
1

a2
∂2
φ + ∂2

z

)
+

q2B2
0

2m
z2 − i

h̄qB0

ma
z∂φ. (6)

The wavefunction �(φ, z) = 1√
2π

ei�φZ(z) is an eigenfunction of Ĥ , with eigenvalue E,
provided Z(z) satisfies (primes denote differentiation w.r.t. z)

− h̄2

2m
Z′′(z) +

1

2
mω2(z + �b)2Z(z) = EZ(z), (7)

where we have set

ω = qB0

m
, b = h̄

qB0a
, (8)

and, in what follows, we take h̄ = m = ω = 1. This is the equation for a simple harmonic
oscillator (SHO), centred at z = −�b. We conclude that, for each integer value of �, one
obtains a copy of the usual SHO spectrum, with the eigenfunctions centred at z = −�b, i.e.,
the eigenfunctions and eigenvalues of Ĥ are given by

〈φ, z | n, �〉 = NnHn(z + �b) e−(z+�b)2/2 1√
2π

ei�φ,

(9)
E�,n ≡ En = n +

1

2
, Nn ≡ (2nn!

√
π)−

1
2 ,

where |n, �〉 denote the corresponding eigenkets (n = 0, 1, 2, . . . ; � ∈ Z) and Hn(z) are the
Hermite polynomials. Note that from the second of (8) it follows that

ab = z2
0, (10)

where z0 ≡ (h̄/mω)1/2 is the ground state Gaussian width. In the above units then, z0 = 1
and b = 1/a.

2.3. A quantum Fourier transformer

Suppose that the wavefunction of the particle, at t = 0, is given by3

��(φ, z, t = 0) ≡ 〈φ, z | 0, 0, �〉 = N0 e−z2/2 1√
2π

ei�φ. (11)

If � = 0, we have one of the infinitely many ground states of the system and the time evolution
is by a phase factor. Consider now the case � �= 0. Then the z-part ‘sees’ a quadratic potential
centred at z = −�b but the initial wavefunction is a Gaussian centred at the origin. This is
a coherent state and its time evolution is an oscillation around z = −�b, with the frequency
ω = 1 of the oscillator,

��(φ, z, t) = N0 e−it/2 ei �2b2

4 sin 2t e−i(z+�b)�b sin t e−(z+�b(1−cos t))2/2 1√
2π

ei�φ. (12)

3 We use the notation 〈φ, z | n, �, m〉 = NnHn(z + �b) e−(z+�b)2/2 1√
2π

eimφ (not to be confused, hopefully, with the

standard spherical symmetry notation)—these wavefunctions are eigenfunctions of Ĥ only when m = �, in which
case they will be denoted by |n, �〉, as above.
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Figure 1. Time evolution of the initial wavefunction �(φ, z, t = 0) = N0 e−z2/2 cos φ. The
modulus of � is indicated by the radial distance of the surface from that of the cylinder while
its phase is colour-coded, with 1, i, −1,−i corresponding to red, green, blue, purple (several
animations in colour, including the above, can be seen at http://www.nuclecu.unam.mx/∼ chryss).
The time t is equal to zero at the top left and increases to the right and downwards, reaching t = π

(half a period) at the bottom right.

As long as one is interested in the physical characteristics of a single ��, the first two phase
factors, being z-independent, are irrelevant and are often omitted in the literature. In our case
though, we will be dealing with superpositions of �� for various �, so the second (�-dependent)
phase factor will be important. We may now exploit linearity to write down the time evolution
of a Gaussian (in z), centred at the origin, with arbitrary φ-dependence,

�(φ, z, t = 0) = N0 e−z2/2f (φ), with f (φ) =
∞∑

�=−∞
f� ei�φ. (13)

We obtain

�(φ, z, t) =
∞∑

�=−∞
f���(φ, z, t), (14)

i.e., each Fourier mode of f (φ) gives rise to a Gaussian in z, oscillating like a coherent state
around z = −�b with frequency ω = 1. Taking b � 1, so that the various Gaussians separate
after half a period, converts the system to a quantum Fourier transformer with convenient
visual output: looking at the wavefunction at time t = π (a half-period), one sees the
above Gaussians at the (second) turning point of their oscillation, at z = −2�b, with their
amplitudes proportional to the Fourier amplitudes f�. In figure 1, we plot nine frames of
the time evolution of �, when f (φ) = cos φ, with a time increment �t = π/8—the last
frame, at t = π , clearly displays the Fourier content of f . Figure 2 corresponds to the initial
wavefunction �(φ, z, t = 0) ∼ e−z2/2(1 + 2e−iφ + 3e−i2φ + 4e−i3φ).

3. The spin-1/2 case

3.1. Separation of variables

For a spin-1/2 particle, the wavefunction has two components, �+(φ, z),�−(φ, z), which we
arrange in a column vector. The spin interacts with the magnetic field via Ĥ int = −λ �S · �B,
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Figure 2. Time evolution of the initial wavefunction �(φ, z, t = 0) ∼ e−z2/2(1 + 2e−iφ + 3e−i2φ +
4e−i3φ). Conventions are as in figure 1. Note how the amplitudes of the Gaussians in the last frame
correspond to the Fourier components of the initial wavefunction.

which, for the field given in (4) becomes

Ĥ int = −1

2
λB0

(
0 e−iφ

eiφ 0

)
, λ = gq

2m
, (15)

where g is the gyromagnetic factor of the particle. In order to achieve separation of variables
now, we need to take

�+(φ, z) = 1√
2π

ei�φZ+(z), �−(φ, z) = 1√
2π

ei(�+1)φZ−(z). (16)

The resulting equation for the Z is

Ĥ �Z+(z) + εZ−(z) = EZ+(z) Ĥ �+1Z−(z) + εZ+(z) = EZ−(z), (17)

where Ĥ � is a SHO Hamiltonian centred at z = −�b,

Ĥ � = − 1
2∂2

z + 1
2 (z + �b)2, (18)

and ε ≡ −λB0/2 = −g/4, as follows from (8), (15). We see that the problem reduces to that
of two SHOs, a distance b apart, coupled by the ε terms in (17). Our task is to solve (17)
perturbatively in ε. Once the solutions are known, to a certain order in ε, we can form the
spinor

�(φ, z) =
(

�+(φ, z)

�−(φ, z)

)
=

( 1√
2π

ei�φZ+(z)

1√
2π

ei(�+1)φZ+(z)

)
, (19)

from which the probability density and spin direction can be extracted as

ρ =
√

|Z+|2 + |Z−|2, α = 2 arctan
|Z−|
|Z+| , β = Im

(
log

�−
�+

)
, (20)

where the spin direction n̂ is given by n̂ = (sin α cos β, sin α sin β, cos α), in Cartesian
coordinates. The solutions of (17) have no relative (complex) phase and can be taken as real.
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Then, on the φ = 0 plane, the spin lies in the x–z plane. The extra eiφ factor in �− guarantees
that when we change our position on the cylinder by a φ, the spin also rotates by the same
angle and its direction is therefore obtained by a revolution of the φ = 0 configuration, in other
words, β = φ in (20). These remarks are of course valid only for the energy eigenstates—the
time evolution of general states results in the spin pointing outside of the radial plane as well,
even if they start within it.

3.2. Perturbative solution

One may treat the system of the two coupled differential equations in (17) by standard
perturbation theory methods—we give the first-order analysis along these lines in the appendix.
It is instructive though, as well as much more efficient, to exploit the SHO machinery of raising
and lowering operators. We begin by transforming (17) into a single differential-difference
equation. The solutions of (17) can be taken to satisfy Z−(z) = ±Z+(−z − b) (we will refer
to the two possibilities as symmetric (Zs) and antisymmetric (Za) respectively). This follows
from the fact that the second of (17) is the mirror image, w.r.t. the point z = −b/2, of the first
one. More formally, we may introduce the operator M̂ , which acts on functions of z according
to M̂h(z) = h(−z − b). Note that M̂2 = 1 and that M̂H0 = H1M̂, M̂H1 = H0M̂ . Taking
� = 0, we write equations (17) in matrix form as

HZ = EZ, H ≡
(

H0 ε

ε H1

)
, Z ≡

(
Z+

Z−

)
. (21)

Now observe that the Hamiltonian H commutes with M ≡
(

0 M̂

M̂ 0

)
. Since M2 = 1, its

eigenvalues are ±1, with the corresponding projectors being given by P± = (1 ± M)/2 and
satisfying P2

± = P±, P+P− = 0, P+ + P− = 1. From (21) we then get H(P+ + P−)Z = EZ.
Multiplying from the left by P+ and using the fact that H commutes with P±, we find
H(P+Z) = E(P+Z) (similarly for P−). This shows that any solution Z of (21) can be written
as the sum of two eigenfunctions of M, each of which is also a solution of (21). Therefore,
without loss of generality, we may assume Z to be an eigenvector of M, leading to the
above-mentioned symmetry between Z+ and Z−.

With symmetry considerations taken into account, we now turn to the solution of (17).
Taking � = 0 and restricting to the symmetric case, the first of (17) becomes

Ĥ 0Zs+(z) + εZs+(−z − b) = EZs+(z). (22)

The form of this equation suggests treating the ε-term as a perturbation to the SHO Hamiltonian
Ĥ 0. Note however that this perturbation is not of the usual form of a potential function
multiplying the wavefunction—rather, it involves the operator M̂ introduced above (write the
ε-term as εM̂Zs+(z)). Dealing, as we are, with a perturbative expansion, we would like to
have ε small, the scale being set by the energy difference between neighbouring (unperturbed)
eigenstates4. Since for SHO this energy difference is 1, for all eigenstates, we would like to
have a system with ε  1. On the other hand, as has been already mentioned, substituting
for λ in (15) the value gq/(2m), with g depending on the particle, one finds ε = −g/4. For
an electron then, with g ≈ 2, we get ε ≈ −1/2, which seems to imply that a perturbative
analysis would be questionable in this case. One possibility is to leave it to our experimental
colleagues to come up with a particle (system) with small enough g. As we will discuss at
the end of section 3.3 though, this does not seem necessary, due to the fact that the matrix
elements of M̂ can be made small by increasing b. As a result, in our perturbative expansion

4 We thank the (anonymous) editor for a clarifying remark on this point.
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for the ground state in section 3.3, using b = 2, cubic corrections amount to less than 1% of
the zeroth-order results, despite the fact that the value of ε used is 1/2.

Write now Ĥ 0 = a†a + 1
2 and introduce the ket whose wavefunction is Zs+(z),

Zs+(z) = 〈z|Zs+〉, |Zs+〉 =
∞∑

n=0

cn(a
†)n|0〉0 ≡ f (a†)|0〉0, (23)

where |0〉0 is the ground state for � equal to zero (i.e., centred at the origin) and f (a†) is defined
by the last equation. The idea is that any ket can be obtained by some function of a† applied to
the ground state—this follows from the fact that the set {|n〉} forms a basis and |n〉 = (a†)n√

n!
|0〉.

The wavefunction Zs+(−z − b) is obtained from Zs+(z) by first reflecting around the origin
and then effecting the translation z �→ z + b. Reflecting around the origin an eigenfunction of
Ĥ 0 introduces a sign given by the parity of the state, which shows that the reflected state is
produced by f (−a†) applied to the ground state. Using the identity

ec(a−a†) = e−c2
e−ca†

eca, (24)

valid for any constant c, and the fact that the above translation in z is effected by the operator
eibp̂z , we find for the reflected and translated state

eibp̂zf (−a†)|0〉0 = e−b2/4 e− b√
2
a†

e
b√
2
a
f (−a†)|0〉0

= e−b2/4 e− b√
2
a†

f

(
−a† − b√

2

)
|0〉0. (25)

The last step above follows from the fact that the a − a† commutation relations are identical

to the ∂x − x ones, so that the operator e
b√
2
a , applied to functions of a†, effects the translation

a† �→ a† + b/
√

2. Then (22) is brought into the form(
a†a +

1

2

)
f (a†)|0〉0 + ε e−b2/4e− b√

2
a†

f

(
−a† − b√

2

)
|0〉0 = Ef (a†)|0〉0. (26)

From the above algebra isomorphism and the fact that ∂xf (x) = f ′(x) + f (x)∂x , we may also
infer that af (a†) = f ′(a†) + f (a†)a. Using additionally the fact that a|n〉 = 0, (26) implies a
differential-difference equation for the function f (x),

xf ′(x) +
1

2
f (x) + ε e−b2/4e− b√

2
x
f

(
−x − b√

2

)
= Ef (x). (27)

We now specify to the case where the unperturbed state is the nth excited state of the SHO.
The perturbed state will be denoted by fn(a

†)|0〉0, with energy En, where

fn(x) =
∞∑

k=0

f (k)
n (x)εk, En =

∞∑
k=0

E(k)
n εk. (28)

Note that

f (0)
n (x) = 1√

n!
xn, E(0)

n = n +
1

2
. (29)

Substituting these expansions into (27) we obtain

x∂xf
(k)
n (x) − nf (k)

n (x) = −e−b2/4 e− b√
2
x
f (k−1)

n

(
−x − b√

2

)

+
1√
n!

E(k)
n xn +

k−1∑
m=1

E(k−m)
n f (m)

n (x), (30)
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where we separated the m = 0, k terms in the sum on the r.h.s and used (29). Note that the
r.h.s. above only contains f (m)

n with m < k, so (30) can be used recursively to determine any
f (k)

n (x).
The requirement that the perturbed eigenket be normalized implies that the corrections,

order by order in ε, have to be orthogonal to the unperturbed eigenket |n〉0. This in turn implies
that, for k > 0, the coefficient of xn in f (k)

n (x) must vanish. Then so does the coefficient of
xn in x∂xf

(k)
n (x). Finally, the coefficient of xn in the first term on the r.h.s. above can be

computed by expanding both the exponential and f (k−1)
n

( − x − b√
2

)
in a Taylor series around

x = 0 and then multiplying the two series. Using the above, we can extract the coefficient of
xn on both sides of (30)—the resulting equation fixes recursively the energy corrections E(k)

n ,

E(k)
n = 1√

n!
e−b2/4

n∑
r=0

(n

r

) (
− b√

2

)n−r (
∂r
xf

(k−1)
n

) (
− b√

2

)
. (31)

This is an appropriate point to comment on the antisymmetric solutions. The difference in this
case is that the ε term in (27) appears with a minus sign. Since this is the only place where ε

appears explicitly, we conclude that one gets the antisymmetric solutions from the symmetric
ones by the substitution ε → −ε. As we will see later on, symmetric solutions have their spin
parallel, more or less, with the magnetic field while antisymmetric ones have it antiparallel.
Since ε is proportional to the magnetic moment of the particle, the above statement about the
relation between the two kinds of solutions essentially says that the symmetric solution for a
particle coincides with the antisymmetric solution for the same particle but with the opposite
magnetic moment.

3.3. Corrections to the ground state

For n = 0, equations (30), (31) simplify considerably,

x∂xf
(k)
0 (x) = −e−b2/4 e− b√

2
x
f

(k−1)
0

(
−x − b√

2

)
+ E

(k)
0 +

k−1∑
m=1

E
(k−m)
0 f

(m)
0 (x) (32)

E
(k)
0 = e−b2/4f

(k−1)
0

(
− b√

2

)
. (33)

The unitarity argument given above implies in this case that f
(k)
0 (0) = 0, for all k greater than

zero—this fixes the lower integration limit in the solution of (32) equal to zero. The change
of variable x ′

k → xsk and the substitution of (33) finally give

f
(k)
0 (x) = e−b2/4

∫ 1

0

dsk

sk

{
f

(k−1)
0

(
− b√

2

)
− e− b√

2
xsk f

(k−1)
0

(
−xsk − b√

2

)

+
k−1∑
m=1

f
(k−m−1)
0

(
− b√

2

)
f

(m)
0 (xsk)

}
. (34)

Note that the (apparent) pole of the integrand at sk = 0 cancels out.
We look in some detail now at the wavefunctions and resulting spin configurations,

including up to quadratic corrections. For the first three f (k), equations (29), (34) give

f
(0)
0 (x) = 1 (35)

f
(1)
0 (x) = e−b2/4

∫ 1

0

ds1

s1

(
1 − e− b√

2
xs1

)
(36)
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f
(2)
0 (x) = e−b2/2

∫ 1

0

∫ 1

0

ds2 ds1

s2s1

{
2 − eb2s1/2 − e− b√

2
xs2 + e

b2

2 s1 e− b√
2
s2(1−s1)x − e− b√

2
s2s1x

}
, (37)

while for the corresponding energy corrections we get

E
(0)
0 = 1

2
, E

(1)
0 = e−b2/4, E

(2)
0 = e−b2/2

∫ 1

0

ds1

s1

(
1 − e

b2

2 s1
)
. (38)

In order to find the corrections to the wavefunctions, we need to apply the above f (with x
replaced by a†) to the ground state and project the resulting ket onto the position eigenket
|z〉, Z(k)

+ (z) = 〈z| f (k)
0 (a†)|0〉. For terms such as the second one in the integrand in (36), we

use the identity (24) and the fact that a|0〉 = 0—the results are

Z(0)
+ (z) = N0 e−z2/2 (39)

Z(1)
+ (z) = N0 e−b2/4

∫ 1

0

ds1

s1

(
e−z2/2 − eb2s2

1 /4 e−(z+bs1)
2/2

)
(40)

Z(2)
+ (z) = N0 e−b2/2

∫ 1

0

∫ 1

0

ds2 ds1

s2s1

{(
2 − eb2/2s1

)
e−z2/2 − eb2s2

2 /4 e−(z+bs2)
2/2

+ eb2s1/2+b2s2
2 (1−s1)

2/4 e−(z+bs2(1−s1))
2/2 − eb2s2

2 s2
1 /4 e−(z+bs2s1)

2/2
}
. (41)

In terms of these, the symmetric solution for the spinor has components (we omit an overall
normalization factor)

Zs+(z) = Z(0)
+ (z) + εZ(1)

+ (z) + ε2Z(2)
+ (z), Zs−(z) = Zs+(−z − b) (42)

and energy

Es0 = E
(0)
0 + εE

(1)
0 + ε2E

(2)
0 , (43)

while the antisymmetric solution is given by

Za+(z) = −Z(0)
+ (z) + εZ(1)

+ (z) − ε2Z(2)
+ (z), Za−(z) = −Za+(−z − b) (44)

with energy

Ea0 = E
(0)
0 − εE

(1)
0 + ε2E

(2)
0 . (45)

Plots of Z±, for both cases, as well as the corresponding spin configurations, are given in
figures 3 and 4. Note that the effect of the perturbation is small, despite the rather large value
of ε = 0.5. Roughly speaking, this can be traced to the fact that the value b = 2 used gives
rise to a small overlap of two neighbouring ground state Gaussians. To clarify this point, we
need to recall that, in standard perturbation theory, kth-order corrections are given as sums of
products of k matrix elements of the perturbation in the unperturbed eigenkets. In our case,
these matrix elements are

Mmn =
∫ ∞

−∞
dzψm(z)ψn(−z − b), (46)

where ψm(z) = 〈z|m〉. Using f (a†) = (a†)n/
√

n! in (25), we find

Mmn = (−1)n√
n!

e−b2/4 〈m| e− b√
2
a†

(
a† +

b√
2

)n

|0〉. (47)

Expanding the exponential and the binomial and inspecting the terms that contribute to the
matrix element, we conclude that Mmn is of the form Mmn ∼ e−b2/4Qm+n(b), where Qr(b)
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z = 0z = −b

z

Figure 3. The spin components Zs+, Zs− and the corresponding spin configuration. The dotted
curves give the zeroth-order result, i.e., two gaussians, centred at z = 0 and z = −b = −2.
The dashed curves include corrections up to the first order while the solid ones up to the
second (ε = 0.5—a rather large value was used to make the effect visible). The integrals in
equations (40), (41) have been evaluated numerically. The spin configuration shown includes
quadratic corrections. Due to the symmetry, the spin points always along ρ̂ (upwards in the figure)
at z = −b/2 = −1, while it tends to ±ẑ as z tends to ±∞. The perturbation causes a zero in each
component (for finite z)—the spin crosses the z-axis at those points. As a result, the two gaussians
are pushed apart while the width of the central region, where the spin points up, is reduced.

z = 0z = −b

z

Figure 4. The spin components Za+, Za− and the corresponding spin configuration. Notation
and parameter values are as in figure 3. Due to the antisymmetry, the spin points always along
−ρ̂ (downwards in the figure) at z = −b/2 = −1, while it tends to ±ẑ as z tends to ±∞. The
perturbation pushes the two Gaussians together while the width of the region where the spin points
downwards is increased.

denotes a polynomial of order r in b. It is clear then that limb→∞ Mmn = 0, so that, in the above
limit, corrections of all orders tend to zero (for those values of ε for which the corrections are
finite, for finite b). The precise way in which this happens, namely, the asymptotic expansion
of the corrections for large b requires a detailed analysis which is beyond the scope of this
paper. Since each matrix element is proportional to e−b2/4, one might suppose that the kth
order corrections are proportional to the kth power of this exponential, which would suggest
that the effective ‘small parameter’ of the perturbative expansion is εe−b2/4. This, however,
is not the case: the infinite sums involved in the corrections, once the above exponentials are
factored out, may themselves behave exponentially5. For example, in the expressions (38) for
the corrections to the ground state energy, E

(1)
0 does behave like e−b2/4, but the appearance

of the square of this factor in the expression for E
(2)
0 is misleading: an asymptotic expansion

of the integral that multiplies it shows that E
(2)
0 ∼ −2/b2, as b → ∞. In the absence of

any estimation for the higher order contributions, the possibility that we are actually dealing

5 Note that in our results (36), (37), (38), the above-mentioned infinite sums appear transformed into integrals,

preceded by the expected power of e−b2/4—the details of how this happens in the first-order case can be found in the
appendix.
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with an asymptotic series cannot be ruled out—the much weaker dependence of E
(2)
0 on b,

compared to that of E
(1)
0 , certainly does not provide evidence to the contrary. In that case,

the approximation is optimized by truncating the series while it is still converging—one then
obtains arbitrarily high precision as b → ∞.

3.4. A two-state system

Consider a state that, at t = 0, is the sum of the symmetric and antisymmetric n = 0 states
found above, for, say, � = 0. The spin-down component of this state is of order 1 while the
spin-up component is of order ε. Roughly speaking, the particle is localized at z = −b and its
spin points along the negative z-axis. Then the standard two-state system analysis shows that
the amplitudes to be in the spin-up and spin-down states at later times behave like −i sin(�t)

and cos(�t) respectively, where �’s expansion in powers of ε starts with εE
(1)
0

/
2. The spin

precesses in the tangent plane to the cylinder (i.e., perpendicularly to the magnetic field) while
the particle oscillates from −b to zero and back.

4. Concluding remarks

We have studied the problem of the motion of a spin-1/2 particle on a cylinder, in the
presence of a radial magnetic field. A non-standard perturbative analysis, applicable to any
perturbation of the harmonic oscillator, led to a recursion relation for the wavefunction and
energy corrections, equations (30) and (31) respectively, with explicit results for the ground
state in equations (38)–(41) and figures 3 and 4. It is worth emphasizing that the radial
magnetic field of the problem can be approximated in the laboratory, as explained in detail in
section 2.1.

As mentioned in the introduction, we have not been able to find a treatment of this problem
in the literature. The motion of a spin-1/2 particle in the field of a magnetic monopole has
been studied in detail, both in the non-relativistic [1, 7–9, 15] and relativistic [12] cases.
Symmetry aspects of the problem have also been considered extensively (see, e.g., [11]), with
the discovery of an underlying supersymmetry among the most notable results [2, 4, 10]. On
the other hand, quantum spinless particles moving on curves or surfaces have been extensively
studied (see, e.g., [3, 14, 16] and references therein) with a general discussion of the effects
of a vector potential given in [6].

We end with a comment on the form of the unperturbed Hamiltonian used, equation (6).
When dealing with the motion of a quantum particle on a surface, one can use a 3D Laplacian in
the Hamiltonian and constrain the motion of the particle on the surface using a steep confining
potential in the normal direction. It is well known that in this approach, which seems to be the
one appropriate for practical applications, there is an induced potential for the motion along
the surface, proportional to the square of the difference between the two principal curvatures
of the surface (see, e.g., [3, 14] and references therein). In our case, this is a constant which
only shifts the energy eigenvalues. Nevertheless, an obvious extension of our problem here
would be the study of the motion on the surface of a slightly curved cylinder, in which case
the above-mentioned induced potential would have to be taken into account.
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Appendix. First-order corrections to the ground state: the standard treatment

We outline here the standard first-order perturbative analysis of the problem, deriving the
corrections to the ground state. Given that the zeroth-order spectrum is degenerate, we need to
first diagonalize the interaction Hamiltonian in each degenerate subspace. One easily sees that
the interaction only connects the pairs of eigenstates |n, �, +〉, |n, � + 1,−〉. The appropriate
zeroth-order basis is given by the symmetric and antisymmetric linear combinations∣∣ns

�

〉 ≡ ∣∣n0
�

〉 = 1√
2
(|n, �, +〉 + |n, � + 1,−〉)

(A.1)∣∣na
�

〉 ≡ ∣∣n1
�

〉 = 1√
2
(−|n, �, +〉 + |n, � + 1,−〉).

Note that we use the label � for states that are equally localized at −�b and −(� + 1)b. The
reason for renaming the states with numerical superscripts, instead of letters, will become
apparent below. The expectation value of Hint in these states reproduces our result (38) for
the first-order correction to the energy. It is interesting to see how the first-order correction
to the wavefunction, conventionally given by an infinite sum, is brought into the closed
form (40). The matrix elements of Hint in the above basis are〈

n0
�

∣∣Hint

∣∣m0
�′
〉 = ε 〈n� | m�+1〉 δ��′δñm̃〈

n0
�

∣∣Hint

∣∣m1
�′
〉 = ε 〈n� | m�+1〉 δ��′δñ,m̃+1 (A.2)〈

n1
�

∣∣Hint

∣∣m1
�′
〉 = −ε 〈n� | m�+1〉 δ��′δñm̃,

where 〈n� | m�+1〉 is the overlap between SHO eigenstates |n〉, |m〉, at a distance b apart and
ñ is the parity of n. Specifying to the symmetric ground state and taking � = 0, we find the
first-order correction∣∣00

0

〉(1) =
∞∑

k=1

〈00 | k1〉
k

∣∣kk̃
0

〉
. (A.3)

We see that only states with � = 0 contribute. Furthermore, when k is even, only the symmetric
state contributes while for k odd, only the antisymmetric one does. Using the fact that

〈00 | k1〉 = 1√
k!

(
− b√

2

)k

e− b2

4 , (A.4)

we find for the spin-up component of the correction

∣∣00
0, +

〉(1) =
∞∑

k=1

(−1)k

k
√

k!

(
b√
2

)k

e− b2

4 |k〉, (A.5)

which implies

b
∂

∂b

(
e

b2

4
∣∣00

0, +
〉(1)) =

∞∑
k=1

(−1)k√
k!

(
b√
2

)k

|k〉

= e
b2

4 (|01〉 − |00〉). (A.6)

Integrating back w.r.t. b and changing integration variable we recover our earlier result (36)
(similarly for the spin-down component).
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