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Summary

We investigate statistical properties of several classes of periodic billiard models which can be

regarded as diffusive. We begin by motivating the study of such models in Chap. 1 and reviewing

how statistical properties arise in Chap. 2.

In Chap. 3 we consider a periodic Lorentz gas satisfying a geometrical condition, for which

diffusion has been rigorously proved. We discuss how to estimate diffusion coefficients from

numerical data and then study their geometry dependence, finding a qualitative change in the shape

of curves as one parameter is varied. We discuss the application of a random walk approximation

of the diffusion coefficient and a related Green–Kubo formula. We also consider the effect on the

diffusion coefficient of reducing the geometrical symmetry.

In Chap. 4 we study the shape of position and displacement distributions, which converge to

a normal distribution by the central limit theorem. We find a fine-scale oscillation in the densi-

ties which prevents them from converging pointwise to Gaussian densities, and relate this to the

geometry of the billiard domain, giving an analytical expression for the fine-structure function.

We provide strong evidence that, when demodulated, the densities converge uniformly to Gaus-

sians, strengthening the standard central limit theorem, and we find an upper bound on the rate of

this convergence. We further consider the effect of a non-constant distribution of particle speeds,

showing that the limiting position distributions can be non-Gaussian.

Chap. 5 treats polygonal billiard channels, where few rigorous results are known. We provide

numerical evidence that normal diffusion can occur, and that the central limit theorem can be

satisfied. We develop a picture of how normal diffusion can fail if there are parallel scatterers,

and we characterise the resulting anomalous diffusion, as well as the crossover from normal to

anomalous diffusion as such a geometrical configuration is approached.

In Chap. 6 we extend our methods to a three-dimensional periodic Lorentz gas. We present

a model with overlapping scatterers exhibiting normal diffusion in a certain regime. Outside this

regime we provide evidence that the type of holes present in the structure strongly influences the

statistical properties, and show that normal diffusion maybe a possibility even in the presence of

cylindrical holes.

We finish in Chap. 7 with conclusions and some directions for future research.
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CHAPTER 1

Introduction

1.1. Motivation: dynamics of fluids and statistical mechanics

The dynamics of fluids is comparatively well understood1 at the length scales of everyday ex-

perience: we call this themacroscopic level. At this level, the dynamics is described by partial

differential equations modelling the behaviour of continua. But we can also think of fluids as made

up of a vast number ofmicroscopic particleswhich are orders of magnitude smaller than typical

macroscopic lengths, and whose interactions we again understand well. The question then arises

to relate these two levels of description of the same substance. Since many states of the micro-

scopic system correspond to one state of the macroscopic system (specified by a few macroscopic

variables such as temperature and pressure), the relation must be of a statistical nature: we seek to

relateaveragesover microscopic states to macroscopic phenomena, where there is a separation of

length scales between microscopic and macroscopic.

1.1.1. Hard-sphere fluids

At a microscopic level, the simplest physical2 microscopic picture of a fluid is a collection of a

very large number of identical atoms or molecules moving through empty space and undergoing

collisions with each other. Restricting to a classical (as opposed to a quantum-mechanical) descrip-

tion, we consider a Hamiltonian system with inter-particleinteractions described by a short-range

potential.

The simplest potential, giving the most naive picture of a fluid, is thehard-spherepotential,

which jumps from 0 to∞ at a distancea; the dynamics then corresponds to spheres of radiusa

in free motion which undergo elastic collisions when they meet. Simulations of a relatively small

number of hard spheres (hard-sphere fluids) show behaviour which, in certain regimes, resembles

1The major exception to this is the class of turbulent phenomena.
2Many seemingly less-physical microscopic models satisfying certain conservation laws give rise to fluid behaviour

at a macroscopic level. A particularly good example is that of lattice-gas cellular automata, where particles jump
between neighbouring points of regular lattices and obey certain microscopic conservation laws: see e.g. [RB01].

1



2 1. Introduction

that of real fluids. The hope is that studying this relativelysimple system should give insight into

the relation between microscopic dynamics and macroscopicfluid dynamics.

1.1.2. Transport properties

One of the key aims of (non-equilibrium) statistical mechanics is to relate the microscopic prop-

erties of a fluid (such as a knowledge of the interaction potential referred to above) to a set of

coefficients which appear in the macroscopic equations of motion for the fluid, and describe the

transport(motion in space) of conserved quantities; they are therefore known as transport coeffi-

cients. These include coefficients describing diffusion (transport of mass), viscosity (transport of

momentum) and heat conduction (transport of energy in the form of heat)3.

1.1.3. Diffusion and Brownian motion

In this thesis we discuss only diffusion in detail. This is one of the most fundamental phenomena

in fluids and refers to the spreading out of matter which is initially confined to a small subregion

of a system. This is the process by which concentration gradients in the system are smoothed out,

and hence one of the ways in which a system returns to equilibrium.

In seminal work published in hisannus mirabilis1905 [Ein85] (see also [Gar85, Chap. 1]),

Einstein related diffusion to the motion of a large particlesubjected to repeated impacts with

molecules of the surrounding fluid. Regarding these impactsas random, due to the complexity

of the presumed true microscopic dynamics of the huge numberof fluid molecules, he showed

that certain plausible assumptions led to an equation describing the probability distribution of the

position of the particle; this equation is identical to the classical diffusion equation. The seemingly

random motion of such particles had been observed in 1827 by Brown, a botanist, studying the

motion of a pollen grain in water, and is hence calledBrownian motion. For a recent experiment

of relevance to this thesis see [GBF+98].

Einstein’s derivation effectively models the motion of theparticle as astochastic process,

namely a random walk; it is thus amesoscalemodel intermediate between the true underlying

microscopic dynamics and the observed macroscopic behaviour.

3These are the only transport coefficients for asimplefluid, i.e. a fluid consisting of one component.



1.2. Billiard models 3

1.2. Billiard models

1.2.1. Toy models exhibiting diffusive properties

Recently it has been realised that it is possible to study thestatistical properties of some simple

deterministic dynamical systems at the level of the full microscopic dynamics, and that these

resemble to some extent those of diffusion. When this is the case, we talk aboutdeterministic

diffusion. As discussed extensively in Chap. 2, there is a hierarchy ofrelated statistical properties

which may ‘look diffusive’. The concept of deterministic diffusion thus actually consists of several

levels.

Such systems can be regarded as ‘toy’ models to understand transport processes in more real-

istic systems [Dor99]. Examples include classes of uniformly hyperbolic one-dimensional (1D)

maps (see e.g. [KD99] and references therein) and multibaker models [Gas98]. Often, rigorous

results are not available, but numerical results and analytical arguments indicate that diffusion

occurs, for example in Hamiltonian systems such as the standard map [LL92].

1.2.2. Billiard models

Billiard models constitute an important class of such models. Here, non-interacting point particles

in free motion undergo elastic collisions with an array of fixed scatterers. Such models were

introduced by Lorentz [Lor05], who modelled electron flow through an amorphous metal by point

particles moving through a random array of hard spheres; such a model (with hard discs or spheres

as the scatterers) is now termed aLorentz gas. Several example trajectories of aperiodicLorentz

gas are shown in Fig. 1.1.

Lorentz gases have been used to model neutron transport in dense media [CZ67] and can be

viewed as modelling the flow of a dilute gas of light particlesthrough a gas of heavy particles,

in the limit where the ratio of masses of the light particles to those of the heavy particles goes to

infinity [CC70]. The Lorentz gas is also a basic model in kinetic theory, since certain questions

are simpler to answer in this context [vZvBD00, Hau74].

1.2.3. Hard-sphere fluids as billiard models

Furthermore, a hard-sphere fluid can be regarded as a billiard model in a high-dimensional phase

space. The simplest example of this is a 2-disc periodic fluidconsisting of two discs on a torus,

or equivalently two discs in each copy of a periodically-repeated unit cell, as shown on the left of
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Figure 1.1: Sample trajectories in a periodic Lorentz gas. Each trajectory emanates from one point in the
central unit cell, with only the initial velocities being different. The lattice of scatterers extends throughout
space, but for clarity only a portion is shown.



1.2. Billiard models 5

−→

Figure 1.2: Reduction of a 2-disc periodic fluid to a periodic Lorentz gas.

Fig. 1.2. Call the discs A and B, with radiirA andrB. Suppose we stand at the centre of disc A

and look at the motion of disc B bouncing off disc A. We see the same dynamics as we would if a

point particle located at the centre of B were colliding witha fixed disc of radiusrA+ rB located at

the centre of disc A. In this way the dynamics of the periodic fluid is equivalent to the dynamics

of the periodic Lorentz gas model shown on the right of Fig. 1.2.

More generally, any hard-sphere fluid in a torus can be regarded as a billiard in a high-

dimensional phase space, as follows. ConsiderN hard spheres in a periodic boxQ⊂ R
d, with po-

sitionsqi ∈ Q, velocitiesvi ∈ R
d, massesmi and radiir i . The vector(q1, . . . ,qN,v1, . . . ,vN) ∈M′

then specifies the instantaneous state of the system, whereM′ := QN ×R
Nd is the phase space of

the dynamical system.

The total momentum is conserved, so we can change to a frame ofreference in which the

centre of mass is fixed at0 and the total momentum is0, allowing us to restrict attention to a

reduced phase spaceM of lower dimension [Szá93]. Furthermore, regions ofM corresponding

to configurations where the hard spheres overlap are not allowed; these excluded regions are high-

dimensional cylinders inM. The dynamics of the hard-sphere fluid then corresponds exactly to

free motion inM, together with elastic collisions on these cylinders, i.e.to billiard dynamics in

the phase spaceM [Szá93].
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1.2.4. Transport in billiards

Billiards can be regarded as the simplest physical systems in which diffusion, understood as the

large-scale transport of mass through the system, can occur: as pointed out in [Bun00], all that

is required for diffusion to be possible is some mass which can move through the system, which

is exactly the situation in billiards. Other transport processes have also been studied in billiards,

e.g. electrical conduction [CELS93b, CELS93a], heat conduction [AACG99] and viscosity [BS96,

Bun00, VG03].

In this thesis we consider only diffusion inperiodicbilliard models, where the scatterers form

a periodic array. In this case the dynamics in the extended (unfolded) system can be obtained by

looking at the dynamics on a single unit cell with perodic boundaries, i.e. a torus with scatterers

removed, and keeping track of which lattice cell particles are in. The regionQ exterior to the

scatterers on the torus is then called thebilliard domain. Since the particles are non-interacting,

it is usual to set all velocities to 1 by a geometrical rescaling, although in Sec. 4.7 we discuss the

effect of a Gaussian velocity distribution.

1.3. Classical diffusion equation

Since we wish to describe dynamical systems as diffusive if their statistical behaviour looks like

diffusion, we briefly review some features of the classical diffusion equation (also called the heat

equation). This is a partial differential equation which models the empirically observeddiffusion

(flow / transport) of matter from regions of high concentration to regions of low concentration, and

is one of the classical field equations of macroscopic physics. We begin by deriving the diffusion

equation via a macroscopic balance equation.

1.3.1. Balance equations

Let ρ be the density (per unit volume) of an extensive quantity. Then ρ(r , t) : R
d ×R+ → R is

a scalar time-dependent field depending on positionr ∈ R
d in space and timet, whered is the

number of spatial dimensions. Examples of such fields are themass density of a substance, the

heat content, the concentration of a chemical species, and thex component of the momentum. We

assume thatρ is sufficiently smooth that we can differentiate with respect to space and time.

Consider a fixed regionV (a ‘volume’) in the spaceRd, with outward unit normal vectorn and

boundaryS:= ∂V. The total amount of substance (or in general of the extensive quantity of which
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ρ is the density) insideV at timet is
∫
V ρ(r , t)dr ; this is the mass insideV if ρ is the mass density

of a gas, for example.

This amount ofρ insideV can change over time by exactly two (local) mechanisms:ρ can

be created or destroyed insideV, with source strengthσ , the amount created per unit volume, per

unit time; orρ can flow across the boundary of the volumeV, with flux vectorJ per unit area, per

unit time. This neglects non-local effects such as radiation.

Thus
d
dt

∫

V

ρ(r , t)dr =

∫

V

σ(r , t)dr −
∫

∂V

J ·ndS. (1.1)

SinceV is fixed, we can move the time derivative inside the integral.The divergence theorem then

gives ∫

V

∂ρ
∂ t

(r , t)dr =

∫

V

σ(r , t)dr −
∫

V

∇ ·Jdr , (1.2)

for any fixed volumeV. This implies that4

∂ρ
∂ t

(r , t) = σ(r , t)−∇ ·J(r , t). (1.3)

The equation (1.3) is termed abalance equation[KP98]. It forms the basis for deriving macro-

scopic evolution equations for any scalar field, and hence also vector and tensor fields by consid-

ering components. In order to derive such equations, we mustspecifyσ andJ in terms of other

known quantities usingconstitutive equations, which model the ‘constitution’ (behaviour) of a

substance, to get aclosedsystem of equations: see e.g. [KP98].

1.3.2. Derivation of the (anisotropic) diffusion equation

We now specialise to the case whereρ is the concentration, or mass density, of a substance which

is diffusing. If the mass of the substance is (locally) conserved, we haveσ = 0.5 We must now

specifyJ, a question which is considered at length in non-equilibrium thermodynamics [dGM84].

4Taking all terms to one side gives an equation of the form
∫
V f (r ,t)dr = 0. If f is not (almost) everywhere 0,

then it must be positive (without loss of generality) on someregionV+ of non-zero volume. Then
∫
V+ f (r ,t)dr > 0,

contradicting the assumption that the integral equal zero over anyvolume.
5This is not the case, for example, if we have several reactingchemical species. The sourceσA of species A then

contains terms describing the creation and destruction of Ain the reactions (thetotal mass, however, being conserved).
We then obtain a set ofreaction–diffusionequations describing the spatio-temporal evolution of theconcentration fields.
Such equations can yield interesting spatial patterns [KP98].
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We consider only the (simplest) case, whenFick’s law is obeyed, so that the fluxJ is a linear

function of the concentration gradient,∇ρ . (This can be viewed as a first-orderapproximationun-

der the assumption of local thermodynamic equilibrium and slowly varying concentration profile

[dGM84, KP98].) Hence

J = −D̃ ·∇ρ , (1.4)

whereD̃ is a second rank tensor called thediffusion tensor. The minus sign accounts for the em-

pirical fact that matter diffuses from regions of high concentration to regions of low concentration.

This is an example of a constitutive equation.

Assuming that̃D is independent of position, we have

∇ ·J = −∑
i, j

D̃i j ∂i j ρ = −∑
i, j

Di j ∂i j ρ , (1.5)

whereD̃i j are the components of the tensorD̃ with respect to a Cartesian coordinate system, and

∂iρ := ∂ρ
∂ r i

. We have defined the (symmetric)diffusion tensorD as the symmetric part of̃D, i.e.

D = 1
2(D̃+ D̃

T), with componentsDi j . The antisymmetric part does not play any role, since the

matrix of second partial derivatives ofρ is symmetric. Substituting in (1.3) gives the(anisotropic)

diffusion equation
∂ρ
∂ t

= ∑
i, j

Di j ∂i j ρ . (1.6)

We can also write this independently of coordinate system as

∂ρ
∂ t

= ∇ · (D ·∇ρ). (1.7)

1.3.3. Solution of the diffusion equation in an unbounded domain

We consider the diffusion equation in one dimension, withD independent of space:

∂ρ(t;x)
∂ t

= D
∂ 2ρ(t;x)

∂x2 . (1.8)

We solve equation (1.8), a linear partial differential equation with constant coefficients, using
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a standard Green function method. Fork∈ R we define the Fourier transform ofρ at timet by

ρ̂(t;k) :=

∞∫

x=−∞

e−ikxρ(t;x)dx. (1.9)

Fourier transforming (1.8) gives

∂ ρ̂(t;k)
∂ t

= −Dk2 ρ̂(t;k), (1.10)

an ordinary differential equation for̂ρ(t;k), the solution of which is

ρ̂(t;k) = ρ̂(0;k)e−Dk2 t . (1.11)

Taking the inverse transform of this product gives a convolution:

ρt(x) = ρ(t;x) =
1

2π

∞∫

k=−∞

e+ikx ρ̂(t;k)dk (1.12)

= [ρ0 ∗Gt ](x), (1.13)

whereρ0(x) := ρ(0;x) is the initial concentration distribution andGt is theGreen function(or

propagator) for the diffusion equation on an unbounded 1-dimensional domain. This Green func-

tion is given by theGaussian

Gt(x) := G(t;x) :=
1√

4π Dt
exp

[
− x2

4Dt

]
(1.14)

with mean 0 and variance

Var
[
Gt] :=

∞∫

−∞

x2 Gt(x)dx = 2Dt (1.15)

at timet, and Fourier transform

Ĝ(t;k) = e−Dk2t . (1.16)

We recall that the convolution operation is defined by

(u∗v)(x) :=

∞∫

y=−∞

u(x−y)v(y)dy. (1.17)
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Multidimensional diffusion equation In the multidimensional case, sinceD is a symmetric

tensor it is possible to choose an orthogonal coordinate system in whichD is represented by

a diagonal matrix. In these new coordinates, the solution is a product of solutions of the 1D

equation. Reverting to the original coordinates gives a multi-dimensional Gaussian [GS92] for a

Dirac-delta initial condition.

1.3.4. Solutions of the diffusion equation as probability densities

Henceforth we regard the diffusion equation as describing the evolution of probability density

functions representing probability distributions, as follows.

Let the initial condition at timet = 0 beρ0. Physically we are interested in non-negativeρ0

with finite mass, i.e.
∞∫

y=−∞

ρ0(y)dy < ∞. (1.18)

By normalising if necessary we can instead assume that

∞∫

y=−∞

ρ0(y)dy = 1. (1.19)

It then follows that
∫ ∞
−∞ ρt(y)dy = 1 and that the solution remains non-negative for all timest, so

that we can regard the diffusion equation as describing the time evolution ofprobability densities.

1.3.5. Calculation of moments from Fourier transform

We can calculatemomentsof a distribution directly from its Fourier transform as follows (see e.g.

[RD77, Bal97]).

Differentiate (1.9) with respect tok to get

∂ ρ̂(t;k)
∂k

=

∞∫

−∞

−i xe−i kxρ(t;x)dx, (1.20)

and hence
∂ ρ̂(t;k)

∂k

∣∣∣∣
k=0

=

∞∫

−∞

−i x ρ(t;x)dx =: −i 〈x〉t . (1.21)

Here we denote by〈 f (x)〉t the mean of the functionf (x) with respect to the distribution at timet.
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Similarly, higher moments can be obtained by differentiating repeatedly with respect tok:

∂ mρ̂(t;k)
∂km

∣∣∣∣
k=0

=

∞∫

−∞

(−i)mxm ρ(t;x)dx = (−i)m〈xm〉t . (1.22)

In a similar way, in the full multi-dimensional, anisotropic diffusion equation (1.6) forρ(t;x)

in n dimensions, we use the multi-dimensional Fourier transform

ρ̂(t;k) :=

∞∫

−∞

· · ·
∞∫

−∞

e−i k·xρ(t;x)dx1 · · · dxn, (1.23)

wherek ·x := ∑n
i=1 ki xi . Then we have, for example,

〈xi x j〉t = −∂ 2ρ̂(t;k)

∂ki ∂k j

∣∣∣∣
k=0

, (1.24)

with higher moments calculated in an analogous way.

1.3.6. Asymptotic behaviour of moments of solutions of the diffusion equation

We assume thatρ0 decays sufficiently fast at infinity for the relevant integrals to exist. Physically

relevant sufficient conditions for this are, for example, that the initial condition has compact sup-

port, i.e. it vanishes outside a finite interval, or that the initial condition is exponentially localised,

in the sense that

ρ0(y) 6 e−K|y| (1.25)

for some constantK > 0.

In this section we denote partial differentiation with respect to k by a subscriptk, so that

ρ̂k := ∂ ρ̂/∂k.

First moment We first calculate the time dependence of the first moment (i.e. the centre of

mass) of the solution of the diffusion equation. Differentiating (1.11) (the solution of the diffusion

equation expressed in Fourier transforms) once with respect to k, we have

ρ̂k(t;k) = e−Dk2 t {−2kDtρ̂0(k)+ ρ̂0k(k)} , (1.26)
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so that using equation (1.21) twice, we obtain

〈x〉t = i ρ̂k(t;0) = i ρ̂0k(0) = i ρ̂k(0;0) = 〈x〉0. (1.27)

Hence the mean position (centre of mass) is constant. So the second moment is the first non-trivial

one.

Second moment To simplify the calculation of the time evolution of the second moment, we

now change to a coordinate system with the origin located at the centre of mass, i.e. we assume

without loss of generality that〈x〉0 = 0.

Differentiating (1.11) again with respect tok gives the second derivative

ρ̂kk(t;k) = e−Dk2 t {ρ̂0kk(k)+2ρ̂0k(k).(−2kDt)+ ρ̂0(k)
[
−2Dt +(−2kDt)2]} , (1.28)

so that

〈x2〉t = −ρ̂kk(t;0) = −ρ̂0kk(0)+2Dt ρ̂0(0) = 〈x2〉0 +2Dt. (1.29)

(Note thatρ̂0(0) =
∫

e0.kxρ0(x)dx = 1.) Sinceρ0 was assumed to have compact support,ρ̂0 is

infinitely differentiable, by regularity results for Fourier transforms [Kat04]. Hence〈x2〉t is a

straight line with slope 2D, which does not pass through the origin unless the initial condition is a

Dirac delta (since the initial variance is 0 only if the initial distribution is concentrated on a single

point); the variance hence growsasymptoticallylinearly.

From the above result we can derive a relation between the diffusion coefficient and the rate of

growth of the variance. Dividing (1.29) byt and taking the limit gives

D = lim
t→∞

〈x2〉t
2t

. (1.30)

This result is known as theEinstein relation, since it was first obtained by Einstein [Ein85]. We

also have

D = lim
t→∞

1
2

d
dt
〈x2〉t , (1.31)

but note that the first limit can exist when the second one doesnot, for example if〈x2〉t = sin t.
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Similarly in the multi-dimensional case we find

Di j = lim
t→∞

〈xi x j〉t
2t

. (1.32)

If the system has enough symmetry (Sec. 3.6), then we haveDii = D for all i, with all other

components equal to 0, and

D = lim
t→∞

〈x2〉t
2dt

, (1.33)

whered is the spatial dimension andx2 := x · x = ∑d
i=1 x2

i . We remark that this reduction of the

diffusion tensor to a multiple of the identity tensor also occurs if the system isisotropic, i.e. has

the same properties inanydirection in space, but isotropy is a stronger condition than necessary

for this reduction to happen.

1.3.7. Convergence of solutions of the diffusion equation to Gaussians

If the initial condition for the diffusion equation isρ0 at timet = 0, then the solution at timet is

given by the convolution

ρt(x) =

∞∫

y=−∞

ρ0(y)
1√

4πDt
e−(x−y)2/4Dt dy. (1.34)

We are interested in the shape of the distribution for long times. In App. A we show that

for suitable initial data the solution converges to a Gaussian when appropriately rescaled. This

convergence requires the limiting function to be non-degenerate. Sinceρt tends to 0 pointwise

as t → ∞, we must first rescaleρt . We know from the above argument or from dimensional

considerations thatX2 ∼ T, whereX is a typical lengthscale andT is a timescale. Hence we

rescalex by
√

t, putting

ρ̃t(x) := ρ̃(t;x) :=
√

t .ρ(t;x
√

t). (1.35)

The first factor of
√

t is to normalise the integral of̃ρt to 1.

In Chap. 4 we study the convergence to a limiting normal distribution of rescaled distribution

functions in the context of billiards. For comparison, in App. A we consider the convergence of

rescaled solutions of the diffusion equation to the limiting Gaussian. We show thatρ̃t(x) converges
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pointwise to a Gaussian with variance 2D:

ρ̃t(x)
t→∞−→ g2D(x), (1.36)

where

g2D(x) :=
1√
4πD

e−x2/4D (1.37)

is the Gaussian density with mean 0 and variance 2D. Furthermore the convergence is uniform

with

|ρ̃t(x)−g2D(x)| 6 C
t
, (1.38)

for all x and some constantC which is independent ofx.

1.3.8. Numerical confirmation ofO(t−1) decay

We numerically confirm theO(t−1) decay found in App. A by considering particular initial distri-

butions. The first initial condition we consider is

ρ1(x) := 1
3δ (x−2)+ 2

3δ (x+1), (1.39)

whereδ (x−x0) is the Dirac delta function at positionx0. The diffusion equation with this initial

condition is analytically soluble, with solution

ρt(x) = 1
3Gt(x−2)+ 2

3Gt(x+1), (1.40)

so that the solution is smooth and rapidly decaying for anyt > 0 and hence fits into the class for

which we can prove theO(t−1) convergence.

To verify the convergence numerically, we calculate‖ρt −g2D‖= supx∈R |ρt(x)−g2D(x)|, set-

ting D = 1 by rescaling time. Plotting the logarithm of this distanceagainst the logarithm of time

gives a straight line with slope−1, confirming thet−1 decay, as shown in Fig. 1.3.

Another initial condition for which the equation is exactlysoluble is

ρ2(x) =
1

2K
11[−K,K](x), (1.41)
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‖Ẽ

t‖

32.521.510.50

−0.5

−1

−1.5

−2

−2.5

−3

−3.5

−4

−4.5

Figure 1.3: Uniform distanceẼt (defined in App. A) from the limiting Gaussian of the rescaledsolution of
the diffusion equation with initial conditionsρ1(x) = 1

3Gt(x−2)+ 2
3Gt(x+1) andρ2(x) = 1

2K 11[−K,K](x).

with solution [Cra75]

ρt(x) =
1

4K

[
erf

(
x+K

2
√

Dt

)
−erf

(
x−K

2
√

Dt

)]
, (1.42)

where

erf(x) :=
2√
π

x∫

0

e−t2/2 dt (1.43)

is a special function called theerror function. Again the numericalO(t−1) decay rate, as shown

in Fig. 1.3, confirms the analytical result.

1.3.9. Hallmarks of diffusion

We conclude from the above remarks that hallmarks of diffusion are the following features of the

asymptoticbehaviour ast → ∞:

• mean squared displacement growing asymptotically linearly in time t, with constant of pro-

portionality 2D, whereD is the diffusion coefficient; and

• convergence of the
√

t-rescaled position distribution to a non-degenerate Gaussian.
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Here by ‘non-degenerate’ we mean that the limiting Gaussianhas non-zero variance, or in higher

dimensions that the covariance matrix is positive definite.

These are the statistical features which we will use to characterise a process as diffusive, to-

gether with a third dealing with convergence of rescaled paths to Brownian motion.

We remark that in general inhomogeneous physical systems, the rate of diffusion characterised

by the diffusion coefficient can vary over the system. In sucha case, we can say that we have

diffusion if Fick’s law holds locally, i.e. if the flux of the diffusing quantity is locally proportional

to its gradient [Cra75].

1.4. Statistical properties

Many dynamical systems, including important classes of billiards, arechaotic, in the sense that

trajectories emanating from nearby initial conditions separate fast as time evolves. Any physical

measurement has a limited precision, so that if we repeat an experiment several times then we

cannot be sure that the initial condition is identical each time, but only that it lies within a certain

tolerance. Averaging over the results of the experiments thus corresponds to averaging over a

small ball of initial conditions as it spreads out over possible states of the system. This argument

motivates the need for introducing probabilistic notions,namely ergodic and statistical properties,

to study deterministic dynamical systems which are chaotic; see Chap. 2.

One of the main reasons for the interest in billiard models isthe possibility of obtaining rigor-

ous results on their ergodic and statistical properties: see e.g. [BS81, BSC91]. The techniques are

most highly developed fordispersingbilliards such as the Lorentz gas, where the curved, convex

scatterers cause nearby trajectories to separate exponentially fast. In fact, Lyapunov exponents

(which measure the rate of separation) exist and are non-zero almost everywhere for the billiard

map, so that the system ishyperbolic (chaotic). Due to the Hamiltonian nature of the system,

the Lyapunov exponents come in positive–negative pairs, sothat at least one Lyapunov exponent

is positive almost everywhere [CM01, Gas98]; further, the Kolmogorov–Sinai entropy, which

measures the rate of generation of information in time, is positive [Gas98]. These are standard

indicators of the chaotic nature of the system [ER85].

Hard-sphere fluids are onlysemi-dispersive, due to the flat, neutral directions along the cylin-

der axis in the many-particle phase space; this makes their rigorous analysis much harder: see

e.g. [Bál99] for a review. Nonetheless, a rigorous proof ofthe celebrated Boltzmann ergodic hy-
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pothesis has recently been achieved for hard discs (d = 2) and spheres (d = 3): see references in

Sec. 2.5.4.

The main focus of this thesis isdeterministic diffusion, a statistical property of certain dy-

namical systems, including certain classes of billiards. Adefinition often used in the physical

literature is that a system isdiffusive if the mean squared displacement grows proportionally to

time t, asymptotically ast → ∞. However, there are stronger properties which are also charac-

teristic of diffusion, which a given system may or may not possess: (i) acentral limit theorem

may be satisfied, i.e. rescaled distributions converge to a normal distribution ast → ∞; and (ii) the

rescaled dynamics may ‘look like’ Brownian motion. See Chap. 2 for details.

Recently there has been much interest in the question of which microscopic features areneces-

saryfor a system to exhibit strong ergodic and statistical properties. The proofs of these properties

for dispersive billiards depend crucially on the fact that they are hyperbolic, but numerical evi-

dence has been given that systems with weaker chaotic properties may also show strong statistical

properties, for example the polygonal billiard channels studied in Chap. 5.

1.5. Overview of thesis

Chapter 2 reviews concepts from dynamical systems, probability theory and ergodic theory which

we require to discuss deterministic diffusion. Chapters 3–6 present our results on deterministic

diffusion in three types of billiard model: a 2D periodic Lorentz gas with a two-dimensional

parameter space (Chaps. 3 and 4); several classes of polygonal billiard channel (Chap. 5); and

3D periodic Lorentz gases (Chap. 6). Conclusions are presented in Chap. 7, followed by several

appendices giving technical details of results needed in the main text; we expect that many of these

results are already known, but in several cases we were unable to find suitable references.

The discussion in each chapter can be thought of in terms of three related threads. The first is

mathematical: to what extent do rigorous results hold beyond their immediate range of applicabil-

ity, and can we understand more precisely the statistical behaviour described by those results? The

second is physical: how do geometrical features affect the dynamics and statistical properties of

the system? The third is statistical: how can we best estimate statistical properties from numerical

data?





CHAPTER 2

Statistical properties of dynamical systems

In this chapter we review in what sense deterministic dynamical systems ‘look like’ stochastic

processes. We make a (somewhat arbitrary) distinction betweenergodicproperties andstatistical

properties: the former deal with general theorems referring to large classes of observables, whereas

the latter hold only for observables with a certain degree ofsmoothness, are related to rates of

convergence in ergodic theorems, and are of physical relevance.

2.1. Dynamical systems and stochastic processes

2.1.1. Invariant measures

Let Φt : M→M be the flow of a continuous (t ∈ R) or discrete (t ∈ Z) dynamical system with

phase spaceM. Measuresµ are defined on someσ -algebraB on M. Our dynamical systems

will be defined on metric spaces, so that we can take, for example, B to be the Borel measurable

subsets ofM. Then any physically relevant subset ofM will be in B, and from now on we will

usually refer to subsets ofM without explicitly mentioningB.

Suppose that we start the evolution of the dynamical system with a distribution of initial con-

ditions described by the measureµ0. This distribution will evolve in time to the measureµt given

by

µt := (Φt)∗(µ0); µt(A) := µ0(Φ−t(A)); (2.1)

here the right hand side defines the meaning of thepush-forward(Φt)∗.

A particularly simple and interesting case occurs if the measure is preserved by the system,

or is invariant, as follows. We say thatµ := µ0 is invariant with respect to the flow if, for allt,

(Φt)∗(µ) = µ , or equivalently if

µ(Φ−t(A)) = µ(A), for all A∈ B. (2.2)

Here we also require thatΦt be measurablewith respect toB, i.e. such thatΦ−t(A) ∈ B for all

19
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A∈ B. In the discrete time case, where the dynamics is given by a map T : M → M, it is enough

to haveµ(T−1(A)) = µ(A) for all measurable setsA.

Natural invariant measures Some systems possessnatural invariant measures if the dynamics

preserves some structure. The main class of interest to us isHamiltoniansystems, which preserve

Liouville measure: see Sec. 2.5 in the case of billiards and [KH95, Chap. 5] for other examples.

We are then most interested in statistical properties with respect to these measures.

2.1.2. Dynamical systems with invariant measures as stationary stochastic processes

Fix an observable f: M → R (that is, a quantity that we could in principle measure when the

system is in different states in phase space) and look atXt := f ◦Φt : M→ R. Given a measure

µ := µ0 onM, we can regard(Xt) as a collection of random variables indexed by time, so that we

have astochastic process[GS92].

If the measureµ is invariant, then the process(Xt) is stationary, which means that for alln, all

t1, . . . , tn and allh > 0, the families

(Xt1, . . . ,Xtn) and (Xt1+h, . . . ,Xtn+h) (2.3)

have the same joint distribution as each other [GS92]. The proof is as follows. For two timest and

sand two setsA,B∈ B, we have

P
(

f ◦Φt ∈ A, f ◦Φs ∈ B
)

= µ
(
Φ−t( f−1(A))∩Φ−s( f−1(B))

)
, (2.4)

which by the measure-preserving property ofΦ is equal to

= µ
(
Φ−r (Φ−t( f−1(A))∩Φ−s( f−1(B))

))
= P

(
f ◦Φt+r ∈ A, f ◦Φs+r ∈ B

)
. (2.5)

An analogous argument holds forn times andn sets; hence the random variables(Xt = f ◦Φt)

form a stationary stochastic process.

2.2. Ergodic properties

Ergodic properties with respect to an invariant measure canbe thought of loosely as a measure-

theoretic description of chaoticity. There is a hierarchy of increasingly strong properties; the ideas
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originated in statistical mechanics: see e.g. [Dor99]. A general reference is, for example, [CFS82].

2.2.1. Ergodicity

In the billiard systems we study there is a natural invariantmeasureµ , namely Liouville measure

(see Sec. 2.5), which we regard as fixed in the following.

Suppose that the invariant measureµ is finite, i.e.µ(M) < ∞. Then we can normaliseµ to get

aprobability measurewith µ(M) = 1. The flowΦt is ergodicwith respect toµ if1 for all A⊂M,

we have

Φ−t(A) = A ⇒ µ(A) = 0 or µ(A) = 1, (2.6)

i.e. any setA which is invariant under the flow has measure 0, so that it is trivial from the point

of view of measure theory, or has measure 1, so that it covers the whole space except for a set of

measure 0.

2.2.2. Birkhoff ergodic theorem

Let µ be an invariant probability measure for the dynamical system Φt , and let f : M → R be

integrable. Then Birkhoff’s ergodic theorem states (see e.g. [CFS82]) that the limit

f̄ (x) := lim
T→∞

1
T

T∫

0

( f ◦Φt)(x)dt (2.7)

exists for almost allx∈M with respect to the measureµ , and we callf̄ (x) thetime averageof f .

Furthermore, if also the system is ergodic, then

f̄ (x) = 〈 f 〉µ :=
∫

M

f dµ a.e., (2.8)

so that time averages are almost everywhere (a.e.) equal to thespace average〈 f 〉 with respect to

the ergodic invariant measureµ .

The motivation for this theorem came originally from Boltzmann, who had the idea that a

sufficiently complicated dynamical system should explore the whole accessible phase space, an

idea known as theergodic hypothesis. This has recently been proved for hard-sphere fluids in a

series of papers [Sim, Sim04, Sim03, SS99].

1We continue to suppress the necessity of havingA∈ B.
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2.2.3. Mixing

The flowΦt is mixingwith respect to the invariant measureµ if for any setsA,B⊂M, we have

µ(A∩Φt(B))
t→∞−→ µ(A)µ(B). (2.9)

Mixing implies ergodicity. An important interpretation for us is that mixing is equivalent to weak

convergence of densities: see App. C.

There is also a notion ofweak-mixing, intermediate in strength between ergodicity and mixing.

For discrete time systems we say that a transformationT preserving a measureµ is weak-mixing

if for any A,B⊂M, we have

lim
n→∞

1
n

n−1

∑
i=0

∣∣µ(T−iA∩B)−µ(A)µ(B)
∣∣= 0. (2.10)

For comparison, there is a characterisation of ergodicity in similar terms, stating thatT is ergodic

if for any A,B⊂M we have

lim
n→∞

1
n

n−1

∑
i=0

µ(T−iA∩B) = µ(A)µ(B). (2.11)

See [Wal82, CFS82] for detailed comparisons of the different notions, and [CFS82] for formula-

tions for continuous-time systems.

2.2.4. K-systems

K-systems have very strong ergodic properties: in particular their Kolmogorov–Sinai entropy is

positive. See e.g. [Sin94, p. 71] for the definition. K-systems are multiply mixing (a generalisation

of mixing), mixing and ergodic.

2.3. Statistical properties: probabilistic limit theorems

We now turn to statistical properties, reviewing the application of results from the theory of sta-

tionary stochastic processes to the context of dynamical systems.

Diffusion in billiards concerns the statistical behaviourof the particle positions. Denoting the
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position at timet by xt and restricting attention to the first componentxt , we can write

xt =

t∫

0

v1(s)ds+x0 =

t∫

0

f ◦Φs(·)ds+x0, (2.12)

where f = v1, the first velocity component. This expressesxt solely in terms of functions defined

on the torus, so that in a sense we have reduced a spatially extended problem (spreading out

over an infinite lattice) to a problem on the torus. Equation (2.12) shows that the displacement

∆xt := xt −x0 is in some sense a more natural observable than the positionxt in this context.

In the above we are regardingv1 : M→ R as the observable

v1(ω) = v1(q,v) = v1 (2.13)

which returns the first component of the velocity of the initial condition, so thatv1 ◦Φt(ω) is the

first velocity component at timet starting from the initial conditionω = (q,v) ∈M.

More generally, we can consider integrals of the form in (2.12) over other observablesf :

M→ R; these are important in the study of other transport processes, for example [Bun00]. The

question we wish to answer then concerns the distribution ofaccumulation functionsof the form

[CY00]

St(·) :=

t∫

0

f ◦Φs(·)ds, (2.14)

in particular in the limit ast → ∞.

The integral in (2.14) is a continuous-time version of a Birkhoff sum

Sn = f + f ◦T + f ◦T2 + · · ·+ f ◦Tn−1 = X1 + · · ·+Xn, (2.15)

where theXn := f ◦Tn−1 are stationary random variables. We are thus interested in statistical prop-

erties, for example means and shapes of limiting distributions, of sums and integrals of stationary

random variables.

Intuitively, if the correlations between theXi decay sufficiently fast, then they are asymptoti-

cally independent, and we can hope that the classical limit theorems for independent and identi-

cally distributed random variables can be extended to the stationary case. The Bernstein method,

summarised below, is a rigorous justification for this.
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2.3.1. Averages

The simplest statistical properties to study areaveragesof observables. Iff : M → R is an

observable on the phase space of the dynamical system, then we denote themeanof the observable

f by

〈 f 〉 := Eµ [ f ] =

∫

M

f dµ =

∫

M

f (ω)dµ(ω). (2.16)

Here,µ is the distribution of initial conditionsω ∈M andEµ [ f ] denotes the expectation of the

random variablef with respect to the probability measureµ .

We will be interested in the evolution over time of such averages when the observablef in-

volves the flowΦt . A key role is played by themean squared displacementat timet, denoted

〈∆x2〉t := 〈(∆xt)
2〉µ = 〈(xt −x0)

2〉µ =

〈


t∫

0

v1◦Φs(·)ds




2〉

µ

. (2.17)

In the final expression in (2.17), the dot denotes the variable ω ∈M over which the average〈·〉µ

is taken. We will usually think of this mean squared displacement as a function of timet, so that

it is convenient to use the notation〈∆x2〉t , which makes this dependence explicit.

The physical interpretation of the above definition is as an average over initial conditions of the

time-dependent observable. An alternative point of view isto regard〈∆x2〉t as an average over the

evolved probability distributionµt at timet starting from a distributionµ0 at time 0; the average

is then over a fixed observable at points determined by evolving the initial conditions in time.

2.3.2. Central limit theorem: independent, identically distributed case

Let (Xi) be independent and identically distributed (i.i.d.) random variables with mean 0 and

varianceσ2 < ∞. We are interested in statistical properties of the accumulation function

Sn := X1+ · · ·+Xn, (2.18)

asn→ ∞. We have

E [Sn] = 0; Var[Sn] = nVar[X] , (2.19)
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so that if we normalise by
√

n, settingS̃n := Sn/
√

n, then we get

Var
[
S̃n
]
= Var

[
Sn√

n

]
=

Var[Sn]

n
= σ2. (2.20)

Since the variances of thẽSn are now independent ofn, we may hope that the distributions converge

in shape to some limiting distribution.

With the above conditions, the classicalcentral limit theorem(see e.g. [Fel71, Dur96]) states

that
Sn√

n
D−→ Zσ2, i.e. P

(
Sn√

n
≤ x

)
−→ 1√

2πσ2

x∫

−∞

exp

(−s2

2σ2

)
ds, (2.21)

so that the rescaled accumulation functions convergein distribution to anormal distribution.

We recall the definition of this notion of convergence [GS92,Bil68]. Let Xn be a sequence of

real-valued random variables with distribution functionsFn, so thatFn(x) := P (Xn 6 x). We say

that the sequenceXn converges in distributionto the random variableX, with distribution function

F(x) := P (X 6 x), written Xn
D−→ X, if Fn(x) → F(x) at all x whereF(x) is continuous. There is

a generalisation of this concept which applies in much more general situations: see App. D.

2.3.3. Central limit theorem: stationary case

If now theXn are no longer independent but they are stationary, we have

Var[Sn] = nC(0)+2
n−1

∑
j=1

(n− j)C( j) (2.22)

where theautocorrelation functionof f is

C(n) := E [X0Xn] = 〈 f .( f ◦Tn)〉− 〈 f 〉2, (2.23)

and〈·〉 = E [·] both denote averages (expectations) over the invariant measure. It follows that

Var[Sn]

n
n→∞−→ σ2 := C(0)+2

∞

∑
j=1

C( j), (2.24)

provided∑ j jC j exists. A sufficient condition for this2 is thatCj = o
(

j−2−ε) for someε > 0.

2Note thatCj = o
(

j−2
)

is not sufficient, since∑ j jC j is divergent forCj = j−2. On the other hand,Cj = o
(

j−2−ε)

is not necessary either, since e.g. forCj = j−2(log j)−p the sum∑ j jC j is convergent forp > 1 [Rud76].
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ξ1 ξ2 ξ3 ξ4η1 η2 η3

Figure 2.1: Partition for the Bernstein method.

Now we may again hope/expect that

Sn√
n

D−→ Zσ2. (2.25)

We can also regard the central limit theorem as describing the distribution of ‘fluctuations’ around

the mean in the Birkhoff ergodic theorem. (Note that the Birkhoff ergodic theorem is a version of

the strong law of large numbers for stationary processes [Dur96].)

2.3.4. Central limit theorem for stationary processes: Bernstein method

The Bernstein method can be used to prove results of central limit theorem (CLT) type for station-

ary processes, based on the idea that ifE [X0Xn] decays sufficiently fast then theXi areasymptoti-

cally independentand we can reduce to the case of independent random variables.

The method works as follows (see e.g. [Dur96, Chap. 7] and [Bil68]). Split the sumSn up into

alternate blocksξ j of length p andη j of lengthq, so thatξ1 = X1 + · · ·+ Xp, η1 = Xp+1 + · · ·+
Xp+q, ξ2 = Xp+q+1+ · · ·X2p+q, etc.; see Fig. 2.1.

If q is sufficiently large then theξ j are almost independent; on the other hand, ifq is small

compared top then the sum∑ j η j of the small blocks is small compared to the total size of the

sumSn. In a suitable limit we can thus reduce to the independent case, with an error which tends

to 0.

2.3.5. Rate of mixing

For the above to work, we need to show for a given stationary sequence that the correlationsCn

decay fast enough, i.e. that we have a fast enough rate of mixing. There are various sufficient

‘mixing conditions’ for the central limit theorem to hold: see e.g. [Dur96, Bil68, Dav94] in the

context of probability theory, and [Den89, Liv96] in the specific context of dynamical systems.



2.3. Statistical properties: probabilistic limit theorems 27

2.3.6. Functional central limit theorem

The central limit theorem quoted above deals with one-dimensional distributions. There is a multi-

dimensional version, where multi-dimensional distributions converge to multi-dimensional normal

distributions. If also a further technical condition, calledtightness, is satisfied, then the probability

distribution on the space of continuous paths which is induced by the dynamical system converges

weakly to a continuous-time stochastic process. If furtherthe correlations behave correctly, then

the limit will be the particular case of Brownian motion. Such a result is known as afunctional

central limit theorem(i.e. a version of the central limit theorem for paths represented by functions).

This is also called theweak invariance principle.

For further details in the context of diffusion see Sec. 2.4 and App. D.

2.3.7. Almost-sure invariance principle

The strongest type of statistical property is known as analmost-sure invariance principle, since

it says that a stochastic process can be written, almost surely, as the sum of a Brownian motion

on a suitable space, together with an error which can be bounded in a precise way: see e.g.

[PS75, DP84, MT04].

2.3.8. Transition from discrete-time to continuous-time

In billiards, we are interested in statistical properties of the physical continuous-time dynamics.

Currently these are not directly available, due to the lack of information on decay of correlations

in continuous time; rather they are derived from the resultson the billiard map, using the fact that

the flow is a suspension flow over that map.

We refer to App. B for the definition of suspension flows and fora statement of the key theorem

relating the central limit theorem for the flow to that of the map. We give here a derivation of the

Green–Kubo formula from the Einstein formula for the diffusion coefficient in continuous time,

valid only if the velocity autocorrelation function decays sufficiently fast, which for billiards has

not yet been proved [CY00]. References containing similar derivations include [vB82, Det00,

BY91, RD77]. We remark that recent results3 have shown the exponential decay of correlations

in continuous time for Hölder observables of Anosov geodesic flows [Dol98, Che98] and contact

flows [Liv].

3[Stretched exponential bounds on correlations for Hölder-continuous observables for the 2D periodic Lorentz gas
were recently proved in [Che07].]
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We take as a starting point the Einstein formula

D = lim
t→∞

1
2t
〈∆x2〉t . (2.26)

Using∆x(t) = x(t)−x(t0) =
∫ t
t ′=0 v(t ′)dt ′, we have

〈∆x2〉t =

t∫

t ′=0

t∫

t ′′=0

〈v(t ′)v(t ′′)〉dt ′ dt ′′ =

t∫

t ′=0

t ′∫

τ=t ′−t

〈v(τ)v(0)〉dt ′dτ . (2.27)

Here we have used the fact that the averages are invariant with respect to time translation, due

to the stationarity of the stochastic process; we also performed a change of variables fromt ′′ to

τ := t ′− t ′′.

We now change the order of integration, obtaining

〈∆x2〉t =

0∫

τ=−t

t+τ∫

t ′=0

〈v(τ)v(0)〉dt ′ dτ +

t∫

τ=0

t∫

t ′=τ

〈v(τ)v(0)〉dt ′dτ . (2.28)

Hence

〈∆x2〉t = 2

t∫

τ=0

(t − τ)〈v(τ)v(0)〉dτ . (2.29)

We can now define afinite-time diffusion coefficient D(t), an estimate for the (infinite-time)

diffusion coefficient based on the information available upto timet. There are two possible ways

to do this. Using the Einstein definition, we have

D(t) :=
〈∆x2〉t

2t
=

t∫

τ=0

(
1− τ

t

)
C(τ)dτ , (2.30)

whereC(τ) := 〈v(τ)v(0)〉 is the velocity autocorrelation function. Hence the diffusion coefficient

D := lim
t→∞

D(t) =

∞∫

0

C(τ)dτ (2.31)

exists if: (i)
∫ ∞

τ=0C(τ)dτ < ∞, i.e. C is integrable; and (ii)1t
∫ t

τ=0τ C(τ)dτ → 0 ast → ∞. In fact

(ii) follows from (i) by integrating by parts, so that a necessary and sufficient condition for the

existence of the diffusion coefficient is thatC(t) is integrable.
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The equation (2.31), relating the time integral of the velocity autocorrelation function to the

transport coefficientD, is aGreen–Kubo relation[Dor99]; Green–Kubo formulae can be found

for all transport coefficients [EM90, Gas98], e.g. via linear response theory [EM90], expressing

the transport coefficient as a time integral of the autocorrelation function of the flux of the quantity

being transported.

Another possible definition of a finite-time diffusion coefficient D̃, which is more closely re-

lated to the numerical method we shall use later [Bal97, AT87], is to defineD̃ using thelocal slope

of the mean squared displacement〈∆x2〉t :

D̃(t) :=
1
2

d
dt
〈∆x2〉t . (2.32)

From (2.29), we have

〈∆x2〉t = 2t

t∫

τ=0

C(τ)dτ −2

t∫

τ=0

τ C(τ)dτ , (2.33)

so that the fundamental theorem of calculus gives

D̃(t) =

t∫

τ=0

C(τ)dτ + tC(t)− tC(t) =

t∫

τ=0

C(τ)dτ . (2.34)

This definition avoids the slowly-decaying 1/t tail of the first definition [Bal97]. Further, if we

have a bound on the rate of decay of correlations then we can use (2.34) to estimate the error
∣∣D− D̃(t)

∣∣ resulting from using the finite-time diffusion coefficientD̃(t) instead of its infinite-

time limit D. For example, if correlations decay exponentially as

|C(t)| 6 K e−α t , (2.35)

then we can estimate

∣∣D− D̃(t)
∣∣=

∣∣∣∣∣∣

∞∫

τ=t

C(τ)dτ

∣∣∣∣∣∣
6

∞∫

τ=t

K e−α τ dτ =
K
α

e−α t . (2.36)

Hence this difference tends very rapidly to zero, as seen in numerical simulations. However,

obtaining the constantsK andα , even numerically, is difficult or impossible.
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If, on the other hand, correlations decay only algebraically as

|C(t)| 6 Kt−1−ε , (2.37)

then
∣∣D− D̃(t)

∣∣ 6

∣∣∣∣∣∣

∞∫

s=t

C(s)ds

∣∣∣∣∣∣
=

1
ε

t−ε . (2.38)

This error tends to zero very slowly for smallε , so that the finite-time estimation method for any

practical time has an additional uncertainty built in.

2.4. Definition of deterministic diffusion

There is no single definition of deterministic diffusion; instead, we say that a dynamical system is

diffusive if one or more of the following hierarchy of statistical properties holds. The idea is that

the statistical properties behave to some extent like thoseof solutions of the diffusion equation

described in Sec. 1.3, or those of Brownian motion (see below). We use terminology suitable

for diffusion in billiards, although these properties are also relevant for more abstract dynamical

systems.

(a) the mean squared displacement grows linearly asymptotically;

(b) the position or displacement distribution, rescaled by
√

t, converges in distribution to a

non-degenerate Gaussian, i.e. a central limit theorem holds; and

(c) the whole process, suitably rescaled, converges in distribution to a Wiener process.

Properties (a) and (b) are based on the corresponding properties of the diffusion equation,

although property (b) will in general only hold at the level of weakconvergence, whereas in the

classical diffusion equation there is pointwise (and even uniform) convergence of thedensities.

Property (c) says that the process, when suitably rescaled,looks like Brownian motion, which can

be thought of as a probabilistic model of diffusion. We have the implications4 (c)⇒ (b)⇒ (a), so

that (c) is the strongest property. We now give precise versions of these statements.

4[In fact, as was pointed out to me by Ian Melbourne, (b) doesnot imply (a) in general. However, in billiards, they
tend to go together – to know which scaling factor to use in thecentral limit theorem, it is necessary to calculate the
mean squared displacement.]
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(a) Asymptotic linearity of mean squared displacement The limit

2D := lim
t→∞

1
t
〈∆x2〉t (2.39)

exists, so that the mean squared displacement〈∆x2〉t := 〈[∆x(t)]2〉 (the variance of the displace-

ment distribution) grows asymptotically linearly in time:

〈∆x2〉t ∼ 2Dt ast → ∞, (2.40)

whereD is thediffusion coefficient. In d > 2 dimensions, letting∆xi(t) := xi(t)−xi(0) be theith

component of the displacement, we have

〈∆xi ∆x j〉t ∼ 2Di j t, (2.41)

where theDi j are components of a symmetric diffusion tensor.

(b) Central limit theorem: convergence to normal distribution Scale the displacement dis-

tribution by
√

t, so that the variance of the rescaled distribution is bounded. Then this distribution

convergesweakly, or in distribution, to a normally distributed random variablez [GN90, CY00]:

x(t)−x(0)√
t

D−→ z, ast → ∞. (2.42)

In the 1-dimensional case, this means that

lim
t→∞

P

(
xt −x0√

t
< u

)
=

1

σ
√

2π

u∫

s=−∞

e−s2/2σ2
ds, (2.43)

whereP(·) denotes the probability of the event inside the parentheseswith respect to the initial

distribution of the random variablex0, andσ2 is the variance of the limiting normal distribution.

In d > 2 dimensions, this is replaced by similar statements about probabilities ofd-dimensional

sets. This is thecentral limit theoremfor the random variable∆x. From (a) we know that in 1D,

the variance of the limiting normal distribution isσ2 = 2D; in d > 2 dimensions, the covariance

matrix of z is given by the matrix(2Di j ) [BS81, DC00].
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(c) Functional central limit theorem: convergence of path distribution to Brownian motion

Consider the following rescaling of the whole path of the process:

x̃t(s) :=
x(st)−x(0)√

t
, (2.44)

wheres∈ [0,1]. The scale
√

t is the ‘natural’ scale coming from (b). This rescaling ‘squashes’

the entire path of the process onto the interval[0,1], so that we can compare paths at different

times. In fact, we compare the induced probability measureson the space of continuous functions

[0,1] → R
d.

We say that the process satisfies afunctional central limit theoremif the probability distribution

of the rescaledpathsof the process converges weakly to Wiener measure (Brownianmotion) B

with covariance matrix as in (b), ast → ∞:

x̃t
D−→ B ast → ∞, (2.45)

This is known as afunctional central limit theorem, or weak invariance principle[CY00].

This makes precise the sense in whichx̃t looks like Brownian motion on long length and time

scales. In the following sections we discuss in more detail the meaning of the above statement, by

showing how diffusion can be regarded as a stochastic process and in what sense these rescaled

processes converge to diffusion processes.

2.4.1. Diffusion as a stochastic process

As recalled in Sec. 1.3, diffusion is described classicallyby the diffusion equation

∂ρ(t, r)
∂ t

= D∇2ρ(t, r). (2.46)

We would like a microscopic model which gives behaviour on a macroscopic level consistent with

this equation. Following Einstein and Wiener (see e.g. [Gar85]), we look for a stochastic process

Bt , determined by the probability densityp(x, t) of a particle being at positionx at timet given

that it started atx = 0 at timet = 0. Based on physical reasoning, we impose that the sample paths

of the process should be continuous, and that displacementsBt+h−Bt should be independent of

the history of the particle motion up to timet.



2.4. Definition of deterministic diffusion 33

Under certain technical conditions,p(x, t) then satisfies the equation

∂ p
∂ t

+
∂

∂xi

[
Ai p− 1

2∑
j

∂
∂x j

(Bi j p)

]
= 0, (2.47)

which is known asKolmogorov’s forward equationor theFokker–Planck equation[Gar85]. The

drift vector A(x, t) and thediffusion tensorB(x, t) give the mean and variance, respectively, of

infinitesimal displacements at positionx and timet [Gar85].

If the system ishomogeneous, thenA andB are independent ofx andt. If the system is also

sufficiently symmetric, then the drift is zero and the diffusion tensor is a multiple of the identity

tensor. The stochastic process is thenBrownian motion, and the Fokker–Planck equation (2.47)

reduces to the diffusion equation (2.46). (We remark that the factor 1/2 in (2.47) occurs naturally

in the probabilistic setting, and often leads to a discrepancy between the probability and physics

literature.) A general diffusion process, however, can beinhomogeneousin both space and time.

Brownian motion is defined as follows [Dur96]. A standard one-dimensionalBrownian motion

(also called theWiener process) is a real-valued stochastic processBt , t > 0, such that:

(i) For all n, if t0 < t1 < .. . < tn, then theincrements B(t0),B(t1)−B(t0), . . . ,B(tn)−B(tn−1)

are independent random variables.

(ii) If t > s> 0, thenB(t)−B(s) is a normal random variable with mean 0 and variancet − s,

so that

P(B(t)−B(s) ∈ A) =

∫

A

1√
2π(t −s)

exp

[
− x2

2(t −s)

]
dx. (2.48)

(iii) With probability 1, the functiont 7→ B(t) is continuous.

Standardd-dimensional Brownian motion is then the vector processB(t) := (B1(t), . . . ,Bd(t)),

where eachBi is an independent standard 1D Brownian motion.

Another approach to study such diffusion processes is via stochastic differential equations

(SDEs) [Gar85]. The above process corresponds to solutionsof the SDE

dx = A(x, t)dt + σ(x, t)dB(t), (2.49)

whereB is ann-dimensional Brownian motion andσσT = B. This form makes more explicit
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the infinitesimal increments referred to above, and is now ina form which is more suitable for

numerical simulation.

2.4.2. Weak convergence to Brownian motion

We must make precise what we mean by saying that

x̃t ⇀ B ast → ∞. (2.50)

The rigorous definition of this notion of weak convergence isgiven in App. D; see [Bil68].

Necessary and sufficient conditions are [Bil68] (1) that thefinite-dimensional distributions of the

process̃xt converge to those of Brownian motion; and (2) that the class of induced measures on

path space istight: see App. D for the definition.

Property (1) means that for anyn, any timess1 < · · · < sn, and any reasonable setsD1, . . . ,Dn

in R
d, we have

P (x̃t(s1) ∈ D1, . . . , x̃t(sn) ∈ Dn)
t→∞−→ P (B(s1) ∈ D1, . . . ,B(sn) ∈ Dn) . (2.51)

This is called themulti-dimensional central limit theoremin [Che95]. The right-hand side can be

expressed as a multi-dimensional integral over Gaussians,as follows. We see that5

P
(
B(t2) = x2

∣∣B(t1) = x1
)

= P
(
B(t2)−B(t1) = x2−x1

∣∣B(t1) = x1
)

(2.52)

= P (B(t2)−B(t1) = x2−x1) (2.53)

= p(x2−x1, t2− t1), (2.54)

since by the definition of Brownian motionB, the eventsB(t2)−B(t1) = x2− x1 andB(t1) = x1

are independent, andB(t2)−B(t1) is normal with mean 0 and variance 2Di j (t2− t1); herep(x, t) is

the Gaussian probability density function with that mean and variance. Integrating over allx1 ∈D1

andx2 ∈ D2, we have

P (B(t1) ∈ D1,B(t2) ∈ D2) =

∫

D1

dx1

∫

D2

dx2 p(x1, t1) p(x2−x1, t2− t1), (2.55)

5The probability thatB(t1) = x1 exactly is 0, but the argument can be made rigorous.
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with a similar expression for the right hand side of (2.51).

Sincex̃(si)∈Di if and only if x(tsi)−x(0) ∈
√

tDi, the multidimensional central limit theorem

becomes

P
(
x(λ 2t1) ∈ λD1,x(λ 2t2) ∈ λD2, . . . ,x(λ 2tn) ∈ λDn

)

λ→∞−→
∫

D1

dx1

∫

D2

dx2 · · ·
∫

Dn

dxn p(x1, t1) p(x2−x1, t2− t1) · · · p(xn−xn−1, tn− tn−1), (2.56)

settingλ :=
√

t and then renaming the timessi as ti . This relation was used in [DC00] as the

definition of a diffusive process, although the functional central limit theorem is a stronger state-

ment which also requires tightness. We remark that another name for the functional central limit

theorem is the weak (or Donsker) invariance principle [CY00].

In general, we may have convergence to a more general diffusion process than Brownian mo-

tion. For example, in [DGL81] it was shown that the motion of alarge particle embedded in

an infinite ideal gas converges to an Ornstein–Uhlenbeck process. In the case of the periodic

Lorentz gas, however, we have time-independent dynamics defined on a system which is space-

homogeneous and symmetric on a large scale; the only possible limiting diffusion process which

satisfies these conditions is Brownian motion.

2.4.3. Further remarks

An important part of the above limit theorems is proving thatthe limiting distribution is non-

degenerate, i.e. that the diffusion tensor is positive definite [Bun00]. In general, we can consider

the above limit theorems for an arbitrary observablef .

We will mostly consider 1-dimensional projections (marginals) of the above distributions; we

can equivalently regard this as studying the limit theoremsfor f being one component of∆x,

which follow from the multi-dimensional results stated above.

2.4.4. Discussion of definitions

Property (c) makes precise in what sense a dynamical system looks like Brownian motion when

correctly rescaled. This is the strongest, and so in some sense the best, property with which we

could define deterministic diffusion (i.e. a dynamical system is diffusive when it satisfies property

(c)). However, there are very few physically relevant systems which have been proved to satisfy
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(c). Interest in the periodic Lorentz gas comes in large partfrom the fact that it is one of the

only such systems; another is the triple linkage [HM03]. As mentioned above, in general we may

instead have convergence to some other diffusion process.

The multi-dimensional central limit theorem part of (c) wasstudied in [DC00], where both

Lorentz gases and wind–tree models were found to obey it, tested for certain setsDi and certain

values ofn. However, as stated in [DC00], (c) is difficult to investigate numerically, and the results

in that paper seem to be the best that we can expect.

Property (b), the central limit theorem, has been shown for large classes of observablesf in

many dynamical systems (see e.g. [Che95] and references therein), but again they are not often

physically relevant systems. Property (b) was used in [GN90] as the definition of a diffusive

system, but does not seem to have been applied in the physics literature; this is the approach taken

in Chap. 4.

Most emphasis in the physical literature is placed on property (a): many authors define a system

to be diffusive if only property (a) is verified (numerically), e.g. [KD00, ARdV02, DC01]. Many

types of system are diffusive in this sense, including 1D maps [KD99], Lorentz gases (periodic

and random) [BS81, KD00, DC01] and Ehrenfest wind–tree models, both periodic [ARdV02] and

random [DC01].

The implication (c)⇒ (b) always holds, and (a) and (b) usually go together. The reverse im-

plications (a)⇒ (b) and (b)⇒ (c) hold only under certain additional conditions: see e.g.[Che95].

It is thus of interest to ask if dynamical systems showing property (a) also show properties (b) and

(c). For example, in [KC89] adisorderedlattice-gas wind–tree model was reported as having an

asymptotically linear mean squared displacement, but a non-Gaussian distribution function, i.e. (a)

but not (b). However, disorder can lead to trapping effects which cannot occur in periodic systems

[ARdV02]; we are not aware of aperiodic (and hence ordered) billiard model with a unit-speed

velocity distribution which shows (a) but not (b), althoughin Sec. 4.7 we show that this can occur

with a Maxwellian velocity distribution.

2.4.5. Approach via cumulants

Several papers have approached property (b) by studying higher order cumulants of the distribu-

tion, e.g. [ARdV02, DC01]. A normal distribution has all cumulants higher than the second equal

to zero. It thus seems that we need all cumulants of the rescaled displacement distribution to tend
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to zero ast → ∞ for the distribution to approach a normal distribution; this was stated in [DC01,

p. 790], for example.

In fact, the weak type of convergence occurring in the central limit theorem (convergence in

distribution) does not in general require higher moments and cumulants even to exist: a faster rate

of decay of correlations is necessary to ensure the existence of higher cumulants than is required

for the central limit theorem to hold: see [vB82, CD00].

Higher cumulants are instead related to large deviations, describing behaviour in the tails of

the distribution [Gas98, Sec. 7.3.6]. We show in Chap. 5 thata class of polygonal billiard channels

which was found in [ARdV02] to have rapidly-growing cumulants nonetheless appears to satisfy

the central limit theorem.

2.5. Rigorous results on billiards

In general, a billiard table is a Riemannian manifold with a piecewise smooth boundary. The

dynamics is given by geodesic flow away from the boundary and specular reflection (elastic colli-

sion) at the boundary. Here we restrict attention to two-dimensional periodic Lorentz gases, where

non-interacting point particles in free motion on a torus-shaped billiard table undergo elastic col-

lisions with a set of fixed scatterers. We give only enough detail for our purposes, and refer to

[Tab95], [CFS82, Chap. 6] and [CM01, Chap. 4] for further information6.

2.5.1. Continuous-time dynamics

We denote byQ thebilliard domain, i.e. the available region where particles can move, given by

Q := T
2\
⋃

i

Di , (2.57)

where the scatterersDi are non-intersecting discs in the case of the periodic Lorentz gas. We

visualise the torusT2 as a square[0,1)2 with periodic boundary conditions, as in Fig. 2.2.

Each particle moves in a straight line withinQ at constant velocityv until it hits the boundary

∂Q at a pointq on the boundary∂Di of scattereri. It then undergoes anelastic collision, giving a

new velocity

v′ = v−2(v ·n)n (2.58)

6[An excellent recent reference on chaotic billiards is [CM06].]
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Q

Figure 2.2: Example of a billiard domainQ with scatterers removed.

after collision, wheren := n(q) is the outward normal vector atq to the scattererDi. The particle

continues its motion by alternation of straight line motionand elastic collisions with the boundary.

The above prescription defines a continuous-time dynamicalsystem given by a flow

Φ̃t : M̃→ M̃; (2.59)

Φ̃t : (q0,v0) 7→ (qt ,vt), (2.60)

whereM̃ := T Q is the tangent bundle toQ, i.e. the set

M̃ := {(q,v) : q ∈ Q,v ∈ TqQ} , (2.61)

whereTqQ is the tangent space toQ at the pointq.

Since the speed‖v‖ is preserved, it is customary to take all particles with unitspeed7. We can

thus restrict attention to the new phase spaceM given by the unit tangent bundle8

M := T 1Q = Q×S1, (2.62)

where

S1 :=
{

v ∈ R
2 : ‖v‖ = 1

}
, (2.63)

and the flowΦt : M→M, which we call thebilliard flow. We can parametrise the spaceM with

coordinates(x,y,θ), where(x,y) ∈ [0,1)2 are position coordinates andθ ∈ [0,2π) is the angle of

7We consider non-constant speed distributions in Sec. 4.7.
8The identification of the unit tangent bundleT1Q with the direct productQ×S1 is not in general valid, but it does

hold for the simple situation we consider.
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the velocity vector.

We remark that for billiard tables with corners, where two smooth parts of the boundary touch

at a non-zero angle, the trajectory cannot be continued if itexactly hits a corner. However, the set

of all such trajectories has measure 0.

2.5.2. Billiard map: Poincaré section

As is often the case in dynamical systems, it turns out to be technically easier to study a Poincaré

section of the flow. A natural cross-section is given by

M := {(q,v) ∈M : q ∈ ∂Q, v ·n(q) > 0} , (2.64)

i.e. the set of vectors whose base points lie on a scatterer and which point into the interior of the

billiard domain. This cross-sectionM forms a two-dimensional surface in the three-dimensional

phase spaceM. One way of parametrisingM is to take as coordinates the arc lengthr around

the scatterer of the point of collision (from some referencepoint), and the angleϕ between the

velocity vector and the normal vector [CM01]. Alternatively we can take the arc length around the

scatterer and the sine ofϕ , giving canonically conjugateBirkhoff coordinates[Gas98, Chap. 5].

In general we must also keep track of a labeli denoting which scatterer was hit. The flowΦt then

inducesan invertible mapT : M → M which maps one collision into the next, called thebilliard

map.

The billiard flow Φt can now be regarded as asuspension flowover T, under the free path

length functionτ : M → R+, whereτ(q,v) is the length of the collision-free part of the trajectory

emanating from the initial condition(q,v) ∈ M. Suspension flows are treated in detail in App. B.

2.5.3. Measures

Since the billiard flowΦt is Hamiltonian, it preserves a natural invariant measureµ , calledLiou-

ville measure, given by9

dµ := cµ dxdydθ , (2.66)

9This is a useful shorthand for the statement

µ(A) =
∫

A

dµ = cµ

∫

(x,y,θ)∈A

dxdydθ for all A∈ B. (2.65)
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where dx etc. denote Lebesgue measure in the respective coordinate,and cµ is a normalising

constant chosen so thatµ(M) = 1. This measure induces a measureν on M which is invariant

underT, given by [CM01]

dν := cν cosϕ dr dϕ . (2.67)

For a 2D billiard (i.e. one for which the dynamics is restricted to a plane), we have

cµ =
1

2π |Q| (2.68)

and

cν =
1

2|∂Q| . (2.69)

2.5.4. Ergodic and statistical properties

The ergodic and statistical properties of billiards have been the object of intense scrutiny since the

seminal work of Sinai [Sin70], where the K-property of the periodic 2-disc fluid was proved. All

of the proofs depend on thehyperbolicityof scattering billiards, i.e. the existence of stable and

unstable directions; for details see [CM06, CM01, Gas98, Tab95] and the references cited below.

A few of the key rigorous results for dispersing and semi-dispersing billiards are:

• 2D periodic Lorentz gas models for which a geometricalfinite horizoncondition holds

(Sec. 3.1.1) satisfy the central limit theorem and functional central limit theorem if the

scatterers are disjoint and piecewiseC3 smooth [BS81, BSC91];

• higher-dimensional Lorentz gases with the same conditionsalso satisfy the CLT and FCLT

[Che94], but there are issues with the proofs in higher dimensions that need addressing10

after the work of [BCST03, BCST02];

• velocity autocorrelation functions of the billiard map decay exponentially [You98, Che99];

and

• hard ball fluids are ergodic, mixing and K-systems: see [Sim]and references therein.

There is an excellent collection of reviews in [Szá00].

10N. I. Chernov, private communication.
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2.6. Numerical evaluation of statistical quantities

To evaluate numerically statistical quantities such as themean squared displacement, we use a

simple Monte Carlo method. We take a large sample(x(i)
0 ,v(i)

0 )N
i=1 of sizeN of initial conditions

chosen uniformly with respect to Liouville measure in one unit cell using a random number gen-

erator: the positionsx0 are uniform with respect to Lebesgue measure in the billiarddomainQ,

and the velocitiesv0 are uniform in the unit circleS1, i.e. with angles between 0 and 2π, and unit

speeds. These evolve after timet to (x(i)(t),v(i)(t))N
i=1; the distribution of this ensemble then gives

an approximation to that of(x(t),v(t)).

We use the Mersenne Twister random number generator [MN98],which seems to be consid-

ered to be one of the best-performing generators; we have also done some comparisons with a

standardrand implementation. Since our random numbers determine only the initial conditions,

and since the system is strongly mixing, we do not expect the choice of random number generator

to be important, provided the initial conditions are sufficiently well distributed through the phase

space, so that no small regions with important dynamical effects are omitted.

We denote averages over the initial conditions, or equivalently expectations with respect to

the distribution of(x0,v0), by 〈·〉. Approximations of such averages can now be evaluated via

[PTVF92]

〈 f (x0,v0)〉 = lim
N→∞

1
N

N

∑
i=1

f (x(i)
0 ,v(i)

0 ). (2.70)

The infinite sample size limit, although unobtainable in practice, reflects the expectation that larger

N will give a better approximation.

Lyapunov instability The Lyapunov instability in dispersing billiards implies that numerical

simulations of trajectories will not be accurate beyond a time where the uncertainty in the initial

condition has grown exponentially toO(1), so that some authors do not allow any data obtained

beyond that time [GG94]. However, most physics papers implicitly reject this argument by pre-

senting long-time results from simulations, and we shall also do this, whilst being careful about

other sources of error in statistical calculations. One partial justification for this comes fromshad-

owing [CM06]: in certain hyperbolic systems, it can be proved thatthere is a true trajectory close

to a simulated trajectory. The difficulty in billiards comesfrom the discontinuous nature of the

dynamics; nonetheless, some results of shadowing type wereproved in [KT92]. We are not aware

of any papers which investigate shadowing in particular billiard models, but early numerical in-
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vestigations of the validity of numerical estimates of ergodic properties for uniformly hyperbolic

systems can be found in [BCG+78, BCG+79].



CHAPTER 3

Geometry-dependence of the diffusion coefficient in a 2D

periodic Lorentz gas model

3.1. Two-dimensional periodic Lorentz gas model

A periodic Lorentz gasis a periodic billiard with disjoint circular scatterers (discs). The term is

also applied to other periodic billiards of dispersing typewith scatterers of more general shape:

see e.g. [HKG02].

In this chapter and the following one we study aspects of deterministic diffusion in a partic-

ular 2D periodic Lorentz gas model introduced below: here weconsider only the mean squared

displacement and the diffusion coefficient, while in Chap. 4we examine the shape of distributions.

3.1.1. Finite horizon condition

Periodic Lorentz gases were shown in [BS81, BSC91] to be diffusive (Sec. 2.4), provided they sat-

isfy thefinite horizoncondition: there is an upper bound on the free path length between collisions.

If this is not the case, so that a particle can travel infinitely far without colliding with any scatterers

(the billiard has aninfinite horizon), thencorridors exist, which allow for fast-propagating orbits.

This leads tosuper-diffusivebehaviour, in the sense that the mean squared displacement grows like

t logt (which is faster thant), as has recently been proved in [SV07], after heuristic andnumerical

arguments [FM84, ZGNR86] and analytical evidence [Ble92] were previously given. There is a

more detailed discussion of statistical behaviour in the infinite-horizon regime in Sec. 6.4.

We are mainly interested in normal diffusion, so that we wishto restrict attention to values

of the geometrical parameters for which there is a finite horizon. The simplest periodic two-

dimensional lattice1 is the square lattice. To allow the possibility of diffusionin a square lattice,

1We consistently use the term ‘lattice’ in the sense of physics to mean any periodic structure. Mathematicians
instead use the term in the narrower sense of the set of pointsin R

d of the form∑d
i=1 aiei , where theei are basis vectors

of R
d andai ∈ Z; these are calledBravais latticesin physics [AM76].

43
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(a)

a

b
rQ

(b)

Figure 3.1: (a) Part of the infinite system, constructed from two square lattices of discs, shown in different
shades of grey; the dashed lines indicate several unit cells. (b) A single unit cell, defining the geometrical
parameters. The billiard domain is the areaQ exterior to the discs.

the scatterers must not touch or overlap: if they do, we obtain a localised regime where any particle

is trapped in a bounded region of space, so that the diffusioncoefficient is necessarily 0. However,

non-touching scatterers in a square lattice always imply aninfinite horizon: trajectories parallel to

the lattice axes and passing sufficiently close to the centreof a unit cell never collide.

For this reason a periodic Lorentz gas on atriangular lattice is often used, where there is a

finite horizon when the non-touching discs are sufficiently close together: see e.g. [MZ83, KD00].

We instead elect to retain a square lattice model, blocking all possible corridors by adding an

additional disc at the centre of each cell.

3.1.2. Model studied

The model which we focus on, previously studied in [GG94, Gar97], consists of two inter-penetrating

square lattices of discs; they have the same lattice spacingr, and radiia andb, respectively, and

are arranged such that each unit cell of thea-lattice contains ab-disc at its center. Part of the

infinite system is shown in Fig. 3.1(a) and the geometrical parameters are defined in Fig. 3.1(b).

We were led to this model as a cross-section of the 3D model presented in Chap. 6, indepen-

dently of [GG94, Gar97], although as described above, it is anatural model to consider. The same

model has also been studied in [BDLR02, BDL00] in a differentcontext. The two-dimensional

parameter space of this model allows us to vary independently, and hence study the effect of, two

physical quantities: the size of exits of each unit cell, andthe accessible area of a unit cell. This is

not possible in the standard triangular Lorentz gas.
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3.1.3. Length scale

Since the speed is conserved, scaling the geometry by a constant factor does not alter the essentials

of the dynamics, just the time-scale on which it occurs. We may hence use dimensionless units

such that the speed is equal to 1 and we are free to choose a length scale.

In this thesis we use one of two choices of length scale: in analytical calculations it is often

convenient to fixa = 1 and varyr andb; while in numerical calculations we often fixr = 1 and

vary a andb. Where necessary we distinguish the latter case using tildes, writing

ã := a/r; b̃ := b/r. (3.1)

3.1.4. Parameter space

Garrido [Gar97] derived the ‘phase diagram’ of the model, showing the regions in parameter space

corresponding to the various localised, finite horizon and infinite-horizon regimes. Here we correct

this diagram by including the following features that were incorrectly treated in [Gar97]: (i) the

system is symmetrical under interchange of ˜a andb̃; and (ii) the finite-horizon regime is smaller

than was found in [Gar97]. We fixr = 1 but omit the tildes on ˜a and b̃. The derivation, which

reduces to geometrical considerations, is useful since it provides pointers for the geometrically

more involved calculation for the 3D model in Chap. 6.

If we interchange the radiia andb, then the resulting structure is the same as the initial one,

except for a translation by the vector(1
2, 1

2). Hence the statistical properties are the same, so

that the whole phase diagram is reflection symmetric in the linea = b. In the following we hence

restrict attention to the triangular regiona> b shown in Fig. 3.2(a), and then complete the diagram

by reflection.

The main features of the geometry are (i) whether thea discs touch or overlap with each other;

and (ii) whether theb discs overlap with thea discs. The respective boundaries in parameter space

are given by the straight lines with equations

a = 1/2 and b =
1√
2
−a, (3.2)

respectively. These divide the regiona > b into 4 sub-regions A, B, D (diamond) and S (star),

shown in Fig. 3.2(a).
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In the complete phase diagram, shown in Fig. 3.2(b), we have the following subdivisions:

• region A into FH (finite horizon) and IH (infinite horizon);

• region B into T (triangle) and O (overlapping: whole plane covered).

The IH regime can be further subdivided into regimes with different classes of possible infinite

trajectories:

• IH1: both vertical/horizontal and diagonal infinite trajectories exist;

• IH2: only diagonal ones exist; and

• IH3: only vertical/horizontal ones.

The region IH1 can itself be subdivided into infinitely many regions where increasingly many

corridors (at diagonal angles other than 45◦) become available. Bleher [Ble92, Sec. 8] gives a

concise method to find the boundaries of these different IH regimes in the caseb = 0.

To have a finite horizon we must block horizontal, vertical and diagonal corridors. (The neces-

sity to block diagonal corridors was overlooked in [Gar97].) Horizontal and vertical corridors are

blocked by requiring the central disc to be sufficiently large, namelyb >
1
2 −a, and by symmetry

it suffices to block diagonal trajectories at 45◦ between mid-points of adjacent sides; for this the

a discs must be large enough. (If we instead useb discs to block these diagonal trajectories, we

necessarily haveb > a; by our convention, we thus reduce to the case considered.) Hence for a

finite horizon we supplement Garrido’s condition

1
2 −a 6 b 6

1√
2
−a (3.3)

with2

a >
1

2
√

2
. (3.4)

The boundary between regions T and O occurs when theb disc covers the whole region left

empty between the overlappinga discs. This occurs when the boundary of ab disc reaches the

point of intersection of the boundaries of twoa discs, whenb = 1
2 −
√

a2− 1
4.

2Note that the critical case of a ‘grazing’ collision (when a trajectory is tangent to a scatterer) is sufficient to have
normal diffusion.
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Figure 3.2: (a) Four initial regions. (b) Full phase diagram; dots indicate parameter values for
Figs. 3.3 and 3.4.

IH1 IH2 IH3 FH

Figure 3.3: Non-localised configurations

D S T O

Figure 3.4: Localised configurations
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Figure 3.5: One-dimensional channel created by unfolding torus only inx-direction.

The complete phase diagram is shown in Fig. 3.2(b). The dots give the parameter values used

to depict the various regimes in Fig. 3.3 (non-localised configurations) and Fig. 3.4 (localised

configurations); white indicates the allowed region of motion of the particles.

3.1.5. Channel geometry

Diffusion in a 2D infinite lattice is described by a second order diffusion tensor having 4 compo-

nentsDi j with respect to a given orthonormal basis, which we refer to as diffusion coefficients. If

the system is sufficiently symmetric then the diffusion tensor reduces to a scalar multiple of the

identity tensor. Square symmetry, as in the model presentedabove, and hexagonal symmetry, as in

the standard triangular periodic Lorentz gas [KD00] are both sufficient for this reduction to occur;

see also Sec. 3.6.

We studyindividually the components of the diffusion tensor, defined by

Di j = lim
t→∞

1
2t
〈∆xi∆x j〉t . (3.5)

This enables us to check thatDxx = Dyy =: D andDxy = Dyx = 0 in fully symmetric systems. For

those systems the diffusion coefficient can then be evaluated as an average over the multidimen-

sional distribution via

〈∆x2〉t = 〈∆x2〉t + 〈∆y2〉t ∼ 4Dt, (3.6)

as used e.g. in [KD00], but this cannot be applied to systems where the diffusion tensor is not a

multiple of the identity tensor.

We can evaluate the diffusion coefficientDxx by looking at the dynamics only in thex-direction,

which corresponds to studying the billiard dynamics in a 1-dimensionalchannelextended in thex-

direction; see Fig. 3.5. Correspondingly, we restrict attention to 1D marginal distributions, which

are easier to analyse.

A channel geometry, with hard horizontal boundaries, corresponding to the triangular Lorentz
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(a)

(b)

Figure 3.6: (a) Lorentz channel studied in [Gas93, AACG99] with hard upper and lower boundaries;
dotted lines indicate unit cells. (b) Fully unfolded triangular Lorentz gas. Dotted lines indicate unit cells
forming a channel with periodic upper and lower boundaries,created by reflecting the channel in (a) in the
upper boundary.

gas was studied in [Gas93, AACG99] (Fig. 3.6(a)). This is equivalent to a channel with twice the

original height andperiodicboundaries, by reflecting once in the hard boundary. This newchannel

is shown in Fig. 3.6(b) as part of the whole triangular lattice obtained by unfolding completely in

the vertical direction. We can then view the triangular lattice as consisting of rectangular unit cells

(Fig. 3.6(b)) which are stretched versions of the square unit cell considered above, with the extra

conditiona = b.

3.1.6. Effect of length scale on diffusion coefficient

Since we have two choices of length scale (Sec. 3.1.3), we need to know how to convert calculated

diffusion coefficients between the two length scales. Recall the convention that ˜a = a/r, b̃ = b/r;

we also introduce for clarity ˜r := r/r = 1.

Let x(t) be the position at timet in the system witha = 1 fixed and speed 1, with radiir andb;

and letx̃(t) be the position at timet in the system with ˜r = 1 fixed and speed 1, with radii ˜a andb̃.

The motion in the tilde system is then equivalent to that in the a = 1 system, but with speedr;

however, the size of the system is also shrunk by a factorr. Thus we have

x̃(t) =
x(rt )

r
, (3.7)

and so

〈x̃(t)2〉 =

〈(
x(rt )

r

)2
〉

∼ 1
r2 2Drt . (3.8)
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Hence

D̃ =
D
r

, (3.9)

where D̃ is the diffusion coefficient in the tilde system. (This result can also be obtained by

dimensional analysis.)

3.2. Estimation of diffusion coefficient

Having set up the model, we now consider the statistical question of how to estimate the diffusion

coefficient from numerical data.

3.2.1. Estimation of moments

A first approach to characterise the distribution of a randomvariable is to look at its moments.

Therth raw population momentof a random variableX is given by3

µ ′
r(X) := 〈Xr〉 := E [Xr ] =

∞∫

−∞

xr dFX(x) =

∞∫

−∞

xr fX(x)dx, (3.10)

whereFX is the distribution function of the random variableX; the integral with respect toFX is a

Lebesgue–Stieltjes integral, and the last equality holds if the random variable has a densityfX.

If we take a sample(Xi)i=1,...,N of independent and identically distributed random variables

from the distribution ofX, then themth sample raw momentis

m′
r :=

1
N

N

∑
i=1

Xr
i . (3.11)

This is an unbiased estimator of therth population raw momentµ ′
r , i.e. we haveE [m′

r ] = µ ′
r .

Halmos [Hal46] showed that in fact it is the unique unbiased estimator ofµ ′
r(X) which is a sym-

metric function of theXi, and further that this estimator has the smallest variance of all unbiased

estimators; in this sense it is thebestestimator ofµ ′
m(X) given the sample.

We are mainly interested in the distribution of position anddisplacement in billiard models

starting from an initial distribution which is uniform in a unit cell. By symmetry, the mean dis-

placement〈∆x〉t then always vanishes, so that the simplest non-trivial characteristic of the dis-

3We follow the notation of [RS02].
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tribution is themean squared displacement4 〈∆x2〉t . We can view〈∆x2〉t either as the 2nd raw

moment of the random variable∆xt , or as the 1st moment of the distribution of the new random

variableYt := ∆x2
t , as follows:

〈∆x2〉t = µ ′
2(∆xt) = µ ′

1(Yt), (3.12)

The best estimator of the mean squared displacement is thus

m′
1 := m′

1(Yt) = m′
2(∆xt) =

1
N

N

∑
i=1

(∆x(i)
t )2; (3.13)

this can be regarded as a simple Monte Carlo estimator (see Sec. 2.6). In our numerical exper-

iments we restrict ourselves to a fixed number of initial conditions N, although in principle we

could add more data until some pre-defined error tolerance was reached.

3.2.2. Distribution of mean squared displacement at timet

To establish how good an estimator (3.13) is, we need to determine the width of the distribution

of m′
1. The∆x(i)

t are independent and identically distributed (i.i.d.) random variables with mean

0; since particles with speedv satisfy|∆xt | 6 vt, they also have finite variance. It follows that the

Y(i) := (∆x(i)
t )2 are also i.i.d., with positive mean and finite variance. Hence the standard central

limit theorem (Sec. 2.3.2) applies, so that for largeN the distribution ofm′
1 is very close to normal,

with unknown mean and variance

Var
[
m′

1

]
=

1
N2

N

∑
i=1

Var
[
∆x2

t

]
=

1
N

Var
[
∆x2

t

]
. (3.14)

For fixedt, we thus arrive at the standard result that the width of the distribution ofm′
1, as measured

by the standard deviation (the square root of the variance) of m′
1, isO(N−1/2).

The best estimator for this variance can be found using the known result for the variance of a

sample mean, giving

S2 :=
1

N−1

N

∑
i=1

(Y(i)
t −m′

1(Yt))
2. (3.15)

4The notation〈∆x2〉t emphasises that we are averaging over the distribution at time t, but we have〈∆x2〉t =
〈[∆x(t)]2〉, where now we are thinking of averaging over the distribution of initial conditions. This distinction is the
same as that between the Schrödinger and Heisenberg pictures in quantum mechanics.
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3.2.3. Calculation of error bars: confidence interval for〈∆x2〉t

We now establish a confidence interval for〈∆x2〉t . For a normal random variableZ with meanµ

and varianceσ we have

P

(
Z−µ

σ
∈ [2.576,2.576]

)
= 0.99, (3.16)

i.e. the probability that a normal random variable lies within 2.576 standard deviations of the mean

is 99%. Since neitherµ nor σ are known for the distribution ofµ ′
1(Yt), we estimate them viam′

1

ands, respectively, wheres is the value of
√

S2 for the data.

We will then estimate a 99% confidence interval forµ ′(Yt) by the interval estimator

[m′
1−2.576s, m′

1 +2.576s]. (3.17)

Figure 3.7 shows the estimatem′
1(Yt) as a function oft for several samples. Error bars for one

sample are also shown atm′
1±2.576s; the error bars contain most of the data for each sample.

3.2.4. Estimation of diffusion coefficient

The most efficient method to estimate the diffusion coefficient is to use the fact that the asymp-

totic growth rate of the mean squared displacement in the linear regime is 2D and to calculate

this by fitting a straight line to the data in the presumed linear regime [KD00]. We must thus

consider the evolution of〈∆x2〉t over time. In practice, the linear regime is attained very rapidly:

see Fig. 3.7(a). To find the slope in the asymptotic regime we apply linear regression(see e.g.

[PTVF92]), performing a least squares fit of a straight line to the data in the region of larget,

making sure that the correlation coefficient of the fit is veryclose to 1.

The linear regression procedure gives an estimate of the diffusion coefficient as the slope of

the fitted line. We also need to estimate the possible error that this estimate has made compared

to the true value. This question is treated in statistics textbooks mostly for data whose errors are

independent. This is howevernot the case here: if at a given timet the estimated mean squared

displacement has deviated from the ‘correct’ value, then ata small time later, there is a large

probability that the mean squared displacement deviates away from the ‘correct’ valuein the same

directionas in the previous step.
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Figure 3.7: (a) Mean squared displacement〈∆x2〉t as a function oft for 20 samples, each averaged over
N = 10000 data points. Also shown are error bars showing 99% confidence intervals for one of the samples.
The other data mostly lie inside the error bars. (b) Deviations from a linear fit to the data set whose error
bars are shown.
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3.2.5. Growth of width of distribution of ∆x2
t with t

To find the growth rate of the width of the∆x2
t distribution, we argue as follows. Since the distri-

bution of ∆x2
t at a fixed timet is (approximately) normal, we only need to consider the standard

deviation. We have

Var
[
∆x2

t

]
= E

[
∆x4

t

]
− (E

[
∆x2

t

]
)2 = µ ′

4(t)−µ ′
2(t)

2, (3.18)

settingµ ′
n(t) := µ ′

n(∆xt).

Chernov & Dettmann [CD00] showed that for a periodic Lorentzgas with finite horizon, the

4th-orderBurnett coefficient Bexists, where

B := lim
t→∞

1
4! t

κ4(t), (3.19)

and

κ4(t) := µ ′
4(t)−3µ ′

2(t)
2 (3.20)

is the 4th-ordercumulant5. This cumulant is related to the non-dimensionalkurtosis excessγ2(t)

via

γ2(t) =
µ ′

4(t)
µ ′

2(t)
2 −3=

κ4(t)
µ ′

2(t)
2 ; (3.21)

the kurtosis excessγ2(t) is a common measure of how far a distribution is from a Gaussian, the

difference being exactly 0 for a Gaussian [Wei].

We thus have

Var
[
∆x2

t

]
= κ4(t)+2µ ′

2(t)
2 ∼ t + t2 ∼ t2 ast → ∞, (3.22)

sinceµ ′
2(t)

2 grows liket2 whereasκ4(t) grows liket. Hence the width of the distribution of∆x2
t ,

as measured by the standard deviation, grows liket. This does not seem to have been previously

remarked; it can be seen in Fig. 3.8, where the half-width 2.576s(∆x2
t ) of a 99% confidence

interval for〈∆x2〉t is plotted as a function oft.

We note that Garrido & Gallavotti [GG94] considered the question of estimating the error

in the diffusion coefficient by an expansion assuming that the errors are small. However, if we

5The set of cumulants of a distribution is an alternative set of moment-type descriptors of a distribution which have
certain advantages over the raw moments: see e.g. [RS02]. For example,κn(X +Y) = κn(X)+κn(Y) for independent
random variablesX andY; this does not hold in general form′

n.
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Figure 3.8: Growth of half-width of 99% confidence interval for〈∆x2〉t for two different sample sizesN.

could continue the simulation indefinitely, the above calculation shows that the errors would grow

arbitrarily large. Nonetheless we can still estimate an error in the diffusion coefficient, as follows.

3.2.6. Sampling distribution of diffusion coefficient

By repeating the above estimation procedure forM different sets of random initial conditions, we

obtain a sample set(D̂(i))M
i=1 of estimated values of the diffusion coefficient. From thesewe can

estimate thesampling distributionof D; this will indicate how close to the true underlying value

of D the estimatêD(i) is expected to be.

Suppose that the confidence intervals for the mean squared displacement encloseall of the

data. Then the growth rate of the data must lie between the rates of growth of the upper and

lower limits of the error bars. In fact we can never guaranteethat all the data is enclosed, but

nonetheless we estimate the width of theD distribution by fitting straight lines to the error bars.

For 99% confidence intervals on the mean squared displacement error bars, we would naively hope

to obtain a 99% confidence interval onD. However, a confidence interval for each point does not

necessarily correspond to a confidencebandfor the whole curve [Ric94].

We investigate the sampling distribution ofD by constructing a kernel density estimate [Sil86]

of the sampling density. Fig. 3.9 shows the sampling densityobtained for particular geometrical
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Figure 3.9: Sampling density ofD for M = 1000 samples of sizeN = 10000,r = 2.5, b = 0.5, obtained by
a kernel density estimate. A Gaussian with the same mean and variance is shown for comparison.

parameters forM = 1000 samples of sizeN = 10000. For this case, the standard deviation of the

sampling distribution isσ = 0.044. The supposed 99% confidence interval found by the above

method (fitting upper and lower error bar limits) is 0.08± 0.012. (This value varies depending

on the sample.) The estimated error bars fromD hence correspond to a width of 1.8σ , which is

approximately a 90% confidence interval. Our method thus slightly underestimates the width of

the sampling distribution. We have repeated the calculation for larger values ofN, and have found

empirically that our method of estimating the width of the distribution improves asN increases.

3.3. Geometry dependence of diffusion coefficients

We now consider the geometry-dependence of the diffusion coefficient in our model as a function

of the geometrical parameters. This question has been studied in [KD00] for the triangular Lorentz

gas, and in [HKG02] in a billiard with ‘flower-shaped’ scatterers. As emphasised above, our

model has the advantage that we can varyindependentlytwo physical factors which we expect

to influence the diffusion coefficient: (i) the size of trap exits; and (ii) the available area in each

unit cell. We remark that striking results have also been obtained for lifted circle maps on the real

line [KD95, GK02], where a fractal parameter dependence of the diffusion coefficient was found.

This motivated a conjecture of Klages [KD00] that the diffusion coefficient in low-dimensional
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dynamical systems could in general be a highly non-trivial function of parameter6. We have not

attempted to address this question: although we find that thediffusion coefficient in our model is a

reasonably smooth function of parameter, we have not studied the fine-scale dependence in detail.

3.3.1. Constant trap exit size

In this section we work in the tilde scaling, i.e. fixing the side of the unit cell to be of length 1.

The parameters varied are then ˜a andb̃.

We fix the radius ˜a of the non-central discs and vary the central disc radiusb̃ over the allowed

portion of the finite horizon regime for that value of ˜a. We repeat this for different values of ˜a

covering the finite-horizon regime. Each curve thus corresponds to fixing the size of the exits of

the unit cell, while the trap area varies. Figure 3.10(a) shows the diffusion coefficient̃D(b̃; ã) over

the whole finite-horizon regime. The curves are plotted overthe allowed range

1
2
− ã 6 b̃ <

1√
2
− ã =: bmax(ã); (3.23)

D̃ vanishes for̃b > 1/
√

2− ã, since the particle is then completely trapped in a bounded region,

so the rightmost symbol on each curve is plotted at(bmax(ã),0). Error bars, estimated as in the

previous section, are plotted, and are indistinguishable from the data symbols (except possibly for

the largest values of ˜a).

We note the following features of these graphs.

(i) The curves seem to be continuous as a function ofb̃, with some degree of regularity.

(ii) They possess features such as local minima and maxima which are reproduced in nearby

curves, indicating that there is also continuity ofD̃ as a function of ˜a with b̃ fixed (see also

below).

(iii) Decreasing ˜a with b̃ fixed results in faster diffusion.

(iv) There is a critical value ˜a = ãc ≃ 0.48, below which the curves acquire a non-trivial maxi-

mum away from the left end of the curve. Figure 3.10(b) shows in detail the region where

this transition occurs, i.e. the lower left portion of Fig. 3.10.

6[ Rigorous results on this question have recently been obtained for simple maps [KHK08] and Lorentz gases [CD,
chapter 5].]
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Figure 3.10: (a) Geometry dependence of diffusion coefficients over whole finite-horizon regime. Each
curve is for a fixed value of ˜a = 1/r, where 2.056 r 6 2.8 andr changes in increments of 0.05; r = 2.01 is
also shown. (b) Detailed view of the region 2.016 r 6 2.1 in steps of 0.01. In both (a) and (b)r increases
from bottom to top.
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(v) For ã close to its upper bound 1/2, i.e. when thea-discs are very close together, the maxi-

mum diffusion rate occurs for a value ofb̃ close tobmax.

Point (iii) corresponds to the findings with the triangular periodic Lorentz gas [KK02], since

there both trap area and trap exit size increase when the parameter is increased. Intuitively, it is

‘easier’ for the particle to move through the lattice.

Point (iv) is reminiscent of the behaviour near to a criticalpoint in the context of phase transi-

tions. We have not found a physical explanation of this, although Sec. 3.4 contains some related

comments.

Diffusion coefficient as function of gap size Since the finite-horizon regime is a parallelogram,

it is interesting to consider the diffusion coefficient in terms of a new variable ˜c := b̃− (1
2 − ã)

giving the distance above the least allowed value forb̃. In fact, we also have

c̃ = (
1√
2
− 1

2
)− w̃2, (3.24)

wherew2 is the minimum distance from the boundary of theb-disc to the boundary of ana-disc

(see also the next section). This is shown in 3.11. We can thusview the graph as plotting the

diffusion coefficient as a function of this distance.

We see that the graphs approximately collapse for values ofw2 close to its maximum, i.e. when

thea- andb-discs are close to touching. In particular, there seems to be a universal approach of

the diffusion coefficient to 0 whenw2 → 0. We remark that it was shown in [Bun85] that viewing

D̃ as a function ofw2, we have
D̃(w2)

w2
→ const, (3.25)

so that this approach occurs in a linear way asD̃ ∼ w2; this should be contrasted, for example,

with the square root-type behaviourD ∼√
w2 often found in phase transitions.

3.3.2. Diffusion coefficient variation with constant trap area

We now fix the available area per unit cell and vary the trap exit size; again we work in the tilde

system. Figure 3.12 shows the variation of the diffusion coefficient along circular curves in the

parameter space of Fig. 3.2(b) with constant radiusα =
√

ã2 + b̃2, and hence constant billiard

domain area|Q| = 1−πα2. The diffusion coefficient is plotted as a function ofθ := tan−1(b̃/ã),
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Figure 3.11: Geometry dependence of diffusion coefficients over the whole finite-horizon regime, as a
function ofc̃ := b̃− (1

2 − ã). The curves are as in Fig. 3.10.

the angle anti-clockwise from thẽb-axis along the circle of radiusα . When we move along these

circles the radius̃b of the central disc increases, while the radius ˜a of the other discs decreases,

and hence so does the trap exit size. We find the following:

(i) As α decreases, and so the available area increases, the rate of diffusion increases.

(ii) For larger values ofα , the curves lie mainly within two regions where a random walkmodel

gives a good approximation to the diffusion coefficient, as we show in Sec. 3.4.

(iii) For α ≈ 0.45, the main effect seems to be due to variation of the trap area. However, there is

a still some variation along the curves. This provides some evidence against the application

of an approximation originating in the Boltzmann equation proposed in [KD00], since that

approximation depends on density alone. In that paper the application was to the triangular

periodic Lorentz gas, but the lack of variable parameters inthat model did not allow the

investigation of this question.



3.4. Machta–Zwanzig random walk model 61

α = 0.525
α = 0.5

α = 0.475
α = 0.45

α = 0.425
α = 0.4

θ

D
(θ

;α
)

0.80.70.60.50.40.30.20.10

0.18

0.16

0.14

0.12

0.1

0.08

0.06

0.04

0.02

0

Figure 3.12: Diffusion coefficient as a function of angleθ around circles of radiusα in phase space
restricted to the finite-horizon regime.

3.4. Machta–Zwanzig random walk model

We wish to understand the dependence of the diffusion coefficient D on the geometry of the pe-

riodic Lorentz gas: can we predict the gross structure of curves such as those in Sec. 3.3 via

analytical arguments? In this section we study the idea of Machta & Zwanzig [MZ83] to approxi-

mate the deterministic motion by a random walk.

3.4.1. Derivation of Machta–Zwanzig random walk approximation

The idea of Machta & Zwanzig [MZ83] is as follows. If the lattice spacing is such that the discs

are very close, then the particle will on average be trapped for a long time in each unit cell. We

refer to such a cell as atrap, where the exits of a trap should have a length which is small compared

to its total perimeter. Due to the scattering nature of the boundaries, the velocity autocorrelation

function decays fast, in fact exponentially in the number ofcollisions [CY00]. Thus when the

particle leaves a trap, its motion will be almost uncorrelated with its motion on entering the trap.

We thus try to approximate the deterministic motion by a completely uncorrelatedrandom walk

between traps.

Machta & Zwanzig gave a physical argument which enabled themto calculate the mean res-
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idence timeρ̄ in a trap. The result agrees with a rigorous calculation discussed below. Once the

mean residence time is known, we can derive the diffusion coefficient of the random walk via

D =
l2

4ρ̄
(3.26)

for a 2D random walk on an isotropic lattice with lattice spacing l and residence timēρ .

We remark that the same idea of approximating irregular deterministic dynamics by a stochas-

tic process has also been explored extensively in the context of transport in area-preserving maps,

where irregular motion occurs only in part of the phase space: see [MMP84, Wig92, LL92].

3.4.2. Application to our model

LetQ be the trap region and∂exitQ the part of its boundary (lying on the edge of the torus viewed

as a square) which particles can cross, and denote by|A| them-dimensional Lebesgue measure of

them-dimensional setA. Then by an argument detailed in Sec. 3.5.3, together with a method of

Chernov (see [CM01, Che97]), we have

ρ̄ =
cν ′

cµ
=

|Q| .
∣∣Sd−1

∣∣
|∂exitQ| . |Bd−1| . (3.27)

Here cν ′ := (|∂exitQ| .
∣∣Bd−1

∣∣)−1 is the normalising constant for the measureν ′ introduced in

Sec. 3.5.3 andcµ := (|Q| .
∣∣Sd−1

∣∣)−1 is the normalising constant for the measureµ . Further,

Bd−1 :=
{

x ∈ R
d−1 : ‖x‖ 6 1

}
is the(d−1)-dimensional unit ball andSd−1 :=

{
x ∈ R

d : ‖x‖ = 1
}

is its boundary, the(d−1)-dimensional unit sphere. In 2D, we have
∣∣Sd−1

∣∣= 2π and
∣∣Bd−1

∣∣= 2,

so that

ρ̄ =
π |Q|
|∂exitQ| . (3.28)

The exact expression (3.27) for the mean residence time is precisely analogous to the exact expres-

sion for the mean free path discussed in [Che97]; it also agrees with the more physical argument

of [MZ83].

For the square Lorentz gas that we consider, there are two different regimes in which we can

expect the Machta–Zwanzig method to be valid: see Fig. 3.13.In (a), thea-discs are almost

touching, so that thea–a gaps control the escape process from each trap. In (b), theb-disc is so

large that thea–b gap will now control the dynamics.
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(a)

(b)

Figure 3.13: Two regimes where we expect the Machta–Zwanzig approximation to be valid: (a)r close to
2, so that thea-discs are close to touching; (b)b close tor/

√
2−a, so that theb- anda-discs are close to

touching. In each case, the shaded region indicates the trapshape used in the Machta–Zwanzig argument.
In (b), the dashed lines show the square lattice of traps whose centres are shown by dots.

In regime (a) we have

∣∣∣Q(1)
∣∣∣= r2−π(a2 +b2);

∣∣∣∂exitQ(1)
∣∣∣= 4(r −2a); l = r (3.29)

and hence

DMZ
(1) =

r2

π
r −2a

r2−π(a2 +b2)
, (3.30)

whilst in regime (b), we have

∣∣∣Q(2)
∣∣∣= 1

2[r2−π(a2 +b2)];
∣∣∣∂exitQ(2)

∣∣∣= 4

[
r√
2
− (a+b)

]
; l =

r√
2
, (3.31)

and hence

DMZ
(2) =

r2

π

r√
2
− (a+b)

r2−π(a2 +b2)
. (3.32)

Introducing the quantities

w1 := r −2a; w2 :=
r√
2
− (a+b), (3.33)

which are the thea–a anda–b gap sizes, respectively, we can summarize the above as

DMZ
(i) =

r2

π [r2−π(a2 +b2)]
wi, i = 1,2, (3.34)
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where theith approximation is expected to be valid whenwi is small relative to the perimeter of a

cell.

3.4.3. Comparison of Machta–Zwanzig approximation with data

Figure 3.14 and Fig. 3.15 show comparisons of the two Machta–Zwanzig approximations with

numerical data for the diffusion coefficient as a function ofb and ofθ , respectively, whereθ :=

tan−1(b̃/ã) is again the angle of the point in parameter space from the line b̃ = 0. We see that the

Machta–Zwanzig approximations are good when the respective wi are small, but fail elsewhere.

To some extent, these approximations explain the observation from Sec. 3.3 that there is a non-

trivial maximum for values ofr near 2, since in that case the first approximation is valid forsmall

b and the second is valid for largeb, and they combine to predict a maximum at an intermediate

value ofb. It is clear, however, that other effects are important in this intermediate regime.

For larger values ofr, decreasingb has the effect of allowing the particles freer passage through

the system, so intuition would again predict the observed increase in the diffusion coefficient on

decreasingb.

3.4.4. Trap residence time distribution

Since the above arguments involve the residence timeρ , we here study numerically its distribution

as a random variable, whereρ : M′ → R. (The spaceM′ and measureν ′ are discussed in more

detail in Sec. 3.5.) To do this, we need to distribute particles uniformly with respect to the invariant

measureν ′ onM′, i.e. on the trap exits with inward-pointing velocities. Itis sufficient to distribute

them uniformly with respect to Liouville measure in the billiard domain and evolve them forward

until the first intersection with the trap exit boundary. By definition of the measureν ′, they will

then be correctly distributed.

We simulate the dynamics until the first exit from this trap and record the trap residence time,

for an ensemble ofN particles. We then estimate the density of this distribution using a histogram.

The results are shown in Fig. 3.16 for two different geometries.

An argument similar to that of Machta & Zwanzig, looking at the area available to escape

in a small time∆t, would imply an exponential distribution. However, there is a minimum trap

residence time given by the time it takes to enter a trap in thecentre of one of its sides with

a velocity perpendicular to that side, collide with ab-disc, and exit along the same path. This
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Figure 3.14: Comparison of Machta–Zwanzig approximations with numerical diffusion coefficient as a
function ofb for different values ofr.
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Figure 3.15: Comparison of Machta–Zwanzig approximations with numerical diffusion coefficient as a
function ofθ for different values of the radiusα in parameter space.
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minimum time is thus 2(r/2−b) = r−2b. In Fig. 3.16 we thus compare the numerical distribution

with an exponential distribution with density

fexp(x) :=
1
ρ̄

exp(x/ρ̄) (3.35)

with mean 1/λ := ρ̄ , and adelayed exponential distributiongiven by

fdelayed exp(x;α) :=






1
ρ̄−α exp

(
x−α
ρ̄−α

)
if x > α ,

0, ifx < α ,
(3.36)

whereα := r = 2b, both of which have mean̄ρ . We see that the delayed exponential captures well

the correct asymptotic behaviour, whereas the standard exponential does not.

We remark that we can replace the simple Machta–Zwanzig approximation with an a priori

more general one where we use acontinuous-time random walkformulation with a (delayed)

exponential residence time distribution. However, it turns out that we obtain the same result for

the diffusion coefficient from any residence time distribution with a finite mean, as was already

found in [Shl74]; see also [Wei94, Chap. 3], and Sec. 5.5 for further discussion of continuous-time

random walk models.

3.5. Generalised random walk models and Green–Kubo approaches

Klages & Dellago [KD00] extended the Machta–Zwanzig approach in a heuristic way, by includ-

ing the probability to follow specified sequences of traps. Klages & Korabel [KK02] then found

a way to include such corrections in an exact Green–Kubo-type expansion. We believe, however,

that while the result was correct, and the method was mostly correct, there is a gap in the justi-

fication, since the relationship between the discrete-timeand continuous-time approaches studied

above was not treated correctly. Here we show how to close thegap in the argument.

3.5.1. Original argument of Klages & Korabel [KK02]

In the appendix of [KK02], Klages & Korabel argued as follows. We wish to generalise the idea

of a hopping process between traps, for which we must pass from the continuous-time expression

for the diffusion coefficientD in terms of the Einstein formula for a symmetric system,

D = lim
t→∞

1
4t
〈[x(t)−x(0)]2〉, (3.37)
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Figure 3.16: Trap residence time distribution. (a) is forr = 2.01, b = 0.1 and (b) forr = 2.5, b− 0.5.
(c) and (d) are the same as (a) and (b), respectively, but plotted on semi-log scales. The continuous curves
show the delayed exponential density given by (3.36).
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to a formula in terms of some discrete timen. The mean〈·〉 here is with respect to the invariant

measureµ on the phase spaceM of the flow.

To do this, Klages & Korabel [KK02] set7

xn := x(nρ̄), (3.38)

wherex(t) is the random variable giving the position at timet andxn is the positionat the nth

step. Note that here the ‘nth step’ simply meansn times the (so far arbitrarily chosen) time stepρ̄.

Then (3.37) implies that

D = lim
n→∞

1
4nρ̄

〈x2
n〉, (3.39)

where the mean is still with respect toµ .

Since we want an expression in terms of traps, we must show that we can replacexn by Xn, the

centre of the trap in whichxn lies. Setx̃n := xn−Xn, the displacement of the positionxn at stepn

from the centre of the respective trap. Then (3.37) implies that

D = lim
n→∞

1
4nρ̄

〈(Xn + ∆x̃n)
2〉, (3.40)

where∆x̃n := x̃n− x̃0, assuming that all initial conditions are in the trap at0. We expand

〈(Xn + ∆x̃n)
2〉 = 〈X2

n +2Xn ·∆x̃n + ∆x̃2
n〉 (3.41)

and note that the last term is bounded byr2, wherer is the diameter of a unit cell. The Cauchy–

Schwarz inequality for the second term then gives

|〈2Xn ·∆x̃n〉| 6 2〈X2
n〉1/2〈∆x̃2

n〉1/2
6 r 〈X2

n〉1/2, (3.42)

so that the second term grows only as fast as the square root ofthe first term. Hence we obtain

D = lim
n→∞

1
4nρ̄

〈X2
n〉, (3.43)

solely in terms of the trap at timen.

7In [MZ83] and [KK02], τ denotes the average residence time in a trap. We follow the convention in the mathemat-
ical literature (e.g. [CM01]), whereτ is used for the free path function, with meanτ̄. Denoting byρ the trap residence
time function, we replace theτ of [KK02] by ρ̄.



3.5. Generalised random walk models and Green–Kubo approaches 69

The next step is to obtain a Green–Kubo formula in terms of thejump vectorjn := Xn+1−Xn

using the telescoping sum

Xn = X0 +
n−1

∑
k=0

jk =
n−1

∑
k=0

jk, (3.44)

where the equality follows sinceX0 = 0. This reduces〈X2
n〉 exactly to the variance of a sum of

stationary random variables, giving

〈X2
n〉 =

n−1

∑
k,l=0

〈jk · j l 〉 = n〈j2
0〉+2

n−1

∑
m=1

(n−m)〈j0 · jm〉, (3.45)

so that

〈X2
n〉

n
= 〈j2

0〉+
n−1

∑
m=1

(
1− m

n

)
〈j0 · jm〉 = j2

0 +
n−1

∑
m=1

〈j0 · jm〉+
1
n

n−1

∑
m=1

m〈j0 · jm〉. (3.46)

Thus if 〈j0 · jm〉 decays sufficiently fast asm→ ∞, then we can take the limit of (3.46) asn→ ∞ to

obtain the Green–Kubo relation

D =
1

4ρ̄
〈j2

0〉+
1

2ρ̄

∞

∑
m=1

〈j0 · jm〉. (3.47)

Klages & Korabel then use this result to try to extend the Machta–Zwanzig approximation,

as follows. They follow each trajectory and record thesequence of traps visitedvia a symbol

sequence. They numerically calculate the probability of occurrence of each symbol sequence and

use sequences of length up ton as annth-order approximation to the Green–Kubo expression,

where the Machta–Zwanzig approximation can be regarded as the 0th-order approximation. They

obtain results which numerically converge exactly to the (numerically) exact diffusion coefficient

over the whole finite-horizon regime of the triangular Lorentz gas. The same method was applied

in a different model in [HKG02].

3.5.2. Re-examination of Klages–Korabel derivation

We argue that the derivation given is not directly related tothe numerical method subsequently em-

ployed, although both are independently correct. The reason for this is confusion in the definition

of thenth time step:

(i) In the derivation, thenth time step was taken as looking stroboscopically at the flowat the
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start of each period of length̄ρ.

(ii) In the numerical method, however, thenth ‘time step’ instead refers to the time when the

phase space point crosses into thenth trap.

Both interpretations correspond to valid reductions from the continuous-time flow to a discrete-

time map, but they arenot equivalent: (i) corresponds to looking at statistical properties of the

time-ρ̄ mapof the flow, while we will show that (ii) corresponds instead to looking at statistical

properties of a particular Poincaré map, which differs from the usual billiard map and which we

call thetorus-boundary map.

The part of the derivation after the definition of the position xn ‘at thenth time step’, is valid in

each case, and shows that in any of these cases it is equivalent to study the asymptotic behaviour

either ofxn or of the corresponding trap centreXn, or of the jump vectorsjn defined as above,

provided their correlations decay sufficiently fast. As faras we are aware, no rate of decay of

correlations is yet available for the time-ρ̄ map (which would be related to the still-unsolved

problem of the correlation decay rate for the billiard flow),nor for the torus-boundary map (which

does not seem to have been studied previously).

3.5.3. Torus-boundary map

Analogously to the billiard mapT (which takes one collision with the scatterers to the next),we

introduce a mapT ′, which we call thetorus-boundary map, mapping one intersection with the

trap/torus boundary∂exitQ to the next. Thus the domain ofT ′ is

M := {(q,v) ∈M : q ∈ ∂exitQ, v ·n(q) > 0} , (3.48)

and we follow the trajectory up to the edge of the torus and then continue to the point on the

opposite edge with which that point is identified.

The torus-boundary map will be undefined for phase points whose trajectories get trapped

bouncing between the scatterers, i.e. for points on the stable manifold of the fractal repeller. How-

ever, this set has measure zero [Gas98], so thatT ′ is defined almost everywhere.

We can now view the billiard flow as a suspension flow over the torus-boundary mapT ′, under

the trap residence time functionρ , since specifying a phase space point inM′ and a value for the

residence time functionρ specifies a unique point ofM. The invariant measureν ′ on the space
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M′ is defined analogously to the invariant measureν for the billiard mapT, i.e. by projecting to

M′, and then by App. B,T ′ is ergodic. Hence, by the Birkhoff ergodic theorem, for almost every

x∈ M′, we have that

lim
n→∞

1
n

n−1

∑
i=0

ρ ◦T ′i(x) = ρ̄, (3.49)

i.e. time averages of the residence time functionρ are equal tōρ, so thatρ̄ is indeed the mean trap

residence time.

We can now use the relation between the variance of the suspension flow and the variance of

the base transformation (see App. B) to get an expression forD in terms of statistical properties

of the base transformation. This reduces exactly to (3.39),wherexn is the position at thenth

crossing of a trap boundary and the average〈·〉 is with respect to the invariant measureν ′ for the

torus-boundary map.

The regularity of the roof function required for this result(see App. B) is satisfied, since the

roof function, which is here given by the trap residence timefunction, appears to decay expo-

nentially; this was shown numerically in Sec. 3.4.4, although we are not aware of any rigorous

results.

The remainder of the above derivation of Klages–Korabel nowgoes through to give a Green–

Kubo formula in terms of the torus-boundary map,provided that correlations decay sufficiently

fast. As far as we are aware, the only results on decay of correlations for billiards are for the billiard

map, where exponential decay of correlations is proved [You98, Che99, CY00]. We expect that

correlations for the torus-boundary map also decay exponentially fast. However, the proofs for

the billiard map rely on hyperbolicity due to the scatteringnature of billiard boundaries. In the

case of the torus-boundary map, the boundaries are not scattering: the scattering occurs between,

rather than at, intersections with the boundary. It is thus possible that a rigorous proof could be

even harder to obtain than for the billiard map. If we nonetheless assume that these correlations do

decay sufficiently fast, we do have a Green–Kubo expansion such that the Machta–Zwanzig result

occurs as the 0th order approximation. This completes the justification of the Klages–Korabel

method.

We remark that this method extends to any other map such that we can express the billiard flow

as a suspension over that map. However, we are not aware of other physically interesting maps for

which that is the case.
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3.5.4. Low-order approximations

If the details of the above justification can be made rigorous, we would then be able to rigorously

assert that the Machta–Zwanzig approximation is indeed a zeroth-order truncation of the infinite

Green–Kubo sum. In [KK02], it was observed that a certain simple low-order expression involving

collisionless flights across traps gave a very good approximation of the numerical diffusion coef-

ficient over the whole finite horizon regime for the triangular Lorentz gas. This was an anomaly

from the point of view of the expansion used in that paper, since this truncation did not appear

explicitly in the Green–Kubo sum used there.

We believe that this anomaly can be explained by noting that their expression was instead a

natural low-order truncation of the discrete-time Green–Kubo formula obtained from the time-ρ̄

map, rather than from the torus-boundary map: there we must include in the first term a sum

over all accessible traps after a timēρ , which includes at least part of the probability of collision-

less flights, together with part of the backscattering probability which also appears in their best

low-order truncation. Their observation then suggests that the Green–Kubo expression discussed

above converges more rapidly as the truncation ordern increases than that used in their paper.

This faster rate of convergence depends on correlations forthe two respective maps; as such, we

would not expect to be able to predict which of the two expansions would give better low-order

approximations without a detailed knowledge of these correlations.

3.6. Reducing the geometrical symmetry

In this section we study the effect of altering the geometry of the system to reduce the symmetry

of the unit cells; again our model is a good candidate for this, whereas the triangular model would

perhaps be less natural.

3.6.1. Symmetry of diffusion tensor

We first consider the effect of symmetry on the diffusion tensor. Suppose we measure the diffusion

coefficients in the original coordinate system and in a new orthonormal coordinate systemx′ based

at the same origin, given byx′ = R · x, whereR is the orthonormal change of basis matrix (i.e. a

combination of rotations and reflections). Then the diffusion coefficients with respect to the new

axes are given by

D′
i j = lim

t→∞

1
2t
〈x′i(t)x′j (t)〉 = RikRjl lim

t→∞

1
2t
〈xk(t)xl (t)〉 = Rik Rjl Dkl = (RDR

T)i j , (3.50)
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where we have used the Einstein summation convention (sum over repeated indices). If the system

is symmetric under some symmetry elementR, then for that particularR we haveD′
i j = Di j ,

since the system looks the same after the transformation. Weremark that this idea is known as

Neumann’s principlein the literature on crystal properties [Nye85], where it isan empirically

based fact. In our setting, however, it is a theorem, since Liouville measure is invariant under the

point group of the lattice.

Thus symmetry under the transformationR implies that the diffusion tensor satisfies

RDR
T = D. (3.51)

This equation in general restricts the allowed values of thediffusion coefficient. For example, if

the system is unchanged under reflection in thex-axis, given by the transformationy 7→ −y having

matrix

R =



1 0

0 −1



 , (3.52)

then we find that (3.51) implies thatDxy = Dyx = 0 for a 2D system, so that the diffusion tensor is

diagonal in this coordinate system. In the case of 3D systems(which we have not investigated),

tables of crystal symmetries and their consequences for possible forms of the 2nd-order diffusion

tensor can be found e.g. in [CJ88, Nye85].

3.6.2. Displacing central disc

Here we consider the effect of displacing theb-discs away from the centre of the cell8, parallel to

the x-axis. Then the system remains symmetric under reflection inthe x-axis, but is now asym-

metric under reflection in they-axis. By the above, the diffusion tensor must remain diagonal, but

we may now haveDxx 6= Dyy, which is not possible for the square model.

Starting from geometrical parameters(a,b) lying in the finite horizon regime, we displace the

b-disc by a distanceg along thex-axis in the direction of increasingx. To continue to block the

central vertical channel, we cannot move theb-disc too far: we requirer2 +g−b< a, i.e.

g < a+b− r
2
. (3.53)

8I would like to thank Leonid Bunimovich for suggesting this,with the idea that it could help to understand the
validity of the Machta–Zwanzig approximation.
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Theb-disc touches thea-discs when

(a+b)2 =
( r

2
−g
)2

+
( r

2

)2
, (3.54)

so that the discs are not touching when

g <
r
2
−
√

(a+b)2−
( r

2

)2
. (3.55)

It is possible that there is a finite horizon even if theb- anda-discs touch. In this case, there is no

possibility for the particle to escape from the vertical channel in which it begins, so thatDxx = 0;

however, there may still be a non-trivial diffusion coefficientDyy in they-direction. Note, however,

that the analysis of [BS81, BSC91] doesnot immediately apply to this case, since the (convex)

scatterers are no longer disjoint.

Figure 3.17 shows numerical data for the diffusion coefficientsDxx andDyy for this system as

a function of the displacementg. For g = 0, we haveDxx = Dyy by the symmetry results above.

For non-zerog, however,Dxx decreases andDyy increases.

Increasingg past the point where the discs touch, the area available in each cell increases; from

the figure we see thatDyy suddenly increases its growth rate for two of the three sets of geometrical

parameters studied.

On the contrary, forr = 2.01 the value ofDyy seems to stabilise for larger values ofg, indicating

some kind of balance between the increased phase space volume available and the control of the

dynamics by the small trap exits.

3.6.3. Rectangular model with less symmetry

We could also stretch the unit cell to a rectangular one, imposing different lattice spacings in the

horizontal and vertical directions; this introduces two new geometrical parameters. In particu-

lar, the standard triangular periodic Lorentz gas can be considered as a particular case of such a

stretched model. Again the symmetry of the diffusion tensorwill be reduced in general, although

not in the special case of the triangular periodic Lorentz gas.
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Figure 3.17: The diffusion coefficientsDxx andDyy in thex- andy-directions, respectively, as a function
of the displacementg of theb-disc from the centre of the unit cell in thex-direction. (a)r = 2.01,b = 0.3.
(b) r = 2.1, b = 0.4. (c) r = 2.5, b = 0.6.





CHAPTER 4

Fine structure of distributions and the central limit

theorem in 2D periodic Lorentz gases

In the previous chapter we studied the statistical properties of the displacement as a function of

time in terms of means. Those means are taken over the probability distribution of the observable,

whose shape we investigate in this chapter.

As described in Chap. 2, it was proved in [BS81, BSC91] that 2Dperiodic Lorentz gases

with finite horizon and disjoint scatterers (with sufficientsmoothness of the scatterer boundaries,

namely piecewiseC3) satisfy acentral limit theorem: the rescaled displacement distribution con-

verges in distribution to a limiting normal distribution:

xt −x0√
t

D−→ z ast → ∞. (4.1)

In this chapter we study the structure of position and displacement distributions atfinite time t.

We show that they possess afine structure, consisting of a periodic oscillation superimposed on the

Gaussian shape that we expect from a diffusive process. We will find an analytical description of

this fine structure in terms of the geometry of the billiard domain, and provide extensive numerical

evidence that this is indeed the main influence on the fine structure. This gives a physical picture

of theweaktype of convergence occurring in (4.1), and leads to a conjecture on a possible stronger

result; we can also give an intuitive estimate of the rate of convergence to the limiting distribution.

The results in [BS81, BSC91] show how we can smooth away the fine structure to obtain

rigorous proofs of convergence. Our analysis reinstates the fine structure to give a picture of

how this convergence occurs, making explicit the obstruction that prevents a stronger form of

convergence to the limiting normal distribution by showinghow density functions fail to converge

pointwise to Gaussian densities.

77
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4.1. Structure of 2D position and displacement distributions

4.1.1. Statistical properties of position and displacement distribution

The displacement distribution occurs naturally in the central limit theorem (Sec. 2.3) and in Green–

Kubo relations [Dor99, Gas98], whereas the position distribution is more natural if we are unable

to track the paths of individual particles. Their statistical properties are very closely related, as

shown by the following discussion for thex-component.

Expanding the mean squared displacement as

〈∆x2
t 〉 = 〈x2

t 〉−2〈xtx0〉+ 〈x2
0〉, (4.2)

and applying the Cauchy–Schwarz inequality to the second term on the right hand side, as in

[KK02], which gives

|〈xtx0〉| 6
√

〈x2
t 〉〈x2

0〉, (4.3)

we see that〈∆x2
t 〉 and〈x2

t 〉 have the same asymptotic growth rate, so that they both grow linearly

if one of them does.

Further, since|x0| 6
r
2, we can show that the

√
t-rescaled position distribution also satisfies

the central limit theorem if the displacement distributiondoes, with the same limiting normal

distribution. From the point of view of statistical properties it is hence equivalent to study either

the position or the displacement distribution.

4.1.2. Shape of 2D distributions

Figure 4.1 shows scatterplots representing 2D position anddisplacement distributions for a repre-

sentative choice of geometrical parameters. Each dot represents one initial condition started in the

central unit cell and evolved for timet = 50;N = 5×104 samples are shown, started from random

initial conditions distributed uniformly with respect to Liouville measure in the central unit cell.

Both distributions show decay away from a maximum in the central cell, an overall circular shape,

and the occurrence of a periodic fine structure.

These figures are projections to the unfolded billiard domain Qunf ⊂ R
2 of the density in the

unfolded phase spaceQunf×S1. Since the dynamics on the torus is mixing [CM01], the phase

space density convergesweakly[LM94] to a uniform density on phase space corresponding to the

invariant Liouville measure: see App. C. Physically, the phase space density on the torus develops
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Figure 4.1: (a) 2D position distribution; (b) 2D displacement distribution. r = 2.5; b = 0.4; t = 50;
N = 5×104 initial conditions.
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a complicated layer structure in the stable direction of thedynamics: see e.g. [Dor99]. Project-

ing corresponds to integrating over the velocities; we expect this to eliminate this complicated

structure and result in some degree of smoothness of the projected densities on the torus, and so

presumably also of the unfolded projected densities. However, we are not aware of any rigorous

results in this direction, even for relatively well-understood systems such as the Arnold cat map

[Dor99].

These 2D distributions are difficult to work with, and we instead restrict attention to one-

dimensional marginal distributions, i.e. projections onto the x-axis, which will also have some

degree of smoothness. We denote the 1D position density at time t and positionx ∈ R by ft(x)

and the displacement density for displacementx by gt(x). We let their respective (cumulative)

distribution functions1 beFt(x) andGt(x), respectively, so that

Ft(x) := P(xt 6 x) =

x∫

−∞

ft(s)ds, (4.4)

and similarly forGt . (When necessary, we will instead denote displacements byξ .) The densities

show the structure of the distributions more clearly, whilethe distribution functions are more

directly related to analytical considerations.

4.2. Numerical estimation of 1D distribution functions anddensities

We wish to estimate numerically the above densities and distribution functions at timet from theN

data points(x(1)
t , . . . ,x(N)

t ). The most widely used method in the physics community for estimating

density functions from numerical data is the histogram [PTVF92]. However, histograms are not

always appropriate, due to their non-smoothness and dependence on bin width and position of

bin origin [Sil86]. In [ARdV02], for example, the choice of acoarse bin width obscured the fine

structure of the distributions that we describe in Chap. 5.

We have chosen the following alternative method, which seems to work well in our situation,

since it is able to deal with strongly peaked densities more easily, although we do not have any

rigorous results to justify this. We have also checked that histograms and kernel density estimates

(a generalization of the histogram [Sil86]) give similar results, provided that sufficient care is

taken with bin widths.
1Henceforth we use ‘distribution function’, eliminating the redundant ‘cumulative’: this seems to be the usual

terminology in probability theory, e.g. [GS92, Fel71].
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We first calculate the empirical cumulative distribution function [Sco92, Sil86], defined by

F
emp

t (x) := #{i : x(i)
t 6 x} for the position distribution, and analogously for the displacement dis-

tribution. The estimatorFemp
t is the optimal one for the distribution functionFt given the data, in

the sense that there are no other unbiased estimators with smaller variance [Sco92, p. 34]. We find

that the distribution functions in our models are smooth on ascale larger that that of individual

data points, where statistical noise dominates. (Here we use ‘smooth’ in a visual, nontechnical

sense; this corresponds to some degree of differentiability). We verify that adding more data does

not qualitatively change this larger-scale structure: with N = 107 samples we seem to capture the

fine structure.

We now wish to construct the density functionft = ∂Ft/∂x. Since the direct numerical deriva-

tive of Femp
t is useless due to statistical noise, our procedure is to fit an(interpolating)cubic spline

to an evenly-spread sample of points fromFemp
t , and differentiate the cubic spline to obtain the

density function at as many points as required. Sampling evenly from Femp
t automatically uses

more samples where the data are more highly concentrated, i.e. where the density is larger.

We must confirm (visually or in a suitable norm) that our spline approximation reproduces

the fine structure of the distribution function sufficientlywell, whilst ignoring the variation due

to noise on a very small scale. As with any density estimationmethod, we have thus made an

assumption of smoothness [Sil86]. The analysis of the fine structure in Sec. 4.1 justifies this to

some extent.

4.3. Time evolution of 1D distributions

Figure 4.2 shows the time evolution of 1D displacement distribution functions and densities for

certain geometrical parameters, chosen to emphasise the oscillatory structure. Other parameters

within the finite horizon regime give qualitatively similarbehaviour.

The distribution functions are smooth, but have a step-likestructure. Differentiating the spline

approximations to these distribution functions gives densities which have an underlying Gaussian-

like shape, modulated by apronounced fine structurewhich persists at all times (Fig. 4.2(b)). This

fine structure is just noticeable in Figs. 4 and 5 of [ARdV02],but otherwise does not seem to have

been reported previously, although in the context of iterated 1D maps a fine structure was found,

the origin of which is related to pruning effects: see e.g. Fig. 3.1 of [Kla96]. We will show that in

billiards this fine structure can be understood by considering the geometry of the billiard domain.
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Figure 4.2: (a) Time evolution of displacement distribution functions. (b) Time evolution of displacement
densities, calculated by numerically differentiating a cubic spline approximation to distribution functions.
r = 2.1; b = 0.2.
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x

H(x)

Figure 4.3: Definition of the setH(x).

4.4. Fine structure of position density

Since Liouville measure on the torus is invariant, if the initial distribution is uniform with respect

to Liouville measure, then the distribution at any timet is still uniform. Integrating over the

velocities, the position distribution at timet is hence always uniform with respect to Lebesgue

measure in the billiard domainQ, which we normalize such that the measure ofQ is 1. Denote the

two-dimensional position density on the torus at(x,y) ∈ [0,1)2 by ρ torus(x,y). Then

ρ torus(x,y) =
1
|Q|11Q(x,y) =

1
|Q|11H(x)(y). (4.5)

Here,H(x) := {y : (x,y) ∈Q} is the set of allowedy values for particles with horizontal coordinate

x (see Fig. 4.3), and11B is the indicator function of the (one- or two-dimensional) set B, given by

11B(b) =






1, if b∈ B

0, otherwise.
(4.6)

Thus for fixedx, ρ torus(x,y) is independent ofy within the available spaceH(x).

Now unfold the dynamics onto a 1-dimensional channel in thex-direction, as in Fig. 3.5, and

consider the torus as the distinguished unit cell at the origin. Fix a vertical line with horizontal

coordinatex in this cell, and consider its periodic translatesx+n along the channel, wheren∈ Z.

Denoting the density there byρchannel
t (x+n,y), we have that for allt and for allx andy,

∑
n∈Z

ρchannel
t (x+n,y) = ρ torus(x,y). (4.7)
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We expect that after a sufficiently long time, the distribution within cell n will look like the

distribution on the torus, modulated by a slowly-varying function of x. In particular, we expect

that the 2D position density will become asymptotically uniform in y within H(x) at long times.

We have not been able to prove this, but we have checked by constructing 2D kernel density

estimates [Sil86] that it seems to be true. A ‘sufficiently long’ time would be one which is much

longer than the time scale for the diffusion process to crossone unit cell. It does not, however,

hold for short times: for example, in Fig. 4.4 we see the development of the 2D density at the

leading edge. At the earlier time, we see that the ‘fluid’ has streamed past the small disc without

reaching the region below it; at the later time, this region is beginning to be occupied. At long

times, the mixing property of the dynamics will have filled the region approximately uniformly.

Thus we have approximately

ρchannel
t (x,y) ≃ ρ torus(x,y) ρ̄t (x) = ρ̄t(x)

1
|Q|11H(x)(y), (4.8)

whereρ̄t(x) is theshapeof the two-dimensional density distribution as a function of x ∈ R; we

expect this to be a slowly-varying function. We use ‘≃’ to denote that this relationship holds in

the long-time limit, for values ofx which do not lie in the tails of the distribution. Although this

breaks down in the tails, the density is in any case small there.

The 1D marginal density that we measure will then be given by

ft(x) =

1∫

y=0

ρchannel
t (x,y)dy≃ ρ̄t(x)h(x), (4.9)

whereh(x) := |H(x)|/ |Q| is the normalized height (Lebesgue measure) of the setH(x) at position

x (see Fig. 4.3). Note thatH(x) is not necessarily a connected set.

Thus the measured densityft(x) is given by the shapēρt(x) of the 2D density,modulatedby

fine-scale oscillations due to the geometry of the lattice and described byh(x), which we call the

fine structure function.

The above argument motivates the(re-)definitionof ρ̄t(x) so that ft(x) = h(x)ρ̄t(x) with strict

equality and for all times, by setting

ρ̄t(x) :=
ft(x)
h(x)

. (4.10)

We can now viewρ̄t(x) as the density with respect to anew underlying measure hλ , whereλ
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is 1-dimensional Lebesgue measure; this measure takes intoaccount the available space, and is

hence more natural in this problem (see also Sec. C.4). We expect thatρ̄t will now describe the

large-scale shape of the density, at least for long times andx comparatively small.

The conjecture underlying the above heuristic argument is then that for allx∈ R, we have

ρchannel
t (x,y)

ft(x)
=

ρchannel
t (x,y)

∫ 1
y=0ρchannel

t (x,y′)dy′
t→∞−→ h(x) for all y∈ H(x), (4.11)

or equivalently
ρchannel

t (x,y)
ρ̄t(x)

t→∞−→ 1 for all y∈ H(x), (4.12)

where the ratio converges to something which isindependentof y. We must use this expression

since the density at any fixedx tends to 0 ast → ∞. In fact, regarding both sides as a function of

y, we could even expect uniform convergence of the form

ρchannel
t (x, ·)

∫ 1
y=0 ρchannel

t (x,y′)dy′
unif−→ h(x)11H(x)(·), (4.13)

wherex is still fixed.

Figure 4.5 shows the original and demodulated densitiesft andρ̄t for a representative choice

of geometrical parameters. The fine structure inft is very pronounced, but is eliminated nearly

completely when demodulated by dividing by the fine structure h, leaving a demodulated density

ρ̄t which is close to the Gaussian density with variance 2Dt (also shown).

Note that although the density has non-smooth points, whichaffects the smoothness assump-

tion in our density estimation procedure described in Sec. 4.2, in practice these points are still

handled reasonably well. If necessary, we could treat thesepoints more carefully, by suitable

choices of partition points in that method.

We estimated the diffusion coefficientD as follows. Forr = 2.3 andb = 0.5, usingN = 107

particles evolved tot = 1000, the best fit line for log〈∆x2〉t against logt in the regiont ∈ [500,1000]

gives〈∆x2〉 ∼ t1.00003, which we regard as confirmation of asymptotic linear growth. Following

[KD00], we use the slope of log〈∆x2〉t againstt in that region as an estimate of 2D, giving D =

0.1494±0.0002; the error analysis is as in Chap. 3. (Throughout, we denote bygσ2 the Gaussian

density with mean 0 and varianceσ2, and byNσ2 the corresponding normal distribution function.)
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Figure 4.4: Leading edge of 2D position density forr = 2.5; b = 0.3; a = 1, at timest = 2.0 andt = 2.3.
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Figure 4.5: Position densityft exhibiting a pronounced fine structure, together with the demodulated
slowly-varying functionρ̄t = ft(x)/h(x) and a Gaussian with variance 2Dt. The inset shows one period of
the demodulating fine structure functionh. r = 2.3; b = 0.5; t = 50.
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4.5. Fine structure of displacement density

We can treat the displacement density similarly, as follows. Let ηt(x,y) be the 2D displacement

density function at timet, so that

x∫

−∞

y∫

∞

ηt(x,y)dxdy = P (∆xt 6 x,∆yt 6 y) , x,y∈ R. (4.14)

(Recall that∆xt := xt −x0.) Wedefinethe projected versionsηchannelandη torus as follows:

ηchannel
t (x,y) := ∑

n∈Z

ηt(x,y+n), x∈ R,y∈ [0,1), (4.15)

η torus
t (x,y) := ∑

n∈Z

ηchannel
t (x+n,y), x,y∈ [0,1). (4.16)

Again we view the torus as the unit cell at the origin where allinitial conditions are placed. Note

that projecting the displacement distribution onR
2 to the channel or torus gives the same result as

first projecting and then obtaining the displacement distribution in the reduced geometry. Hence

the designations as being associated with the channel or torus are appropriate.

Unlike ρ torus in the previous section,η torus
t is not independent oft: for example, for small

enought, all displacements increase with time. However, we show that η torus
t rapidly approaches

a distribution whichis stationary in time.

Consider a small ball of initial conditions of positive Liouville measure around a point(x,v).

Since the system is mixing on the torus, the position distribution at timet corresponding to those

initial conditions converges ast → ∞ to a distribution which is uniform with respect to Lebesgue

measure in the billiard domainQ. The corresponding limiting displacement distribution ishence

obtained by averaging the displacement ofx from all points on the torus.

Extending this to an initial distribution which is uniform with respect to Liouville measure over

the whole phase space, we see that the limiting displacementdistribution is given by averaging

displacements of two points inQ, with both points distributed uniformly with respect to Lebesgue

measure onQ. This limiting distribution we denote byη torus(x,y), with no t subscript.

As in the previous section, we expect they-dependence ofηchannel
t (x+n, ·) to be the same, for

large enought, as that ofη torus(x, ·) for x∈ [0,1). However,η torus(x, ·) is not independent ofy, as

can be seen from Fig. 4.6, which is a projected version of Fig.4.1(b) to the torus (with different
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Figure 4.6: Scatterplot of the 2D displacement densityη torus
t (x,y) on the torus forr = 2.1,b = 0.4 andt =

50. This corresponds to the projection of Fig. 4.1(b) to one unit cell (although the geometrical parameters
used are different). This density is close to the limiting displacement densityη torus, since the relaxation is
fast.

geometrical parameters). We thus expect

ηchannel
t (x,y) ≃ η torus(x,y) η̄t(x). (4.17)

To obtain the 1D marginal densitygt(x), we integrate with respect toy:

gt(x) =

1∫

y=0

ηchannel
t (x,y)dy≃ φ(x)η̄t(x), (4.18)

where

φ(x) :=

1∫

y=0

η torus(x,y)dy. (4.19)

Again we now redefinēη so thatgt(x) = φ(x)η̄t(x), with the fine structure ofgt(x) being described

by φ and the large-scale variation bȳη(x), which can be regarded as the density with respect to

the new measureφ λ taking account of the excluded volume. In the next section weevaluateφ(x)
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explicitly.

4.5.1. Calculation ofx-displacement densityφ(x) on torus

Let (X1,Y1) and (X2,Y2) be independent random variables, distributed uniformly with respect

to Lebesgue measure in the billiard domainQ, and let∆X := {X2−X1} ∈ [0,1) be their x-

displacement, where{·} denotes the fractional part of its argument. Then∆X is the sum of two

independent random variables, so that its densityφ is given by the following convolution, which

correctly takes account of the periodicity ofh andφ with period 1:

φ(ξ ) =

1∫

0

h(x)h(x+ ξ )dx. (4.20)

This form leads us to expand in Fourier series:

h(x) = ∑
k∈Z

ĥ(k)e2π ikx = ĥ(0)+2 ∑
k∈N

ĥ(k) cos2πkx, (4.21)

and similarly forφ , where the Fourier coefficients are defined by

ĥ(k) :=

1∫

0

h(x)e−2π ikxdx =

1∫

0

h(x) cos(2πkx)dx. (4.22)

The last equality follows from the evenness ofh, and shows that̂h(k) = ĥ(−k), from which the

second equality in (4.21) follows. Fourier transforming (4.20) then gives

φ̂ (k) = ĥ(k) ĥ(−k) = ĥ(k)2. (4.23)

Taking the origin in the centre of the disc of radiusb (see Fig. 4.3), the available space function

h is given by

h(x) =
1
|Q|

(
1−2

√
b2−x2−2

√
a2− (1

2 −x)2

)
(4.24)

for x∈ [0,1/2), and is even and periodic with period 1. (Here we adopt the convention that
√

α = 0

if α < 0 to avoid writing indicator functions explicitly.) The evaluation of the Fourier coefficients
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of h thus involves integrals of the form

a∫

0

coszt
√

a2− t2dt =
πa
2z

J1(za), (z 6= 0) (4.25)

whereJ1 is the first order Bessel function; this equality follows from equation (9.1.20) of [AS70]

after a change of variables.

The Fourier coefficients ofh are thuŝh(0) =
∫ 1

0 h(x) = 1 and, for integerk 6= 0,

ĥ(k) = − 1
|Q| . |k|

[
(−1)k aJ1(2πa|k|)+bJ1(2πb|k|)

]
. (4.26)

Note that
∫ 1

0 φ(x)dx = φ̂ (0) = ĥ(0)2 = 1, so thatφ is correctly normalized as a density function

on the torus.

In Fig. 4.7 we plot partial sumsφm up tom terms of the Fourier series forφ analogous to (4.21).

We can determine the degree of smoothness ofφ , and hence presumably ofgt , as follows. The

asymptotic expansion ofJ1(z) for large realz (equation (9.2.1) of [AS70]),

J1(z) ∼
√

2
πz

cos

(
3π
4

−z

)
= O(z−1/2), (4.27)

shows that̂h(k) = O(k−3/2) and hencêφ(k) = O(k−3). From the theory of Fourier series (see e.g.

[Kat04, Chap. 1]), we hence have thatφ is at leastC1 (once continuously differentiable). Thus the

convolution ofh with itself is smoother than the original function, despitethe non-differentiable

points ofh.

We have checked numerically the approach of
∫

η torus
t (x,y)dy to φ(x), and it appears to be fast,

although the rate is difficult to evaluate, since a large number of initial conditions are required for

the numerically calculated distribution function to approach closely the limiting distribution.

4.5.2. Structure of displacement distribution

In Fig. 4.8 we plot the numerically-obtained displacement densitygt(x), the fine structure function

φ calculated above, and their ratiōηt(x), for a certain choice of geometrical parameters. Again the

ratio is approximately Gaussian, which confirms that the densities can be regarded as a Gaussian

shape modulated by the fine structureφ .
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However, ifr is close to 2a, thenη̄t itself develops a type of fine structure: it is nearly constant

over each unit cell. This is shown in Fig. 4.9 for two different times. We plot bothgt and η̄t ,

rescaled by
√

t and compared to a Gaussian of variance 2D. (This scaling is discussed in Sec. 4.6.)

This step-like structure of̄ηt is related to the validity of the Machta–Zwanzig random walk

approximation discussed in Sec. 3.4. Havingη̄t constant across each cell indicates that the distri-

bution of particles within the billiard domain in each cell is uniform, as is needed for the Machta–

Zwanzig approximation to work.

As r increases away from 2a, the exit size of the traps increases, and the Machta–Zwanzig

argument ceases to give a good approximation. The distribution then ceases to be uniform in

each cell: see Fig. 4.5. This may be related to the crossover to a Boltzmann regime described in

[KD00].

4.5.3. Comparison of position and displacement distributions

For long times, both position and displacement distributions converge to the same limiting normal

distribution, so we expect the demodulated position and displacement distributions at a large but

finite timet to be close. This is confirmed in Fig. 4.10.

We can ask if there is in general any advantage in studying oneor the other of the position

and displacement distributions. Sinceφ̂(k) = ĥ(k)2, the Fourier coefficients ofφ decay faster as

k→ ∞ than those ofh. This translates to betterregularity (smoothness) ofφ than ofh, as we have

seen in the particular example above, where2 h∈C1/2 but φ ∈C1.

Further, the convolution reduces the amplitude of the oscillations of the fine structure. We can

see this by taking the first Fourier coefficient alone as an initial indication of the amplitude, putting

h(x) = 1+Acos2πx, (4.28)

although there may be significant contributions to the amplitude from higher Fourier coefficients,

as can be seen in Fig. 4.7. The first term ensures thath is a density (per unit length), i.e. thath

integrates to 1, andA is the amplitude of the oscillation. Then

φ(ξ ) =

1∫

x=0

h(x)h(x+ ξ )dx = 1+ 1
2A2 cos2π ξ , (4.29)

2 f is Hölder continuous with exponent0 < α < 1, denotedf ∈Cα , if and only if | f (x)− f (y)| 6 K |x−y|α .
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Figure 4.7: Partial sumsφm up tom terms of the Fourier series forφ , with r = 2.3 andb = 0.5.
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Figure 4.8: Displacement densitygt , with demodulated̄ηt compared to a Gaussian of variance 2D. The
inset in (a) shows the fine structure functionφ for these geometrical parameters.r = 2.1; b = 0.2; t = 50.
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Figure 4.10: Comparison of the position densityft , the displacement densitygt , the demodulated position
densityρ̄t and the demodulated displacement densityη̄t , for r = 2.1, b = 0.2 andt = 50.
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so that the amplitude of the oscillations in (the lowest-order Fourier approximation of)φ is 1
2A2. If

A > 1 then the channel would have height 0 at some point and no particle could pass. So the ratio

of the amplitude ofφ to that ofh is 1
2A < 0.5. This argument leads us to expect that indeed the

amplitude of fine structure oscillations for the displacement density should be significantly less

than that for the position density.

The above two results indicate that in numerical investigations it is more useful to concentrate

on the displacement density, since we expect better performance of density estimation methods

when the densities are smoother and less oscillatory.

4.6. Central limit theorem and rate of convergence

We now discuss the central limit theorem ast → ∞ in terms of the fine structure described in the

previous section.

4.6.1. Central limit theorem: weak convergence to normal distribution

The central limit theorem requires us to consider the densities scaled by
√

t, so we define the

rescaled densities

g̃t(x) :=
√

t gt(x
√

t), (4.30)

where the first factor of
√

t normalizes the integral of ˜gt to 1, giving a probability density. Fig-

ure 4.11 shows the densities of Fig. 4.2(a) rescaled in this way, compared to a Gaussian density

with mean 0 and variance 2D. We see that the rescaled densities oscillate within an envelope which

remains approximately constant, but with an increasing frequency ast → ∞; they are oscillating

around the limiting Gaussian, but do not converge to it pointwise. See also Fig. 4.9.

The increasingly rapid oscillations do, however, cancel out when we consider the rescaled

distribution functions, given by the integral of the rescaled density functions:

G̃t(x) :=

x∫

s=−∞

g̃t(s)ds= Gt(x
√

t). (4.31)

Figure 4.12 shows the difference between the rescaled distribution functions and the limiting nor-

mal distribution with mean 0 and variance 2D. We see that the rescaled distribution functions do

converge to the limiting normal, in fact uniformly, ast → ∞; we thus have onlyweakconvergence

of the distributions.
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Figure 4.11: Displacement densities as in Fig. 4.2(b) after rescaling by
√

t, compared to a Gaussian density
with mean 0 and variance 2D. r = 2.1; b = 0.2.
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Figure 4.12: Difference between rescaled distribution functions and limiting normal distribution with
variance 2D. r = 2.1; b = 0.2.
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Although this is the strongest kind of convergence we can obtain for the densities ˜gt with

respect to Lebesgue measure, Fig. 4.9 provides evidence forthe following conjecture: the rescaled

densities˜̄ηt with respect to the new measurehλ convergeuniformly to a Gaussiandensity. This

characterizes the asymptotic behaviour more precisely than the standard central limit theorem.

4.6.2. Rate of convergence

Since theG̃t converge uniformly to the limiting normal distribution, wecan consider the distance
∥∥G̃t −N2D

∥∥
∞, where we define theuniform normby

‖F‖∞ := sup
x∈R

|F(x)| . (4.32)

We denote byNσ2 the normal distribution function with varianceσ2, given by

Nσ2(x) :=
1

σ
√

2π

x∫

s=−∞

e−s2/2σ2
ds, (4.33)

Figure 4.13 shows a log–log plot of this distance against time, calculated numerically from the

full distribution functions. We see that the convergence follows a power law

∥∥G̃t −N2Dest

∥∥
∞ ∼ t−α , (4.34)

with a fit to the data forr = 2.05 giving a slopeα ≃ 0.482. The same decay rate is obtained for

a range of other geometrical parameters, although the quality of the data deteriorates for largerr,

reflecting the fact that diffusion is faster, so that the distribution spreads further in the same time.

Since we use the same numberN = 107 of initial conditions, there is a lower resolution nearx= 0

where, as shown in the next section, the maximum is obtained.

In [Pèn02] it was proved rigorously thatα > 1
6 ≃ 0.167 foranyHölder continuous observable

f . Here we have considered only the particular Hölder observablev, but for this function we see

that the rate of convergence is much faster than the lower bound proved in [Pèn02].

4.6.3. Analytical estimate of rate of convergence

We now show how to obtain a simple analytical estimate of the rate of convergence using the fine

structure calculations in Sec. 4.4.
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Figure 4.13: Distance of rescaled distribution functionsG̃t from limiting normal distributionN2D in log–
log plot. The straight line is a fit to the large-time decay of the data forr = 2.05.

Since the displacement distribution is symmetric, we haveG̃t(x = 0) = 1/2 for all t. The max-

imum deviation ofG̃t from N2Dest occurs near tox = 0, where the density function is furthest from

a Gaussian, while the fine structure of the density ˜gt means that̃Gt is increasing there (Fig. 4.12).

Due to the oscillatory nature of the fine structure, this maximum thus occurs at a distance of 1/4

of the period of oscillation fromx = 0.

Since the displacement density has the formgt(x) = φ(x)η̄t(x), after rescaling we have

g̃t(x) = φ(x
√

t) ˜̄η(x), (4.35)

where ˜̄ηt(x) :=
√

t η̄t(x
√

t) is the rescaled slowly-varying part ofgt , and the fine structure at time

t is given by

φ(x
√

t) = 1+2 ∑
k∈N

φ̂(k) cos(2πkx
√

t). (4.36)
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The maximum deviation occurs at 1/4 of the period ofφ(x
√

t), i.e. atx = 1
4
√

t
, so that

‖Gt −N‖∞ ≃
1/4

√
t∫

0

∑
k∈N

φ̂(k) cos(2πkx
√

t)dx (4.37)

=
1√
t ∑

k∈N,k odd

φ̂ (k)
(−1)(k−1)/2

2πk
. (4.38)

The correction due to the curvature of the underlying Gaussian converges to 0 ast → ∞, since this

Gaussian is flat atx = 0. Hence‖Gt −N‖∞ = O(t−1/2).

This calculation shows that the fastest possible convergence is a power law with exponent

α = 1/2, and provides an intuitive reason why this is the case. Thisshould be compared to the

rate t−1/2 for convergence of rescaled distribution functions corresponding to solutions of the

diffusion equation in App. A. If the rescaled shape function˜̄ηt converges to a Gaussian shape at a

rate slower thant−1/2, then the overall rate of convergenceα could be slower than 1/2. However,

the numerical results in Sec. 4.6.2 show that the rate is close to 1/2. We remark that for an

observable which is not so intimately related to the geometrical structure of the lattice, the fine

structure will in general be more complicated, and the aboveargument may no longer hold.

4.7. Maxwellian velocity distribution

In this section we consider the effect of a non-constant distribution of particle speeds3. A Maxwellian

(Gaussian) velocity distribution was used in polygonal andLorentz channels in [LCW03] and

[AACG99], respectively, in connection with heat conduction studies. The mean squared displace-

ment was observed to grow asymptotically linearly, but the relationship with the unit speed situa-

tion was not discussed.

We show that the mean squared displacement grows asymptotically linearly in time with the

same diffusion coefficient as for the unit speed case, but that the limiting position distribution may

be non-Gaussian. For brevity we refer only to the position distribution throughout this section;

the displacement distribution is similar.

3I would like to thank Hernán Larralde for posing this question, and for the observation that the resulting position
distribution may no longer be Gaussian.
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4.7.1. Mean squared displacement

Consider a particle located initially at(x0,v0), wherev0 has unit speed. Changing the speed of

the particle does not change the path it follows, but only thedistance along the path traveled in a

given time. Denoting byΦt
v(x0,v0) the billiard flow with speedv starting fromx0 and with initial

velocity in the direction of the unit vectorv0, we have

Φt
v(x0,v0) = Φvt(x0,v0), (4.39)

where the flow on the right hand side is the original unit-speed flow. If all speeds are equal tov,

then the radially symmetric 2D position probability density after a long timet is thus

pt
(
x,y
∣∣v
)

=
1

4πDvt
exp

(−(x2 +y2)

4Dvt

)
, (4.40)

giving a radial density

pt
(
r
∣∣v
)

=
r

2Dvt
exp

( −r2

4Dvt

)
. (4.41)

(Throughout this calculation we neglect any fine structure.)

If we now have a distribution of velocities with densitypV(v), then the radial position density

at distancer is

f rad
t (r) =

∞∫

v=0

pt
(
r
∣∣v
)

pV(v)dv. (4.42)

The variance of the position distribution is then given by

〈x2〉 =

∞∫

r=0

r2 f rad
t (r)dr (4.43)

= 4Dt

∞∫

0

v pV(v)dv =: 4Dtv̄, (4.44)

wherev̄ is the mean speed, after interchanging the integrals overr andv.

We thus see that for any speed distribution having a finite mean, the variance of the position

distribution, and hence the mean squared displacement, grows asymptotically linearly with the

same diffusion coefficient as for the uniform speed distribution, having normalized such that ¯v =

1. We have verified this numerically with a Gaussian velocitydistribution: the mean squared
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displacement is indistinguishable from the unit speed caseeven after very short times.

4.7.2. Gaussian velocity distribution

Henceforth attention is restricted to the case of a Gaussianvelocity distribution. For each initial

condition, we generate two independent normally-distributed random variablesv1 and v2 with

mean 0 and variance 1 using the standard Box–Muller algorithm [PTVF92], and then multiply by

σ , which is a standard deviation calculated below. We usev1 andv2 as the components of the

velocity vectorv, whose probability density is hence given by

p(v) = p(v1,v2) =
e−v2

1/2σ2

σ
√

2π
e−v2

2/2σ2

σ
√

2π
=

e−v2/2σ2

2πσ2 , (4.45)

wherev := |v| =
√

v2
1 +v2

2 is the speed of the particle. The speedv thus has density

pV(v) =
v

σ2 e−v2/2σ2
(4.46)

and mean ¯v = σ
√

π/2. To compare with the unit speed distribution we require ¯v = 1, and hence

σ =
√

2/π . As before, we distribute the initial positions uniformly with respect to Lebesgue

measure in the billiard domainQ.

4.7.3. Shape of limiting distribution

The position density (4.42) is a function of time. However, the Gaussian assumption used to derive

that equation is valid in the limit whent → ∞, so the central limit theorem rescaling

f̃ rad
t (r) :=

√
t f rad

t (r
√

t) (4.47)

eliminates the time dependence in (4.42), giving the following shape for the limiting radial density:

f̃ rad(r) =
πr
4D

∞∫

v=0

exp

(
− r2

4Dv
− πv2

4

)
dv =:

πr
4D

I , (4.48)
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denoting the integral byI . We can evaluate this integral explicitly usingMathematica [Wol04] in

terms of theMeijer G-function4 [EMOT53, MS73]:

I = G3,0
0,3

(
πr4

256D2

∣∣∣∣
—

−1
2,0,0

)
. (4.51)

See [MK00] and references therein for a review of the use of such special functions in anomalous

diffusion.

We can, however, obtain an asymptotic approximation toI from its definition as an inte-

gral, without using any properties of special functions, asfollows. DefineK(v) := r2

4Dv + πv2

4 ,

the negative of the argument of the exponential in (4.48). Then K has a unique minimum at

vmin := (r2/(2πD))1/3 and we expect the integral to be dominated by the neighborhood of this

minimum. However, the use of standard asymptotic methods iscomplicated by the fact that as

r → 0, vmin tends to 0, a boundary of the integration domain.

To overcome this, we change variables to fix the minimum away from the domain boundaries,

settingw := v/vmin. Then

I = vmin

∞∫

w=0

e−α L(w) dw, (4.52)

whereα := πv2
min
2 andL(w) := 1

w + w2

2 , with a minimum atwmin = 1. Laplace’s method (see e.g.

[CKP66]) can now be applied, giving the asymptotic approximation

I ∼ vmin e−αL(wmin)

√
2π√

α L′′(wmin)
=

2√
3

e−3α/2, (4.53)

valid for largeα , i.e. for larger.

Hence

f̃ rad(r)
r→∞∼ Cre−β r4/3

, (4.54)

4The MeijerG-function is a generalisation of the classical Gauss hypergeometric function, defined as the following
Mellin–Barnes-type integral; for more details see [EMOT53, MS73, MK00]:

Gm,n
p,q

(
z

∣∣∣∣
a1, . . . ,ap

b1, . . . ,bq

)
:=
∫

C

1
2π i

χ(s)z−sds; (4.49)

χ(s) :=
∏m

j=1 Γ(b j +s)∏n
j=1 Γ(1−a j −s)

∏q
j=m+1 Γ(1−b j −s)∏p

j=n+1 Γ(a j +s)
. (4.50)

C is a certain contour in the complex plane and there are restrictions on theai and theb j .
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where

C :=
π

2D
√

3
; β :=

3
2

( π
32D2

)1/3
. (4.55)

4.7.4. Comparison with numerical results

Figure 4.14 shows the numerical radial position densityf̃ rad
t (r) for a particular choice of geomet-

rical parameters. We wish to demodulate this as in Sec. 4.1 toextract the slowly-varying shape

function, which we can then compare to the analytical calculation.

The radial fine structure functionφ rad(r) must be calculated numerically, since no analytical

expression is available. We do this by distributing 105 points uniformly on a circle of radiusr

and calculating the proportion of points not falling insideany scatterer. This we normalize so that

φ rad(r) → 1 asr → ∞, using the fact that whenr is large, the density inside the circle of radiusr

converges to the ratio[r2−π(a2 +b2)]/r2 of available area per unit cell to total area per unit cell.

We can then demodulatẽf rad
t by φ rad, setting

ρ̃ rad
t (r) :=

f̃ rad
t (r)

φ rad(r
√

t)
. (4.56)

Figure 4.14 shows the demodulated radial densityρ̃ rad
t (r) at two times compared to the ex-

act solution (4.48)–(4.51), the asymptotic approximation(4.54)–(4.55), and the radial Gaussian
r

2De−r2/2D. The asymptotic approximation agrees well with the exact solution except at the peak,

while the numerically determined demodulated densities agree with the exact long-time solution

over the whole range ofr. All three differ significantly from the Gaussian, even in the tails. We

conclude that the radial position distribution isnon-Gaussian. A similar calculation could be done

for the radial displacement distribution, but a numerical integration would be required to evaluate

the relevant fine structure function.

An explanation of the non-Gaussian shape comes by considering slow particles which remain

close to the origin for a long time, and fast particles which can travel further than those with unit

speed. The combined effect skews the resulting distribution in a way which depends on the relative

weights of slow and fast particles.
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4.7.5. 1D marginal

The 1D marginal in thex-direction is shown in Fig. 4.16. Again there is a significantdeviation of

the demodulated density from a Gaussian. From (4.54), the 2Ddensity at(x,y) is asymptotically

f̃ (x,y) ∼ C
2π

exp
[
−β (x2 +y2)2/3

]
, (4.57)

from which the 1D marginal̃f (x) is obtained by

f̃ (x) =

∞∫

y=−∞

f̃ (x,y)dy. (4.58)

It does not seem to be possible to perform this integration explicitly for either the asymptotic

expression (4.57) or the corresponding exact solution in terms of the MeijerG-function. Instead

we perform another asymptotic approximation starting, from the asymptotic expression (4.57).

Changing variables in (4.58) toz := y/x and using the evenness iny gives

f̃ (x) ∼ C|x|
2π

∞∫

z=−∞

exp
[
−κ(1+z2)2/3

]
dz, (4.59)

whereκ := β |x|4/3. Laplace’s method then gives

f̃ (x) ∼ C
√

3√
8πβ

|x|1/3 e−β |x|4/3
, (4.60)

valid for largex. This is also shown in Fig. 4.16. Due to the|x|1/3 factor, the behaviour nearx = 0

is wrong, but in the tails there is reasonably good agreementwith the numerical results.
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Figure 4.14: The radial density functioñf rad
t compared to the numerically calculated radial fine structure

function φ rad, rescaled to converge to 1 and then vertically shifted for clarity. The demodulated radial
densityρ̃ rad

t is also shown.r = 2.3; b = 0.5; t = 100.
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Figure 4.15: Comparison of the demodulated radial densityρ̃ rad
t with the exact Meijer-G representation,

the large-r asymptotic approximation, and the radial Gaussian with variance 2D.
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Figure 4.16:Rescaled 1D marginal of the displacement density ˜g and the demodulated version˜̄η compared
to the Gaussian with variance 2D and to the asymptotic expression. The latter is not shown close tox = 0,
where it drops to 0.r = 2.3; b = 0.5.





CHAPTER 5

Normal and anomalous diffusion in polygonal billiard

channels

5.1. Introduction: ergodic and statistical properties in polygonal billiards

The rigorous results on statistical properties of Lorentz gases discussed in Chap. 2 depend on the

hyperbolicity of the dynamics due to the defocusing nature of the scatterers. Recently the question

has been asked to what extent hyperbolicity is actuallynecessary(rather than just sufficient) for

these strong statistical properties to hold [DCv99, DC01].

The weak nature of the scattering from flat obstacles impliesthat in polygonal billiards the

Kolmogorov–Sinai entropy and all Lyapunov exponents are 0,so that infinitesimally separated

trajectories separate slower than exponentially; in fact they separate linearly, as can be seen by un-

folding the polygonal billard and considering two initial conditions with slightly different angles.

Nonetheless, trajectories separated by a finite distance may fall on different sides of a polygonal

vertex, causing them to separate faster. Characterising this effect is difficult: see e.g. [vB04] for a

recent attempt.

If all angles arerational, i.e. rational multiples ofπ, then the dynamics reduces to directional

flows on invariant surfaces and is well-understood; we do notconsider this case. Rigorous results

on ergodic properties of more general polygonal billiards are reviewed in [Gut86, Gut96, Gut03].

There are known rigorous examples of ergodic polygonal billiards, but no examples known to be

mixing, although mixing has not beendisproved in general. Recently numerical evidence has been

given that the billiard dynamics in right-angled triangleswith irrational acute angles is ergodic and

weak-mixing but not mixing [ACG97], while in triangles withall angles irrational the dynamics

appears to be mixing [CP99].

Despite these uncertainties, various polygonal billiard models have been found numerically to

exhibit normal diffusion, in the sense that the mean squareddisplacement grows asymptotically

linearly in time (property (a) from Chap. 2) [DC01, ARdV02, LCW03]. In this chapter we further

107
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explore statistical properties of polygonal billiards, attempting to understand when we can hope to

see normal diffusion and to what extent stronger properties, such as the central limit theorem, are

satisfied. We also investigate when normal diffusion fails and characterise the anomalous diffusion

that results.

Recently there has also been much interest in finding simple model systems which show nor-

mal heat conduction, in the sense that Fourier’s law holds. Several simple periodic billiard mod-

els were found which show this behaviour when placed betweenthermal reservoirs at different

temperatures [AACG99, ARdV02, LCW03]. Evidence has been given that the heat conduction

properties of 1D can be predicted once the diffusive properties are known [LW03, DKU03], so

that it is important to characterise the diffusive behaviour.

We remark that the weak instability in polygonal billiards means that numerical simulations

should bemore reliablethan in scattering billiards, in the sense that computed trajectories should

lie close to true trajectories for a long time; see e.g. [AGR00]. For this reason we believe that

numerical experiments on statistical properties of polygonal billiards can provide useful informa-

tion.

We begin by reviewing existing models which numerically exhibit asymptotic linear growth

of the mean squared displacement. We then attempt to identify geometrical features of polygonal

billiards which allow or prevent the occurrence of normal diffusion, and construct two more classes

of models which have normal diffusion except when a particular geometrical condition is satisfied,

namely thatparallel scatterersexist, when we find anomalous diffusion.

5.2. Polygonal models exhibiting normal diffusion

5.2.1. Previous models

Model of Alonso et al. Alonsoet al. [ARdV02] studied the geometry shown in Fig. 5.1(a) and

Fig. 5.1(b). We fix the anglesφ1 andφ2 and choosed such that the bottom triangles are half the

width of the top triangle. This determines the ratio ofh1 to h2 in terms of the anglesφ1 andφ2.

We then require the inward-pointing vertices of each triangle to lie on the same horizontal line to

prevent infinite horizon trajectories. Takingh1 +h2 = h = 1 then gives

d =
h

tanφ1 + 1
2 tanφ2

, (5.1)
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Figure 5.1: (a) Geometry of the polygonal billiard unit cell of [ARdV02], shown to scale withφ2 = π/(2e).
(b) Part of the polygonal channel with the same parameters.

with h1 = d tanφ1 andh2 = (d/2) tanφ2. We remark that in [ARdV02] it was stated that the area

|Q|= dhof the billiard domain is independent ofφ2 whenφ1 is fixed. This is not correct, however,

since by (5.1),d depends onφ2.

In [ARdV02], the parametersφ1 = π(
√

5−1)/8 andφ2 = π/q, q∈ N, 3≤ q≤ 9 were used.

Forq> 5, the mean squared displacement was found to grow liketα with α in the range 1 to 1.08,

indicating normal diffusion.

For q = 3,4, however, anomalous diffusion was found, for which〈∆x2〉t ∼ tα with α 6= 1. As

far as we are aware, there is as yet no explanation for this observed anomalous behaviour, although

presumably number-theoretic properties of the angles are relevant; in a second paper [ARdV04],

Alonso et al. state that in these cases they find large classes of periodic orbits which are either

trapped in one cell in the caseq= 4, resulting in sub-diffusion, or are propagating orbits, resulting

in super-diffusion forq = 3.

These results appear to be related to the rational angles used. We have instead used a value

of φ2 which is not rationally related toφ1, namelyφ2 = π/(2e) ≃ π/5.44, where e is the base of

natural logarithms. In this case we find that〈∆x2〉t ∼ t1.008, which we regard as asymptotically

linear, withD = 0.3796±0.0009.

Model of Li et al. Figure 5.2 shows the unit cell of the model introduced by Liet al. [LCW03].

Unlike the other models we study, this one generates atwo-dimensionalpolygonal billiard with

finite horizon when unfolded: presumably this was the reasonfor introducing this more subtle

shape.
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h

w

2d

θ φ

Figure 5.2: Unit cell of the model introduced in [LCW03], with 2d = 3, h = 1.8, w = 2.19, φ = 1 and
θ = (

√
2−1)π/2. Note thatφ = 1 is a transcendental multiple ofπ , whereasθ is only a quadratic irrational

multiple ofπ .

5.2.2. Necessary conditions for normal diffusion

Based on the features of the models presented above and thoseintroduced below, and on ex-

periments with further models, we arrive at the following heuristic ingredients for constructing

polygonal billiards with normal diffusion:

(i) avoid vertex angles which are rationally related toπ;

(ii) avoid infinite horizon trajectories; and

(iii) avoid parallel scatterers.

As discussed above, point (i) has to some extent a rigorous justification. Point (ii) is related

to heuristic arguments discussed in Chap. 6 which show that infinite horizon trajectories lead to

at least weak anomalous diffusion, where the mean squared displacement grows liket logt. Point

(iii) is the main observation that we wish to emphasise. As wediscuss in more detail in Sec. 5.4,

parallel scatterers seem to cause achannellingeffect, resulting in long laminar stretches and thus

anomalous diffusion.

5.2.3. Constructing new models with normal diffusion

Following the above heuristic rules, we now construct two classes of models which seem to exhibit

normal diffusion for most parameter values, but anomalous diffusion for certain special geometri-

cal configurations. These new models provide clear evidenceof point (iii) in particular. We follow

[ARdV02] in using strictly 1D channels, i.e. ones which cannot be unfolded in they direction,

which enables us more easily to ensure a finite horizon.
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Figure 5.3: (a) One unit cell, and (b) several cells forming a 1D channel,for a polygonal model derived
from the Lorentz gas considered in Chap. 3. There is a crossover from normal to anomalous diffusion when
h2 = h3.

Polygonal Lorentz model Our first model is a polygonalised version of the model introduced

in Chap. 3, restricted to be strictly one-dimensional: we create a polygonal channel and then add

an extra scatterer at the centre of each unit cell to ensure a finite horizon by blocking the central

corridor: see Fig. 5.3.

We have defined this model in terms of heights of the scatterers. The angles between the

scatterers are then given as arctangents of ratios of these heights. In general these angles will be

irrational multiples ofπ, although since in our calculations we use simple heights, we will always

end up with angles which are nongeneric in the sense that theyare arctangents of rationals.

To generate initial conditions uniformly distributed withrespect to Lebesgue measure in the

available space inside the polygon, we use the ‘rejection method’ [PTVF92], as follows. We

generate points in a rectangle which contains the polygonalbilliard domain and reject points which

do not lie inside it, using the following algorithm [O’R98]:a point lies inside the polygon if a ray

extending from the point to the exterior of the polygon crosses the boundary of the polygon an

odd number of times.

Simplified version: zigzag model We can simplify the above model by eliminating the central

additional scatterer. In order still to be able to block horizontal trajectories in the centre of the
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Figure 5.4: (a) One unit cell, and (b) several unit cells forming a 1D channel, for a zigzag model which
is a modification of Fig. 5.3. This model also shows a crossover from normal to anomalous diffusion when
h2 = h3.

channel, we flip the bottom line of scatterers to point up instead of down, resulting in the model1

shown in Fig. 5.4.

5.3. Normal diffusion

We present evidence that the models discussed above do indeed exhibit normal diffusion. It is

difficult to distinguish between asymptotict and t logt behaviour by examining only the mean

squared displacement2, so that we look at several different indicators. (Of course, numerical ev-

idence alone can never be conclusive without a rigorous basis, especially as regards asympotic

behaviour; nonetheless, the available numerical evidencepresented below leads to this conclu-

sion.)

5.3.1. Moments

Following [AHO03], we consider the moments〈|x|q〉t . Several of these moments are shown as

a function of time in Fig. 5.5 for the polygonal Lorentz channel with values of the geometrical

parameters for which we expect normal diffusion, i.e. without parallel scatterers.

Since|x|q < tq, we expect these moments to have power law growth, possibly with e.g. loga-

rithmic corrections. We thus define the growth ratesγq by [AHO03]

γq := lim
t→∞

log〈|x|q〉t
logt

. (5.2)

1[The same model was studied independently in [JR06] at around the same time, with similar conclusions.]
2[This was done in the published version of this chapter [SL06].]
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Figure 5.5: Moments〈|x|q〉t as a function oft for different values ofq. Polygonal Lorentz channel with
h1 = 0.1, h3 = 0.45,∆h = 0.1, w = 0.2.

Corrections to power law growth are ignored by this definition. Numerically we calculateγq by

fitting a straight line to a log–log plot of theqth moment in the long-time regime. The growth

rates are shown in Fig. 5.6 for the polygonal Lorentz channelin the normal diffusion case. We see

a qualitative change at aroundq = 3 between two approximately linear regimes. Results of this

type have been reported in a variety of models in [CMMGV99, FMY01, AC04] and are sometimes

referred to as ‘phase transitions’. Physically this corresponds to a change in importance between

ballistic trajectories and diffusive trajectories [FMY01].

We also remark that it was proved in [AHO03] thatγq is a convexfunction of q, assuming

that the limit definingγq exists. This considerably restricts the possible behaviour. Again the data

points on the graph violate this and so cannot be correct; nonetheless we believe that the data

gives an impression of the true behaviour. In particular, the numerical accuracy of the high-order

moments is not good, since they become very large: the rate ofincrease in the high-order regime

cannot in fact exceed 1, contradicting the best-fit line3.

3[Higher moments are dominated by extreme values, which mustbe eliminated to obtain reproducible results
[SL06].]
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Figure 5.6: Growth rateγq of the qth moment〈|x|q〉 for the polygonal Lorentz channel withh1 = 0.1,
h3 = 0.45,∆h = 0.1, w = 0.2. The straight lines are best fits to the low- and high-order moments.

5.3.2. Velocity autocorrelation function

The above results provide some evidence of normal diffusion: we have〈x2〉t ∼ t1.01, so that the

growth of the variance of the position distribution (and hence of the mean squared displacement)

is asymptotically linear. We can attempt to confirm this by studying the velocity autocorrelation

function〈v0 vt〉, which must be integrable for the diffusion coefficient to exist. As seen in Fig. 5.7,

this is an oscillatory function whose maxima seem to decay approximately ast−1.05. (Statistical

errors (not shown) dominate for large time.) Since there is also cancellation due to the oscillation,

this gives weak evidence that the velocity autocorrelationfunction is integrable.

It was suggested in [LM93] to consider instead the integrated velocity autocorrelation function

R(t) :=

t∫

0

〈v0 vs〉ds= 〈v0

t∫

0

vsds〉 = 〈v0 ∆xt〉, (5.3)

since the delicate cancellations inC(t) will be seen more robustly inR(t). If C(t) is integrable then

R(t)→ 2D ast → ∞. If C(t) decays as, for example,C(t)∼ t−1 thenR(t) diverges logarithmically,

so that plottingR(t) against logt should give a linear asymptotic growth. Figure 5.8 providessome

evidence thatC(t) is integrable, since an asymptotic limit seems to be attained ast increases.
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Figure 5.7: Log–log plot of velocity autocorrelation function〈v0vt〉 as a function of time. The function
oscillates about 0, so different colours are used to depict the positive and negative parts. A straight line with
slope−1.05 is shown.

Thus overall we have good evidence that the mean squared displacement can grow asymptotically

linearly, although we have not ruled out a small logarithmiccorrection4.

5.3.3. Fine structure

The shape of the displacement density was considered in [ARdV02] using histograms, but the

results were not conclusive. Here we use the more refined methods developed in Chap. 4 to

describe the fine structure and to show that the position and displacement distributions do seem to

be asymptotically normal.

Figure 5.9 shows the position densityft(x) in the Alonso model at a particular time. Following

the method of Sec. 4.4, we can calculate the fine structure function h(x) as the normalized height

of available space at positionx. Taking the origin in the centre of the unit cell in Fig. 5.1(a), we

have

h(x) =
2d
|Q|
(
x tanφ1 +

∣∣x− 1
2d
∣∣ tanφ2

)
(5.4)

for 0 6 x 6 d, with h being an even function and having period 2d, and|Q| = d h. (The factor of

4[This point is again addressed in [SL06].]
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Figure 5.8: Integral〈v0 ∆xt〉 of the velocity autocorrelation function as a function of log10t.

2d makesh a density per unit length.) This fine structure function is shown in the inset of Fig. 5.9.

We demodulateft by dividing byh to give ρ̄t(x) := ft(x)/h(x), which is also shown in the figure.

We see that it is close to the Gaussian with variance 2Dt.

With the same notation as in Sec. 4.5.1, we can also calculatethe fine structure functionφ of

the displacement density for the polygonal channel. The Fourier coefficients arêh(0) = 1 and

ĥ(k) =
1
2d

d∫

−d

h(x) cos

(
π kx

d

)
=

1
|Q|

d2

π2k2 l(k) (5.5)

for k 6= 0, where form∈ Z we have

l(k) =






4tan(φ1), if k odd

8tan(φ2), if k = 4m+2

0, if k = 4m.

(5.6)



5.3. Normal diffusion 117

For the polygonal Lorentz channel, we have forx∈ [0,d] that

h(x) =
2d
|Q|

[
2h1 +h2 +h3−

h2 +h3

d
x− (w−x)11[0,w](x)

]
, (5.7)

where

|Q| = 2
[
2h1 d+ 1

2d(h2 +h3)−w2] . (5.8)

This gives

ĥ(k) =
2
|Q|

d2

π2k2

[
h2 +h3

d
(1−cosπk)−

(
1−cos

πkw
d

)]
. (5.9)

In both cases we havêh(k) = O(k−2) and hencêφ (k) = O(k−4), so thatφ is at leastC2, whereas

h is Lipschitz continuous (i.e. Hölder with exponentα = 1).

5.3.4. Central limit theorem

As for the Lorentz gas, we rescale the densities and distribution functions by
√

t to study the

convergence to a possible limiting distribution. Again we find oscillation on a finer and finer scale

and weak convergence to a normal distribution: see Fig. 5.10. Figure 5.11 shows the time evolution

of the demodulated densities˜̄ηt . There is an unexpected peak in the densities nearx = 0 for small

times, indicating some kind of trapping effect; this appears to relax in the long time limit to a

Gaussian density. Again we conjecture that we have uniform convergence of these demodulated

densities to a Gaussian density.

Figure 5.12 shows the distance of the rescaled distributionfunctions from the limiting normal

distribution, analogously to Fig. 4.13, for several valuesof φ2 for which the mean squared dis-

placement is asymptotically linear. The straight line fitted to the graph forφ2 = π/(2e) has slope

−0.212, so that the rate of convergence for this polygonal modelis substantially slower than that

for the Lorentz gas, presumably due to the much slower rate ofmixing in this system. A similar

rate of decay is found forφ2 = π/7, whileφ2 = 6 andφ2 = 9 appear to have a slower decay rate.

Nonetheless, the distance does appear to converge to 0 for all these values ofφ2, providing evi-

dence that the distributions are indeed asymptotically normal, i.e. that the central limit theorem is

indeed satisfied. A similar calculation for the polygonal Lorentz channel (for the parameters used

above) gives a convergence rate oft−0.15, of the same magnitude as for the Alonso model.
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Figure 5.9: Position density att = 50 in the polygonal model withφ2 = π/(2e). The inset shows the
functionh(x) over two periods.
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Figure 5.10: Rescaled displacement denstities compared to the Gaussianwith variance 2D. The inset
shows the functionφ for this geometry.
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Figure 5.11: Demodulated densities̄̃ηt for t = 100,t = 1000 andt = 10000, compared to a Gaussian with
variance 2D. The inset shows a detailed view of the peak nearx = 0.
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5.4. Anomalous diffusion

In dispersing Lorentz gases, there is a weak form of anomalous diffusion, with the mean squared

displacement growing as〈∆x2〉t ∼ t logt for larget: see Chap. 6. In polygonal billiards of many

types, however, a strong type of anomalous diffusion has been observed, with〈∆x2〉t ∼ tα for some

α > 1. Note that the maximum possible rate isα = 2, since|x| 6 t due to the finite particle speed.

As stated above, we find anomalous diffusion in our models precisely when there areparallel

scatterersin the unit cell. Previous observations of anomalous diffusion in billiard models include

[ZE97, Zas02, LWH02], and [PZ01] in discrete time, but they do not seem to have explicitly

related the occurrence of anomalous diffusion to the geometry of the system. We remark that in

[Zwa83] a model was presented for which the unit cell is a rectangle with a small window in one

edge. It was stated that the growth exponent of the mean squared displacement depends on the

number-theoretic properties of the aspect ratio of the rectangle. It would be interesting to revisit

this model in the light of our results.

5.4.1. Moments

Figure 5.13 shows a typical plot of the mean squared displacement whenh2 = h3. The long-time

behaviour is well described by

〈∆x2〉t ∼Ctα , (5.10)

whereα = 1.40.

Figure 5.14 shows the growth exponent of the higher order moments〈|x|q〉t for the polygonal

Lorentz channel. There are two different linear regimes, aspreviously, with a crossover occurring

nearq = 3. Figure 5.15 shows the same for the zigzag model, for which there does not seem to be

a crossover, and we havestrong anomalous diffusionunder the definition of [CMMGV99], where

γq = ν q for all q, with the constantν given byν ≃ 0.93 for these parameters.

5.4.2. 1D densities

Since the mean squared displacement grows like〈∆x2〉t ∼ tα with α > 1, the
√

t scaling used in

the central limit theorem cannot give densities which converge in any sense, since the variance of

the rescaled densities would still tend to infinity. Insteadwe rescale to keep the variance bounded,

setting

g̃t(x) := tα/2 gt(xtα/2). (5.11)
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Figure 5.13: mean squared displacement as a function of timet, on a log–log plot.h1 = 0.1,h2 = h3 = 0.3,
w = 0.2, d = 1, for the polygonal Lorentz channel. The straight line is a fit to the long-time slope.
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Figure 5.14: Growth exponent of higher order moments for the polygonal Lorentz channel with anomalous
diffusion. There is again a crossover between two differentlinear regimes occurring close toq = 3.
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Figure 5.15: Growth exponentsγq of higher order moments for zigzag channel. The growth exponent is
close to a linear function ofq, although perhaps two different linear regimes can be detected for low and
high values ofq.

This scaling was previously used in [PZ01] for the Poincarémap of an anomalously diffusive

billiard.

Figure 5.16 shows thex-position density. The fine structure is again mostly removed by de-

modulating by the fine structure functionh found above, although this demodulation does not seem

to be as effective as previously; this could be an artifact ofan insufficiently precise estimation of

the original density, or it could reflect weaker mixing properties of the system.

Figure 5.17 shows a sequence of demodulated densities rescaled as above. They appear to con-

verge at long times to a limiting shape which is non-Gaussian. They are compared to a Gaussian

with varianceB, whereB is the generalisation of the diffusion coefficient given by〈∆x2〉t ∼ Btα .

The demodulated densities are, however, rather noisy; those for the displacement distribution are

even more so.

Zigzag model Rescaled densities for the zigzag model are shown in Fig. 5.18; for long time

we again have convergence to a limiting distribution. The spikes in the tails seem to correspond

to long-lived propagating orbits. Note that there is no fine structure to take into account for the

zigzag channel, since the channel width is a constant withinthe unit cell. The peak atx = 0 has
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Figure 5.16: Position density and demodulated position density in the polygonal Lorentz model with
h1 = 0.1, h2 = h3 = 0.45,w = 0.2, d = 1 andt = 100.

been observed previously in anomalous diffusion: see e.g. [FMY01].

We remark that the unit cell of the zigzag model when the top and bottom scatterers are parallel

can be reduced to a parallelogram with irrational angles. The mixing properties of the billiard flow

inside such a geometry are not obvious, although we have checked that velocity autocorrelations

decay as a power law. There may be an effect ofslow ergodicity, where the system takes a long

time to explore certain regions of phase space: see e.g. [KH98, PZ01].

5.4.3. Maxwellian velocity distribution

Just as for the Lorentz gas, we can consider the effect of a different distribution of velocities; this

has been considered for heat conduction [LCW03, ARdV02].

Recall from Sec. 4.7 that if there is a speed distributionpV(v), then the mean squared displace-

ment at timet in 2D is given by

〈∆x2〉 =

∫

v

pV(v)〈r2(t)〉v. (5.12)

If a billiard system shows anomalous diffusion for particles with unit speedv0 = 1 which looks
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Figure 5.17: (a) Rescaled demodulated densities in the polygonal Lorentz model for several times, com-
pared to a Gaussian with the same variance; the central region is shown in more detail in (b). There seems
to be convergence at longer times to a limiting shape which isnon-Gaussian.
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Figure 5.18: Rescaled densities for the zigzag channel, where〈∆x2〉t ∼ t1.81.

like

〈r2(t)〉v0 ∼ tα , (5.13)

then

〈r2(t)〉v = 〈r2(tv/v0)〉v0 = (tv)α . (5.14)

Thus

〈∆x2〉 = tα
∫

v

pV(v)vα dv. (5.15)

Hence there is now a correction factor of theα th moment of the speed distribution which enters,

although the rate of growth is stilltα . We have observed such a correction numerically.

5.5. Continuous-time random walk model for anomalous diffusion

A widely-used framework for understanding anomalous diffusion processes is the theory ofcontinuous-

time random walks(CTRW): see e.g. [Wei94, KBS87, ZK93]. This is a generalisation of standard

discrete-time random walks where individual steps are still independent, but are now described by

a density functionψ(r , t), whereψ(r , t)dr dt is the probability of having a step with distance in

(r , r + dr) which takes time in(t, t + dt).
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To be able to model super-diffusion,ψ must have a coupled form [ZK93], such as

ψ(r , t) = 1
2δ (|r |− t)ψ(t). (5.16)

This form (called thevelocity modelin [ZK93]) models motion at a constant velocity for a timet

in the directionr ; after each stretch the direction is randomised and a new step is taken. It gives

the following long-time growth of the mean squared displacementσ2(t):

σ2(t) ∼






t2, 0 < ν 6 1

t3−ν , 1 < ν < 2

t ln t, ν = 2

t, ν > 2;

(5.17)

whenψ(t) ∼ t−1−ν ; see [Gei95, KZS95] for reviews. More generally we have

ψ(r , t) = p(r | t)ψ(t), (5.18)

wherep(r | t) is the conditional probability of a step of lengthr if we know that it lasts for time

t: see e.g. [Wei94, Sec. 2.5] and [SK89]. In general the rate ofgrowth of the mean squared

displacement will then also depend on the properties ofp(r | t).

Figure 5.19 shows a representative trajectory in the zigzagmodel with anomalous diffusion.

From the figure we can see the importance oflaminarmotion, i.e. coherent motion in one direction

along the channel. Referring to the above CTRW picture, we try to model the motion using random

walks where the steps are stretches of laminar motion.

We define laminar motion in the zigzag model as follows. For each section (half a unit cell)

i of the channel, we assign a vectorL i parallel to the channel walls, with a consistentx-direction

along the channel. We say that two consecutive stretches of trajectory (between bounces) are part

of the same laminar motion if they have the same directions along the channel, as measured by

sgn(v ·L i). Figure 5.20 shows a scatterplot representing the joint distribution ψ(x, t) of periods of

laminar motion withx-displacementx along the channel and taking timet. Part (b) of that figure

shows that allowed values ofx are restricted to being near integers, since a laminar motion cannot

end in the middle of a unit cell. (A similar effect in infinite horizon 2D periodic Lorentz gases was
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Figure 5.19: Part of a representative single trajectory in the zigzag model with anomalous diffusion forh1 = 0.1,h2 = h3 = 0.3. The upper figure shows
the start of the trajectory, which has initial condition(−0.066,0.47); the lower figure shows the continuation of the trajectory.
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described in [Ble92], although no figure was given.) We can thus regard the walk as taking place

on a one-dimensional lattice.

We see that the distributionψ(x, t) is non-trivial, and the figure does not give much hope of

finding an analytical expression for it. However we could hope that an approximation of the

form ψ(r , t) = 1
2δ (|r | − vt)ψ(t) referred to above may be adequate, for some speedv, since the

distribution is somewhat concentrated along diagonal lines. Figure 5.21 shows the tail region of

the densityψ(t) and its distribution function. If we assume the velocity model form, then the

observed long-time power law decayψ(t) ∼ t−2.58, shown in Fig. 5.21, givesν = 1.58 and hence

a mean squared displacementσ2(t) ∼ t3−1.58 = t1.42. This compares with the observed growth

σ2(t) ∼ t1.81. The agreement leaves room for improvement, showing that wemust use a more

general CTRW model incorporating information on the complete ψ(x, t), or perhaps reject any

CTRW model which omits important information on correlations between consecutive laminar

trajectories; such correlations can be seen in Fig. 5.19, for example.

Figure 5.22 shows a trajectory in the polygonal Lorentz gas model. Despite the fact that anoma-

lous diffusion is also found in this model when there are parallel scatterers, the mechanism is much

less clear, since it does not seem possible to identify an obvious candidate ‘laminar motion’ in this

model by looking at sample trajectories.

5.6. Crossover from normal to anomalous diffusion

Since anomalous diffusion occurs under certain geometrical conditions, whereas normal diffusion

seems to be more general, it is of interest to ask how the crossover from one to the other occurs

when the geometry is changed to approach one where anomalousdiffusion occurs. We study the

two models introduced above to show numerically how the crossover occurs.

In the following we fix all geometrical parameters except forh2, which we vary according to

h2 = h3 + ∆h. Anomalous diffusion is found for∆h = 0, with asymptotically normal diffusion

found for any∆h 6= 0. It is thus of interest to study how the statistical behaviour changes from one

asymptotic regime to the other as the symmetrical configuration is approached when∆h→ 0.

Figure 5.23 shows the mean squared displacement as a function of time for several values of

∆h. The same data is plotted on log–log axes in Fig. 5.24(a) and as deviations from a linear fit to

one of the curves in Fig. 5.24(b). We see that as∆h→ 0, the curves follow the anomalous diffusion

curve (with slope> 1) for longer times, before a crossover occurs to asymptoticlinear behaviour.



5.6. Crossover from normal to anomalous diffusion 129

x-displacement

tim
e

10005000−500−1000

1000

800

600

400

200

0

(a)

x-displacement

tim
e

6040200−20−40−60

60

50

40

30

20

10

0

(b)

Figure 5.20: Scatterplot representing the joint densityψ(r ,t) of laminar paths in the zigzag model with
anomalous diffusion (h1 = 0.1, h2 = h3 = 0.3). The straight lines have slope 1, representing the maximum
possible speed. (b) Shows the fine structure near the origin:the allowed values ofx are restricted to be near
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Figure 5.22: Part of a single trajectory of the polygonal Lorentz model with h1 = 0.1, h2 = h3 = 0.3.
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Figure 5.23: Mean squared displacement as a function of time for different values of∆h= h2−h3 tending
to 0, for the polygonal Lorentz model withh1 = 0.1, h3 = 0.45 andw = 0.2. Values of∆h shown are, from
top to bottom,∆h = 0, 10−11, 10−10, . . ., 10−1.

The intercept of the asymptotic linear growth for∆h 6= 0 is related to the diffusion coefficient

D(∆h). As ∆h→ 0, the intercept moves up, corresponding to an increase inD. Figure 5.25 shows

the diffusion coefficient in this asymptotic linear regime as a function of∆h, obtained via the

slope of the mean squared displacement. Note that it is clearfrom Fig. 5.24 that the asymptotic

linear growth regime has not yet been reached for the smallest values of∆h, so that the diffusion

coefficients for those values are expected to be underestimates.

We obtain a straight line on a log–log plot, and a fit in the region 36 − log10(∆h) gives

log10D(∆h) ∼−1.10−0.152log10(∆h)). (5.19)

The diffusion coefficients obtained for negative values of∆h are also shown forh = 0.45, and it is

clear that the growth rate is the same. We hence obtain the power law behaviour

D(∆h) ∼ 0.08 |∆h|−0.15 as |∆h| → 0. (5.20)

Note that this agrees withD = ∞ when∆h = 0.
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Figure 5.24: (a) Log–log plot of the mean squared displacement as a function of time. (b) Deviations of
the log–log plot from a straight line fitted to the long-time part of the lowest curve. As∆h approaches 0, the
mean squared displacement curve follows that for the anomalous case∆h = 0 for longer and longer times.
Values of∆h shown are as in the previous figure.
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Figure 5.25: Log–log plot of the diffusion coefficientD as a function of∆h for the polygonal Lorentz
model. The linear growth indicates power law behaviour.

We could also consider thecrossover time, i.e. the time required to switch from the anomalous

diffusion regime to the linear growth regime. One possible definition of this time could be as the

intersection of two straight line fits: a fit to the initial anomalous growth and a fit to the asymptotic

normal growth. A construction of this type was used e.g. in [CGvB04] in a different context.

From Fig. 5.24 we see that this crossover time tends to∞ as∆h → 0, and we could study5 the

dependence of this time on∆h.

5.6.1. Zigzag model

There is a similar crossover to anomalous diffusion whenh2 = h3 in the zigzag model; the growth

of the moments is very similar to the polygonal Lorentz channel. Figure 5.26 shows the growth of

the diffusion coefficients as∆h→ 0. A fit gives

log10D(∆h) = −0.320 log10(∆h)−0.191, (5.21)

5[This was done in [SL06], where a simple scaling form was found allowing a data collapse of the data for different
∆h.]
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Figure 5.26: Log–log plot of the diffusion coefficient as a function of∆h for the zigzag model.

and hence

D(∆h) ∼ 0.644(∆h)−0.32 as∆h→ 0, (5.22)

so that we again obtain a power law, but with a different rate of growth than in the polygonal

Lorentz model.

5.6.2. Qualitative explanation

In the zigzag model we can find a qualitative explanation of the above observations as follows. If

we start a trajectory with the same initial conditions in thecases∆h = 0 and∆h small, the latter

trajectory willshadow(follow approximately) the former for a certain length of time. However, the

latter will gradually (linearly in time) deviate from the first trajectory due to the (weak) defocusing

effect of the boundaries, eventually becoming effectivelydecorrelated. For smaller values of∆h,

the shadowing will persist for a longer period.

We refer again to the CTRW model described in Sec. 5.5. For∆h = 0.01, we find that the

density functionψ(t) is oscillatory, so that it is difficult to determine its decayrate; instead,
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Figure 5.27: Tail of Ψ(t) on a log–log plot.

Fig. 5.27 showsΨ(t) for long times, where

Ψ(t) :=

∞∫

t

ψ(t ′)dt ′. (5.23)

It decays likeΨ(t) ∼ t−2.23, so thatψ(t) ∼ t−1−2.23, giving ν = 2.23, which according to (5.17)

gives normal diffusion, as required. However, we may not have managed to attain the asymptotic

regime in this calculation. For smaller∆h we expect the distribution to have a progressively longer

tail, so that the average laminar length will be longer, resulting in a larger diffusion coefficient as

seen in the numerical experiments.

Again we remark that although the same behaviour is found in the polygonal Lorentz model

at the level of the statistical properties, it is less clear how to obtain a qualitative understanding in

that case without identifying the type of laminar behaviourwhich is presumably responsible.





CHAPTER 6

Three-dimensional periodic Lorentz gases

We would like to extend the detailed knowledge available for2D systems to study more physically

relevant 3D periodic Lorentz gases. Relatively little workhas been done on higher-dimensional

models, since computation time increases and technical difficulties arise, some of which are dis-

cussed below. In this chapter we succeed in addressing some of these issues and point out where

more work is still required1.

Previous work on 3D periodic Lorentz gases in a physical context includes that of Bouchaud

& Le Doussal [BLD85], who studied the Lyapunov exponent and the decay of velocity auto-

correlation functions for simple (hyper-)cubic lattices in d 6 7 dimensions, and Dettmannet al.

[DMR95], who studied a 3D hexagonal close-packed lattice with an electric field and athermostat

(a device for keeping the kinetic energy of a particle constant, despite the energy input due to the

electric field), showing that the Lyapunov exponents satisfied a conjugate pairing rule. Rigorous

results, discussed in more detail below, are proved in [Che94] and [GW00].

We first review results which show that higher-dimensional Lorentz gases with finite horizon

exist. We then construct a particular 3D model with overlapping scatterers which has a finite

horizon regime, analogously to the model studied in Chap. 3;in this regime we show numerically

that our model is diffusive. We then consider the effect on the statistical properties of allowing an

infinite horizon, and find that there are two qualitatively different types of infinite horizon regime.

6.1. Existence of higher-dimensional Lorentz gases with finite horizon

Chernov [Che94] extended the results of [BS81, BSC91] to higher-dimensional (d > 3) periodic

Lorentz gases. He proved2 fast (at least stretched exponential) decay of correlations for the billiard

map, and the central limit theorem and functional central limit theorem for Hölder continuous

observables for the billiard flow, when the scatterers are disjoint and have sufficiently smooth (C3)

1[Some results from this chapter are included in a submitted manuscript [San], which also contains updated refer-
ences.]

2Some details of the proofs in [Che94] are corrected in [BCST02, BCST03].
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138 6. Three-dimensional periodic Lorentz gases

boundaries, and the finite horizon condition is satisfied3. However, no explicit example of a model

satisfying the assumptions was given in [Che94], even in the3D case. In fact we are not aware of

anyexamples of such models in the literature; unfortunately wehave also been unable to construct

an explicit example.

6.1.1. Rigorous results from convex geometry

Several results in convex geometry, which are seemingly unknown in the physics community,

bear light on the possibility of constructing higher-dimensional periodic Lorentz gases with finite

horizon.

In [Hep61] it was shown that any lattice packing of spheres in3D has an infinite horizon,

and in fact acylindrical hole, the three-dimensional version of the corridors in infinitehorizon

2D periodic Lorentz gases. Such a hole consists, in billiardlanguage, of a collection of parallel

trajectories (forming a cylinder), none of which ever collides with a scatterer.

We remark that the term ‘lattice’ in this result refers to a set of points of the form∑n
i=1aiei ,

whereai ∈ Z; thus geometers’ lattices are what physicists callBravais lattices[AM76]. For

example, the hexagonal close-packed structure is not a lattice in this sense, although the face-

centred cubic is. A ‘sphere packing’ is (roughly) a collection of touching, but non-overlapping,

spheres.

The result was later extended to show the existence of cylindrical holes in lattice sphere pack-

ings of any dimension: see references in [HZ00]. This implies that to obtain a finite horizon it is

necessary to have more than one sphere per unit cell; this wasstated without proof in [CD00].

Recently it was proved in [HZ00] that this is no longer true ifwe consider arbitrary periodic

structures, rather than just lattices, consisting of identical convex bodies. They showed that in any

dimensionn there exist periodic arrays of non-touching spheres with finite horizon (although they

did not use this terminology), and in fact with spheres replaced by any convex body. The proof is

constructive, but it is not easy to convert it into the construction of an explicit example4, since it

involves finding sets of minimal cardinality satisfying certain properties.

This result implies that the class of models considered in [Che94] is indeed non-empty. We

remark that in any such finite horizon model, the minimum number of spheres which can be seen

3Recall from Sec. 3.1 that a periodic Lorentz gas satisfies thefinite horizon condition if no trajectory can be extended
arbitrarily far without hitting a scatterer.

4M. Henk, private communication.
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from a given sphere has been shown to be at least 30: for references on this and related results see

the review [Zon02, Sec. 5–6]. Hence any such structure must be quite complicated.

6.1.2. Attempts to construct a finite-horizon model

A common construction in solid state physics is to build lattices as stacks of layers, with each

layer being a 2D triangular lattice of spheres (corresponding to the standard triangular 2D periodic

Lorentz gas). Consecutive layers are placed in one of three possible positions, labelledA, B andC,

relative to the previous two layers [AM76]: a hexagonal close-packed structure corresponds to the

choice. . .ABABAB. . ., and the face-centred cubic to. . .ABCABC. . .; neither of these (somewhat

surprisingly) has a finite horizon. (The face-centred cubicstructure is a Bravais lattice, and so is

covered by the theorem cited above, but the hexagonal close-packed structure is not.) We could

ask if it is possible to produce a finite horizon by some other periodic ordering ofAs, Bs andCs.

However, in fact placing adjacent layers on top of each othercreates cylindrical holesbetween

the layers, so that there is always an infinite horizon. If we also require disjoint (non-touching)

scatterers, then we would need to separate the scatterers slightly from their touching positions,

thereby introducing more holes.

As an example, Fig. 6.1 shows the case of the face-centred cubic lattice: Fig. 6.1(a) shows

the structure as built up from stacks of hexagonal close-packed layers, whilst Fig. 6.1(b) shows

a cylindrical hole through the structure, as required by Heppes’ theorem quoted above. In fact

this hole lies between two adjacent hexagonal layers, so that any structure built up of such layers

would contain a similar cylindrical hole.

Another possibility for constructing explicit 3D models with finite horizon would be to make

periodic layers with a lower density of spheres, but still with finite horizon within the layers.

If the density were low enough, the next layer could be pusheddown far enough to block the

corridors between the layers and possibly obtain a finite horizon. However, we have not managed

to construct a model in this way. We could also try constructing a model with, for example,

ellipsoids instead of spheres, but again we have had no success.

6.2. Construction of 3D periodic Lorentz gas with overlapping scatterers

Here we present a 3D periodic Lorentz gas model analogous to the 2D model5 of Chap. 3, which

has a finite horizon in certain regions of parameter space. Toaccomplish this, however, we allow

5In fact, we were led to the 2D model as a cross-section of the 3Dmodel.
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(a) (b)

Figure 6.1: (a) Face-centred cubic lattice as constructed from hexagonal close-packed layers of touching
(but non-overlapping) spheres. (b) Two small cylindrical holes (top left) between two layers.

the spheres tooverlap, which appears to be the only way of achieving a finite horizonwith a

simple model, as discussed above.

Allowing the spheres to overlap is at first sight non-physical; however, suppose that the moving

particles are spheres ofnon-zeroradiuss. In this case, the dynamics is the same as that of point

particles moving through the same lattice, but with the radius of the scatterers increased bys; this

radius could represent the effective radius of a particle interacting with the crystal lattice via a

more realistic potential. This is the same construction originally used by Sinai [Sin70] to reduce

two discs moving on a torus to a periodic Lorentz gas; see alsothe discussion in Chap. 1. We will

find conditions under which the overlapping model can be regarded as a physical model in this

way.

Note that allowing overlapping scatterers violates one of the key requirements in Chernov’s

proof that the multi-dimensional Lorentz gas is diffusive [Che94]. Nonetheless, we expect phys-

ically that the system still possesses strong ergodic and statistical properties, and in particular is

still diffusive. This seems to be corroborated by numericalexperiments, as discussed below.
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6.2.1. Construction of finite horizon model by blocking corridors

We consider a cubic unit cell of a 3D simple cubic lattice of spheres of radiusa. If the spheres do

not touch, then there are lots of holes in the structure. In order to construct a finite horizon model,

we need to block all of these holes. We first allow thea spheres tooverlap. The configuration in

a plane through the centres of 4 neighbouringa-spheres then looks like Fig. 6.2(a). There is no

longer an infinite horizon within this plane, and we have one corridor perpendicular to the plane.

We now add a new scatterer, with (different) radiusb, at the centre of thea-unit cell. If we

make theb-sphere sufficiently large that itsprojectiononto one of the faces of the unit cell blocks

the hole in that face (Fig. 6.2(a)), then we have blocked all corridors perpendicular to the faces.

6.2.2. Phase diagram

The construction of the phase diagram follows that of the 2D case: again we look for lines in pa-

rameter space across which the geometry of the unit cell undergoes qualitative changes. However,

the additional freedom in 3 dimensions makes the calculation more difficult.

Overlap of a-spheres The overlaps of thea-spheres change as follows when we varya.

• Thea-spheres overlap if and only ifa >
1
2; this is a necessary condition for a finite horizon

in our class of models.

• The space between thea-discs on a unit face closes when two discs at opposite ends of

a diagonal of the square touch, which occurs whena = 1√
2
; for larger values ofa it is

impossible for a particle to move between different unit cells, so the trajectory is localised

and the diffusion coefficient vanishes.

• Thea-spheres cover the entire unit cell when two spheres at diametrically opposite vertices

of the unit cube touch, which occurs when 2a =
√

3, i.e. ata =
√

3
2 .

Blocking vertical trajectories Let bmin be the minimal value of the radiusb of the additional

scatterer required to block the vertical corridor (i.e. such that its vertical projection covers the space

on a face between thea-sphere overlaps, as in Fig. 6.2(a)), and letd be the width of the overlap

of two a-discs on a face; this is also the radius of the disc of intersection of two neighbouring

a-spheres with the mid-plane between them. The geometry is shown in figure 6.2(a).
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Figure 6.2: (a) Geometry of overlapping discs on one (and hence each) face of the cubic unit cell. The
dashed circle is the projection of theb-disc at the centre of the cell. (b) Geometry in the mid-planeof a unit
cell.

We havebmin +d = 1
2 andd2 +(1

2)2 = a2, so thatd =
√

a2− 1
4 and a necessary condition for

finite horizon is

b > bmin := 1
2 −
√

a2− 1
4. (6.1)

Blocking diagonal trajectories We now must now block any diagonal corridors (diagonal rel-

ative to the lattice viewed as cubic cells). By symmetry, it suffices to block trajectories in the

mid-plane of the unit cell: there is ‘most space’ in this plane. (Compare this to blocking diagonal

angles at 45◦ in 2D.)

The mid-plane is shown in Fig. 6.2(b); its geometry is the same as that of the 2D model

considered in Chap. 3, after replacinga by d. If b > bmin, then horizontal and vertical trajectories

within this plane are already blocked, by definition ofbmin. Diagonal trajectories at 45◦ will be

blocked if eitherd > 1
2
√

2, which reduces toa >

√
3

2
√

2 ≈ 0.612, or ifb > 1
2
√

2.

If neither of these conditions holds, then, by continuity, there is an interval of non-zero size

around the height of the midplane such that planes at heightslying in that interval also have an

infinite horizon along trajectories at 45◦, so that there is a cylindrical hole of non-zero volume

lying along this diagonal, and hence the structure has an infinite horizon.
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Conditions for localised trajectories If the a or b spheres are too large then they will overlap

to such an extent that trajectories will be localised, as in the S and D regimes of the 2D model

(Sec. 3.1.4).

Consider again the midplane shown in Fig. 6.2(b). Suppose that theb- and d-discs do not

touch. Then any point outside the discs in the midplane is accessible from any other. In fact, since

there are identical planes perpendicular to each of the coordinate directions, there is a connected

network of empty space lying around the grid of lines parallel to the coordinate directions which

join the centres of theb-spheres. Hence forb+d < 1√
2

we do not have localised trajectories. We

now show that in fact this is a necessary condition: all trajectories are localised ifb >
1√
2
−d =

1√
2 −
√

a2− 1
4.

Consider cutting the unit cell by a horizontal plane which begins at the mid-plane and moves

upwards. Leth be the height of the plane above the mid-plane, and let the radius at heighth of the

a- andb-cross-sections bea(h) andb(h), respectively. Thena(0) = d, b(0) = b, b(h) =
√

b2−h2

anda(h) =
√

a2− (1
2 −h)2.

Trajectories will be localised if and only if there is a planeat some heighth in which there is

no available space, i.e. for which thea(h)- andb(h)-discs fill this plane, for then there are barriers

in each direction blocking escape, whilst if there is space in each planeh then in fact this space

must be connected all the way fromh = 0 to h = 1
2. From Sec. 3.1.4, we know that this blocking

occurs exactly when

b(h) > 1
2 −
√

a(h)2− 1
4, (6.2)

since the geometry in this plane is the same as the 2D geometrywith a andb replaced bya(h)

andb(h), respectively. Considering when there exists anh for which b(h) = 1
2 −
√

a(h)2− 1
4 is

equivalent to the following slightly different approach.

Taking coordinates with the origin at the centre of the unit cell (and hence at the centre of the

b-sphere), if the intersection point of the overlap of neighbouringa-spheres with theb-sphere is at

(x,y,z) then we havex = 0 by symmetry and thus

02 +y2 +z2 = b2, and (6.3)

(0− 1
2)2 +(y− 1

2)2 +(z− 1
2)2 = a2, (6.4)

since the intersection point lies on each sphere.
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Expanding (6.4) and using (6.3) givesy+z= α := b2−a2+ 3
4, and substitutingz= α −y into

(6.3) then gives

y =
1
2

[
α ±

√
2b2−α2

]
, (6.5)

so that an intersection exists if and only if 2b2 −α2 > 0, which is equivalent tob >
|α |√

2, since

b > 0.

We havea <
√

3
2 , so thata2 < 3

4, and henceα = b2 − (a2 − 3
4) > 0. Thus the condition for

existence of the intersection isb
√

2 > b2−a2 + 3
4, i.e.b2−b

√
2+(3

4 −a2) 6 0. Equality occurs

whenb = 1√
2 ±
√

a2− 1
4, so that there is an intersection if and only if

1√
2
−
√

a2− 1
4 6 b 6

1√
2
+
√

a2− 1
4. (6.6)

The leftmost term is equal to1√
2 − d; the rightmost term is greater than1√2, so that it is never

attained for non-localised trajectories for which we must havea < 1√
2. Hence the condition for

intersection is that theb- andd-discs touch in the mid-plane, as claimed.

Condition for all space to be covered To establish when theb-sphere covers all the space left

by thea-spheres, consider first the case whena < 1√
2, so that thea-spheres leave holes on and

near the unit cell faces. These holes will be covered by theb-sphere once it is big enough that its

intersection with the unit cell face covers the space on thatface, i.e. if

b(h) > bmin for h = 1
2, (6.7)

which reduces to √
b2− (1

2)2 >
1
2 −
√

a2− 1
4, (6.8)

or finally

b >

√
a2 + 1

4 −
√

a2− 1
4 = 1

2 −
√

a2− 1
4. (6.9)

Whena > 1√
2, we needb to be large enough for theb-sphere to cover the 3-hole inside the

overlap of thea-spheres. For this we need that theb-disc covers the 2-hole between thed-discs in

the mid-plane. The geometry is exactly as in the 2D case, witha replaced byd, so we can quote

the result:

b >
1
2 −
√

d2− 1
4 = 1

2 −
√

a2− 1
2. (6.10)
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Overlapping conditions Note that ifb>
√

3/2−a then theb-spheres meet thea-spheres, whilst

if b > 1/2 then neighbouringb-spheres meet each other.

Phase diagram The parameter space of the 3D model is shown in Fig. 6.3 forb < a. The

regimes are named as far as possible to agree with those of the2D model in Sec. 3.1.4: if the name

is the same as one for the 2D model, then the geometrical features and statistical properties are

similar. The diagonal from top left to bottom right is the boundary line separating regimes where

theb-spheres do not touch thea-spheres (below) from those where theb- anda-spheres overlap

(above). This cuts several of the other regimes.

Several regimes do not occur in the 2D model. N has localised motion in cells centred on the

b-spheres, but with theb-spheres overlapping thea-spheres. In IH4 thea-spheres meet each other

and also theb-spheres but still with infinite horizon. In IH0 nothing is touching and we have a

strongly infinite horizon (see also Sec. 6.5).

Note that the finite horizon (FH) regime consists of two disjoint pieces, corresponding to the

two different ways of preventing diagonal infinite horizon trajectories detailed above. In fact, the

top of FH2, above the lineb = 1
2, could be regarded as a third finite horizon regime. Here, the

b-spheres meet each other (as well as thea-spheres), so that there is a single connected scatterer

network with an interconnected hole inside it.

Figure 6.4 shows the model in the finite horizon regime with thea- andb-spheres not overlap-

ping. We can check by rotating the model that it does indeed have finite horizon, since no holes

can be seen in the complete unit cell.

6.2.3. Physical realisation with a moving particle of non-zero size

The overlapping system with radiia andb studied above can be regarded as physical if it is a

reduction of a system with a moving sphere of radiuss travelling within a lattice of spheres with

radii a′ and b′ with no overlaps. Regarding(a,b) and (a′,b′) as position vectors in the phase

diagram determined above, the reduction condition is

(a′,b′)+ (s,s) = (a,b), (6.11)

which corresponds geometrically to translating by the vector (s,s) from the initial point on the

phase diagram. The system will be diffusive if this lands in the FH regime.
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Figure 6.3: Parameter space of the 3D model showing the different regimes described in the text.

For the initial point to correspond to a system where no spheres overlap, we must start in the

region IH0. In fact, any point in IH0 corresponds to some point in FH via a translation by some

vector(s,s), except for a line at 45◦ passing through the point where the FH1 and FH2 regions

touch.

6.3. Normal diffusion in the finite horizon regime

We now use techniques developed in previous chapters to givestrong evidence that we have nor-

mal diffusion in the finite horizon regime. We emphasise thatthe arguments of [Che94] require

disjoint scatterers, and so do not immediately apply to our model; nonetheless we expect that those

methods should be able to be refined to deal with our case and prove normal diffusion, even in the

strongest sense that the functional central limit theorem is satisfied.

6.3.1. Decay of velocity autocorrelations

From the discussion of the Green–Kubo relation in continuous time of Sec. 2.3.8, a necessary

condition for the existence of the diffusion coefficient (which is the weakest type of normal diffu-

sion) is the integrability of the velocity autocorrelationfunctionC(t). Since this function is highly
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(a)

(b)

Figure 6.4: The 3D Lorentz gas with finite horizon in a regime (r = 1.56, b = 0.31) where theb- anda-
spheres do not touch, as can be seen in (a); a different view ofthe structure is shown in (b), which confirms
that there is a finite horizon, since no holes can be seen in thecomplete unit cell.



148 6. Three-dimensional periodic Lorentz gases

oscillatory and rapidly becomes small, it is difficult to study. It was thus suggested in [LM93] to

look instead at the integrated velocity autocorrelation functionR(t), given by

R(t) :=

t∫

0

C(s)ds= 〈v0 ·∆xt〉. (6.12)

The integration in the definition ofR(t) acts as a smoothing operation which deals efficiently with

the highly oscillatory nature ofC(t). Note that in this definition we do not need to perform a direct

numerical integration of the functionC(t); such an approach was taken, for example, in [MM97].

If C(t) is integrable, thenR(t) → d D as t → ∞, whered is the spatial dimension andD is

the diffusion coefficient. We find numerically thatC(t) decays so fast that we cannot extract any

information about it, and we do not plot it. SimilarlyR(t) reaches very rapidly a limiting value,

which it then oscillates around in a random fashion. This provides evidence thatC(t) is integrable

and hence thatD exists, giving normal diffusion.

6.3.2. Growth of moments

Figure 6.5 shows the growth ratesγq of the moments〈|r|q〉 as a function ofq. As in the 2D

finite horizon case (not shown), they satisfyγq = q/2, so that we have a strong form of normal

diffusion; we conjecture that the functional central limittheorem is satisfied for our model in the

finite horizon regime, as was proved in [Che94] in the case of disjoint scatterers.

6.3.3. Shape of distributions and central limit theorem

Knowing that the mean squared displacement grows asymptotically linearly in the finite horizon

regime, we can apply the techniques of Chap. 4 to investigatethe shape of densities and the central

limit theorem.

Restricting attention to 1D projections of the position distribution, we need to calculate the

analogue for our model in the finite horizon regime of the available height functionh(x) used

in Chap. 4. This analogue is the available area, which we denote by A(x), in a cross-section

perpendicular to thex-axis at distancex from the centre of theb-sphere; we refer to this cross-

section plane as thex-plane. We denote the radii of the cross-sections of thea- andb-spheres in

that plane bya(x) :=
√

a2− (x− 1
2)2 andb(x) :=

√
b2−x2, respectively, where we again use the

convention that
√

α = 0 whenα < 0.
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Figure 6.5: Growth rateγq of the moments〈|r|q〉 for particular parameters in the finite horizon regime
(r = 1.6; b = 0.3), as a function ofq. The growth rates obey well the relationγq = q/2, as for the 2D
Lorentz gas with finite horizon.

Figure 6.2(a) can be thought of as depicting a generic cross-section, after possibly adding a

smallb-cross-section in the centre. Denote byAoverlap(x) the area of each overlap ofa(x)-discs in

thex-plane. Then

A(x) =
1
|Q|
[
1−π(a(x)2 +b(x)2)+4Aoverlap(x)

]
, (6.13)

where ifa(x) > 1/2 then

Aoverlap(x) =

a(x)∫

y=1/2

2
√

a(x)2−y2dy = 2
[π

4 a(x)2−F(1
2;x)

]
, (6.14)

whilst there is no overlap ifa(x) 6 1/2. Here

F(y;x) := 1
2y
√

a(x)2−y2 + 1
2a(x)2 tan−1

(
y√

a(x)2−y2

)
(6.15)

is the anti-derivative of
√

a(x)2−y2 (with respect toy). Further,|Q| is the volume of the available

space in a unit cell given by

|Q| = 1− 4
3π(a3 +b3)+3Voverlap, (6.16)
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Figure 6.6: 1D position densityft(x) at timet = 50 for the 3D Lorentz gas in the finite horizon regime
at r = 1.61, b = 0.3 (for which thea- andb-spheres do not overlap). The inset shows the available space
functionA(x), and the main figure also shows the demodulated densityρ̄t(x), compared to a Gaussian with
variance 2Dt, whereD = 0.081 for this geometry.

where

Voverlap := 2

a∫

1/2

π(a2−y2)dy = 2π
[

2
3a3− 1

2a2 + 1
24

]
(6.17)

is the volume of the intersection of two neighbouring spheres. (Similar overlap calculations were

used in [San00] in a related context.) In the above calculations we have for simplicity restricted

the calculation to the case where theb- anda-spheres do not overlap.

The inset of Fig. 6.6 shows the available space functionA(x) as calculated above, whilst the

main part of that figure shows the 1D position densityft(x) and the demodulated version̄ηt(x) :=

ft(x)/A(x), for certain geometrical parameters in the finite horizon regime which we believe to be

representative. Again we see that the demodulated density is very close to Gaussian, and we have

confirmed numerically that the central limit theorem holds with rate of convergencet−0.49, close

to the optimalt−1/2 as discussed in Sec. 4.6: see Fig. 6.7.
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Figure 6.7: Convergence to limiting normal distribution with variance2D for r = 1.61,b = 0.3. The rate
for long times ist−0.49.

6.3.4. Geometry dependence of diffusion coefficients

Figure 6.8 shows the geometry dependence of the diffusion coefficient over the two finite horizon

regimes. In FH1 the behaviour resembles that in the 2D case, although the angle at which the

curves approach 0 on the right hand side is different; in particular, here too there is a qualitative

change in behaviour with a non-trivial maximum which disappears for larger values ofr.

6.4. Statistical behaviour in the infinite horizon regime

6.4.1. Shape of 2D distributions

How can normal diffusion fail to hold in dispersing billiards with infinite horizon? Figure 6.9

shows scatterplots representing the position and displacement distributions for representative pa-

rameters in the infinite horizon regime of a 2D square Lorentzgas. These distributions have a

distinctive shape caused by the possibility of particles travelling arbitrarily far without ever hitting

a scatterer. Bleher [Ble92] showed, assuming some natural conjectures6, that the mean squared

6[A complete, rigorous proof has now been given [SV07].]
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Figure 6.8: Diffusion coefficients for parameter values in the finite horizon regimes: (a) in FH1; (b) in
FH2. In (a),r increases fromr = 1.425 tor = 1.625 from bottom to top, in steps of 0.025. In (b),r increases
from r = 1.65 tor = 1.975 from bottom to top, in steps of 0.025.
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displacement in this case grows like〈∆x2〉t ∼ t logt ast → ∞. He also showed that

xt −x0√
t logt

D−→ z, (6.18)

wherez is a normal random variable; this is a central limit theorem type result with a different

normalisation constant. The faster growth rate of the variance corresponds to the tails of the

distribution visible in Fig. 6.9.

6.4.2. Discrete-time dynamics

Following [Ble92] (who discussed the 2D case), we write

xn−x0 =
n−1

∑
j=0

(x j+1−x j) =
n−1

∑
j=0

r j , (6.19)

wherexn := x(tn) is the position at thenth collision (occurring at timetn) andr j := x j+1− x j is

the free flight vector between thejth and( j +1)th collisions.

In the finite horizon regime the free path length is bounded above, so thatr j is a piecewise

Hölder continuous function defined on the collision phase space. The central limit theorem of

[BS81, BSC91] can then be applied to show that(xn − x0)/
√

n converges in distribution to a

normal distribution.

In the infinite horizon case, however,r j is no longer bounded and so cannot be piecewise

Hölder continuous, since a continuous function on the compact phase spaceM must be bounded.

The central limit theorem thus does not apply. Defining the finite-time diffusion coefficientDn by

Dn :=
1
4n

〈|xn−x0|2〉ν , (6.20)

the limiting diffusion coefficient for the discrete time dynamics takes the form [Ble92]

D0 := lim
n→∞

Dn =
1
4
〈|r0|2〉+

1
2

∞

∑
j=1

〈r0 · r j〉, (6.21)

if it exists.

In [Ble92] it was conjectured that (at least in 2D)〈r0 · r j〉 decays fast for largej, so that

the infinite sum in (6.21) exists. However, it was proved there that〈|r0|2〉ν = 〈τ2〉ν , the second
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Figure 6.9: (a) 2D position distribution; (b) 2D displacement distribution. r = 2.5; b = 0.0; t = 50;
N = 5×104 initial conditions.
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moment of the free path length for the billiardmap, diverges (logarithmically), so that the first term

in (6.21) is infinite and hence so are the discrete-time and continuous-time diffusion coefficients.

6.4.3. Obstructions to normal diffusion

Generalising the above to higher dimensions, there are two possible obstructions to normal diffu-

sion outside the FH regime:

(i) the continuous-time VACFC(t) decays slowly as a function of timet, so that the Green–

Kubo integral, givingD as the infinite-time integral of this VACF, diverges; and

(ii) the second moment of the (discrete-time) free path length diverges.

If neither of these obstructions is present, then we expect to have normal diffusion: this is certainly

the case in the finite horizon regime treated above. We now discuss the situation in the infinite

horizon regime, i.e. when there exist trajectories which never collide with the scatterers.

6.4.4. Review of two-dimensional case

Decay of velocity autocorrelations The following type of argument seems to have first been

published in [FM84]. Consider a 2D lattice withinfinite horizon (for example a square lattice of

scatterers of radiusa). Due to the infinite horizon, there existcorridors in the structure, i.e. empty

regions of constant, non-zero width, extending infinitely far in opposite directions. Bleher [Ble92]

gives a detailed description of these corridors.

Consider one particular corridor, of widthd > 0. Take coordinates such that they-axis is

parallel to the centre-line of the corridor and thex-axis is perpendicular to it, with the origin at an

arbitrary point on one edge of the corridor. Letθ be the angle from they-axis.

We consider initial conditions(x0,y0) in D whose trajectories have no collisions within (con-

tinuous) timet, and in fact remain inside the corridor at least until timet; thus these trajectories

are straight during this period, so thatvt = v0. A trajectory emanating from(x0,y0) in the direction

θ from they-axis will not leave the corridor within timet provided the line segment of lengtht

at angleθ ends within the corridor, i.e. providedθ− 6 θ 6 θ+, considering only one direction of

flight down the corridor initially. The geometry gives

sinθ+ =
d−x

t
; sinθ− = −x

t
. (6.22)
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The Green–Kubo formula for the diffusion coefficient means that we are interested in the rate

of decay of the velocity autocorrelation function (VACF) ast → ∞. For larget, 1/t is small, hence

sinθ± is small, so that sinθ± ≈ θ±.

For large enought, denoting the average of the VACF solely over those long trajectories which

do not escape after timet by 〈v0 ·vt〉long, we thus have

〈v0 ·vt〉long ≈ K

d∫

x=0

dx

(d−x)/t∫

θ=−x/t

dθ =
K′

t
. (6.23)

Here,K andK′ are constants which are related to the area of intersection of the corridor withD.

It is then argued in [FM84] that if the rest of the trajectories are more efficiently mixed, as

we expect they are due to collisions with the scatterers, then the VACF averaged over those other

trajectories will decay faster. Hence the rate of decay averaged over the whole ofD will be

dominated by the slow 1/t decay of the long trajectories considered above. In this case, the

integral of the VACF will diverge, so that the diffusion coefficient will not exist (or is infinite),

implying that the system is super-diffusive.

Unfortunately the above argument is not rigorous, and indeed currently there are no rigorous

results on decay of correlations for the billiard flow7, even in the finite-horizon case [CY00],

although the recent results of [SV03] prove thatD = ∞, so that they show indirectly thatC(t) must

be non-integrable.

In [GG94] the exact result of Bleher for the rate of increase of the mean squared displacement

was compared to numerical results. They pointed out, and we have confirmed, that the coefficient

of the t logt term is very small, so that it is difficult to observe numerically. Nonetheless it is

sometimes possible to observe this effect by plotting〈∆x2〉t/t against logt, as first suggested in

the context of 1D maps in [GT84]. As argued in [GG94], if〈∆x2〉t ∼ t logt then the lower order

terms presumably take the form

〈∆x2〉t ∼ A+Bt+Ct logt. (6.24)

It then follows that
〈∆x2〉t

t
∼ At−1 +B+C logt. (6.25)

7[Such results have now been obtained in the finite-horizon case [Che07].]
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Introducting the variablez := logt, we then have

〈∆x2〉t
t

∼ Ae−z+B+Cz, (6.26)

so that for large enough values ofz, i.e. for large enough values oft, we should find asymptotically

linear growth of〈∆x2〉t/t.

Growth of higher-order moments In [AHO03], a similar line of argument was used to give

a lower bound on the rate of increase of higher order moments,as follows. A proportionC/t of

trajectories do not collide in timet (as described above), so that for those trajectories we havethe

lower bound

〈|r|q〉long >
C
t
(vt)q = Ctq−1, (6.27)

wherev is the speed, so thatγq > q−1.

They show thatγq is a convex function ofq. We also know thatγ0 = 0 andγ2 = 1 lie on the

curve, thatγq > q/2, assuming that the process acts at least as fast as a random walk, and that

γq 6 q. These together lead to the conclusion that

γq =






q/2, whenq < 2

q−1, whenq > 2.
(6.28)

Tail of free path distribution As discussed in Sec. 6.4, the existence ofEν
[
τ2
]

is crucial for

the possibility of having normal diffusion. We introduce the following functions:

Ψ(T) := Pν (τ > T) := ν ({x∈ M : τ(x) > T}) ; (6.29)

Ψ̃(T) := Pµ (τ > T) := µ ({x∈M : τ(x) > T}) . (6.30)

(Recall that the billiard mapT preserves the measureν on the phase spaceM, and the billiard

flow Φt preserves the measureµ on the phase spaceM.) These functions describe the tail of the

distribution of the free path length considered in discretetime and continuous time, respectively.

Note that in the discrete time case|r | = τ , wherer is the free flight vector.
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In 2D, it was proved in [Ble92] that

Ψ(T) ∼ T−2 asT → ∞. (6.31)

By definition of expectation,

Eν
[
τ2]= − lim

T ′→∞

T ′∫

0

T2 dΨ(T), (6.32)

where the integral is a Lebesgue–Stieltjes integral. Integration by parts is valid for such integrals,

so that

−
T ′∫

T0

T2 dΨ(T) =

T ′∫

T0

2T Ψ(T)dT +O(1) ∼ logT ′, (6.33)

and hence the expectation diverges logarithmically.

The same result can be obtained using the following relationproved in [DDG97] (see also

[Gol]):

cν Eν [ f (τ)] = cµEµ
[

f ′(τ)
]
, (6.34)

for any C1 function f : R+ → R such that f (0) = 0; here f ′ denotes the derivative off . For

f (z) = zwe recover the known expression (see [Che97]) for the mean free path in terms ofcν and

cµ discussed in Chap. 3, while forf (z) = z2 we obtain

Eµ [τ ] =
cν

2cµ
Eν
[
τ2] . (6.35)

Here we extend the definition ofτ to the whole ofM as

τ(x,v) := inf {t ∈ R+ : x+ tv ∈ M} , (6.36)

the minimum time needed to collide with a scatterer.

Thus the second moment ofτ with respect toν exists if and only if the mean ofτ with respect

to µ exists. We now use an argument similar to those above involving the proportion of trajectories

which have not collided within timet: those trajectories have (continuous-time) free paths which
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are at leastt, so that integrating over initial conditions in one unit cell we have

Ψ̃(T) > CT−1. (6.37)

The meanEµ [τ ] thus diverges logarithmically, and hence so doesEν
[
τ2
]
.

Summary The above arguments all involve calculating the proportionof trajectories starting

from a single unit cell which undergo no collisions up to timet. For larget these trajectories are

ones which remain inside the corridor and lie on a circle of radiust.

We obtain rigorous lower bounds for the higher-order moments 〈|r(t)|q〉 ast → ∞ and for the

size of the tailΨ̃(T) of the free path distribution function asT → ∞, whilst we obtain only a

heuristic estimate ofC(t) ast → ∞. In the next sections we shall apply these methods to our 3D

Lorentz gas.

6.5. Simple cubic lattices

6.5.1. Free path distribution

We begin by discussing simple cubic lattices withr > 2 andb = 0. In [Che94] it was stated

that point (ii) of the previous section, i.e. divergence ofEν
[
τ2
]

holds in higher dimensions, and

that the proof is “easy to verify”, but it was not stated whichconfigurations this applies to. For

simple cubic lattices a proof was given in [GW00]. In the nextsection we show that in certain

other geometries the result is in fact no longer true, so thatthe existence or otherwise of normal

diffusion reduces in that case to determining if (i) holds.

The method of [GW00] to prove this result is to generalise themethod discussed in the previous

section, by using the existence offree planes(called ‘sandwich layers’ in [GW00]) in the simple

cubic lattice. These are infinite planes which do not intersect any scatterer, and are the 3D analogue

of corridors related to infinite horizon trajectories (which we can think of as ‘free lines’) in 2D8.

Analytical argument Analogously to the calculations in the previous section, weneed to find

the proportion of trajectories remaining inside a sandwichlayer and lying on a sphere of radius

t. The intersection of these two objects is approximately a circle with non-zero width, and the

proportion is then the ratio of the area of this thickened circle, which is 2πt∆x, divided by the area

8[Figures showing the different types of holes in 3D, as well as an analytical argument for systems of any dimension,
are given in a submitted manuscript [San].]
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Figure 6.10: Decay of tail of the free path distribution function for the billiard map for simple cubic lattices
(b = 0) with r = 3.0 andr = 2.3, compared to the predicted decay rate oft−2.

4πt2 of the sphere of radiust. The ratio is henceC/t. A more careful argument, taking account of

the intersections of such circles corresponding to different sandwich layers, shows that the same

result holds [GW00]. We remark that this result was also stated in [FM84].

The argument of the previous section now gives a lower bound on the size of the tail̃Ψ(T) of

the free path distribution for the billiard flow ofT−1, so that again the expectationEµ [τ ] diverges.

Numerical calculation Figure 6.10 shows the tailΨ(T) of the free path distribution for the

billiard map, for two simple cubic lattices. This was obtained by recording only values of the free

path exceeding a certain lower threshold, since otherwise the predominance of small values hides

the information about the tail. A straight line corresponding to a decay rate ofT−2 is also shown.

Although the data appear to decay slightly faster than this,the decay rate is decreasing for large

T; we believe that the asymptotic behaviour does obey the analytical prediction.

6.5.2. Higher-order moments

The growth rateγq of the higher-order moments is shown in Fig. 6.11. They are ingood agreement

with the analytical prediction, which in this case is the same as in the 2D case reviewed in the
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Figure 6.11: Growth rateγq of moments〈|r|q〉 for the simple cubic lattice withr = 3.0.

previous section:

γq =






q/2, whenq < 2

q−1, whenq > 2.
(6.38)

6.5.3. Decay of velocity autocorrelations

Figure 6.12 shows the velocity autocorrelation function (VACF)C(t) as a function of timet. A fit

to the less-noisy central part of the graph (also shown) gives a power law decay with an exponent

which is close to 1. In Fig. 6.13 we also showR(t), the integrated velocity autocorrelation function.

If C(t) ∼ t−1 ast → ∞, then we expect that

R(t) ∼ logt, (6.39)

so that Fig. 6.13 plotsR(t) as a function of logt. The linear growth for long time provides con-

firmation of the non-integrability ofC. We note thatC(t) appears to converge to 0monotonically

from above.
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Figure 6.13: IntegralR(t) of the velocity autocorrelation function as a function of logt for the simple cubic
lattice withr = 3.0.



6.6. Lattices with cylindrical holes 163

6.6. Lattices with cylindrical holes

6.6.1. Tail of free path distribution

Analytical argument In the previous section we showed that the existence of free planes in the

structure implies the divergence ofEν
[
τ2
]
, and hence the non-existence of the diffusion coef-

ficient. However, for our model it is possible toblock all free planes, either with thea-spheres

overlapping, or for large enough values ofb with thea-spheres non-touching, leaving only holes

of cylindrical type. The previous argument proving the divergence ofEν
[
τ2
]

now no longer holds,

and in fact this quantity is finite, as follows.

Again we calculate the proportion of non-colliding trajectories of lengtht, now which remain

inside a cylindrical hole of radiusr. The set of these allowed directions along the cylinder is a

circle of area (approximately)πr2, independent oft, whilst the set of all possible directions is the

surface of a sphere of radiust, with total area 4πt2. (Actually there are two such circles in opposite

directions along the cylinder.) The proportion of such trajectories is thusC/t2, compared toC/t

in two dimensions and in the case of simple cubic lattices.

This gives a decay rate of̃Ψ(T) ∼ T−2 for the distribution function of the free path length for

the billiard flow, so thatEµ [τ ] exists and hence by (6.35) we also haveEν
[
τ2
]
< ∞. Thus point (ii)

of Sec. 6.4 isno longer an obstructionto the possibility of normal diffusion. This does not appear

to have been observed previously, although we later discovered that it was stated in [BGW98] (see

also [GW00]) that there is a maximum decay rate ofΨ̃(T) of 1/Td−1 in d space dimensions. No

details of the derivation were given, although presumably the argument was based on a similar

idea. We however giveexplicit examples of models where this optimum value isattained.

Numerical results

[The numerical results in this section areincorrect. This is due to the use of an incorrect method

for generating the initial velocity distribution. The initial velocities should be generated uniformly

on a unit sphere (since the speed is fixed to be 1). The incorrect method used for the numerical

results depicted here was to distribute uniformly the spherical anglesθ andφ , and then assign

the components of the velocity based on these angles. This method, however, does not produce

a uniform distribution on the sphere, but rather produces a noticeableconcentrationof directions

close to the poles of the sphere. These concentrations alignwith the holes in the structure, thus

skewing the results sufficiently to make it impossible to seethe expected effect.
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are cylindrical. Forr = 1.75, the scatterers overlap, but forr = 2.08 andb = 0.625 they are all disjoint.
There is good agreement with the analytical prediction of the decay rateT−3.

Correct numerical results are given in a submitted manuscript [San]. There, the initial velocities

are correctly distributed uniformly on the sphere, by choosing the velocity vectorv uniformly in

[−1,1]3, rejecting thosev with |v|> 1, and then normalisingv to unit length. This generates points

v uniformly on the unit sphere.

We find that diffusion is indeed normal, as the heuristic argument predicts, if the only holes are

cylindrical. ]

Figure 6.14 shows the tail of the free path distribution for the billiard map for two geometries

for which the only holes are cylindrical. The tails decay asT−3, so thatEν
[
τ2
]
< ∞, in agreement

with the analytical calculation. We remark that the step-like character visible in Fig. 6.14 corre-

sponds to the fact that the mass of the distribution is localised near points of a periodic lattice, as

remarked for the 2D case in [Ble92]. We do not expect to see this effect in the continuous-time

free path distribution, and indeed it is absent in plots of that distribution given in [GW00].
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Figure 6.15: Growth rate of moments forr = 2.05 andb = 0.6. The crossover now appears to occur at
q = 3.

6.6.2. Higher-order moments

The generalisation to 3D of the argument of [AHO03] discussed above gives

〈|r |q〉 > Ktq−2. (6.40)

This does not give enough information to determine uniquelythe shape of the curve as it did in

two dimensions, although it does show that it must grow likeq for largeq. Numerically we find

that the data, shown in Fig. 6.15, fit well the function

γq =






q/2, whenq < 3

q−3/2, whenq > 3.
(6.41)

The occurrence of the number 3 here is perhaps related to the fact that we are now ind = 3 space

dimensions.
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6.6.3. Velocity autocorrelation function

The decay of the velocity autocorrelation function at long times has a lower bound ofC′t−2, by

the 3D version of the Friedman–Martin argument discussed above. It is thus nowpossible that

the VACF C(t) is integrableand thus that the diffusion coefficient could exist, despitethe infinite

horizon.

Figures 6.16–6.18 show the growth of the integrated velocity autocorrelation functionR(t) :=
∫ t

0C(s)ds for several sets of geometrical parameters. As argued in theprevious section, ifC(t) ∼
t−1 ast → ∞ then we expectR(t) ∼ logt. The data in Fig. 6.16 provide strong evidence that for

r = 1.7 andb= 0.0, we do have such at−1 decay, and hence that the diffusion coefficient does not

exist in this case.

Figure 6.17 showsR(t) for r = 1.8 andb = 0.3. This differs from the previous plot in the

presence of a large central scatterer which severely restricts the size of the cylindrical holes. The

figure is not conclusive, but it is possible to believe thatR(t) converges ast → ∞, implying that

D < ∞.

The most interesting case is that forr = 2.07, b = 0.6, shown in Fig. 6.18, since here the

scatterers aredisjoint. The data here seem to be consistent withR(t)∼ logt, and henceC(t)∼ t−1,

although perhaps the growth levels off for larger values oft. We have also looked directly atC(t),

but again this converges rapidly to zero. There is some evidence that it oscillates around zero,

which gives more chance of having convergence.

These remarks suggest that theremaybe a possibility of having normal diffusion, in the sense

of asymptotically linear growth of the mean squared displacement, even in the presence of an

infinite horizon, provided that there are only cylindrical holes; and thismayeven be possible with

disjoint scatterers.

However, our numerical evidence also points to the fact thatmany parameters for which there

are ‘large’ cylindrical holes in fact haveC(t) ∼ t−1, resulting in super-diffusion. (We remark

that extending our numerical results to longer times would be difficult, since the calculations

for Fig. 6.18 required a total of approximately 6 weeks of CPUtime on modern workstations,

distributed over 16 processors.) This slow decay is not predicted by the heuristic arguments given

above, and it is important to determine its origin. One possibility could be that in fact there are

strong correlations〈r0 · r j〉 between flights along the cylindrical holes, so that the sum in (6.21)

does not converge.
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CHAPTER 7

Conclusions and future directions

7.1. Conclusions

We have studied geometrical, statistical and physical aspects of deterministic diffusion in three

classes of billiard models.

We first discussed how best to estimate diffusion coefficients in billiard models from numerical

data, presenting a method which estimates the width of the sampling distribution of the diffusion

coefficient in terms of the rate of growth of the width of the distribution of the mean squared

displacement.

We applied these numerical estimates in a 2D periodic Lorentz gas model to study the geometry-

dependence of the diffusion coefficient, finding an unexpected qualitative change in behaviour as

one of the parameters is varied. We extended a previously-known random-walk approximation

to our model, showing that there are two regimes where it can be applied. We then considered

a Green–Kubo formula, the zeroth-order term of which is thisrandom-walk approximation. We

showed how to improve the justification of the derivation of this formula. We also made prelimi-

nary investigations on the variation of the diffusion coefficient when the symmetry of the system

is reduced.

In the same 2D periodic Lorentz gas model we then studied the shape of position and distri-

bution functions, which we know converge to normal distributions at long times. Using a method

which we believe is more appropriate than the usual histograms in this case, we showed that at

finite time the densities possess a fine structure which prevents them from converging pointwise

to Gaussians. We showed how this fine structure could be understood in terms of the geometry of

the billiard domain, giving an analytical expression for the fine structure function for both position

and displacement distributions.

Using these expressions, we showed that demodulating the densities by the fine structure gives

functions which describe the two-dimensional density in a quasi-one-dimensional channel; in-
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formation about these 2D density functions is otherwise difficult to obtain. This demodulation

eliminates most of the very fine-scale oscillations, resulting in much smoother functions which

seem to converge uniformly to Gaussian densities, strengthening the standard central limit theo-

rem. Nonetheless, in certain parameter regimes these underlying densities themselves possess a

type of fine structure, now corresponding to a nearly-uniform distribution within traps. We also

used the knowledge of the fine structure to give a physical picture of the rate of convergence in the

central limit theorem.

We considered the effect of imposing a non-constant distribution of particle speeds. We showed

that for a general speed distribution with finite mean this does not affect the mean squared dis-

placement. In the special case of a Gaussian distribution ofvelocities, however, we showed that

the resulting limiting position distribution is skewed away from a Gaussian shape. Our analytical

calculations of the resulting shape matched numerical results very well once the densities had been

demodulated by the relevant fine structure function.

We studied the extent to which similar statistical properties hold in a polygonal billiard channel

for which there are very few rigorous results. Although chaotic and mixing properties are much

weaker for this model, we showed that similar methods can be applied, giving evidence that normal

diffusion can occur, in the sense that the mean squared displacement can grow asymptotically

linearly in time. We also confirmed that the central limit theorem can be satisfied, but with a

slower rate of convergence than for the Lorentz gas. We established in several particular cases that

the existence of parallel scatterers in the structure results in anomalous diffusion, and conjectured

that this is generally the case. We found a crossover from normal to anomalous diffusion when this

geometrical configuration is approached. We were able to understand this qualitatively in terms

of a continuous-time random walk model, although we found that the quantitative prediction of a

simple version of that formalism did not match numerical data well.

We finally discussed to what extent results on two-dimensional periodic Lorentz gases can be

extended to the more physically realistic three-dimensional case. We constructed a 3D periodic

Lorentz gas with overlapping scatterers and showed that it has a finite horizon regime, in which

it exhibits normal diffusion. We discussed how different types of holes in the structure affect the

statistical properties, giving evidence that it may be possible to have normal diffusion even when

corridors exist, provided they are small enough.
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7.2. Future directions

Our results point in several directions:

• We hope that it is possible to find a better physical model of diffusion in the 2D Lorentz gas

which can predict qualitative features of the geometry dependence of the diffusion coeffi-

cient.

• We would like to prove strong convergence of projected densities, as discussed in Sec. 4.1

and App. C, at least in a simple model such as the Arnold cat map[Dor99].

• It may be possible to develop a more quantitative version of the qualitative arguments given

in Sec. 5.4 to model anomalous diffusion in polygonal billiards. In particular it would be

interesting to derive (approximations to) the step length distribution in the continuous-time

random walk model for the zigzag model, directly from the shape of the unit cell.

• Our analysis of the fine structure in Chap. 4 may have implications for the escape rate for-

malism for calculating transport coefficients (see e.g. [Gas98]), where the diffusion equation

with absorbing boundary conditions is used as a phenomenological model of the escape pro-

cess from a finite length piece of a Lorentz gas; analyzing thefine structure in this situation

could provide information about the validity of the use of the diffusion equation in that

context.

• Further investigation is needed of the effect of cylindrical holes in 3D models described in

Sec. 6.6. It is important to establish if (and to what extent)it is possible for a 3D periodic

Lorentz gas with non-overlapping scatterers to have normaldiffusion.

• The arguments discussed in Sec. 6.6 relating to the possibility of faster decay of correlations

and free path distributions should extend to billiards in higher dimensions; in particular,

we should in principle be able to obtain bounds on the decay ofcorrelations and the free

path distribution of hard-sphere fluids, by treating them asbilliards in a high-dimensional

phase space, as described in Sec. 1.2.3. An understanding ofthe shape of ‘free’ regions in

the configuration space, together with arguments similar tothose of Sec. 6.6, should give

bounds on and/or estimates of the rate of decay of velocity autocorrelations and of the free

path distribution, corresponding to thetrappingeffects referred to in [CY00]. However, the
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complicated geometry of the high-dimensional phase space [Che97] means that this would

be difficult to implement.

We expect that billiard models will remain of interest to mathematicians and to physicists in

the future.



APPENDIX A

Convergence of rescaled solutions of the diffusion

equation to a Gaussian

We show that the rescaled solution of the diffusion equationstarting from an initial density which

decays sufficiently rapidly at infinity converges to a Gaussian shape ast → ∞.

A.1. Pointwise convergence

Let ρt be the solution of the diffusion equation with initial condition ρ0 which is a density, i.e.

which satisfiesρ0 > 0 and
∫

ρ0(y)dy = 1. We also assume thatρ0 : R → R+ is a piecewise

continuous function and decays sufficiently fast at infinity. By translating the coordinate origin if

necessary, we further assume that the centre of mass of the initial condition is fixed at the origin:
∫

yρ0(y)dy = 0.

Define the rescaled solutioñρt(x) :=
√

t ρt(x
√

t). Then

ρ̃t(x) =

√
t√

4πDt

∞∫

−∞

ρ0(y)e−(x
√

t−y)
2
/4Dt dy. (A.1)

=
1√
4πD

e−x2/4D

∞∫

−∞

ρ0(y) exp

[
xy

2D
√

t
− y2

4Dt

]
dy. (A.2)

For fixed x, the argument of the exponential in the integrand in (A.2) tends to 0 ast → ∞.

Hence the integrand tends toρ0(y) and it is bounded above providedρ0(y) decays sufficiently fast

at infinity, for example if it is exponentially localised in the sense that

ρ0(y) 6 e−K|y| (A.3)

for some constantK > 0.

173



174 A. Convergence of rescaled solutions of the diffusion equation to a Gaussian

The Lebesgue dominated convergence theorem1 [Rud76] then implies that for fixedx,

ρ̃t(x)
t→∞−→ 1√

4πD
e−x2/4D, (A.4)

i.e. the rescaled solution of the diffusion equation tendspointwiseto a Gaussian with variance 2D.

In fact the convergence is uniform, as follows.

A.2. Uniform convergence of rescaled density functions

Consider the difference

|ρ̃t(x)−g2D(x)| , (A.5)

wheregσ2 is the Gaussian density with mean 0 and varianceσ2 given by

gσ2(x) :=
1

σ
√

2π
exp

(−x2

2σ2

)
. (A.6)

The difference is then given by

|ρ̃t(x)−g2D(x)| = 1√
4πD

e−x2/4D




∞∫

−∞

ρ0(y) exp

[
xy

2D
√

t
− y2

4Dt

]
dy−1



 . (A.7)

We may bring the−1 term inside the integral, since
∫

ρ0(y)dy = 1 by assumption.

We expand the exponential in a Taylor series fort large:

exp

[
xy

2D
√

t
− y2

4Dt

]
−1 =

∞

∑
n=1

1
n!

[
xy

2D
√

t
− y2

4Dt

]n

(A.8)

=
xy

2D
√

t
− y2

4Dt
+

x2y2

8D2t
− xy3

8D2t3/2
+

t4

32D2t2 +
∞

∑
n=3

. (A.9)

Assuming that it is permissible to integrate term-by-term,we have

|ρ̃t(x)−g2D(x)| = g2D(x)

[
x

2D
√

t

∫
yρ0(y)dy+

(
x2

8D2t
− 1

4Dt

)∫
y2 ρ0(y)dy

]
(A.10)

=
1√
4πD

e−x2/4D 〈x2〉0

t

(
x2

8D2 −
1

4D

)
+O(t−3/2), (A.11)

1If ( fn) is a sequence of measurable functions such thatfn(x) → f (x) almost everywhere asn→ ∞ and there exists
an integrable functiong such that| fn(x)| 6 g(x) almost everywhere, then limn→∞

∫
fn =

∫
f .
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since
∫

yρ0(y)dy = 0 by our choice of coordinates and〈x2〉0 =
∫

y2ρ0(y) dy by definition.

Since the decay of e−x2/4D is faster than the growth of any polynomial inx, the terms inx in the

above are bounded. If also the term written asO(t−3/2) is bounded, then we have the following

estimate for larget which isuniform in x (i.e. independentof x):

|ρ̃t(x)−g2D(x)| 6 C
t
, (A.12)

for some constantC. Thus‖ρ̃t −g2D‖∞ 6 C/t for sufficiently larget, where theuniform normis

defined by

‖ f‖∞ := sup
x∈R

| f (x)| . (A.13)

Hence the rate of convergence of the rescaled density to the limiting Gaussian isO(t−1).

A.3. Rigorous proof of uniform convergence

We now give a rigorous proof of the result on uniform convergence for which a heuristic argument

was given in the previous section. We adapt a method from [Mil00], where convergence to a

Gaussian was consideredwithout rescaling; see also [MB03] and references therein. We remark

that a faster rate of convergence was obtained in [Mil00] by choosing a different time origin for

the Green function, but this does not work in our situation due to the rescaling. We setD = 1 for

simplicity (e.g. by rescaling time).

Theorem A.3.1. Let the densityρ0 be piecewise continuous and such that the first two mo-

ments
∫

yρ0(y)dy and
∫

y2 ρ0(y)dy exist. Letρt be the solution of the diffusion equation with

diffusion coefficient D= 1, starting from the initial conditionρ0. Then the rescaled density

ρ̃t(x) :=
√

t ρt(x
√

t) converges uniformly to the limiting GaussianG̃t(x) := 1√
4π e−x2/4 as t→ ∞,

with rate of convergenceO(t−1).

Proof. Let the initial condition beh(x) := ρ(0,x). Then the solution at timet is given by the

convolution ρt = h∗Gt , so that taking Fourier transforms givesρ̂t(k) = ĥ(k)e−k2 t , where the

second term is the Fourier transform of the Green functionGt(x).

Let Et(x) := ρt(x)−Gt(x) be the error of the solution at timet compared to the Green function,

and let

Ẽt(x) := ρ̃t(x)− G̃t(x) =
√

t Et(x
√

t) (A.14)
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be the error of the rescaled solution from the limiting Gaussian.

Then the Fourier transform of the error is

Êt(k) = (ĥ(k)−1)e−k2 t . (A.15)

By Taylor’s theorem with remainder we can expandĥ(k) as

ĥ(k) = ĥ(0)+kĥ′(0)+ 1
2k2ĥ′′(c), (A.16)

for somec = c(k) ∈ [0,k]. But ĥ(0) = 1 andĥ′(0) = −i〈x〉0 = 0, by our choice of coordinates.

Furthermore,

ĥ′′(c) =

∞∫

−∞

(−ix)2e−icxh(x)dx, (A.17)

so that
∣∣ĥ′′(c)

∣∣6
∞∫

−∞

x2h(x)dx < ∞, (A.18)

since we assumed that the second moment ofh exists. Thus

∣∣Êt(k)
∣∣6 Ck2e−k2t , (A.19)

for some constantC.

We now need to convert to the rescaled functions. We have

ˆ̃Et(k) =

∞∫

−∞

e−ikx
√

tEt(x
√

t)dx (A.20)

= Êt(k/
√

t) (A.21)

after making the change of variablesy = x
√

t.

Hence ∣∣∣ ˆ̃Et(k)
∣∣∣=
∣∣Êt(k/

√
t)
∣∣6 C

t
k2e−k2

. (A.22)
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Reverting to real space using the inverse Fourier transform, we have

∣∣Ẽt(x)
∣∣ =

∣∣∣∣∣∣
1

2π

∞∫

−∞

eikx ˆ̃Et(k)dk

∣∣∣∣∣∣
6

1
2π

∞∫

−∞

∣∣∣ ˆ̃Et(k)
∣∣∣ dk 6

C′

2πt

∞∫

−∞

k2e−k2
dk =

C
2πt

, (A.23)

whereC is a constant independent ofx. Thusρ̃t converges uniformly tõGt ast → ∞, and the size

of the error is
∥∥Ẽt
∥∥

∞ =
∥∥ρ̃ t − G̃t

∥∥
∞ = O(t−1). (A.24)

The numerical results reported in Sec. 1.3 provide evidencethat this upper boundt−1 for the

asymptotic rate is in fact the actual decay rate.

A.4. Convergence of distribution functions

We have shown that the convergence of the rescaled density functions is uniform in the case of

the diffusion equation. However, for the diffusive dynamical systems considered in this thesis,

rescaleddensityfunctions do not usually converge even pointwise to a limiting Gaussian distribu-

tion; rather, we must consider convergence of the (cumulative) distribution functions.

Let Ft be the distribution function at timet, given by

Ft(x) :=

x∫

−∞

ρt(x
′)dx′, (A.25)

andN be the distribution function of the limiting Gaussian distribution, so that

N(x) :=

x∫

−∞

1√
4πD

e−x′2/4D dx′ =

x∫

−∞

g2D(x′)dx′. (A.26)

Thenρt(x) = F ′
t (x) (where the prime denotes differentiation), so thatρ̂t(k) = ikF̂t(k). Follow-

ing the same type of argument as for the density functions gives

‖Ft −N‖∞ 6
C′

t1/2
= O(t−1/2), (A.27)

for sufficiently larget and some constantC′.
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The ratet−1/2 is known to be the fastest rate in the central limit theorem for independent and

identically distributed random variables [Fel71], and is also the maximum rate that we find in

billiard models: see Sec. 4.6.



APPENDIX B

Suspension flows

Since rigorous results on the billiard flowΦt are usually proved by using the fact that it is a suspen-

sion over the billiard mapT, under the free path functionτ , we recall the definition of suspension

flows and some key properties. A clear recent reference on limit theorems for suspension flows,

with strengthened versions of relevant theorems, is [MT04].

B.1. Definition of suspension flows

We follow closely the definitions in Cornfeldet al. [CFS82, Chap. 11].

Let (X,B,ν) be a measure space with an automorphismT, and letr : X → R+ be a function

such that
∫

X r dν < ∞.

Define thespace under the roof function rby

Y := Xr := {(x, t) : x∈ X, 0 6 t < r(x)} . (B.1)

We assign a sigma-algebraB onY by taking as measurable sets the measurable subsets ofX×R

which belong toY, and we put

µ :=
1
r̄

ν × ℓ, (B.2)

where

r̄ := Eν [r] :=
∫

X

r(x)dν(x) (B.3)

andℓ is Lebesgue measure onR+, so that

µ(A) =
1
r̄

∫∫

A

dν(x)dt. (B.4)

This gives a measure space(Y,B,ν) with the normalisationµ(Y) = 1.

We visualise the spaceY as a subset of the Cartesian productX×R+, as in Fig. B.1. We then
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180 B. Suspension flows

define the flow under the roof functionr by flowing vertically from(x,0) at unit speed for a time

r(x), until we hit the roof function at(x, r(x)), when we instantaneously jump to(T(x),0). This

corresponds to identifying the points(x, r(x)) and(T(x),0), in which case we can write the flow

as

Vt(x,s) = (x,s+ t), (B.5)

computed using the identification: see [CFS82, Gas98] for explicit expressions.

The following result shows that any flow satisfying certain conditions can be viewed as a

suspension flow, which is technically simpler to study. For aproof, see [CFS82, pp. 295ff].

Theorem B.1.1. Any flow Vt without fixed points on a Lebesgue space(M,B,µ) is measure-

theoretically isomorphic to a suspension flow (also called aspecial flow).

B.2. Ergodicity of suspension flows

The following theorem is stated in [Che02, Sec. 4], but I could not find a proof in the literature so

I give one here1.

Theorem B.2.1. Let Vt be a suspended flow over the transformation T: X → X, under the roof

function r: X → R+. Then Vt is ergodic if and only if T is ergodic.

Proof. Firstly suppose that the mapT is not ergodic. Then there exists an invariant setA for the

map which has non-trivial measure, i.e.µ(A) 6= 0 andµ(A) 6= 1. Define the setB by

B := {(x, t) : x∈ A, 0 6 t < r(x)} =
⋃

x∈A

{x}× [0, r(x)); (B.6)

see Fig. B.1. ThenB is an invariant set for the flowVt with measureν(B) which is non-trivial, i.e.

ν(B) 6= 0 andν(B) 6= 1. Hence the flowVt is not ergodic.

Conversely, suppose that the flow is not ergodic, so that there is an invariant setB for the flow

with non-trivial measure. Then the setB mustbe of the form (B.6), since otherwiseB would not

be invariant. Hence the setA defined by projectingB down toX has non-trivial measure, so that

the map is not ergodic.

Thus if a flow can be expressed as a suspension over some map, then the ergodicity of either

implies the ergodicity of the other. We need the following application of this in Sec. 3.5.3.

1I would like to thank Peter Walters for showing me the idea of this proof.
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r

A

B

X

R+

Figure B.1: Invariant setsA for the base transformation andB for the suspended flow.A does not need to
be connected in general.

Corollary B.2.2. The torus-boundary map, which maps one intersection with the torus boundary

into the next, is ergodic.

Proof. We consider the billiard dynamics on the torus. Sinai [Sin70] proved that the billiard map

T, which takes one collision with a scatterer to the next, is ergodic. Hence the billiard flowΦ

is ergodic, by Theorem B.2.1, since it is a suspension over the billiard map under the free path

functionτ which gives the time taken from one collision to the next.

However, the billiard flow can also be viewed as a suspension over the torus-boundary map,

under the trap residence time functionρ . Using Theorem B.2.1 again, we find that the torus-

boundary map is ergodic.

B.3. Central limit theorem for suspension flows

The standard method to prove statistical properties for suspension flows is via the above construc-

tion, relating them to statistical properties of the Poincaré map.

Let fT :=
∫ T

0 f ◦Φt dt. We say that the central limit theorem (CLT) is satisfied forfT if

1√
T



 fT −T
∫

M

f dµ



 D−→ Z, (B.7)

for some normal random variableZ.
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Define F(x) :=
∫ r(x)

0 f (x,u)du. The following theorem is proved in [MT04] under certain

technical conditions.

Theorem B.3.1. Suppose that F and r both satisfy the CLT. Then f satisfies the CLT. If the CLT

for F has varianceσ2
1 > 0, then the CLT for f has varianceσ2 = σ2

1/r̄, wherer̄ := 1
ν(M)

∫
M rdν

is the mean of the roof function.



APPENDIX C

Convergence of projected densities

C.1. Densities and the Perron–Frobenius operator

We consider a flowΦt : M → M on the phase spaceM. Let µ0 be a measure describing the

distribution of initial conditions at timet = 0. After timet, this has evolved to the pushed-forward

measureµt defined in Chap. 2.

We say thatµ0 is absolutely continuouswith respect toµ , denotedµ0 ≪ µ , if µ(A) = 0 ⇒
µ0(A) = 0, i.e. if µ0 is not concentrated on any sets of zeroµ-measure. In this case, the Radon–

Nikodym theorem [Roy88] shows that there exists a unique non-negative functionf0 ∈ L1(M)

such that

µ0(A) :=
∫

A

f0 dµ :=
∫

A

f0(x)dµ(x) for all A∈ B. (C.1)

We call f0 thedensityof µ0 with respect toµ .

If µ is measure-preserving, so thatµt(A) = µ0(Φ−t(A)) for all A ∈ B, thenΦt takes sets of

measure 0 to sets of measure 0. Hence ifµ0 ≪ µ then alsoµt ≪ µ , so thatµt also has a density,

which we denote byft . The mapPt given by

Pt : f0 7→ ft (C.2)

which describes the time evolution of phase space densitiesis called thePerron–Frobenius oper-

ator [LM94, KH95]. In the case of invertible, measure-preserving transformations, we can write

an explicit formula for the time-evolved density [KH95, Chap. 5]:

ft(x) = f0(Φ−t(x)). (C.3)

This shows that in this case the density just gets ‘moved around’; nonetheless if the flow ismixing

then this ‘moving around’ occurs in such a way that the density gets spread out over phase space,

as follows.
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C.2. Mixing and weak convergence of densities

Recall that the flowΦt is mixingwith respect to the invariant measureµ if

µ(Φt(A)∩B)
t→∞−→ µ(A)µ(B). (C.4)

We can re-express this in terms of functions as follows:

∫

M

11Φt(A)11Bdµ t→∞−→
∫

M

11Adµ
∫

M

11Bdµ . (C.5)

By an approximation argument the following theorem relating mixing to convergence of den-

sity functions can then be proved: see e.g. [LM94, p. 73].

Theorem C.2.1. Let (M,B,µ) be a probability space (i.e. such thatµ(M) = 1), Φt : M→M
a measure-preserving flow, and Pt the Perron–Frobenius operator corresponding toΦt . Then

Φt is mixing if and only if(Pt f ) is weakly convergent [see below] to1M for all f ∈ D, where

D := { f ∈ L1(M) : f > 0} and1M(x) = 1 for all x ∈M.

(Note thatf > 0 does not strictly make sense for anL1 function, whose values can be changed

on a set of measure 0 without affecting the function. The meaning is that it is possible to find a

representative of the equivalence class for whichf > 0, or equivalently thatf (x) > 0 for almost

all x∈M.)

We now define the notion of convergence appearing in the theorem.

Definition C.2.2. A sequence( fn)n∈N, fn ∈ Lp, converges weaklyto f ∈ Lp, denotedfn ⇀ f , if

and only if

lim
n→∞

〈 fn,g〉 = 〈 f ,g〉 for all g∈ Lp′ , (C.6)

where

〈 f ,g〉 :=
∫

M

f gdµ . (C.7)

Here,Lp′ is the dual space ofLp with

1
p

+
1
p′

= 1 for 1< p 6 ∞ (C.8)
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and p′ = ∞ when p = 1, whereL∞ is the space of essentially bounded functions, i.e. functions

which are bounded except on a set of measure 0.

Corollary C.2.3. Φt is mixing if and only if

〈Pt f ,g〉 → 〈1M,g〉 =
∫

M

gdµ as t→ ∞, (C.9)

for all bounded functions g: M→ R.

C.3. Weak convergence of projected densities

In general we cannot have stronger than weak convergence of densities in phase space to the

invariant density. For example, it is proved in [GLS98] thatthere cannot be convergence in theLq

norm for anyq > 1, since the measure of the set with density in any interval isconserved.

However, we might expect thatmarginaldensities obtained by projecting onto lower-dimensional

subspaces of the phase space may be able to converge more strongly [Dor99]. Here we prove that

they converge weakly; in the next section we discuss the question of strong convergence.

Consider for concreteness the 2D periodic Lorentz gas, withcoordinates(x,y,θ) in the phase

spaceM= Q×S1. Consider an initial distribution in phase space given by the densityf0 :M→R

with respect to normalised Liouville measure dµ := 1
2π|Q| dxdydθ , where dx is the differential of

Lebesgue measure in thex-direction. This density evolves in phase space via the Perron–Frobenius

operatorPt , defined as above.

We define the measureµ ′ by dµ ′ := 1
|Q| dxdy, i.e. normalised Lebesgue measure onQ, and

projected densitiesφt : Q→ R on the configuration spaceQ by

φt :=
∫

S1

(Pt f0)dθ =

2π∫

θ=0

ft(x,y,θ)dθ , (C.10)

setting ft := Pt f0. Thenφt ∈ L1(µ ′) andφt > 0, so thatφt is a density.

We wish to show that the(φt) converge weakly to 1Q, the constant invariant density onQ, with

respect to the measureµ ′. We distinguish when necessary the measure over which we integrate

by writing

〈 f ,g〉µ :=
∫

M

f gdµ (C.11)
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for the inner product off andg with respect to the measureµ , although in principle the measure

is implicit in the domain of the functionsf andg.

Let γ ∈ L∞(Q) be a bounded function onQ. We want to show that

〈φt ,γ〉µ ′ → 〈1Q,γ〉µ ′ =
∫

Q

γ dµ ′ ast → ∞, (C.12)

by relating the left hand side to objects in phase space.

We have

〈φt ,γ〉µ ′ =
1
|Q|

∫

Q

φt(x,y)γ(x,y)dxdy (C.13)

=
1
|Q|

∫

Q



 1
2π

∫

S1

ft(x,y,θ)dθ



 γ(x,y)dxdy (C.14)

=
1

2π |Q|

∫

Q×S1

ft(x,y,θ)g(x,y,θ)dxdydθ , (C.15)

where we defineg by

g(x,y,θ) := γ(x,y)1S1(θ), (C.16)

so thatg is constant onfibresoverQ. Thus

〈φt ,γ〉µ ′ = 〈 ft ,g〉µ (C.17)

t→∞−→
∫

Q×S1

gdµ =
∫

Q

γ dµ ′ = 〈1Q,γ〉µ ′. (C.18)

But γ ∈ L∞(Q) was arbitrary. Henceφt ⇀ 1Q, as required.

C.4. Convergence of 1D distributions in billiards

The above constitutes a general method for such proofs. We now consider the special case of

projecting down from densities onQ to densities in one coordinate direction, as in Chap. 4.

We define the measureν ′ on thex-space to be Lebesgue measure. We then define 1D projected
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densities in thex-direction by

ψt(x) :=

1∫

y=0

φt(x,y)dy. (C.19)

(We could writeψt :=
∫

S1 φt dy, since in fact thex andy coordinates are defined on a torus.)

To study weak convergence of theψt , consider an arbitrary bounded (i.e.L∞) function ρ . To

mimic the previous proof, we wish to defineγ : Q→ R such that

〈ψt ,ρ〉ν ′ = 〈φt ,γ〉µ ′ . (C.20)

But

〈ψt ,ρ〉ν ′ =

1∫

x=0




1∫

y=0

φt(x,y)dy



ρ(x)dx (C.21)

=

∫∫

x,y

φt(x,y)γ(x,y)dxdy (C.22)

if we set

γ(x,y) := ρ(x)11H(x)(y). (C.23)

The subtlety here is that different fibres have a different amount of associated measure.

With the above definition ofγ , we have

〈ψt ,ρ〉ν ′ = 〈φt ,γ〉µ ′ (C.24)

t→∞−→ 〈1Q,γ〉µ ′ =

∫

Q

γ dµ ′ =
∫

x

ρ(x)




∫

y

11H(x)(y)dy



 dx (C.25)

=

∫

x

ρ(x)h(x)dx = 〈h,ρ〉ν ′ . (C.26)

Thus

ψt ⇀ h (C.27)

with respect to the measureν ′.
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A different point of view is to consider the canonical projection

π : Q→ S1; (x,y) 7→ x. (C.28)

Denoting byν the push-forward of the measureµ ′ under this projection, we have

ν(A) := [π∗(µ ′)](A) := µ ′(π−1(A)) =
∫

Q

11x∈A11(x,y)∈Q dµ ′ (C.29)

=

∫

Q

11{x∈A}∪{(x,y)∈Q} dµ ′ (C.30)

=

∫

x∈A

∫

y∈H(x)

dydx =

∫

x∈A

h(x)dx. (C.31)

Thus the natural measureν on thex-space has densityh with respect to Lebesgue measure, so that

we could equally look at the densityψ ′(x) := ψ(x)/h(x) with respect to the measureν and say

that

〈ψ ′,ρ〉ν → 〈1,ρ〉ν , (C.32)

i.e. thatψ ′ converges weakly to the constant density with respect to thegeometrical measureν .

C.5. Stronger convergence of projected densities?

We would like to prove that projected densities converge strongly, e.g. inL2 or even uniformly.

This cannot be true in general, since if we project along the stable direction then we do not ob-

tain any smoothing effect: see the discussion of the baker and cat maps in [Dor99]. We expect,

however, that if we avoid this special direction then we should get strong convergence. We are not

aware of any rigorous results on this, even for relatively well-understood systems such as the cat

map. However, Sinai proves in [Sin94, Chap. 18] that densities projected to unstable manifolds

converge pointwise; see also [GLS98].



APPENDIX D

Weak convergence of measures in path space

D.1. Measures on path space

We recall the definition of convergence in distribution of the random path̃xt to the Wiener process,

a convergence of measures on the space of paths.

Define the accumulation function by

St(·) :=

t∫

0

f ◦Φs(·)ds, (D.1)

so thatSt : M→ R. We denote elements ofM by ω .

Define a rescaled processWT by [CY00]

WT(s;ω) :=
St(ω)− t〈 f 〉√

T
, (D.2)

whereT > 0, t = sT, and the path is parametrised bys∈ [0,1].

For fixed T, WT(·;ω) : [0,1] → R
2 is a continuous path inR2. In the case of diffusion in

billiards, we haveSt(ω) =
∫ t

0 v(s;ω)ds = xt(ω)− x0(ω), whereω = (q,v) denotes the initial

condition.

The continuous random functionWT induces a probability measurePT on the spaceC([0,1])

of continuous paths from[0,1] toM, via

PT(A) := µ(ω ∈M : WT(·;ω) ∈ A), (D.3)

whereA⊂ C([0,1]) is a subset of the space of continuous paths which is measurable with respect

to the Borelσ -algebra on the metric spaceC([0,1]) with metric

d( f ,g) := sup
x∈[0,1]

| f (x)−g(x)| . (D.4)
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D.2. Weak convergence of measures on metric spaces

The notion of convergence in the standard central limit is convergencein distribution of the

rescaled distributions to a normal distribution, which canbe expressed in terms of pointwise (and

uniform) convergence of the rescaled distribution functions to a normal distribution function on

R
n [Bil68]. This definition in terms of distribution functionscannot be directly generalised to

convergence in path spaces, which we require here, but it is equivalent to the following notion of

weak convergence1 of measures, which does generalise to arbitrary metric spaces [Bil68].

Let (X,B) be a metric space together with theσ -algebra of Borel sets on it. Let(Pn)n∈N andP

be probability measures on(X,B). ThenPn converges weaklyto P, writtenPn ⇀ P, if and only if

∫

X

f dPn →
∫

X

f dP, (D.5)

for all bounded, continuous functionsf : X → R [Bil68]. There is an equivalent formulation in

terms of sets, reflecting the duality between measures thought of as the dual space of functions

and measures as set functions. Namely,Pn ⇀ P if and only if

Pn(A) → P(A) for all A such thatP(∂A) = 0, (D.6)

where∂A := Ā\A◦ is the boundary of the setA, i.e. the set of points which are limits of sequences

of points in A and limits of sequences of points outside A. (Since∂A is a closed set, it belongs to

the Borelσ -algebraB, so thatP(∂A) is defined.)

Sufficient conditions for this weak convergence are [Bil68]: (i) the finite-dimensional distri-

butions converge; and (ii) this convergence istight. Property (i), in the case of convergence to

Brownian motion, is amultidimensional central limit theorem[Che95]. In Sec. 2.4.2 we reformu-

late it using the more intuitive notation [Ble92]

x̃t(s) :=
x(st)−x(0)√

t
, s∈ [0,1] (D.7)

for the rescaled process, wherex̃t(s) = Wt(s, ·) : M→ R. Property (ii) means that for allε > 0,

there is a compact setK = K(ε) such thatPT(K) > 1−ε for all T; this prevents mass from escaping

to infinity [Bil68].

1‘Weak convergence’ in probability theory is close toweak-∗ convergence in analysis [RW00, Section II.6].
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