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Universität Tübingen Rockville, MD 20892
Westbahnhofstrasse 55 USA
D-72070 Tübingen
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Preface

The second edition contains some new material as well as solutions to
the odd-numbered revised exercises. New material consists of a discus-
sion of summary statistics for competing risks probabilities in Chapter 2
and the estimation process for these probabilities in Chapter 4. A new
section on tests of the equality of survival curves at a fixed point in
time is added in Chapter 7. In Chapter 8 an expanded discussion is pre-
sented on how to code covariates and a new section on discretizing a
continuous covariate is added. A new section on Lin and Ying’s additive
hazards regression model is presented in Chapter 10. We now proceed
to a general discussion of the usefulness of this book incorporating the
new material with that of the first edition.

A problem frequently faced by applied statisticians is the analysis of
time to event data. Examples of such data arise in diverse fields such
as medicine, biology, public health, epidemiology, engineering, eco-
nomics and demography. While the statistical tools we shall present
are applicable to all these disciplines our focus is on applications of
the techniques to biology and medicine. Here interest is, for example,
on analyzing data on the time to death from a certain cause, dura-
tion of response to treatment, time to recurrence of a disease, time to
development of a disease, or simply time to death.

The analysis of survival experiments is complicated by issues of cen-
soring, where an individual’s life length is known to occur only in a
certain period of time, and by truncation, where individuals enter the
study only if they survive a sufficient length of time or individuals are
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vi Preface

included in the study only if the event has occurred by a given date. The
use of counting process methodology has, in recent years, allowed for
substantial advances in the statistical theory to account for censoring
and truncation in survival experiments. The book by Andersen et al.
(1993) provides an excellent survey of the mathematics of this theory.
In this book we shall attempt to make these complex methods more
accessible to applied researchers without an advanced mathematical
background by presenting the essence of the statistical methods and
illustrating these results in an applied framework. Our emphasis is on
applying these techniques, as well as classical techniques not based
on the counting process theory, to data rather than on the theoreti-
cal development of these tools. Practical suggestions for implementing
the various methods are set off in a series of practical notes at the
end of each section. Technical details of the derivation of these tech-
niques (which are helpful to the understanding of concepts, though not
essential to using the methods of this book) are sketched in a series of
theoretical notes at the end of each section or are separated into their
own sections. Some more advanced topics, for which some additional
mathematical sophistication is needed for their understanding or for
which standard software is not available, are given in separate chapters
or sections. These notes and advanced topics can be skipped without
a loss of continuity.

We envision two complementary uses for this book. The first is as
a reference book for investigators who find the need to analyze cen-
sored or truncated life time data. The second use is as a textbook for
a graduate level course in survival analysis. The minimum prerequisite
for such course is a traditional course in statistical methodology. The
material included in this book comes from our experience in teaching
such a course for master’s level biostatistics students at The Ohio State
University and at the Medical College of Wisconsin, as well as from our
experience in consulting with investigators from The Ohio State Univer-
sity, The University of Missouri, The Medical College of Wisconsin, The
Oak Ridge National Laboratory, The National Center for Toxicological
Research, and The International Bone Marrow Transplant Registry.

The book is divided into thirteen chapters that can be grouped into
five major themes. The first theme introduces the reader to basic con-
cepts and terminology. It consists of the first three chapters which deal
with examples of typical data sets one may encounter in biomedical
applications of this methodology, a discussion of the basic parameters
to which inference is to be made, and a detailed discussion of censoring
and truncation. New to the second edition is Section 2.7 that presents a
discussion of summary statistics for competing risks probabilities. Sec-
tion 3.6 gives a brief introduction to counting processes, and is included
for those individuals with a minimal background in this area who wish
to have a conceptual understanding of this methodology. This section
can be omitted without jeopardizing the reader’s understanding of later
sections of the book.
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The second major theme is the estimation of summary survival statis-
tics based on censored and/or truncated data. Chapter 4 discusses es-
timation of the survival function, the cumulative hazard rate, and mea-
sures of centrality such as the median and the mean. The construction of
pointwise confidence intervals and confidence bands is presented. Here
we focus on right censored as well as left truncated survival data since
this type of data is most frequently encountered in applications. New
to the second edition is a section dealing with estimation of competing
risks probabilities. In Chapter 5 the estimation schemes are extended
to other types of survival data. Here methods for double and interval
censoring; right truncation; and grouped data are presented. Chapter
6 presents some additional selected topics in univariate estimation, in-
cluding the construction of smoothed estimators of the hazard function,
methods for adjusting survival estimates for a known standard mortality
and Bayesian survival methods.

The third theme is hypothesis testing. Chapter 7 presents one-, two-,
and more than two-sample tests based on comparing the integrated
difference between the observed and expected hazard rate. These tests
include the log rank test and the generalized Wilcoxon test. Tests for
trend and stratified tests are also discussed. Also discussed are Renyi
tests which are based on sequential evaluation of these test statistics and
have greater power to detect crossing hazard rates. This chapter also
presents some other censored data analogs of classical tests such as the
Cramer–Von Mises test, the t test and median tests are presented. New
to this second edition is a section on tests of the equality of survival
curves at a fixed point in time.

The fourth theme, and perhaps the one most applicable to applied
work, is regression analysis for censored and/or truncated data. Chap-
ter 8 presents a detailed discussion of the proportional hazards model
used most commonly in medical applications. New sections in this sec-
ond edition include an expanded discussion of how to code covariates
and a section on discretizing a continuous covariate. Recent advances
in the methodology that allows for this model to be applied to left
truncated data, provides the investigator with new regression diagnos-
tics, suggests improved point and interval estimates of the predicted
survival function, and makes more accessible techniques for handling
time-dependent covariates (including tests of the proportionality as-
sumption) and the synthesis of intermediate events in an analysis are
discussed in Chapter 9.

Chapter 10 presents recent work on the nonparametric additive haz-
ard regression model of Aalen (1989) and a new section on Lin and
Ying’s (1994) additive hazards regression models. One of these models
model may be the model of choice in situations where the proportional
hazards model or a suitable modification of it is not applicable. Chapter
11 discusses a variety of residual plots one can make to check the fit of
the Cox proportional hazards regression models. Chapter 12 discusses
parametric models for the regression problem. Models presented in-
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clude those available in most standard computer packages. Techniques
for assessing the fit of these parametric models are also discussed.

The final theme is multivariate models for survival data. In Chapter
13, tests for association between event times, adjusted for covariates,
are given. An introduction to estimation in a frailty or random effect
model is presented. An alternative approach to adjusting for association
between some individuals based on an analysis of an independent
working model is also discussed.

There should be ample material in this book for a one or two semester
course for graduate students. A basic one semester or one quarter course
would cover the following sections:

Chapter 2
Chapter 3, Sections 1–5
Chapter 4
Chapter 7, Sections 1–6, 8
Chapter 8
Chapter 9, Sections 1–4
Chapter 11
Chapter 12

In such a course the outlines of theoretical development of the tech-
niques, in the theoretical notes, would be omitted. Depending on
the length of the course and the interest of the instructor, these
details could be added if the material in section 3.6 were covered
or additional topics from the remaining chapters could be added
to this skeleton outline. Applied exercises are provided at the end
of the chapters. Solutions to odd numbered exercises are new to
the second edition. The data used in the examples and in most of
the exercises is available from us at our Web site which is accessi-
ble through the Springer Web site at http://www.springer-ny.com or
http://www.biostat.mcw.edu/homepgs/klein/book.html.

Milwaukee, Wisconsin John P. Klein
Columbus, Ohio Melvin L. Moeschberger
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1
Examples of

Survival Data

1.1 Introduction

The problem of analyzing time to event data arises in a number of
applied fields, such as medicine, biology, public health, epidemiology,
engineering, economics, and demography. Although the statistical tools
we shall present are applicable to all these disciplines, our focus is on
applying the techniques to biology and medicine. In this chapter, we
present some examples drawn from these fields that are used through-
out the text to illustrate the statistical techniques we shall describe.

A common feature of these data sets is they contain either censored
or truncated observations. Censored data arises when an individual’s
life length is known to occur only in a certain period of time. Possible
censoring schemes are right censoring, where all that is known is that
the individual is still alive at a given time, left censoring when all that is
known is that the individual has experienced the event of interest prior
to the start of the study, or interval censoring, where the only informa-
tion is that the event occurs within some interval. Truncation schemes
are left truncation, where only individuals who survive a sufficient time
are included in the sample and right truncation, where only individuals
who have experienced the event by a specified time are included in
the sample. The issues of censoring and truncation are defined more
carefully in Chapter 3.

1



2 Chapter 1 Examples of Survival Data

1.2 Remission Duration from a Clinical Trial
for Acute Leukemia

Freireich et al. (1963) report the results of a clinical trial of a drug
6-mercaptopurine (6-MP) versus a placebo in 42 children with acute
leukemia. The trial was conducted at 11 American hospitals. Patients
were selected who had a complete or partial remission of their leukemia
induced by treatment with the drug prednisone. (A complete or partial
remission means that either most or all signs of disease had disappeared
from the bone marrow.) The trial was conducted by matching pairs of
patients at a given hospital by remission status (complete or partial) and
randomizing within the pair to either a 6-MP or placebo maintenance
therapy. Patients were followed until their leukemia returned (relapse)
or until the end of the study (in months). The data is reported in
Table 1.1.

TABLE 1.1
Remission duration of 6-MP versus placebo in children with acute leukemia

Remission Status at Time to Relapse for Time to Relapse for
Pair Randomization Placebo Patients 6 -MP Patients

1 Partial Remission 1 10
2 Complete Remission 22 7
3 Complete Remission 3 32�

4 Complete Remission 12 23
5 Complete Remission 8 22
6 Partial Remission 17 6
7 Complete Remission 2 16
8 Complete Remission 11 34�

9 Complete Remission 8 32�

10 Complete Remission 12 25�

11 Complete Remission 2 11�

12 Partial Remission 5 20�

13 Complete Remission 4 19�

14 Complete Remission 15 6
15 Complete Remission 8 17�

16 Partial Remission 23 35�

17 Partial Remission 5 6
18 Complete Remission 11 13
19 Complete Remission 4 9�

20 Complete Remission 1 6�

21 Complete Remission 8 10�

�Censored observation
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This data set is used in Chapter 4 to illustrate the calculation of
the estimated probability of survival using the product-limit estimator,
the calculation of the Nelson-Aalen estimator of the cumulative hazard
function, and the calculation of the mean survival time, along with their
standard errors. It is further used in section 6.4 to estimate the survival
function using Bayesian approaches. Matched pairs tests for differences
in treatment efficacy are performed using the stratified log rank test
in section 7.5 and the stratified proportional hazards model in section
9.3.

1.3 Bone Marrow Transplantation for Leukemia

Bone marrow transplants are a standard treatment for acute leukemia.
Recovery following bone marrow transplantation is a complex process.
Prognosis for recovery may depend on risk factors known at the time
of transplantation, such as patient and/or donor age and sex, the stage
of initial disease, the time from diagnosis to transplantation, etc. The
final prognosis may change as the patient’s posttransplantation history
develops with the occurrence of events at random times during the
recovery process, such as development of acute or chronic graft-versus-
host disease (GVHD), return of the platelet count to normal levels,
return of granulocytes to normal levels, or development of infections.
Transplantation can be considered a failure when a patient’s leukemia
returns (relapse) or when he or she dies while in remission (treatment
related death).

Figure 1.1 shows a simplified diagram of a patient’s recovery process
based on two intermediate events that may occur in the recovery pro-
cess. These intermediate events are the possible development of acute
GVHD that typically occurs within the first 100 days following trans-
plantation and the recovery of the platelet count to a self-sustaining
level � 40 � 109 � l (called platelet recovery in the sequel). Immediately
following transplantation, patients have depressed platelet counts and
are free of acute GVHD. At some point, they may develop acute GVHD
or have their platelets recover at which time their prognosis (proba-
bilities of treatment related death or relapse at some future time) may
change. These events may occur in any order, or a patient may die
or relapse without any of these events occurring. Patients may, then,
experience the other event, which again modifies their prognosis, or
they may die or relapse.

To illustrate this process we consider a multicenter trial of patients
prepared for transplantation with a radiation-free conditioning regimen.
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Figure 1.1 Recovery Process from a Bone Marrow Transplant

Details of the study are found in Copelan et al. (1991). The preparative
regimen used in this study of allogeneic marrow transplants for patients
with acute myeloctic leukemia (AML) and acute lymphoblastic leukemia
(ALL) was a combination of 16 mg/kg of oral Busulfan (BU) and 120
mg/kg of intravenous cyclophosphamide (Cy). A total of 137 patients
(99 AML, 38 ALL) were treated at one of four hospitals: 76 at The
Ohio State University Hospitals (OSU) in Columbus; 21 at Hahnemann
University (HU) in Philadelphia; 23 at St. Vincent’s Hospital (SVH) in
Sydney Australia; and 17 at Alfred Hospital (AH) in Melbourne. The
study consists of transplants conducted at these institutions from March
1, 1984, to June 30, 1989. The maximum follow-up was 7 years. There
were 42 patients who relapsed and 41 who died while in remission.
Twenty-six patients had an episode of acute GVHD, and 17 patients
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either relapsed or died in remission without their platelets returning to
normal levels.

Several potential risk factors were measured at the time of trans-
plantation. For each disease, patients were grouped into risk categories
based on their status at the time of transplantation. These categories
were as follows: ALL (38 patients), AML low-risk first remission (54 pa-
tients), and AML high-risk second remission or untreated first relapse
(15 patients) or second or greater relapse or never in remission (30
patients). Other risk factors measured at the time of transplantation
included recipient and donor gender (80 and 88 males respectively),
recipient and donor cytomegalovirus immune status (CMV) status (68
and 58 positive, respectively), recipient and donor age (ranges 7–52
and 2–56, respectively), waiting time from diagnosis to transplantation
(range 0.8–87.2 months, mean 19.7 months), and, for AML patients,
their French-American-British (FAB) classification based on standard
morphological criteria. AML patients with an FAB classification of M4 or
M5 (45/99 patients) were considered to have a possible elevated risk of
relapse or treatment-related death. Finally, patients at the two hospitals
in Australia (SVH and AH) were given a graft-versus-host prophylactic
combining methotrexate (MTX) with cyclosporine and possibly methyl-
prednisolone. Patients at the other hospitals were not given methotrex-
ate but rather a combination of cyclosporine and methylprednisolone.
The data is presented in Table D.1 of Appendix D.

This data set is used throughout the book to illustrate the methods
presented. In Chapter 4, it is used to illustrate the product-limit esti-
mator of the survival function and the Nelson–Aalen estimator of the
cumulative hazard rate of treatment failure. Based on these statistics,
pointwise confidence intervals and confidence bands for the survival
function are constructed. The data is also used to illustrate point and
interval estimation of summary survival parameters, such as the mean
and median time to treatment failure in this chapter.

This data set is also used in Chapter 4 to illustrate summary probabil-
ities for competing risks. The competing risks, where the occurrence of
one event precludes the occurrence of the other event, in this example,
are relapse and death.

In section 6.2, the data set is used to illustrate the construction of
estimates of the hazard rate. These estimates are based on smoothing
the crude estimates of the hazard rate obtained from the jumps of the
Nelson–Aalen estimator found in Chapter 4 using a weighted average
of these estimates in a small interval about the time of interest. The
weights are chosen using a kernel weighting function.

In Chapter 7, this data is used to illustrate tests for the equality of K
survival curves. Both stratified and unstratified tests are discussed.

In Chapter 8, the data is used to illustrate tests of the equality of K
hazard rates adjusted for possible fixed-time confounders. A propor-
tional hazards model is used to make this adjustment. Model building
for this problem is illustrated. In Chapter 9, the models found in Chap-
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ter 8 are further refined to include covariates, whose values change
over time, and to allow for stratified regression models. In Chapter 11,
regression diagnostics for these models are presented.

1.4 Times to Infection of Kidney
Dialysis Patients

In a study (Nahman et al., 1992) designed to assess the time to first exit-
site infection (in months) in patients with renal insufficiency, 43 patients
utilized a surgically placed catheter (Group 1), and 76 patients utilized
a percutaneous placement of their catheter (Group 2). Cutaneous exit-
site infection was defined as a painful cutaneous exit site and positive
cultures, or peritonitis, defined as a presence of clinical symptoms,
elevated peritoneal dialytic fluid, elevated white blood cell count (100
white blood cells � �l with �50% neutrophils), and positive peritoneal
dialytic fluid cultures. The data appears in Table 1.2.

TABLE 1.2
Times to infection (in months) of kidney dialysis patients with different catheter-
ization procedures

Surgically Placed Catheter

Infection Times: 1.5, 3.5, 4.5, 4.5, 5.5, 8.5, 8.5, 9.5, 10.5, 11.5, 15.5, 16.5, 18.5, 23.5, 26.5
Censored Observations: 2.5, 2.5, 3.5, 3.5, 3.5, 4.5, 5.5, 6.5, 6.5, 7.5, 7.5, 7.5, 7.5, 8.5, 9.5,
10.5, 11.5, 12.5, 12.5, 13.5, 14.5, 14.5, 21.5, 21.5, 22.5, 22.5, 25.5, 27.5

Percutaneous Placed Catheter

Infection Times: 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 2.5, 2.5, 3.5, 6.5, 15.5
Censored Observations: 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 1.5, 1.5, 1.5, 1.5, 2.5,
2.5, 2.5, 2.5, 2.5, 3.5, 3.5, 3.5, 3.5, 3.5, 4.5, 4.5, 4.5, 5.5, 5.5, 5.5, 5.5, 5.5, 6.5, 7.5, 7.5,
7.5, 8.5, 8.5, 8.5, 9.5, 9.5, 10.5, 10.5, 10.5, 11.5, 11.5, 12.5, 12.5, 12.5, 12.5, 14.5, 14.5,
16.5, 16.5, 18.5, 19.5, 19.5, 19.5, 20.5, 22.5, 24.5, 25.5, 26.5, 26.5, 28.5

The data is used in section 7.3 to illustrate how the inference about the
equality of two survival curves, based on a two-sample weighted, log-
rank test, depends on the choice of the weight function. In section 7.7, it
is used to illustrate the two-sample Cramer–von Mises test for censored
data. In the context of the proportional hazards model, this data is
used in Chapter 8 to illustrate the different methods of constructing the
partial likelihoods and the subsequent testing of equality of the survival
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curves when there are ties present. Testing for proportional hazards is
illustrated in section 9.2. The test reveals that a proportional hazards
assumption for this data is not correct. A model with a time-varying,
covariate effect is more appropriate, and in that section the optimal
cutoff for “early” and “late” covariate effect on survival is found.

1.5 Times to Death for a Breast-Cancer Trial

In a study (Sedmak et al., 1989) designed to determine if female breast
cancer patients, originally classified as lymph node negative by stan-
dard light microscopy (SLM), could be more accurately classified by im-
munohistochemical (IH) examination of their lymph nodes with an an-
ticytokeratin monoclonal antibody cocktail, identical sections of lymph
nodes were sequentially examined by SLM and IH. The significance of
this study is that 16% of patients with negative axillary lymph nodes,
by standard pathological examination, develop recurrent disease within
10 years. Forty-five female breast-cancer patients with negative axillary
lymph nodes and a minimum 10-year follow-up were selected from The
Ohio State University Hospitals Cancer Registry. Of the 45 patients, 9
were immunoperoxidase positive, and the remaining 36 remained neg-
ative. Survival times (in months) for both groups of patients are given
in Table 1.3 (� denotes a censored observation).

TABLE 1.3
Times to death (in months) for breast cancer patients with different immuno-
histochemical responses

Immunoperoxidase Negative: 19, 25, 30, 34, 37, 46, 47, 51, 56, 57, 61, 66, 67, 74, 78, 86,
122�, 123�, 130�, 130�, 133�, 134�, 136�, 141�, 143� ,148�, 151�, 152�,153�,154�,
156�, 162�, 164�, 165�, 182�,189�,
Immunoperoxidase Positive: 22, 23, 38, 42, 73, 77, 89, 115, 144�

�Censored observation

This data is used to show the construction of the likelihood function
and in calculating a two-sample test based on proportional hazards with
no ties with right-censored data in Chapter 8. It is also used in Chapter
10 to illustrate the least-squares estimation methodology in the context
of the additive hazards model. In that chapter, we also used this data
to illustrate estimation for an additive model with constant excess risk
over time.
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1.6 Times to Infection for Burn Patients

In a study (Ichida et al., 1993) to evaluate a protocol change in disin-
fectant practices in a large midwestern university medical center, 154
patient records and charts were reviewed. Infection of a burn wound
is a common complication resulting in extended hospital stays and in
the death of severely burned patients. Control of infection remains a
prominent component of burn management. The purpose of this study
is to compare a routine bathing care method (initial surface decontam-
ination with 10% povidone-iodine followed with regular bathing with
Dial soap) with a body-cleansing method using 4% chlorhexidine glu-
conate. Medical records of patients treated during the 18-month study
period provided information on burn wound infections and other med-
ical information. The time until staphylococcus infection was recorded
(in days), along with an indicator variable—whether or not an infec-
tion had occurred. Other fixed covariates recorded were gender (22%
female), race (88% white), severity of the burn as measured by per-
centage of total surface area of body burned (average of 24.7% range
2–95%), burn site (45% on head, 23% on buttocks, 84% on trunk, 41%
on upper legs, 31% on lower legs, or 29% in respiratory tract), and type
of burn (6% chemical, 12% scald, 7% electric, or 75% flame). Two time-
dependent covariates were recorded, namely, time to excision and time
to prophylactic antibiotic treatment administered, along with the two
corresponding indicator variables, namely, whether the patient’s wound
had been excised (64%) and whether the patient had been treated with
an antibiotic sometime during the course of the study (41%). Eighty-four
patients were in the group which received the new bathing solution,
chlorhexidine, and 70 patients served as the historical control group
which received the routine bathing care, povidone-iodine. The data is
available on the authors’ web site and is used in the exercises.

1.7 Death Times of Kidney
Transplant Patients

Data on the time to death of 863 kidney transplant patients is available
on the authors’ web site. All patients had their transplant performed at
The Ohio State University Transplant Center during the period 1982–
1992. The maximum follow-up time for this study was 9.47 years. Pa-
tients were censored if they moved from Columbus (lost to follow-up)
or if they were alive on June 30, 1992. In the sample, there were 432
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white males, 92 black males, 280 white females, and 59 black females.
Patient ages at transplant ranged from 9.5 months to 74.5 years with
a mean age of 42.8 years. Seventy-three (16.9%) of the white males,
14 (15.2%) of the black males, 39 (13.9%) of the white females and 14
(23.7%) of the black females died prior to the end of the study.

In Chapter 6, the problem of estimating the hazard rate, using a kernel
smoothing procedure, is discussed. In particular, the effect of changing
the bandwidth and the choice of a kernel are considered. In Chapter 8
this data is also used to illustrate methods for discretizing a continuous
covariate.

1.8 Death Times of Male Laryngeal
Cancer Patients

Kardaun (1983) reports data on 90 males diagnosed with cancer of
the larynx during the period 1970–1978 at a Dutch hospital. Times
recorded are the intervals (in years) between first treatment and either
death or the end of the study (January 1, 1983). Also recorded are the
patient’s age at the time of diagnosis, the year of diagnosis, and the
stage of the patient’s cancer. The four stages of disease in the study
were based on the T.N.M. (primary tumor (T), nodal involvement (N)
and distant metastasis (M) grading) classification used by the American
Joint Committee for Cancer Staging (1972). The four groups are Stage
I, T1N0M0 with 33 patients; Stage II, T2N0M0 with 17 patients; Stage III,
T3N0M0 and TxN1M0, with 27 patients; x � 1, 2, or 3; and Stage IV, all
other TNM combinations except TIS with 13 patients. The stages are
ordered from least serious to most serious. The data is available on the
authors’ web site.

In section 7.4, the data is used to illustrate a test for trend to con-
firm the hypothesis that the higher the stage the greater the chance of
dying. In Chapter 8, a global test for the effect of stage on survival is
performed in the context of the proportional hazards model, and local
tests are illustrated, after an adjustment for the patient’s age. An analy-
sis of variance (ANOVA) table is presented to summarize the effects of
stage and age on survival. Contrasts are used to test the hypothesis that
linear combinations of stage effects are zero. The construction of con-
fidence intervals for different linear combinations of the stage effects
is illustrated. The concept of an interaction in a proportional hazards
regression model is illustrated through a stage by age interaction fac-
tor. The survival curve is estimated for each stage based on the Cox
proportional hazards model.
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This data is also used in Chapter 10 to illustrate estimation methodol-
ogy in the additive hazards model. In Chapter 12, this data set is used
to illustrate the fit of parametric models, using the accelerated failure-
time model. The goodness of fit of these models is also discussed. The
log logistic model is used in section 12.5 to illustrate using deviance
residuals.

1.9 Autologous and Allogeneic Bone
Marrow Transplants

The data in Table 1.4 is a sample of 101 patients with advanced
acute myelogenous leukemia reported to the International Bone Mar-
row Transplant Registry. Fifty-one of these patients had received an
autologous (auto) bone marrow transplant in which, after high doses
of chemotherapy, their own marrow was reinfused to replace their de-
stroyed immune system. Fifty patients had an allogeneic (allo) bone
marrow transplant where marrow from an HLA (Histocompatibility
Leukocyte Antigen)-matched sibling was used to replenish their im-
mune systems.

An important question in bone marrow transplantation is the com-
parison of the effectiveness of these two methods of transplant as mea-

TABLE 1.4
Leukemia free-survival times (in months) for Autologous and Allogeneic Trans-
plants

The leukemia-free survival times for the 50 allo transplant patients were 0.030, 0.493,
0.855, 1.184, 1.283, 1.480, 1.776, 2.138, 2.500, 2.763, 2.993, 3.224, 3.421, 4.178, 4.441�,
5.691, 5.855�, 6.941�, 6.941, 7.993�, 8.882, 8.882, 9.145�, 11.480, 11.513, 12.105�,
12.796, 12.993�, 13.849�, 16.612�, 17.138�, 20.066, 20.329�, 22.368�, 26.776�, 28.717�,
28.717�, 32.928�, 33.783�, 34.211�, 34.770�, 39.539�, 41.118�, 45.033�, 46.053�,
46.941�, 48.289�, 57.401�, 58.322�, 60.625�;
and, for the 51 auto patients, 0.658, 0.822, 1.414, 2.500, 3.322, 3.816, 4.737, 4.836�, 4.934,
5.033, 5.757, 5.855, 5.987, 6.151, 6.217, 6.447�, 8.651, 8.717, 9.441�, 10.329, 11.480,
12.007, 12.007�, 12.237, 12.401�, 13.059�, 14.474�, 15.000�, 15.461, 15.757, 16.480,
16.711, 17.204�, 17.237, 17.303�, 17.664�, 18.092, 18.092�, 18.750�, 20.625�, 23.158,
27.730�, 31.184�, 32.434�, 35.921�, 42.237�, 44.638�, 46.480�, 47.467�, 48.322�,
56.086.

As usual, � denotes a censored observation.
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sured by the length of patients’ leukemia-free survival, the length of
time they are alive, and how long they remain free of disease after their
transplants. In Chapter 7, this comparison is made using a weighted
log-rank test, and a censored data version of the median test and the
t-test.

This data is used in Chapter 11 to illustrate graphical methods for
checking model assumptions following a proportional hazards regres-
sion analysis. In section 11.3, the martingale residuals are used to check
overall model fit. In section 11.4, score residuals are used to check the
proportional hazards assumption on disease-free survival for type of
transplant. In section 11.5, the use of deviance residuals is illustrated
for checking for outliers and, in section 11.6, the influence of individual
observations is examined graphically.

In Chapter 12, this data set is used to illustrate the fit of parametric
models using the accelerated failure-time model. The goodness of fit
of these models is also discussed. Diagnostic plots for checking the fit
of a parametric regression model using this data set are illustrated in
section 12.5.

1.10 Bone Marrow Transplants for Hodgkin’s
and Non-Hodgkin’s Lymphoma

The data in Table 1.5 was collected on 43 bone marrow transplant pa-
tients at The Ohio State University Bone Marrow Transplant Unit. Details
of this study can be found in Avalos et al. (1993). All patients had ei-
ther Hodgkin’s disease (HOD) or non-Hodgkin’s lymphoma (NHL) and
were given either an allogeneic (Allo) transplant from an HLA match
sibling donor or an autogeneic (Auto) transplant; i.e., their own marrow
was cleansed and returned to them after a high dose of chemotherapy.
Also included are two possible explanatory variables, Karnofsky score
at transplant and the waiting time in months from diagnosis to trans-
plant. Of interest is a test of the null hypothesis of no difference in
the leukemia-free survival rate between patients given an Allo or Auto
transplant, adjusting for the patient’s disease state. This test, which re-
quires stratification of the patient’s disease, is presented in section 7.5.
We also use this data in section 11.3 to illustrate how the martingale
residual can be used to determine the functional form of a covariate.
The data, in Table 1.5, consists of the time on study for each patient,
Ti , and the event indicator �i � 1 if dead or relapsed; 0 otherwise;
and two covariates Z1, the pretransplant Karnofsky score and Z2, the
waiting time to transplant.
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TABLE 1.5
Times to death or relapse (in days) for patients with bone marrow transplants
for Hodgkin’s and non-Hodgkin’s lymphoma

Allo NHL Auto NHL Allo HOD Auto HOD

Ti �i Z1 Z2 Ti �i Z1 Z2 Ti �i Z1 Z2 Ti �i Z1 Z2

28 1 90 24 42 1 80 19 2 1 20 34 30 1 90 73
32 1 30 7 53 1 90 17 4 1 50 28 36 1 80 61
49 1 40 8 57 1 30 9 72 1 80 59 41 1 70 34
84 1 60 10 63 1 60 13 77 1 60 102 52 1 60 18

357 1 70 42 81 1 50 12 79 1 70 71 62 1 90 40
933 0 90 9 140 1 100 11 108 1 70 65

1078 0 100 16 176 1 80 38 132 1 60 17
1183 0 90 16 210 0 90 16 180 0 100 61
1560 0 80 20 252 1 90 21 307 0 100 24
2114 0 80 27 476 0 90 24 406 0 100 48
2144 0 90 5 524 1 90 39 446 0 100 52

1037 0 90 84 484 0 90 84
748 0 90 171

1290 0 90 20
1345 0 80 98

TABLE 1.6
Death times (in weeks) of patients with cancer of the tongue

Aneuploid Tumors:
Death Times: 1, 3, 3, 4, 10, 13, 13, 16, 16, 24, 26, 27, 28, 30, 30, 32, 41, 51, 65, 67, 70,
72, 73, 77, 91, 93, 96, 100, 104, 157, 167
Censored Observations: 61, 74, 79, 80, 81, 87, 87, 88, 89, 93, 97, 101, 104, 108, 109, 120,
131, 150, 231, 240, 400
Diploid Tumors:
Death Times: 1, 3, 4, 5, 5, 8, 12, 13, 18, 23, 26, 27, 30, 42, 56, 62, 69, 104, 104, 112, 129,
181
Censored Observations: 8, 67, 76, 104, 176, 231

1.11 Times to Death for Patients with Cancer of
the Tongue

A study was conducted on the effects of ploidy on the prognosis of
patients with cancers of the mouth. Patients were selected who had
a paraffin-embedded sample of the cancerous tissue taken at the time
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of surgery. Follow-up survival data was obtained on each patient. The
tissue samples were examined using a flow cytometer to determine
if the tumor had an aneuploid (abnormal) or diploid (normal) DNA
profile using a technique discussed in Sickle–Santanello et al. (1988).
The data in Table 1.6 is on patients with cancer of the tongue. Times
are in weeks.

The data is used in exercises.

1.12 Times to Reinfection for Patients with
Sexually Transmitted Diseases

A major problem in certain subpopulations is the occurrence of sexu-
ally transmitted diseases (STD). Even if one ignores the lethal effects
of the Acquired Immune Deficiency Syndrome (AIDS), other sexually
transmitted diseases still have a significant impact on the morbidity of
the community. Two of these sexually transmitted diseases are the fo-
cus of this investigation: gonorrhea and chlamydia. These diseases are
of special interest because they are often asymptomatic in the female,
and, if left untreated, can lead to complications including sterility.

Both of these diseases can be easily prevented and effectively treated.
Therefore, it is a mystery why the incidence of these diseases remain
high in several subpopulations. One theory is that a core group of
individuals experience reinfections, thereby, serving as a natural reser-
voir of the disease organism and transferring the disease to uninfected
individuals.

The purpose of this study is to identify those factors which are related
to time until reinfection by either gonorrhea or chlamydia, given an
initial infection of gonorrhea or chlamydia. A sample of 877 individuals,
with an initial diagnosis of gonorrhea or chlamydia were followed for
reinfection. In addition to the primary outcome variable just stated,
an indicator variable which indicates whether a reinfection occurred
was recorded. Demographic variables recorded were race (33% white,
67% black), marital status (7% divorced/separated, 3% married and 90%
single), age of patient at initial infection (average age is 20.6 years
with a range of 13–48 years), years of schooling (11.4 years with a
range of 6–18 years), and type of initial infection (16% gonorrhea, 45%
chlamydia and 39% both gonorrhea and chlamydia). Behavioral factors
recorded at the examination, when the initial infection was diagnosed,
were number of partners in the last 30 days (average is 1.27 with a range
of 0–19), oral sex within past 12 months (33%), rectal sex within past 12
months (6%), and condom use (6% always, 58% sometimes, and 36%
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never). Symptoms noticed at time of initial infection were presence of
abdominal pain (14%), sign of discharge (46%), sign of dysuria (13%),
sign of itch (19%), sign of lesion (3%), sign of rash (3%), and sign
of lymph involvement (1%). If the factors related to a greater risk of
reinfection can be identified, then, interventions could be targeted to
those individuals who are at greatest risk for reinfection. This, in turn,
should reduce the size of the core group and, thereby, reduce the
incidence of the diseases. The data for this study is available on our
web site.

This data is used in the exercises.

1.13 Time to Hospitalized Pneumonia in
Young Children

Data gathered from 3,470 annual personal interviews conducted for the
National Longitudinal Survey of Youth (NLSY, 1995) from 1979 through
1986 was used to study whether the mother’s feeding choice (breast
feeding vs. never breast fed) protected the infant against hospitalized
pneumonia in the first year of life. Information obtained about the child
included whether it had a normal birthweight, as defined by weighing
at least 5.5 pounds (36%), race (56% white, 28% black, and 16% other),
number of siblings (range 0–6), and age at which the child was hospi-
talized for pneumonia, along with an indicator variable as to whether
the child was hospitalized. Demographic characteristics of the mother,
such as age (average is 21.64 years with a range of 14–29 years), years
of schooling (average of 11.4 years), region of the country (15% North-
east, 25% North central, 40% South, and 20% West), poverty (92%), and
urban environment (76%). Health behavior measures during pregnancy,
such as alcohol use (36%) and cigarette use (34%), were also recorded.
The data for this study is available on our web site.

This data is used in the exercises.

1.14 Times to Weaning of Breast-Fed Newborns

The National Longitudinal Survey of Youth is a stratified random sample
which was begun in 1979. Youths, aged 14 to 21 in 1979, have been
interviewed yearly through 1988. Beginning in 1983, females in the
survey were asked about any pregnancies that have occurred since they
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were last interviewed (pregnancies before 1983 were also documented).
Questions regarding breast feeding are included in the questionnaire.

This data set consists of the information from 927 first-born children
to mothers who chose to breast feed their children and who have
complete information for all the variables of interest. The sample was
restricted to children born after 1978 and whose gestation age was
between 20 and 45 weeks. The year of birth restriction was included in
an attempt to eliminate recall problems.

The response variable in the data set is duration of breast feeding
in weeks, followed by an indicator of whether the breast feeding was
completed (i.e., the infant is weaned). Explanatory variables for breast-
feeding duration include race of mother (1 if white, 2 if black, 3 if
other); poverty status indicator (1 if mother in poverty); smoking status
of mother (1 if smoking at birth of child); alcohol-drinking status of
mother (1 if drinking at birth of child); age of mother at child’s birth,
year of child’s birth, education of mother (in years); and lack of prenatal
care status (1 if mother sought prenatal care after third month or never
sought prenatal care, 0 if mother sought prenatal care in first three
months of pregnancy). The complete data for this study is available on
our web site.

This data is used in section 5.4 to illustrate the construction of the
cohort life table. In Chapter 8, it is used to show how to build a model
where predicting the outcome is the main purpose, i.e., interest is in
finding factors which contribute to the distribution of the time to wean-
ing.

1.15 Death Times of Psychiatric Patients

Woolson (1981) has reported survival data on 26 psychiatric inpatients
admitted to the University of Iowa hospitals during the years 1935–1948.
This sample is part of a larger study of psychiatric inpatients discussed
by Tsuang and Woolson (1977). Data for each patient consists of age at
first admission to the hospital, sex, number of years of follow-up (years
from admission to death or censoring) and patient status at the follow-
up time. The data is given in Table 1.7. In section 6.3, the estimate of
the relative mortality function and cumulative excess mortality of these
patients, compared to the standard mortality rates of residents of Iowa
in 1959, is considered. In section 7.2, this data is used to illustrate one-
sample hypothesis tests. Here, a comparison of the survival experience
of these 26 patients is made to the standard mortality of residents of
Iowa to determine if psychiatric patients tend to have shorter lifetimes.
It is used in Chapter 9 to illustrate left truncation in the context of
proportional hazards models.



16 Chapter 1 Examples of Survival Data

TABLE 1.7
Survival data for psychiatric inpatients

Gender Age at Admission Time of Follow-up

Female 51 1
Female 58 1
Female 55 2
Female 28 22
Male 21 30�

Male 19 28
Female 25 32
Female 48 11
Female 47 14
Female 25 36�

Female 31 31�

Male 24 33�

Male 25 33�

Female 30 37�

Female 33 35�

Male 36 25
Male 30 31�

Male 41 22
Female 43 26
Female 45 24
Female 35 35�

Male 29 34�

Male 35 30�

Male 32 35
Female 36 40
Male 32 39�

�Censored observation

1.16 Death Times of Elderly Residents of a
Retirement Community

Channing House is a retirement center located in Palo Alto, California.
Data on ages at death of 462 individuals (97 males and 365 females) who
were in residence during the period January 1964 to July 1975 has been
reported by Hyde (1980). A distinctive feature of these individuals was
that all were covered by a health care program provided by the center
which allowed for easy access to medical care without any additional
financial burden to the resident. The age in months when members of
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the community died or left the center and the age when individuals
entered the community is available on the authors’ web site.

The life lengths in this data set are left truncated because an individ-
ual must survive to a sufficient age to enter the retirement community.
Individuals who die at an early age are excluded from the study. Ignor-
ing this left truncation leads to the problem of length-biased sampling.
The concept of left truncation and the bias induced into the estimation
process by ignoring it is discussed in section 3.4.

This data will be used in section 4.6 to illustrate how one estimates
the conditional survival function for left-truncated data. The data is used
in section 7.3 to illustrate the comparison of two samples (male and
female), when there is left truncation and right censoring employing
the log-rank test, and in Chapter 9 employing the Cox proportional
hazards model.

1.17 Time to First Use of Marijuana

Turnbull and Weiss (1978) report part of a study conducted at the
Stanford-Palo Alto Peer Counseling Program (see Hamburg et al. [1975]
for details of the study). In this study, 191 California high school boys
were asked, “When did you first use marijuana?” The answers were
the exact ages (uncensored observations); “I never used it,” which are
right-censored observations at the boys’ current ages; or “I have used it
but can not recall just when the first time was,” which is a left-censored
observation (see section 3.3). Notice that a left-censored observation

TABLE 1.8
Marijuana use in high school boys

Number of Exact Number Who Have Yet Number Who Have Started
Age Observations to Smoke Marijuana Smoking at an Earlier Age

10 4 0 0
11 12 0 0
12 19 2 0
13 24 15 1
14 20 24 2
15 13 18 3
16 3 14 2
17 1 6 3
18 0 0 1

�18 4 0 0
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tells us only that the event has occurred prior to the boy’s current age.
The data is in Table 1.8.

This data is used in section 5.2 to illustrate the calculation of the sur-
vival function for both left- and right-censored data, commonly referred
to as doubly censored data.

1.18 Time to Cosmetic Deterioration of Breast
Cancer Patients

Beadle et al. (1984a and b) report a retrospective study carried out to
compare the cosmetic effects of radiotherapy alone versus radiotherapy
and adjuvant chemotherapy on women with early breast cancer. The
use of an excision biopsy, followed by radiation therapy, has been
suggested as an alternative to mastectomy. This therapy preserves the
breast and, hence, has the benefit of an improved cosmetic effect. The
use of adjuvant chemotherapy is often indicated to prevent recurrence
of the cancer, but there is some clinical evidence that it enhances the
effects of radiation on normal tissue, thus, offsetting the cosmetic benefit
of this procedure.

To compare the two treatment regimes, a retrospective study of 46
radiation only and 48 radiation plus chemotherapy patients was made.
Patients were observed initially every 4–6 months, but, as their recovery
progressed, the interval between visits lengthened. At each visit, the
clinician recorded a measure of breast retraction on a three-point scale
(none, moderate, severe). The event of interest was the time to first

TABLE 1.9
Time to cosmetic deterioration (in months) in breast cancer patients with two
treatment regimens

Radiotherapy only: (0, 7]; (0, 8]; (0, 5]; (4, 11]; (5, 12]; (5, 11]; (6, 10]; (7, 16]; (7, 14]; (11, 15];
(11, 18]; �15; �17; (17, 25]; (17, 25]; �18; (19, 35]; (18, 26]; �22; �24; �24; (25, 37];
(26, 40]; (27, 34]; �32; �33; �34; (36, 44]; (36, 48]; �36; �36; (37, 44]; �37; �37; �37;
�38; �40; �45; �46; �46; �46; �46; �46; �46; �46; �46.
Radiotherapy and Chemotherapy: (0, 22]; (0, 5]; (4, 9]; (4, 8]; (5, 8]; (8, 12]; (8, 21]; (10, 35];
(10, 17]; (11, 13]; �11; (11, 17]; �11; (11, 20]; (12, 20]; �13; (13, 39]; �13; �13; (14, 17];
(14, 19]; (15, 22]; (16, 24]; (16, 20]; (16, 24]; (16, 60]; (17, 27]; (17, 23]; (17, 26]; (18, 25];
(18, 24]; (19, 32]; �21; (22, 32]; �23; (24, 31]; (24, 30]; (30, 34]; (30, 36]; �31; �32; (33, 40];
�34; �34; �35; (35, 39]; (44, 48]; �48.

(a, b]—interval in which deterioration took place.
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appearance of moderate or severe breast retraction. Due to the fact that
patients were observed only at these random times, the exact time of
breast retraction is known only to fall in the interval between visits.
This type of data is call interval-censored data (see section 3.3).

The data for the two groups is shown in Table 1.9. The data consists
of the interval, in months, in which deterioration occurred or the last
time a patient was seen without deterioration having yet occurred (right-
censored observations). This data is used in section 5.2 to illustrate the
computation of an estimate of the survival function based on interval-
censored data.

1.19 Time to AIDS

Lagakos et al. (1988) report data on the infection and induction times
for 258 adults and 37 children who were infected with the AIDS virus
and developed AIDS by June 30, 1986. The data consists of the time
in years, measured from April 1, 1978, when adults were infected by
the virus from a contaminated blood transfusion, and the waiting time
to development of AIDS, measured from the date of infection. For
the pediatric population, children were infected in utero or at birth,
and the infection time is the number of years from April 1, 1978 to
birth. The data is in Table 1.10.

In this sampling scheme, only individuals who have developed AIDS
prior to the end of the study period are included in the study. Infected
individuals who have yet to develop AIDS are not included in the
sample. This type of data is called right-truncated data (see section
3.4). Estimation of the survival function for this data with right-truncated
data is discussed in section 5.3.
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TABLE 1.10
Induction times (in years) for AIDS in adults and children

Infection Child Induction
Time Adult Induction Time Time

0.00 5
0.25 6.75
0.75 5, 5, 7.25
1.00 4.25, 5.75, 6.25, 6.5 5.5
1.25 4, 4.25, 4.75, 5.75
1.50 2.75, 3.75, 5, 5.5, 6.5 2.25
1.75 2.75, 3, 5.25, 5.25
2.00 2.25, 3, 4, 4.5, 4.75, 5, 5.25, 5.25, 5.5, 5.5, 6
2.25 3, 5.5 3
2.50 2.25, 2.25, 2.25, 2.25, 2.5, 2.75, 3, 3.25, 3.25,

4, 4, 4
2.75 1.25, 1.5, 2.5, 3, 3, 3.25, 3.75, 4.5, 4.5, 5, 5,

5.25, 5.25, 5.25, 5.25, 5.25
1

3.00 2, 3.25, 3.5, 3.75, 4, 4, 4.25, 4.25, 4.25, 4.75,
4.75, 4.75, 5

1.75

3.25 1.25, 1.75, 2, 2, 2.75, 3, 3, 3.5, 3.5, 4.25, 4.5
3.50 1.25, 2.25, 2.25, 2.5, 2.75, 2.75, 3, 3.25, 3.5,

3.5, 4, 4, 4.25, 4.5, 4.5
0.75

3.75 1.25, 1.75, 1.75, 2, 2.75, 3, 3, 3, 4, 4.25, 4.25 0.75, 1, 2.75, 3,
3.5, 4.25

4.00 1, 1.5, 1.5, 2, 2.25, 2.75, 3.5, 3.75, 3.75, 4 1
4.25 1.25, 1.5, 1.5, 2, 2, 2, 2.25, 2.5, 2.5, 2.5, 3,

3.5, 3.5
1.75

4.50 1, 1.5, 1.5, 1.5, 1.75, 2.25, 2.25, 2.5, 2.5, 2.5,
2.5, 2.75, 2.75, 2.75, 2.75, 3, 3, 3, 3.25, 3.25

3.25

4.75 1, 1.5, 1.5, 1.5, 1.75, 1.75, 2, 2.25, 2.75, 3, 3,
3.25, 3.25, 3.25, 3.25, 3.25, 3.25

1, 2.25

5.00 0.5, 1.5, 1.5, 1.75, 2, 2.25, 2.25, 2.25, 2.5, 2.5,
3, 3, 3

0.5, 0.75, 1.5, 2.5

5.25 0.25, 0.25, 0.75, 0.75, 0.75, 1, 1, 1.25, 1.25,
1.5, 1.5, 1.5, 1.5, 2.25, 2.25, 2.5, 2.5, 2.75

0.25, 1, 1.5

5.50 1, 1, 1, , 1.25, 1.25, 1.75, 2, 2.25, 2.25, 2.5 .5, 1.5, 2.5
5.75 0.25, 0.75, 1, 1.5, 1.5, 1.5, 2, 2, 2.25 1.75
600 0.5, 0.75, 0.75, 0.75, 1, 1, 1, 1.25, 1.25, 1.5,

1.5, 1.75, 1.75, 1.75, 2
0.5, 1.25

6.25 0.75, 1, 1.25, 1.75, 1.75 0.5, 1.25
6.50 0.25, 0.25, 0.75, 1, 1.25, 1.5 0.75
6.75 0.75, 0.75, 0.75, 1, 1.25, 1.25, 1.25 0.5, 0.75
7.00 0.75 0.75
7.25 0.25 0.25



2
Basic Quantities

and Models

2.1 Introduction

In this chapter we consider the basic parameters used in modeling sur-
vival data. We shall define these quantities and show how they are
interrelated in sections 2.2–2.4. In section 2.5 some common paramet-
ric models are discussed. The important application of regression to
survival analysis is covered in section 2.6, where both parametric and
semiparametric models are presented. Models for competing risks are
discussed in section 2.7.

Let X be the time until some specified event. This event may be death,
the appearance of a tumor, the development of some disease, recur-
rence of a disease, equipment breakdown, cessation of breast feeding,
and so forth. Furthermore, the event may be a good event, such as
remission after some treatment, conception, cessation of smoking, and
so forth. More precisely, in this chapter, X is a nonnegative random
variable from a homogeneous population. Four functions characterize
the distribution of X , namely, the survival function, which is the prob-
ability of an individual surviving to time x ; the hazard rate (function),
sometimes termed risk function, which is the chance an individual of
age x experiences the event in the next instant in time; the probabil-
ity density (or probability mass) function, which is the unconditional
probability of the event’s occurring at time x ; and the mean residual
life at time x , which is the mean time to the event of interest, given
the event has not occurred at x . If we know any one of these four

21
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functions, then the other three can be uniquely determined. In practice,
these four functions, along with another useful quantity, the cumulative
hazard function, are used to illustrate different aspects of the distribu-
tion of X . In the competing risk context, the cause-specific hazard rate,
which is the rate at which subjects who have yet to experience any
of the competing risks are experiencing the i th competing cause of
failure, is often used. This quantity and other competing risk quantities
are discussed in detail in section 2.7. In Chapters 4–6, we shall see how
these functions are estimated and how inferences are drawn about the
survival (or failure) distribution.

2.2 The Survival Function
The basic quantity employed to describe time-to-event phenomena is
the survival function, the probability of an individual surviving beyond
time x (experiencing the event after time x). It is defined as

S (x) � Pr (X � x). (2.2.1)

In the context of equipment or manufactured item failures, S (x) is
referred to as the reliability function. If X is a continuous random
variable, then, S (x) is a continuous, strictly decreasing function.

When X is a continuous random variable, the survival function is
the complement of the cumulative distribution function, that is, S (x) �
1 � F (x), where F (x) � Pr (X � x). Also, the survival function is the
integral of the probability density function, f (x), that is,

S (x) � Pr (X � x) �

∫ �

x
f (t) dt. (2.2.2)

Thus,

f (x) � �
dS (x)

dx
.

Note that f (x) dx may be thought of as the “approximate” probability
that the event will occur at time x and that f (x) is a nonnegative
function with the area under f (x) being equal to one.

EXAMPLE 2.1 The survival function for the Weibull distribution, discussed in more de-
tail in section 2.5, is S (x) � exp(��x�), � � 0, � � 0. The exponential
distribution is a special case of the Weibull distribution when � � 1.
Survival curves with a common median of 6.93 are exhibited in Figure
2.1 for � � 0.26328, � � 0.5; � � 0.1, � � 1; and � � 0.00208, � � 3.
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Figure 2.1 Weibull Survival functions for � � 0.5, � � 0.26328 ( );
� � 1.0, � � 0.1 (						); � � 3.0, � � 0.00208 (------).

Many types of survival curves can be shown but the important point
to note is that they all have the same basic properties. They are mono-
tone, nonincreasing functions equal to one at zero and zero as the time
approaches infinity. Their rate of decline, of course, varies according to
the risk of experiencing the event at time x but it is difficult to deter-
mine the essence of a failure pattern by simply looking at the survival
curve. Nevertheless, this quantity continues to be a popular description
of survival in the applied literature and can be very useful in compar-
ing two or more mortality patterns. Next, we present one more survival
curve, which will be discussed at greater length in the next section.

EXAMPLE 2.2 The U.S. Department of Health and Human Services publishes yearly
survival curves for all causes of mortality in the United States and each
of the fifty states by race and sex in their Vital Statistics of the United
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TABLE 2.1
Survival Functions of U.S. Population By Race and Sex in 1989

White White Black Black White White Black Black
Age Male Female Male Female Age Male Female Male Female

0 1.00000 1.00000 1.00000 1.00000 43 0.93771 0.97016 0.85917 0.93361
1 0.99092 0.99285 0.97996 0.98283 44 0.93477 0.96862 0.85163 0.92998
2 0.99024 0.99232 0.97881 0.98193 45 0.93161 0.96694 0.84377 0.92612
3 0.98975 0.99192 0.97792 0.98119 46 0.92820 0.96511 0.83559 0.92202
4 0.98937 0.99160 0.97722 0.98059 47 0.92450 0.96311 0.82707 0.91765
5 0.98905 0.99134 0.97664 0.98011 48 0.92050 0.96091 0.81814 0.91300
6 0.98877 0.99111 0.97615 0.97972 49 0.91617 0.95847 0.80871 0.90804
7 0.98850 0.99091 0.97571 0.97941 50 0.91148 0.95575 0.79870 0.90275
8 0.98825 0.99073 0.97532 0.97915 51 0.90639 0.95273 0.78808 0.89709
9 0.98802 0.99056 0.97499 0.97892 52 0.90086 0.94938 0.77685 0.89103

10 0.98782 0.99041 0.97472 0.97870 53 0.89480 0.94568 0.76503 0.88453
11 0.98765 0.99028 0.97449 0.97847 54 0.88810 0.94161 0.75268 0.87754
12 0.98748 0.99015 0.97425 0.97823 55 0.88068 0.93713 0.73983 0.87000
13 0.98724 0.98999 0.97392 0.97796 56 0.87250 0.93222 0.72649 0.86190
14 0.98686 0.98977 0.97339 0.97767 57 0.86352 0.92684 0.71262 0.85321
15 0.98628 0.98948 0.97258 0.97735 58 0.85370 0.92096 0.69817 0.84381
16 0.98547 0.98909 0.97145 0.97699 59 0.84299 0.91455 0.68308 0.83358
17 0.98445 0.98862 0.97002 0.97658 60 0.83135 0.90756 0.66730 0.82243
18 0.98326 0.98809 0.96829 0.97612 61 0.81873 0.89995 0.65083 0.81029
19 0.98197 0.98755 0.96628 0.97559 62 0.80511 0.89169 0.63368 0.79719
20 0.98063 0.98703 0.96403 0.97498 63 0.79052 0.88275 0.61584 0.78323
21 0.97924 0.98654 0.96151 0.97429 64 0.77501 0.87312 0.59732 0.76858
22 0.97780 0.98607 0.95873 0.97352 65 0.75860 0.86278 0.57813 0.75330
23 0.97633 0.98561 0.95575 0.97267 66 0.74131 0.85169 0.55829 0.73748
24 0.97483 0.98514 0.95267 0.97174 67 0.72309 0.83980 0.53783 0.72104
25 0.97332 0.98466 0.94954 0.97074 68 0.70383 0.82702 0.51679 0.70393
26 0.97181 0.98416 0.94639 0.96967 69 0.68339 0.81324 0.49520 0.68604
27 0.97029 0.98365 0.94319 0.96852 70 0.66166 0.79839 0.47312 0.66730
28 0.96876 0.98312 0.93989 0.96728 71 0.63865 0.78420 0.45058 0.64769
29 0.96719 0.98257 0.93642 0.96594 72 0.61441 0.76522 0.42765 0.62723
30 0.96557 0.98199 0.93273 0.96448 73 0.58897 0.74682 0.40442 0.60591
31 0.96390 0.98138 0.92881 0.96289 74 0.56238 0.72716 0.38100 0.58375
32 0.96217 0.98073 0.92466 0.96118 75 0.53470 0.70619 0.35749 0.56074
33 0.96038 0.98005 0.92024 0.95934 76 0.50601 0.68387 0.33397 0.53689
34 0.95852 0.97933 0.91551 0.95740 77 0.47641 0.66014 0.31050 0.51219
35 0.95659 0.97858 0.91044 0.95336 78 0.44604 0.63494 0.28713 0.48663
36 0.95457 0.97779 0.90501 0.95321 79 0.41503 0.60822 0.26391 0.46020
37 0.95245 0.97696 0.89922 0.95095 80 0.38355 0.57991 0.24091 0.43291
38 0.95024 0.97607 0.89312 0.94855 81 0.35178 0.54997 0.21819 0.40475
39 0.94794 0.97510 0.88677 0.94598 82 0.31991 0.51835 0.19583 0.37573
40 0.94555 0.97404 0.88021 0.94321 83 0.28816 0.48502 0.17392 0.34588
41 0.94307 0.97287 0.87344 0.94023 84 0.25677 0.44993 0.15257 0.31522
42 0.94047 0.97158 0.86643 0.93703 85 0.22599 0.41306 0.13191 0.28378
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States Series. In Table 2.1, we present the overall survival probabilities
for males and females, by race, taken from the 1990 report (U.S. De-
partment of Health and Human Services, 1990). Figure 2.2 shows the
survival curves and allows a visual comparison of the curves. We can
see that white females have the best survival probability, white males
and black females are comparable in their survival probabilities, and
black males have the worst survival.
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Figure 2.2 Survival Functions for all cause mortality for the US population in
1989. White males ( ); white females (						); black males (------); black
females (————).

When X is a discrete, random variable, different techniques are re-
quired. Discrete, random variables in survival analyses arise due to
rounding off measurements, grouping of failure times into intervals, or
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when lifetimes refer to an integral number of units. Suppose that X can
take on values xj , j � 1, 2, . . . with probability mass function (p.m.f.)
p(xj) � Pr (X � xj ), j � 1, 2, . . . , where x1 
 x2 
 	 	 	 .

The survival function for a discrete random variable X is given by

S (x) � Pr (X � x) �
∑

xj �x

p(xj). (2.2.3)

EXAMPLE 2.3 Consider, for pedagogical purposes, the lifetime X , which has the p.m.f.
p(xj) � Pr (X � j) � 1� 3, j � 1, 2, 3, a simple discrete uniform
distribution. The corresponding survival function, plotted in Figure 2.3,
is expressed by
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Figure 2.3 Survival function for a discrete random lifetime
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S (x) � Pr (X � x) �
∑

xj �x

p(xj) �

⎧
⎪⎪⎨

⎪⎪⎩

1 if 0 � x 
 1,
2� 3 if 1 � x 
 2,
1� 3 if 2 � x 
 3,
0 if x � 3.

Note that, when X is discrete, the survival function is a nonincreasing
step function.

2.3 The Hazard Function

A basic quantity, fundamental in survival analysis, is the hazard function.
This function is also known as the conditional failure rate in reliability,
the force of mortality in demography, the intensity function in stochastic
processes, the age-specific failure rate in epidemiology, the inverse of
the Mill’s ratio in economics, or simply as the hazard rate. The hazard
rate is defined by

h (x) � lim
�x→0

P [x � X 
 x � �x | X � x ]
�x

. (2.3.1)

If X is a continuous random variable, then,

h (x) � f (x) � S (x) � �d ln[S (x)]� dx. (2.3.2)

A related quantity is the cumulative hazard function H (x), defined
by

H (x) �

∫ x

0
h (u) du � � ln[S (x)]. (2.3.3)

Thus, for continuous lifetimes,

S (x) � exp[�H (x)] � exp
[

�

∫ x

0
h (u) du

]

. (2.3.4)

From (2.3.1), one can see that h (x) �x may be viewed as the “ap-
proximate” probability of an individual of age x experiencing the event
in the next instant. This function is particularly useful in determin-
ing the appropriate failure distributions utilizing qualitative information
about the mechanism of failure and for describing the way in which the
chance of experiencing the event changes with time. There are many
general shapes for the hazard rate. The only restriction on h (x) is that
it be nonnegative, i.e., h (x) � 0.

Some generic types of hazard rates are plotted in Figure 2.4. For
example, one may believe that the hazard rate for the occurrence of
a particular event is increasing, decreasing, constant, bathtub-shaped,
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Figure 2.4 Shapes of hazard functions. Constant hazard (—— ——); increas-
ing hazard (------); decreasing hazard (- - - - - -); bathtub shaped ( );
humpshaped (–– –– ––).

hump-shaped, or possessing some other characteristic which describes
the failure mechanism.

Models with increasing hazard rates may arise when there is natural
aging or wear. Decreasing hazard functions are much less common but
find occasional use when there is a very early likelihood of failure,
such as in certain types of electronic devices or in patients experienc-
ing certain types of transplants. Most often, a bathtub-shaped hazard is
appropriate in populations followed from birth. Similarly, some man-
ufactured equipment may experience early failure due to faulty parts,
followed by a constant hazard rate which, in the later stages of equip-
ment life, increases. Most population mortality data follow this type of
hazard function where, during an early period, deaths result, primarily,
from infant diseases, after which the death rate stabilizes, followed by
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an increasing hazard rate due to the natural aging process. Finally, if the
hazard rate is increasing early and eventually begins declining, then, the
hazard is termed hump-shaped. This type of hazard rate is often used
in modeling survival after successful surgery where there is an initial
increase in risk due to infection, hemorrhaging, or other complications
just after the procedure, followed by a steady decline in risk as the
patient recovers. Specific distributions which give rise to these different
types of failure rates are presented in section 2.5.

EXAMPLE 2.1 (continued) One particular distribution, which is flexible enough to
accommodate increasing (� � 1), decreasing (� 
 1), or constant
hazard rates (� � 1), is the Weibull distribution introduced in Example
2.1. Hazard rates, h (x) � ��x��1, are plotted for the same values of
the parameters used in Figure 2.1, namely, � � 0.26328, � � 0.5;
� � 0.1, � � 1; and � � 0.00208, � � 3 in Figure 2.5. One can see
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Figure 2.5 Weibull hazard functions for � � 0.5, � � 0.26328 ( );
� � 1.0, � � 0.1 (------); � � 3.0, � � 0.00208 (–– –– ––).
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that, though the three survival functions have the same basic shape, the
hazard functions are dramatically different.

An example of a bathtub-shaped hazard rate is presented in the
following example.

EXAMPLE 2.2 (continued) The 1989 U.S. mortality hazard rates, by sex and race,
are presented in Figure 2.6. One can see the decreasing hazard rates
early in all four groups, followed, approximately, by, a constant hazard
rate, eventually leading to an increasing hazard rate starting at different
times for each group.

0 20 40 60 80

0.0

0.05

0.10

0.15

Age in Years

H
az

ar
d 

R
at

es

Figure 2.6 Hazard functions for all cause mortality for the US population in
1989. White males ( ); white females (						); black males (- - - - - -);
black females (—— ——).
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When X is a discrete random variable, the hazard function is given
by

h (xj) � Pr (X � xj | X � xj ) �
p(xj)

S (xj�1)
, j � 1, 2, . . . (2.3.5)

where S (x0) � 1. Because p(xj) � S (xj�1) � S (xj ), in conjunction with
(2.3.5), h (xj ) � 1 � S (xj ) � S (xj�1), j � 1, 2, . . . .

Note that the survival function may be written as the product of
conditional survival probabilities

S (x) �
∏

xj �x

S (xj ) � S (xj�1). (2.3.6)

Thus, the survival function is related to the hazard function by

S (x) �
∏

xj �x

[1 � h (xj)]. (2.3.7)

EXAMPLE 2.3 (continued) Let us reconsider the discrete random variable X in Ex-
ample 2.3 with p(xj) � Pr (X � j) � 1� 3, j � 1, 2, 3. The hazard
function may be obtained by direct application of (2.3.5). This leads to

h (xj ) �

1� 3, for j � 1,
1� 2, for j � 2,
1, for j � 3, and
0, elsewhere.

Note that the hazard rate is zero for a discrete random variable except
at points where a failure could occur.

Practical Notes

1. Though the three survival functions in Figure 2.1 have the same basic
shape, one can see that the three hazard functions shown in Figure
2.5 are dramatically different. In fact, the hazard function is usually
more informative about the underlying mechanism of failure than
the survival function. For this reason, consideration of the hazard
function may be the dominant method for summarizing survival data.

2. The relationship between some function of the cumulative hazard
function and some function of time has been exploited to develop
hazard papers (Nelson, 1982), which will give the researcher an
intuitive impression as to the desirability of the fit of specific models.
For example, if X has a Weibull distribution, as in Example 2.1, then
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its cumulative hazard rate is H (x) � �x� , so a plot of ln H (x)
versus ln x is a straight line with slope � and y intercept ln �.
Using a nonparametric estimator of H (x), developed in Chapter 4,
this relationship can be exploited to provide a graphical check of
the goodness of fit of the Weibull model to data (see section 12.5 for
details and examples).

Theoretical Notes
1. For discrete lifetimes, we shall define the cumulative hazard function

by

H (x) �
∑

xj �x

h (xj). (2.3.8)

Notice that the relationship S (x) � exp��H (x)� for this definition
no longer holds true. Some authors (Cox and Oakes, 1984) prefer to
define the cumulative hazard for discrete lifetimes as

H (x) � �
∑

xj �x

ln[1 � h (xj)], (2.3.9)

because the relationship for continuous lifetimes S (x) � exp[�H (x)]
will be preserved for discrete lifetimes. If the h (xj) are small, (2.3.8)
will be an approximation of (2.3.9). We prefer the use of (2.3.8) be-
cause it is directly estimable from a sample of censored or truncated
lifetimes and the estimator has very desirable statistical properties.
This estimator is discussed in Chapter 4.

2. For continuous lifetimes, the failure distribution is said to have an
increasing failure-rate (IFR) property, if the hazard function h (x)
is nondecreasing for x � 0, and an increasing failure rate on the
average (IFRA) if the ratio of the cumulative hazard function to time
H (x) � x is nondecreasing for x � 0.

3. For continuous lifetimes, the failure distribution is said to have a
decreasing failure-rate (DFR) property if the hazard function h (x) is
nonincreasing for x � 0.

2.4 The Mean Residual Life Function
and Median Life

The fourth basic parameter of interest in survival analyses is the mean
residual life at time x . For individuals of age x , this parameter measures



2.4 The Mean Residual Life Function and Median Life 33

their expected remaining lifetime. It is defined as mrl(x) � E (X � x |
X � x). It can be shown (see Theoretical Note 1) that the mean residual
life is the area under the survival curve to the right of x divided by S (x).
Note that the mean life, � � mrl(0), is the total area under the survival
curve.

For a continuous random variable,

mrl(x) �

∫ �
x (t � x) f (t)dt

S (x)
�

∫ �
x S (t) dt

S (x)
(2.4.1)

and

� � E (X ) �

∫ �

0
t f (t) dt �

∫ �

0
S (t) dt. (2.4.2)

Also the variance of X is related to the survival function by

Var(X ) � 2
∫ �

0
tS (t)dt �

[∫ �

0
S (t) dt

]2

. (2.4.3)

The pth quantile (also referred to as the 100pth percentile) of the
distribution of X is the smallest xp so that

S (xp) � 1 � p, i.e., xp � inf�t : S (t) � 1 � p�. (2.4.4)

If X is a continuous random variable, then the pth quantile is found
by solving the equation S (xp) � 1 � p . The median lifetime is the 50th
percentile x0.5 of the distribution of X . It follows that the median lifetime
for a continuous random variable X is the value x0.5 so that

S (x0.5) � 0.5. (2.4.5)

EXAMPLE 2.4 The mean and median lifetimes for an exponential life distribution are
1� � and (ln2) � � as determined from equations (2.4.2) and (2.4.5), re-
spectively. Furthermore, the mean residual life for an exponential distri-
bution is also 1 � � from equation (2.4.1). Distributions with this property
are said to exhibit lack of memory. The exponential distribution is the
unique continuous distribution possessing this characteristic.

EXAMPLE 2.1 (continued) For the Weibull distribution the 100pth percentile is
found by solving the equation 1 � p � exp���x�

p � so that xp �

��ln[1 � p ]� ��1 � � .

EXAMPLE 2.2 (continued) The median and other percentiles for the population mor-
tality distribution of black men may be determined graphically by using
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Figure 2.7 Determination of the median lifetime and 80th percentile of life-
times for black men in the US population in 1989

the survival function plot depicted in Figure 2.2. First, find the ap-
propriate survival probability, and, then, interpolate to the appropriate
time. Determination of the median and 80th percentile, as illustrated
in Figure 2.7, give values of about 69 and 82 years, respectively. More
accurate values can be found by linear interpolation in Table 2.1. We
see that S (68) � 0.51679 � 0.5 and S (69) � 0.49520 
 0.5, so the
median lies between 68 and 69 years. By linear interpolation,

x0.5 � 68 �
S (68) � 0.5

S (68) � S (69)
� 68.78 years.

Similar calculations yield x0.8 � 81.81 years.
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Theoretical Notes

1. For a continuous random variable X ,

E (X � x | X � x) �

∫ �
x (t � x) f (t)dt

S (x)
.

We integrate by parts to establish equation (2.4.1) using the
fact that f (t)dt � �dS (t), so that E (X � x | X � x)S (x) �
�(t � x)S (t) |�

x �
∫ �

x S (t)dt . The first term on the right-hand side of
the equation is 0 because S (�) is 0. For a discrete, random variable,
the result that the mean residual life is related to the area under the
survival curve is obtained by using a partial summation formula.

2. Interrelationships between the various quantities discussed earlier,
for a continuous lifetime X , may be summarized as

S (x) �

∫ �

x
f (t)dt

� exp
[

�

∫ x

0
h (u)du

]

� exp[�H (x)]

�
mrl(0)
mrl(x)

exp
[

�

∫ x

0

du

mrl(u)

]

.

f (x) � �
d

dx
S (x)

� h (x)S (x)

�

(
d

dx
mrl(x) � 1

)(
mrl(0)
mrl(x)2

)

exp
[

�

∫ x

0

du

mrl(u)

]

h (x) � �
d

dx
ln [S (x)]

�
f (x)
S (x)

�

(
d

dx
mrl(x) � 1

)

� mrl(x)

mrl(x) �

∫ �
x S (u)du

S (x)

�

∫ �
x (u � x) f (u)du

S (x)
.
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3. Interrelationships between the various quantities discussed earlier,
for discrete lifetimes X , may be summarized as

S (x) �
∑

xj �x

p(xj)

�
∏

xj �x

[1 � h (xj)],

p(xj) � S (xj�1) � S (xj ) � h (xj)S (xj�1), j � 1, 2, . . . ,

h (xj) �
p(xj)

S (xj�1)
,

mrl(x) �
(xi�1 � x)S (xi) �

∑
j�i�1(xj�1 � xj )S (xj)

S (x)
,

for xi � x 
 xi�1.

4. If X is a positive random variable with a hazard rate h (t), which is a
sum of a continuous function hc(t) and a discrete function which has
mass hd(xj ) at times 0 � x1 � x2 � 	 	 	 , then the survival function
is related to the hazard rate by the so called “product integral” of
[1 � h (t)]dt defined as follows:

S (x) �
∏

xj �x

[1 � hd(xj )] exp
[

�

∫ x

0
hc(t)dt

]

.

5. Sometimes (particularly, when the distribution is highly skewed), the
median is preferred to the mean, in which case, the quantity median
residual lifetime at time x , mdrl(x), is preferred to the mean residual
lifetime at time x , mrl(x), as defined in (2.4.1). The median residual
lifetime at time x is defined to be the median of the conditional
distribution of X � x | X � x and is determined using (2.4.4) except
that the conditional distribution is used. It is the length of the interval
from x to the time where one-half of the individuals alive at time x
will still be alive. Note that the mdrl(0) is simply the median of the
unconditional distribution.

2.5 Common Parametric Models
for Survival Data

Although nonparametric or semiparametric models will be used exten-
sively, though not exclusively, in this book, it is appropriate and neces-
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sary to discuss the more widely used parametric models. These models
are chosen, not only because of their popularity among researchers
who analyze survival data, but also because they offer insight into the
nature of the various parameters and functions discussed in previous
sections, particularly, the hazard rate. Some of the important models
discussed include the exponential, Weibull, gamma, log normal, log lo-
gistic, normal, exponential power, Gompertz, inverse Gaussian, Pareto,
and the generalized gamma distributions. Their survival functions, haz-
ard rates, density functions, and expected lifetimes are summarized in
Table 2.2.

First, because of its historical significance, mathematical simplicity,
and important properties, we shall discuss the exponential distribution.
Its survival function is S (x) � exp[��x ], � � 0, x � 0. The density
function is f (x) � � exp[��x ], and it is characterized by a constant
hazard function h (x) � �.

The exponential distribution has the following properties. The first,
referred to as the lack of memory property, is given by

P(X � x � z | X � x) � P(X � z), (2.5.1)

which allows for its mathematical tractability but also reduces its appli-
cability to many realistic applied situations. Because of this distributional
property, it follows that E (X � x | X � x) � E (X ) � 1� �; that is, the
mean residual life is constant. Because the time until the future occur-
rence of an event does not depend upon past history, this property is
sometimes called the “no-aging” property or the “old as good as new”
property. This property is also reflected in the exponential distribution’s
constant hazard rate. Here, the conditional probability of failure at any
time t , given that the event has not occurred prior to time t , does not
depend upon t . Although the exponential distribution has been histor-
ically very popular, its constant hazard rate appears too restrictive in
both health and industrial applications.

The mean and standard deviation of the distribution are 1 � � (thus,
the coefficient of variation is unity) and the pth quantile is xp � �ln(1�
p) � �. Because the exponential distribution is a special case of both the
Weibull and gamma distributions, considered in subsequent paragraphs,
other properties will be implicit in the discussion of those distributions.

Though not the first to suggest the use of this next distribution, Rosen
and Rammler (1933) used it to describe the “laws governing the fine-
ness of powdered coal,” and Weibull (1939, 1951) proposed the same
distribution, to which his name later became affixed, for describing the
life length of materials. Its survival function is S (x) � exp[��x� ], for
x � 0. Here � � 0 is a scale parameter, and � � 0 is a shape parameter.
The two-parameter Weibull was previously introduced in Example 2.1.
The exponential distribution is a special case when � � 1. Figure 2.1,
already presented, exhibits a variety of Weibull survival functions. Its
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TABLE 2.2
Hazard Rates, Survival Functions, Probability Density Functions, and Expected
Lifetimes for Some Common Parametric Distributions

Hazard Rate Survival Function Probability Density Function Mean
Distribution h(x) S (x) f (x) E (X )

Exponential � exp[��x ] � exp(��x)
1
�

� � 0, x � 0

Weibull

�, � � 0, ��x��1 exp[��x� ] ��x��1 exp(��x� )
�(1 � 1 � �)

�1 � �

x � 0

Gamma

�, � � 0,
f (x)
S (x)

1 � I (�x, �)� ��x��1 exp(��x)
�(�)

�

�
x � 0

Log normal
f (x)

S (x)
1 � �

[
1nx � �

	

] exp

[
� 1

2

(
1nx��

	

)2
]

x(2
)1 � 2	
exp(� � 0.5	2)

	 � 0, x � 0

Log

logistic
�x��1�

1 � �x�

1
1 � �x�

�x��1�

[1 � �x� ]2

Csc(
� �)

��1 � �

�, � � 0, x � 0 if � � 1

Normal

	 � 0,
f (x)
S (x)

1 � �
[

x��
	

] exp

[
� 1

2

(
x��

	

)2
]

(2
)1 � 2	
�

�� 
 x 
 �

Exponential

power ��� x��1 exp�[�x ]� � exp�1 � exp[(�x)� ]� �e�� x��1 exp[(�x)� ] � exp�exp[(�x)� ]�
∫ �

0
S (x)dx

�, � � 0, x � 0

Gompertz �e�x exp
[

�
� (1 � e�x )

]
�e�x exp

[
�
� (1 � e�x )

] ∫ �

0
S (x)dx

�, � � 0, x � 0

Inverse
Gaussian

f (x)
S (x)

�

[(
�
x

)1 � 2 (
1 � x

�

)]
� e2�� ��

{
�
[

�
x

]1 � 2 (
1 � x

�

)} (
�

2
x3

)1 � 2
exp
[

�(x��2)
2�2x

]
�

� � 0, x � 0

Pareto

� � 0, � � 0
�

x
��

x�

���

x��1
��

� � 1
x � � if � � 1

Generalized
gamma

f (x)
S (x)

1 � I [�x� , �]
���x���1 exp(��x� )

�(�)

∫ �

0
S (x)dx

� � 0, � � 0,
� � 0, x � 0

� I (t, �) �
∫ t

0u��1 exp(�u)du� �(�).
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hazard function has the fairly flexible form

h (x) � ��x��1. (2.5.2)

One can see from Figure 2.5 that the Weibull distribution is flexible
enough to accommodate increasing (� � 1), decreasing (� 
 1), or
constant hazard rates (� � 1). This fact, coupled with the model’s
relatively simple survival, hazard, and probability density functions,
have made it a very popular parametric model. It is apparent that the
shape of the Weibull distribution depends upon the value of � , thus,
the reason for referring to this parameter as the “shape” parameter.

The r th moment of the Weibull distribution is [�(1 � r� �)]��r� � .
The mean and variance are [�(1 � 1� �)]��1 � � and ��(1 � 2� �) �
[�(1 � 1� �)]2���2 � � , respectively, where �[� ] �

∫ �
0 u��1e�udu is the

well-known gamma function. �[� ] � (� � 1)! when � is an integer and
is tabulated in Beyer (1968) when � is not an integer. The pth quantile
of the Weibull distribution is expressed by

xp � ��[ln(1 � p)]� ��1 � � .

It is sometimes useful to work with the logarithm of the lifetimes. If we
take Y � ln X , where X follows a Weibull distribution, then, Y has the
density function

� exp�� [y � (�(ln�) � �)] � exp�� [y � (�(ln �) � �)]��, �� 
 y 
 �.
(2.5.3)

Writing the model in a general linear model format, Y � � � 	E ,
where � � (�ln�) � �, 	 � ��1 and E has the standard extreme value
distribution with density function

exp(w � ew), �� 
 w 
 �. (2.5.4)

A random variable (more familiar to the traditional linear model au-
dience) X is said to follow the log normal distribution if its logarithm
Y � ln X , follows the normal distribution. For time-to-event data, this
distribution has been popularized because of its relationship to the nor-
mal distribution (a distribution which we assume is commonly known
from elementary statistics courses and whose hazard rate, survival func-
tion, density function and mean are reported in Table 2.2 for complete-
ness) and because some authors have observed that the log normal
distribution approximates survival times or ages at the onset of certain
diseases (Feinleib, 1960 and Horner, 1987).

Like the normal distribution, the log normal distribution is completely
specified by two parameters � and 	 , the mean and variance of Y . Its
density function is expressed by

f (x) �
exp

[
� 1

2

( lnx��
	

)2]

x(2
)1 � 2	
� �

(
lnx � u

	

)

� x (2.5.5)
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and its survival function is given by

S (x) � 1 � �
[
lnx � �

	

]

, (2.5.6)

where �(�) is the cumulative distribution function (density function)
of a standard normal variable.

The hazard rate of the log normal is hump-shaped, that is, its value
at 0 is zero, and it increases to a maximum and, then, decreases to 0 as
x approaches infinity (see Figure 2.8). This model has been criticized
as a lifetime distribution because the hazard function is decreasing for
large x which seems implausible in many situations. The model may fit
certain cases where large values of x are not of interest.

For the log normal distribution the mean lifetime is given by exp(� �
	2 � 2) and the variance by [exp(	2)�1] exp(2��	2). The pth percentile,
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Figure 2.8 Log normal hazard rates. � � 0, 	 � 0.5 ( ); � � 0, 	 �

0.1 (------); � � 0, 	 � 2.0 (— — —)
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xp is expressed as exp(� � 	zp), where zp is the pth percentile of a
standard normal distribution.

A variable X is said to follow the log logistic distribution if its loga-
rithm Y � ln X follows the logistic distribution, a distribution closely
resembling the normal distribution, but the survival function is mathe-
matically more tractable. The density function for Y is expressed by

exp( y��
	 )

	 [1 � exp( y��
	 )]2

, �� 
 y 
 �, (2.5.7)

where � and 	2 are, respectively, the mean and scale parameter of Y .
Again, we can cast this distribution in the linear model format by taking
Y � � � 	W , where W is the standardized logistic distribution with
� � 0 and 	 � 1.

The hazard rate and survival function, respectively, for the log logistic
distribution may be written as relatively simple expressions:

h (x) �
��x��1

1 � �x�
, (2.5.8)

and

S (x) �
1

1 � �x�
, (2.5.9)

where � � 1� 	 � 0 and � � exp(��� 	).
The numerator of the hazard function is the same as the Weibull haz-
ard, but the denominator causes the hazard to take on the following
characteristics: monotone decreasing for � � 1. For � � 1, the hazard
rate increases initially to a maximum at time [(� � 1) � � ]1 � � and then
decreases to zero as time approaches infinity, as shown in Figure 2.9.
The mean and variance of X are given by E [X ] � 
csc(
� �) � (��1 � �),
if � � 1, and Var(X ) � 2
csc(2
� �) � (��2 � �) � E [X ]2, if � � 2. The
pth percentile is xp � �p � [�(1 � p)]�1 � � .

This distribution is similar to the Weibull and exponential models
because of the simple expressions for h (x) and S (x) above. Its hazard
rate is similar to the log normal, except in the extreme tail of the
distribution, but its advantage is its simpler hazard function h (x) and
survival function S (x).

The gamma distribution has properties similar to the Weibull distribu-
tion, although it is not as mathematically tractable. Its density function
is given by

f (x) � ��x��1 exp(��x) � �(�), (2.5.10)

where � � 0, � � 0, x � 0, and �(�) is the gamma function. For
reasons similar to those of the Weibull distribution, � is a scale pa-
rameter and � is called the shape parameter. This distribution, like the
Weibull, includes the exponential as a special case (� � 1), approaches
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Figure 2.9 Log logistic hazard rates. � � 1, 	 � 0.5 ( ); � � 1, 	 � 1.0
(						); � � 1, 	 � 2.0 (------)

a normal distribution as � → �, and gives the chi-square distribution
with  degrees of freedom when  � 2� (�, an integer) and � � 1� 2.
The mean and variance of the gamma distribution are �� � and �� �2,
respectively.

The hazard function for the gamma distribution is monotone increas-
ing for � � 1, with h (0) � 0 and h (x) → � as x → �, and monotone
decreasing for � 
 1, with h (0) � � and h (x) → � as x → �. When
� � 1, the mode is at x � (� � 1) � �. A plot of the gamma hazard
function is presented in Figure 2.10.

The survival function of the gamma distribution is expressed as

S (x) �

[∫ �

x
�(�t)��1 exp(��t)dt

]

� �(�) (2.5.11)
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Figure 2.10 Gamma hazard rates. � � 1, � � 2.0 ( ); � � 1, � � 1.0
(------); � � 1, � � 0.5 (–– –– ––)

� 1 �

[∫ �x

0
u��1 exp(�u)du

]

� �(�)

� 1 � I (�x, �),

where I is the incomplete gamma function.
For � � n , an integer, we obtain the Erlangian distribution whose sur-

vival function and hazard function, respectively, calculated from (2.2.2)
and (2.3.2) simplify to

S (x) � exp(��x)
n�1∑

k�0

(�x)k � k ! (2.5.12)
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and

h (x) � �(�x)n�1

[

(n � 1)!
n�1∑

k�0

(�x)k � k !

]�1

.

Practical Notes
1. A relationship for the exponential distribution is H (x) � �lnS (x) �

�x . This provides an empirical check for an exponential fit to data
by plotting H (x) vs x . The resulting plot should be a straight line
through the origin with slope �.

2. An empirical check of the Weibull distribution is accomplished by
plotting ln[H (x)] vs. ln(x) (utilizing the relationship in the continu-
ation of Example 2.1). The plot should result in a straight line with
slope � and y intercept ln (�). Later, in Chapter 12, we shall use this
technique to give crude estimates of the parameters.

3. The generalized gamma distribution introduces an additional param-
eter � allowing additional flexibility in selecting a hazard function.
This model has density function

f (x) �
���x���1 exp���x��

�(�)
(2.5.13)

and survival function

S (x) � 1 � I (�x� , �).

This distribution reduces to the exponential when � � � � 1, to the
Weibull when � � 1, to the gamma when � � 1, and approaches the
log normal as � → �. It is a useful distribution for model checking.

4. Occasionally, the event of interest may not occur until a threshold
time � is attained, in which case, S (x) 
 1 only for x � � . In
reliability theory, � is called the “guarantee time.” For example, in this
instance, the Weibull survival function may be modified as follows:

S (x) � exp[��(x � �)� ], � � 0, � � 0 and x � �.

Similar modifications may be made to the other distributions dis-
cussed in this section to accommodate the notion of a threshold
parameter.

5. A model that has a hazard function capable of being bathtub-shaped,
i.e., decreasing initially and, then, increasing as time increases, is the
exponential power distribution with � 
 1 (Smith-Bain, 1975).

6. A distribution with a rich history in describing mortality curves is
one introduced by Gompertz (1825) and later modified by Makeham
(1860) by adding a constant to the hazard function (see Chiang, 1968,
pp. 61–62). Again, the hazard function, survival function, density
function, and mean of the Gompertz distribution are summarized in
Table 2.2.
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7. Other distributions which have received some attention in the liter-
ature are the inverse Gaussian and the Pareto distributions. These
distributions are tabulated in Table 2.2 along with their survival, haz-
ard, and probability density functions.

Theoretical Notes

1. The exponential distribution is summarized, with references, by
Galambos (1982), Galambos and Kotz (1978), and Johnson and Kotz
(1970). It is known to have been studied as early as the nineteenth
century by Clausius (1858) in connection with the kinetic theory of
gases. More recently, in studies of manufactured items (Davis, 1952;
Epstein and Sobel, 1954; Epstein, 1958) and, to a lesser extent, in
health studies (Feigl and Zelen, 1965; Sheps, 1966), the exponential
distribution has historically been used in describing time to failure. As
has been already noted, its constant hazard rate and lack of memory
property greatly limit its applicability to modern survival analyses.

2. The Weibull distribution has been widely used in both industrial and
biomedical applications. Lieblein and Zelen (1956), Berretoni (1964),
and Nelson (1972) used it to describe the life length of ball bearings,
electron tubes, manufactured items, and electrical insulation, respec-
tively. Pike (1966) and Peto and Lee (1973) have given a theoretical
motivation for its consideration in representing time to appearance
of tumor or until death in animals which were subjected to carcino-
genic insults over time (the multi-hit theory). Lee and Thompson
(1974) argued, in a similar vein, that, within the class of proportional
hazard rate distributions, the Weibull appears to be the most appro-
priate choice in describing lifetimes. Other authors (Lee and O’Neill,
1971; Doll, 1971) claim that the Weibull model fits data involving
time to appearance of tumors in animals and humans quite well.

3. The Weibull distribution is also called the first asymptotic distribu-
tion of extreme values (see Gumbel, 1958, who popularized its use).
The Weibull distribution arises as the limiting distribution of the min-
imum of a sample from a continuous distribution. For this reason,
the Weibull distribution has been suggested as the appropriate dis-
tribution in certain circumstances.

2.6 Regression Models for Survival Data

Until this point, we have dealt exclusively with modeling the survival
experience of a homogeneous population. However, a problem fre-
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quently encountered in analyzing survival data is that of adjusting the
survival function to account for concomitant information (sometimes re-
ferred to as covariates, explanatory variables or independent variables).
Populations which exhibit such heterogeneity are prevalent whether
the study involves a clinical trial, a cohort study, or an observational
study.

Consider a failure time X � 0, as has been discussed in the previous
sections, and a vector Zt � (Z1, . . . , Zp) of explanatory variables as-
sociated with the failure time X . Zt may include quantitative variables
(such as blood pressure, temperature, age, and weight), qualitative vari-
ables (such as gender, race, treatment, and disease status) and/or time-
dependent variables, in which case Zt(x) � [Z1(x), . . . , Zp(x)]. Typical
time-dependent variables include whether some intermediate event has
or has not occurred by time x , the amount of time which has passed
since the same intermediate event, serial measurements of covariates
taken since a treatment commenced or special covariates created to test
the validity of given model. Previously, we have stressed the impor-
tance of modeling the survival function, hazard function, or some other
parameter associated with the failure-time distribution. Often a matter
of greater interest is to ascertain the relationship between the failure
time X and one or more of the explanatory variables. This would be
the case if one were comparing the survival functions for two or more
treatments, wanting to determine the prognosis of a patient presenting
with various characteristics, or identifying pertinent risk factors for a
particular disease, controlling for relevant confounders.

Two approaches to the modeling of covariate effects on survival have
become popular in the statistical literature. The first approach is analo-
gous to the classical linear regression approach. In this approach, the
natural logarithm of the survival time Y � ln(X) is modeled. This is the
natural transformation made in linear models to convert positive vari-
ables to observations on the entire real line. A linear model is assumed
for Y , namely,

Y � � � �tZ � 	W, (2.6.1)

where �t � (�1, . . . , �p) is a vector of regression coefficients and W
is the error distribution. Common choices for the error distribution
include the standard normal distribution which yields a log normal
regression model, the extreme value distribution (2.5.4), which yields a
Weibull regression model, or a logistic distribution (2.5.7), which yields
a log logistic regression model. Estimation of regression coefficients,
which is discussed in detail in Chapter 12, is performed using maximum
likelihood methods and is readily available in most statistical packages.

This model is called the accelerated failure-time model. To see why
this is so, let So(x) denote the survival function of X � eY when Z is
zero, that is, So(x) is the survival function of exp(� � 	W ).
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Now,

Pr [X � x | Z] � Pr [Y � lnx | Z]

� Pr [� � 	W � lnx � �tZ | Z]

� Pr [e��	W � x exp(��tZ) | Z]

� So[x exp(��tZ)].

Notice that the effect of the explanatory variables in the original time
scale is to change the time scale by a factor exp(��tZ). Depending on
the sign of �tZ, the time is either accelerated by a constant factor or
degraded by a constant factor. Note that the hazard rate of an individual
with a covariate value Z for this class of models is related to a baseline
hazard rate ho by

h (x | Z) � ho[x exp(��tZ)] exp(��tZ). (2.6.2)

EXAMPLE 2.5 Suppose that the survival time X follows a Weibull distribution with
parameters � and � . Recall that in section 2.5 we saw that the natural
logarithm of X, Y � ln(X ), can be written as a linear model, Y � � �
	W , where � � (�ln(�) � �), 	 � ��1, and W has a standard extreme
value distribution with density function f (w) � exp�w � ew�, �� 

w 
 �. Suppose that we also have a set of p �1 covariates, �Z2, . . . , Zp�
which can explain some of the patient to patient variability observed for
the lifetimes under study. We shall define the covariate Z1 � 1 to allow
for an intercept term in our log linear model and Zt � (Z1, . . . , Zp). Let
�t � (�1, . . . , �p) be a vector of regression coefficients. The natural log
linear model for Y is given by

Y � �tZ � 	W.

With this model, the survival function for Y is expressed as

SY (y | Z) � exp
[

� exp
(

y � �tZ
	

)]

.

On the original time scale the survival function for X is given by

SX (x | Z) � exp
[

�x1 � 	 exp
(

��tZ
	

)]

� exp��[x exp(��tZ)]��

� So(x exp���tZ�),

where So(x) � exp(�x�) is a Weibull survival function.

Although the accelerated failure-time model provides a direct exten-
sion of the classical linear model’s construction for explanatory variables
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for conventional data, for survival data, its use is restricted by the error
distributions one can assume. As we have seen earlier in this chapter,
the easiest survival parameter to model is the hazard rate which tells
us how quickly individuals of a certain age are experiencing the event
of interest. The major approach to modeling the effects of covariates
on survival is to model the conditional hazard rate as a function of
the covariates. Two general classes of models have been used to relate
covariate effects to survival, the family of multiplicative hazard models
and the family of additive hazard rate models.

For the family of multiplicative hazard rate models the conditional
hazard rate of an individual with covariate vector z is a product of a
baseline hazard rate ho(x) and a non-negative function of the covariates,
c(�tz), that is,

h (x | z) � ho(x)c(�tz). (2.6.3)

In applications of the model, ho(x) may have a specified parametric
form or it may be left as an arbitrary nonnegative function. Any nonneg-
ative function can be used for the link function c( ). Most applications
use the Cox (1972) model with c(�tz) � exp(�tz) which is chosen for
its simplicity and for the fact it is positive for any value of �tz.

A key feature of multiplicative hazards models is that, when all the
covariates are fixed at time 0, the hazard rates of two individuals with
distinct values of z are proportional. To see this consider two individuals
with covariate values z1 and z2. We have

h (x | z1)
h (x | z2)

�
h0(x)c(�tz1)
h0(x)c(�tz2)

�
c(�tz1)
c(�tz2)

,

which is a constant independent of time.
Using (2.6.3), we see that the conditional survival function of an in-

dividual with covariate vector z can be expressed in terms of a baseline
survival function So(x) as

S (x | z) � So(x)c(�t
z). (2.6.4)

This relationship is also found in nonparametric statistics and is called
a “Lehmann Alternative.”

Multiplicative hazard models are used for modeling relative survival
in section 6.3 and form the basis for modeling covariate effects in
Chapters 8 and 9.

EXAMPLE 2.5 (continued) The multiplicative hazard model for the Weibull dis-
tribution with baseline hazard rate ho(x) � ��x��1 is h (x | z) �
��x��1c(�tz). When the Cox model is used for the link function,
h (x | z) � ��x��1 exp(�tz). Here the conditional survival function
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is given by S (x | z) � exp[��x� ]exp[�t
z] � exp[��x� exp(�tz)] �

exp[��(x exp[�tz� � ])� ], which is of the form of an accelerated failure-
time model (2.6.2). The Weibull is the only continuous distribution
which has the property of being both an accelerated failure-time model
and a multiplicative hazards model.

A second class of models for the hazard rate is the family of addi-
tive hazard rate models. Here, we model the conditional hazard function
by

h (x | z) � ho(x) �
p∑

j�1

zj(x)� j(x). (2.6.5)

The regression coefficients for these models are functions of time so
that the effect of a given covariate on survival is allowed to vary over
time. The p regression functions may be positive or negative, but their
values are constrained because (2.6.5) must be positive.

Estimation for additive models is typically made by nonparametric
(weighted) least-squares methods. Additive models are used in section
6.3 to model excess mortality and, in Chapter 10, to model regression
effects.

Practical Notes
1. From Theoretical Note 1 of section 2.4,

S (x | z) � exp
[

�

∫ x

0
h (t | z)dt

]

(2.6.6)

and, in conjunction with (2.6.4),

S (x | z) � exp
[

�

∫ x

0
ho(t) exp[�tz]dt

]

�

{

exp
[

�

∫ x

0
ho(t)dt

]}exp[�t
z]

� [So(x)]exp[�t
z]

which implies that

ln[� ln S (x | z)] � �tz � ln[� ln So(x)]. (2.6.7)

So the logarithms of the negative logarithm of the survival functions
of X , given different regressor variables zi , are parallel. This relation-
ship will serve as a check on the proportional hazards assumption
discussed further in Chapter 11.
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2.7 Models for Competing Risks

In the previous sections of this chapter we have examined parameters
which can be used to describe the failure time, T , of a randomly selected
individual. Here T may be the time to death (see, for example, sections
1.5, 1.7, 1.8, 1.11), the time to treatment failure (see, for example,
sections 1.9, 1.10), time to infection (see sections 1.6, 1.12), time to
weaning (section 1.14), etc.

In some medical experiments we have the problem of competing
risks. Here each subject may fail due to one of K (K � 2) causes, called
competing risks. An example of competing risks is found in section 1.3.
Here the competing risks for treatment failure are relapse and death
in remission. Occurrence of one of these events precludes us from
observing the other event on this patient. Another classical example of
competing risks is cause-specific mortality, such as death from heart
disease, death from cancer, death from other causes, etc.

To discuss parameters for the competing-risks problem we shall for-
mulate the model in terms of a latent failure time approach. Other for-
mulations, as discussed in Kalbfleisch and Prentice (1980), give similar
representations. Here we let Xi, i � 1, . . . , K be the potential unobserv-
able time to occurrence of the i th competing risk. What we observe
for each patient is the time at which the subject fails from any cause,
T � Min(X1, . . . , Xp) and an indicator � which tells which of the K risks
caused the patient to fail, that is, � � i if T � Xi .

The basic competing risks parameter is the cause-specific hazard rate
for risk i defined by

hi(t) � lim
� t→0

P [t � T 
 t � � t, � � i | T � t ]
� t

(2.7.1)

� lim
� t→0

P [t � Xi 
 t � � t, � � i | Xj � t, j � 1, . . . , K ]
� t

Here hi (t) tells us the rate at which subjects who have yet to experience
any of the competing risks are experiencing the i th competing cause of
failure. The overall hazard rate of the time to failure, T , given by (2.3.1)
is the sum of these K cause-specific hazard rates; that is

hT (t) �
K∑

i�1

hi (t).

The cause-specific hazard rate can be derived from the joint sur-
vival function of the K competing risks. Let S (t1, . . . , tK ) � Pr[X1 �
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t1, . . . , XK � tK ]. The cause specific hazard rate is given by

hi(t) �
��S (t1, . . . , tK ) � �ti

∣
∣
t1�			tK �t

S (t, . . . , t)
(2.7.2)

EXAMPLE 2.6 Suppose that we have K competing risks and that the potential failure
times are independent with survival functions Si (t) for i � 1, 2, . . . , K .
Then the joint survival function is S (t1, . . . , tK ) �

∏K
i�1 Si(ti), and by

(2.7.2) we have

hi(t) �
��

∏K
j�1 S j (t j) � �ti

∣
∣
t1�			tK �t

∏K
j�1 S j (t)

�
��Si (ti) � �ti

∣
∣
t1�t

Si(t)
,

which is precisely the hazard rate of Xi .

Example 2.6 shows that for independent competing risks the marginal
and cause-specific hazard rates are identical. This need not be the case
when the risks are dependent as we see in the following example.

EXAMPLE 2.7 Suppose we have two competing risks and the joint survival function
is S (t1, t2) � [1 � �(�1t1 � �2t2)]�1 � �, � � 0, �1, �2 � 0. Here the two
potential failure times are correlated with a Kendall’s � of (�� (� � 2))
(see section 13.3 for a discussion and derivation of this model). By
(2.7.2) we have

hi(t) �
��[1 � �(�1t1 � �2t2)]�1 � � � �ti

∣
∣
t1�t2�t

1 � �t(�1 � �2)]�1 � �

�
�i

1 � �t(�1 � �2)
, i � 1, 2.

Here the survival function of the time to failure, T � min(X1, X2)
is S (t, t) � ST (t) � [1 � �t(�1 � �2)]�1 � � and its hazard rate is
(�1 � �2) � [1 � �t(�1 � �2)]�1 � � . Note that the marginal survival function
for X1 is given by S (t1, 0) � [1 � �t�1]�1 � � and the marginal hazard
rate is, from (2.3.2), �1 � (1 � ��1t), which is not the same as the crude
hazard rate.

In competing-risks modeling we often need to make some assump-
tions about the dependence structure between the potential failure
times. Given that we can only observe the failure time and cause and
not the potential failure times these assumptions are not testable with
only competing risks data. This is called the identifiability dilemma.
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We can see the problem clearly by careful examination of Example 2.7.
Suppose we had two independent competing risks with hazard rates
�1 � [1 � �t(�1 � �2)] and �2 � [1 � �t(�1 � �2)], respectively. By Example
2.6 the cause-specific hazard rates and the marginal hazard rates are
identical when we have independent competing risks. So the crude
hazard rates for this set of independent competing risks are identical
to the set of dependent competing risks in Example 2.7. This means
that given what we actually see, (T, �), we can never distinguish a pair
of dependent competing risks from a pair of independent competing
risks.

In competing risks problems we are often interested not in the hazard
rate but rather in some probability which summarizes our knowledge
about the likelihood of the occurrence of a particular competing risk.
Three probabilities are computed, each with their own interpretation.
These are the crude, net, and partial crude probabilities. The crude
probability is the probability of death from a particular cause in the real
world where all other risks are acting on the individual. For example,
if the competing risk is death from heart disease, then an example of a
crude probability is the chance a man will die from heart disease prior to
age 50. The net probability is the probability of death in a hypothetical
world where the specific risk is the only risk acting on the population.
In the potential failure time model this is a marginal probability for
the specified risk. For example, a net probability is the chance that
a man will die from heart disease in the counterfactual world where
men can only die from heart disease. Partial crude probabilities are the
probability of death in a hypothetical world where some risks of death
have been eliminated. For example, a partial crude probability would
be the chance a man dies from heart disease in a world where cancer
has been cured.

Crude probabilities are typically expressed by the cause-specific sub-
distribution function. This function, also known as the cumulative in-
cidence function, is defined as Fi(t) � P [T � t, � � i ]. The cumulative
incidence function can be computed directly from the joint density
function of the potential failure times or it can be computed from the
cause specific hazard rates. That is,

Fi(t) � P [T � t, � � i ] �

t∫

0

hi (u) exp��HT (u)� du. (2.7.3)

Here HT (t) �
∑K

j�1

∫ t
0 hj (u) du is the cumulative hazard rate of T . Note

that the value of Fi(t) depends on the rate at which all the competing
risks occur, not simply on the rate at which the specific cause of interest
is occurring. Also, since hi (t) can be estimated directly from the ob-
served data, Fi(t) is directly estimable without making any assumptions
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about the joint distribution of the potential failure times (see section
4.7). Fi(t) is not a true distribution function since Fi(�) � P [� � i ]. It
has the property that it is non-decreasing with Fi(0) � 0 and Fi(�) 
 1.
Such a function is called a “sub-distribution” function.

The net survival function, Si(t), is the marginal survival function found
from the joint survival function by taking t j � 0 for all j � i . When
the competing risks are independent then the net survival function is
related to the crude probabilities by

Si (t) � exp

⎧
⎨

⎩
�

t∫

0

dFi(u)
ST (u)

du

⎫
⎬

⎭
.

This relationship is used in Chapter 4 to allow us to estimate prob-
abilities when there is a single independent competing risk which is
regarded as random censoring (see section 3.2 for a discussion of ran-
dom censoring).

When the risks are dependent, Peterson (1976) shows that net sur-
vival probabilities can be bounded by the crude probabilities. He shows
that

ST (t) � Si (t) � 1 � Fi(t).

The lower (upper) bounds correspond to perfect positive (negative)
correlation between the risks. These bounds may be quite wide in
practice. Klein and Moeschberger (1988) and Zheng and Klein (1994)
show that these bounds can be tightened by assuming a family of
dependence structures for the joint distribution of the competing risks.

For partial crude probabilities we let J be the set of causes that an
individual can fail from and JC the set of causes which are eliminated
from consideration. Let T J � min(Xi, i � J) then we can define the
partial crude sub-distribution function by F J

i (t) � Pr [T J � t, � � i ], i �
J. Here the i th partial crude probability is the chance of dying from
cause i in a hypothetical patient who can only experience one of the
causes of death in the set J. One can also define a partial crude hazard
rate by

� J
i (t) �

��S (t1, . . . , tK )� �ti
∣
∣
t j �t,t j �J,t j �0,t j �JC

S (t1, . . . , tp)
∣
∣
t j �t,t j �J,t j �0,t j �JC

. (2.7.4)

As in the case of the crude partial incidence function we can express
the partial crude sub-distribution function as

F J
i (t) � Pr [T J � t, � � i ] �

t∫

0

� J
i (x) exp

⎧
⎨

⎩
�
∑

j�J

t∫

0

� J
j (u) du

⎫
⎬

⎭
dx.

(2.7.5)
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When the risks are independent then the partial crude hazard rate can
be expressed in terms of the crude probabilities as

� J
i (t) �

dFi (t)� dt

ST (t)
. (2.7.6)

EXAMPLE 2.8 Suppose we have three independent exponential competing risks with
hazard rates �1, �2, �3, respectively. In this case, as seen in Example 2.6,
the net and crude hazard rates for the first competing risk are equal
to �1. The hazard rate of T is hT (t) � �1 � �2 � �3. Equation (2.7.3),
the crude sub-distribution function for the first competing risk is

F1(t) �

t∫

0

�1 exp(�u(�1 � �2 � �3) du

�
�1

�1 � �2 � �3
�1 � exp��t(�1 � �2 � �3)��.

Note that the crude probability of death from cause 1 in the interval
[0, t ] is not the same as the net (marginal) probability of death in this
interval given by 1 � exp���1t�. Also Fi(�) � �1 � (�1 � �2 � �3), which
is the probability that the first competing risk occurs first. If we consider
a hypothetical world where only the first two competing risks are oper-
ating ( J � �1, 2�), the partial crude hazard rates are � J

i (t) � �i , i � 1, 2,
and the partial crude sub-distribution function is given by

F J
1 (t) �

t∫

0

�1 exp(�u(�1 � �2) du �
�1

�1 � �2
�1 � exp��t(�1 � �2)��.

EXAMPLE 2.7 (continued) Suppose we have two competing risks with joint survival
function S (t1, t2) � [1 � �(�1t1 � �2t2)]�1 � �, � � 0, �1, �2 � 0. Here the
crude hazard rates are given by �i � [1 � �t(�1 � �2)], for i � 1, 2. The
cause-specific cumulative incidence function for the i th risk is

Fi(t) �

t∫

0

�i

[1 � �x(�1 � �2)]
exp

⎧
⎨

⎩
�

x∫

0

�1 � �2

[1 � �u(�1 � �2)]
du

⎫
⎬

⎭
dx

�
�i

�1 � �2

{
1 � [1 � �t(�1 � �2)]

�1 � �
}

.

In Figure 2.11 we plot the cumulative incidence function and the net
probability for cause 1 when �1 � 1, �2 � 2, and � � 2. Here we
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Figure 2.11 Cumulative incidence function (solid line) and net probability
for the first competing risk in Example 2.7.

see clearly that the cumulative incidence function levels off at one-third
the probability that the first competing risk fails first. Also we see quite
clearly that the crude probability is always less than the net probability.

Practical Notes
1. Competing risk theory has an intriguing history going back to a mem-

oir read in 1760 by Daniel Bernoulli before the French Academy of
Sciences and published in 1765. It was motivated by a controversy on
the merits of smallpox inoculation. Using Halley’s Breslau life table of
1693, Bernoulli constructed a hypothetical lifetable, which reflected
the mortality structure at different ages if smallpox was eliminated. A
key assumption was, as Bernoulli recognized, that the hypothetical
lifetimes of individuals saved from smallpox were independent of
lifetimes associated with the other causes of death. Bernoulli’s ques-
tion “What would be the effect on mortality if the occurrence of one
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or more causes of death were changed?” and the untestable assump-
tion of independence of causes of death are still very much with us
today.

2. For simplicity, we shall only assume one competing risk, whose event
time will be denoted by Y (although all results may be general-
ized to many competing risks). In the competing-risks framework,
as we have seen, we can only observe T � minimum (X, Y ) and
� � I (X 
 Y ), an indicator function which indicates whether or
not the main event of interest has occurred. The early observation
by Cox (1959, 1962) that there was a difficulty in the interpretation
of bivariate data in the competing risk context was elucidated and
clarified by later authors. Berman (1963) showed explicitly that the
distribution of (T, �) determined that of X , if X and Y are assumed
to be independent. Tsiatis (1975) proved a nonidentifiability theorem
which concluded that a dependent-risk model is indistinguishable
from some independent risk model and that any analysis of such
data should include a careful analysis of biological circumstances.
Peterson (1976) argued that serious errors can be made in estimating
the survival function in the competing risk problem because one can
never know from the data whether X and Y are independent or not.

3. Heckman and Honore (1989) show, under certain regularity con-
ditions, for both proportional hazards and accelerated failure time
models that if there is an explanatory covariate, Z, whose support is
the entire real line then the joint distribution of (X, Y ) is identifiable
from (T, �, Z). Slud (1992), in a slightly different vein, shows how the
marginal distribution of the survival time X can be nonparametrically
identifiable when only the data (T, �, Z) are observed, where Z is an
observed covariate such that the competing risk event time, Y , and
Z are conditionally independent given X .

Theoretical Notes

1. Slud and Rubinstein (1983) have obtained tighter bounds on S (x)
than the Peterson bounds described earlier, in this framework, by
utilizing some additional information. Their method requires the in-
vestigator to bound the function

�(t) �
�[ fi (t) � qi(t)] � 1�
�[Si (t) � ST (t)] � 1�

where

fi(t) � �
dSi (t)

dt
,
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and

qi(t) �
d

dt
Fi(t).

Knowledge of the function �(t) and the observable information,
(T, �), is sufficient to determine uniquely the marginal distribution
of X . The resulting estimators Ŝ�(x) are decreasing functions of �(	).
These resulting bounds are obtained by the investigator’s specifica-
tion of two functions, �i(t)[�1(t) 
 �2(t)], so that if the true �(t)
function is in the interval [�1(t) 
 �2(t)], for all t , then Ŝ�2(t) �
S (t) � Ŝ �1(t).

2. Pepe (1991) and Pepe and Mori (1993) interpret the cumulative in-
cidence function as a “marginal probability.” Note that this function
is not a true marginal distribution as discussed earlier but rather is
the chance that the event of interest will occur prior to time t in a
system where an individual is exposed to both risks. Pepe and Mori
suggest as an alternative to the cumulative incidence function the
“conditional probability” of X , defined by

P(�X � t, X 
 Y � | �Y 
 t, X � Y �c) �
Fi(t)
F c

i (t)
,

which they interpret as the probability of X ’s occurring in [0, t), given
nonoccurrence of Y in [0, t), where F c denotes the complement of F .

2.8 Exercises

2.1 The lifetime of light bulbs follows an exponential distribution with a
hazard rate of 0.001 failures per hour of use.

(a) Find the mean lifetime of a randomly selected light bulb.

(b) Find the median lifetime of a randomly selected light bulb.

(c) What is the probability a light bulb will still function after 2,000
hours of use?

2.2 The time in days to development of a tumor for rats exposed to a
carcinogen follows a Weibull distribution with � � 2 and � � 0.001.

(a) What is the probability a rat will be tumor free at 30 days? 45 days?
60 days?

(b) What is the mean time to tumor? (Hint �(0.5) �
√


.)

(c) Find the hazard rate of the time to tumor appearance at 30 days, 45
days, and 60 days.

(d) Find the median time to tumor.
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2.3 The time to death (in days) following a kidney transplant follows a log
logistic distribution with � � 1.5 and � � 0.01.

(a) Find the 50, 100, and 150 day survival probabilities for kidney trans-
plantation in patients.

(b) Find the median time to death following a kidney transplant.

(c) Show that the hazard rate is initially increasing and, then, decreas-
ing over time. Find the time at which the hazard rate changes from
increasing to decreasing.

(d) Find the mean time to death.

2.4 A model for lifetimes, with a bathtub-shaped hazard rate, is the ex-
ponential power distribution with survival function S (x) � exp�1 �
exp[(�x)� ]�.
(a) If � � 0.5, show that the hazard rate has a bathtub shape and find
the time at which the hazard rate changes from decreasing to increasing.

(b) If � � 2, show that the hazard rate of x is monotone increasing.

2.5 The time to death (in days) after an autologous bone marrow transplant,
follows a log normal distribution with � � 3.177 and 	 � 2.084. Find

(a) the mean and median times to death;

(b) the probability an individual survives 100, 200, and 300 days fol-
lowing a transplant; and

(c) plot the hazard rate of the time to death and interpret the shape of
this function.

2.6 The Gompertz distribution is commonly used by biologists who believe
that an exponential hazard rate should occur in nature. Suppose that
the time to death in months for a mouse exposed to a high dose of
radiation follows a Gompertz distribution with � � 0.01 and � � 0.25.
Find

(a) the probability that a randomly chosen mouse will live at least one
year,

(b) the probability that a randomly chosen mouse will die within the
first six months, and

(c) the median time to death.

2.7 The time to death, in months, for a species of rats follows a gamma
distribution with � � 3 and � � 0.2. Find

(a) the probability that a rat will survive beyond age 18 months,

(b) the probability that a rat will die in its first year of life, and

(c) the mean lifetime for this species of rats.

2.8 The battery life of an internal pacemaker, in years, follows a Pareto
distribution with � � 4 and � � 5.
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(a) What is the probability the battery will survive for at least 10 years?

(b) What is the mean time to battery failure?

(c) If the battery is scheduled to be replaced at the time to, at which 99%
of all batteries have yet to fail (that is, at to so that Pr (X � to) � .99),
find to.

2.9 The time to relapse, in months, for patients on two treatments for lung
cancer is compared using the following log normal regression model:

Y � Ln(X ) � 2 � 0.5Z � 2W,

where W has a standard normal distribution and Z � 1 if treatment A
and 0 if treatment B.

(a) Compare the survival probabilities of the two treatments at 1, 2, and
5 years.

(b) Repeat the calculations if W has a standard logistic distribution.
Compare your results with part (a).

2.10 A model used in the construction of life tables is a piecewise, con-
stant hazard rate model. Here the time axis is divided into k intervals,
[�i�1, �i), i � 1, . . . , k , with �o � 0 and �k � �. The hazard rate on the
i th interval is a constant value, �i ; that is

h (x) �

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

�1 0 � x 
 �1

�2 �1 � x 
 �2
...
�k�1 �k�2 � x 
 �k�1

�k x � �k�1

.

(a) Find the survival function for this model.

(b) Find the mean residual-life function.

(c) Find the median residual-life function.

2.11 In some applications, a third parameter, called a guarantee time, is
included in the models discussed in this chapter. This parameter � is
the smallest time at which a failure could occur. The survival function
of the three-parameter Weibull distribution is given by

S (x) �

{
1 if x 
 �
exp[��(x � �)� ] if x � � .

(a) Find the hazard rate and the density function of the three- parameter
Weibull distribution.
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(b) Suppose that the survival time X follows a three-parameter Weibull
distribution with � � 1, � � 0.0075 and � � 100. Find the mean and
median lifetimes.

2.12 Let X have a uniform distribution on the interval 0 to � with density
function

1� �, for 0 � x � �
f (x) �

0, otherwise.

(a) Find the survival function of X .

(b) Find the hazard rate of X .

(c) Find the mean residual-life function.

2.13 Suppose that X has a geometric distribution with probability mass func-
tion

p(x) � p(1 � p)x�1, x � 1, 2, . . .

(a) Find the survival function of X . (Hint: Recall that for 0 
 � 
 1,∑�
j�k � j � �k � (1 � �).

(b) Find the hazard rate of X . Compare this rate to the hazard rate of
an exponential distribution.

2.14 Suppose that a given individual in a population has a survival time
which is exponential with a hazard rate �. Each individual’s hazard rate
� is potentially different and is sampled from a gamma distribution with
density function

f (�) �
�����1e���

�(�)

Let X be the life length of a randomly chosen member of this popula-
tion.

(a) Find the survival function of X .

(Hint: Find S (x) � E� [e��x ].)

(b) Find the hazard rate of X . What is the shape of the hazard rate?

2.15 Suppose that the hazard rate of X is a linear function h(x) � � � �x ,
with � and � � 0. Find the survival function and density function of x .

2.16 Given a covariate Z , suppose that the log survival time Y follows a
linear model with a logistic error distribution, that is,

Y � ln(X ) � � � �Z � 	W where the pdf of W is given by

f (w) �
ew

(1 � ew)2
, �� 
 w 
 �.
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(a) For an individual with covariate Z , find the conditional survival
function of the survival time X , given Z , namely, S (x | Z).
(b) The odds that an individual will die prior to time x is expressed by
[1 � S (x | Z)]� S (x | Z). Compute the odds of death prior to time x for
this model.
(c) Consider two individuals with different covariate values. Show that,
for any time x , the ratio of their odds of death is independent of x . The
log logistic regression model is the only model with this property.

2.17 Suppose that the mean residual life of a continuous survival time X is
given by MRL(x) � x � 10.
(a) Find the mean of X .
(b) Find h (x).
(c) Find S (x).

2.18 Let X have a uniform distribution on 0 to 100 days with probability
density function

f (x) � 1� 100 for 0 
 x 
 100,

� 0, elsewhere.

(a) Find the survival function at 25, 50, and 75 days.
(b) Find the mean residual lifetime at 25, 50, and 75 days.
(c) Find the median residual lifetime at 25, 50, and 75 days.

2.19 Suppose that the joint survival function of the latent failure times for
two competing risks, X and Y , is

S (x, y) � (1 � x)(1 � y)(1 � .5xy), 0 
 x 
 1, 0 
 y 
 1.

(a) Find the marginal survival function for x .
(b) Find the cumulative incidence of T1.

2.20 Let X and Y be two competing risks with joint survival function

S (x, y) � exp��x � y � .5xy�, 0 
 x, y.

(a) Find the marginal cumulative distribution function of X .
(b) Find the cumulative incidence function of X .



3
Censoring and

Truncation

3.1 Introduction

Time-to-event data present themselves in different ways which create
special problems in analyzing such data. One peculiar feature, often
present in time-to-event data, is known as censoring, which, broadly
speaking, occurs when some lifetimes are known to have occurred only
within certain intervals. The remainder of the lifetimes are known ex-
actly. There are various categories of censoring, such as right censoring,
left censoring, and interval censoring. Right censoring will be discussed
in section 3.2. Left or interval censoring will be discussed in section 3.3.
To deal adequately with censoring in the analysis, we must consider
the design which was employed to obtain the survival data. There are
several types of censoring schemes within both left and right censoring.
Each type will lead to a different likelihood function which will be the
basis for the inference. As we shall see in section 3.5, though the likeli-
hood function is unique for each type of censoring, there is a common
approach to be used in constructing it.

A second feature which may be present in some survival studies is
that of truncation, discussed in section 3.4. Left truncation occurs when
subjects enter a study at a particular age (not necessarily the origin for
the event of interest) and are followed from this delayed entry time
until the event occurs or until the subject is censored. Right truncation

63
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occurs when only individuals who have experienced the event of in-
terest are observable. The main impact on the analysis, when data are
truncated, is that the investigator must use a conditional distribution in
constructing the likelihood, as shown in section 3.5, or employ a sta-
tistical method which uses a selective risk set to be explained in more
detail in Chapter 4.

Sections 3.5 and 3.6 present an overview of some theoretical results
needed to perform modern survival analysis. Section 3.5 shows the
construction of likelihoods for censored and truncated data. These like-
lihoods are the basis of inference techniques for parametric models and,
suitably modified, as partial likelihoods for semiparametric models. Sec-
tion 3.6 gives a brief introduction to the theory of counting processes.
This very general theory is used to develop most nonparametric tech-
niques for censored and truncated data and is the basis for developing
the statistical properties of both parametric and nonparametric methods
in survival analysis.

3.2 Right Censoring

First, we will consider Type I censoring where the event is observed only
if it occurs prior to some prespecified time. These censoring times may
vary from individual to individual. A typical animal study or clinical trial
starts with a fixed number of animals or patients to which a treatment
(or treatments) is (are) applied. Because of time or cost considerations,
the investigator will terminate the study or report the results before all
subjects realize their events. In this instance, if there are no accidental
losses or subject withdrawals, all censored observations have times
equal to the length of the study period.

Generally, it is our convention that random variables are denoted
by upper case letters and fixed quantities or realizations of random
variables are denoted by lower case letters. With censoring, this con-
vention will obviously present some difficulties in notation because, as
we shall see, some censoring times are fixed and some are random. At
the risk of causing some confusion we will stick to upper case letters
for censoring times. The reader will be expected to determine from the
context whether the censoring time is random or fixed.

In right censoring, it is convenient to use the following notation. For a
specific individual under study, we assume that there is a lifetime X and
a fixed censoring time, Cr (Cr for “right” censoring time). The X ’s are
assumed to be independent and identically distributed with probability
density function f (x) and survival function S (x). The exact lifetime X
of an individual will be known if, and only if, X is less than or equal
to Cr. If X is greater than Cr, the individual is a survivor, and his or
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her event time is censored at Cr. The data from this experiment can be
conveniently represented by pairs of random variables (T, �), where �
indicates whether the lifetime X corresponds to an event (� � 1) or is
censored (� � 0), and T is equal to X , if the lifetime is observed, and
to Cr if it is censored, i.e., T � min(X, Cr).

EXAMPLE 3.1 Consider a large scale animal experiment conducted at the National
Center for Toxicological Research (NCTR) in which mice were fed a
particular dose of a carcinogen. The goal of the experiment was to
assess the effect of the carcinogen on survival. Toward this end, mice
were followed from the beginning of the experiment until death or until
a prespecified censoring time was reached, when all those still alive
were sacrificed (censored). This example is illustrated in Figure 3.1.

C
r1

X

X

C

2

3

r4

START OF STUDY END OF STUDY

Figure 3.1 Example of Type I censoring

When animals have different, fixed-sacrifice (censoring) times, this
form of Type I censoring is called progressive Type I censoring. An
advantage of this censoring scheme is that the sacrificed animals give
information on the natural history of nonlethal diseases. This type of
censoring is illustrated in the following example.
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Cr
_________

X2
_____________

X3
________________

Cr

Cr
______________________

Xn1+1

__________
Xn1+2

_______________________________
Cr

Xn1+n2
Start of study    First sacrifice time (42 weeks)   Second sacrifice time  (104 weeks)

________________

Figure 3.2 Type I censoring with two different sacrifice times

CALENDAR TIME

END
OF
STUDY

C
r2

C
r4

X
3

X
1

Figure 3.3 Generalized Type I censoring when each individual has a different
starting time
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EXAMPLE 3.2 Consider a mouse study where, for each sex, 200 mice were randomly
divided into four dose-level groups and each mouse was followed un-
til death or until a prespecified sacrifice time (42 or 104 weeks) was
reached (see Figure 3.2 for a schematic of this trial for one gender and
one dose level). The two sacrifice times were chosen to reduce the cost
of maintaining the animals while allowing for limited information on
the survival experience of longer lived mice.

Another instance, which gives rise to Type I censoring, is when in-
dividuals enter the study at different times and the terminal point of
the study is predetermined by the investigator, so that the censoring
times are known when an individual is entered into the study. In such
studies (see Figure 3.3 for a hypothetical study with only four subjects),
individuals have their own specific, fixed, censoring time. This form
of censoring has been termed generalized Type I censoring (cf. David
and Moeschberger, 1978). A convenient representation of such data is
to shift each individual’s starting time to 0 as depicted in Figure 3.4.
Another method for representing such data is the Lexis diagram (Keid-
ing, 1990). Here calendar time is on the horizontal axis, and life length
is represented by a 45◦ line. The time an individual spends on study
is represented by the height of the ray on the vertical axis. Figure 3.5
shows a Lexis diagram for the generalized Type I censoring scheme
depicted in Figure 3.4. Here patients 1 and 3 experience the event of
interest prior to the end of the study and are exact observations with
� � 1. Patients 2 and 4, who experience the event after the end of
the study, are only known to be alive at the end of the study and are
censored observations (� � 0). Examples of studies with generalized
Type I censoring are the breast-cancer trial in section 1.5, the acute
leukemia trial in section 1.2, the study of psychiatric patients in section
1.15, and the study of weaning of newborns in section 1.14.

A second type of right censoring is Type II censoring in which the
study continues until the failure of the first r individuals, where r is
some predetermined integer (r 
 n). Experiments involving Type II
censoring are often used in testing of equipment life. Here, all items
are put on test at the same time, and the test is terminated when r of
the n items have failed. Such an experiment may save time and money
because it could take a very long time for all items to fail. It is also true
that the statistical treatment of Type II censored data is simpler because
the data consists of the r smallest lifetimes in a random sample of
n lifetimes, so that the theory of order statistics is directly applicable
to determining the likelihood and any inferential technique employed.
Here, it should be noted that r the number of failures and n � r the
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X
1

C
r2

X
3

C
r4

TIME ON STUDY

Figure 3.4 Generalized Type I censoring for the four individuals in Figure 3.3
with each individuals starting time backed up to 0. T1 � X1 (death time for
first individual) (�1 � 1); T2 � Cr2 (right censored time for second individual)
(�2 � 0); T3 � X3 (death time for third individual) (�3 � 1); T4 � Cr4 (right
censored time for fourth individual) (�4 � 0).
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Figure 3.5 Lexis diagram for generalized Type I censoring in Figure 3.3
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number of censored observations are fixed integers and the censoring
time T(r ), the r th ordered lifetime is random.

A generalization of Type II censoring, similar to the generalization
of Type I censoring with different sacrifice times, is progressive Type
II censoring. Here the first r1 failures (an integer chosen prior to the
start of the study) in a sample of n items (or animals) are noted and
recorded. Then n1 � r1 of the remaining n � r1 unfailed items (or
animals) are removed (or sacrificed) from the experiment, leaving n�n1

items (or animals) on study. When the next r2 items (another integer
chosen prior to the start of the study) fail, n2 � r2 of the unfailed items
are removed (or animals sacrificed). This process continues until some
predecided series of repetitions is completed. Again, ri and ni (i � 1, 2)
are fixed integers and the two censoring times, T(r1) and T(n1�r2), are
random.

A third type of right censoring is competing risks censoring. A special
case of competing risks censoring is random censoring. This type of
censoring arises when we are interested in estimation of the marginal
distribution of some event but some individuals under study may ex-
perience some competing event which causes them to be removed
from the study. In such cases, the event of interest is not observable
for those who experience the competing event and these subjects are
random right censored at that time. As shown in section 2.7, in the
competing risk framework, to be able to identify the marginal distribu-
tion from competing risks data we need the event time and censoring
times to be independent of each other. This relationship cannot be de-
termined from the data alone. Typical examples of where the random
censoring times may be thought to be independent of the main event
time of interest are accidental deaths, migration of human populations,
and so forth.

Whenever we encounter competing risks it is important to determine
precisely what quantity we wish to estimate. We need to decide if we
want to estimate a marginal (net), crude, or partial crude probability as
discussed in section 2.7. If we wish to estimate a marginal probability,
which is the chance of the event’s occurring in a world where all other
risks cannot occur, the other competing risks are random observations.
Here we need an assumption of independence between the time to
the event of interest and the competing events to make a meaningful
inference. Techniques for estimation in this framework are discussed in
sections 4.1–4.6. When interest centers on estimation of crude proba-
bilities (that is, the probability of the event in the real world where a
person can fail from any of the competing causes), then each competing
risk is modeled by a cumulative incidence curve (see section 4.7) and
no independence assumption is needed. For partial crude probabilities
(that is, the probability of the event’s occurring in a world where only
a subset of competing risks are possible causes of failure) some of the
competing risks are treated as random censored observations (those
to be eliminated) and others are modeled by a cumulative incidence
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curve. In this case we require that those causes treated as random
censored observations need to be independent of the other causes to
obtain consistent estimates of the desired probabilities.

In many studies, the censoring scheme is a combination of random
and Type I censoring. In such studies, some patients are randomly
censored when, for example, they move from the study location for
reasons unrelated to the event of interest, whereas others are Type I
censored when the fixed study period ends.

Theoretical Note
1. In Type I progressive censoring, the sacrifice times are fixed (pre-

determined prior to the start of the study), whereas, in Type II pro-
gressive censoring, the sacrifice times are random times at which a
predetermined number of deaths has occurred. This distinction is
extremely important in constructing the likelihood function in sec-
tion 3.5. An advantage of either type of censoring scheme is that the
sacrificed animals give information on the natural history of nonlethal
diseases.

3.3 Left or Interval Censoring

A lifetime X associated with a specific individual in a study is considered
to be left censored if it is less than a censoring time Cl(Cl for “left”
censoring time), that is, the event of interest has already occurred for
the individual before that person is observed in the study at time Cl.
For such individuals, we know that they have experienced the event
sometime before time Cl, but their exact event time is unknown. The
exact lifetime X will be known if, and only if, X is greater than or
equal to Cl. The data from a left-censored sampling scheme can be
represented by pairs of random variables (T, �), as in the previous
section, where T is equal to X if the lifetime is observed and � indicates
whether the exact lifetime X is observed (� � 1) or not (� � 0).
Note that, for left censoring as contrasted with right censoring, T �
max(X, C1).

EXAMPLE 3.3 In a study to determine the distribution of the time until first marijuana
use among high school boys in California, discussed in section 1.17,
the question was asked, When did you you first use marijuana?” One of
the responses was “I have used it but can not recall just when the first
time was.” A boy who chose this response is indicating that the event
had occurred prior to the boy’s age at interview but the exact age at



3.3 Left or Interval Censoring 71

which he started using marijuana is unknown. This is an example of a
left-censored event time.

EXAMPLE 3.4 In early childhood learning centers, interest often focuses upon test-
ing children to determine when a child learns to accomplish certain
specified tasks. The age at which a child learns the task would be con-
sidered the time-to-event. Often, some children can already perform
the task when they start in the study. Such event times are considered
left censored.

Often, if left censoring occurs in a study, right censoring may also
occur, and the lifetimes are considered doubly censored (cf. Turnbull,
1974). Again, the data can be represented by a pair of variables (T, �),
where T � max[ min (X, Cr), Cl] is the on study time; � is 1 if T is a
death time, 0 if T is a right-censored time, and �1 if T is a left-censored
time. Here Cl is the time before which some individuals experience the
event and Cr is the time after which some individuals experience the
event. X will be known exactly if it is less than or equal to Cr and
greater than or equal to Cl.

EXAMPLE 3.3 (continued) An additional possible response to the question “When
did you first use marijuana?” was “I never used it” which indicates
a right-censored observation. In the study described in section 1.17,
both left-censored observations and right-censored observations were
present, in addition to knowing the exact age of first use of marijuana
(uncensored observations) for some boys. Thus, this is a doubly cen-
sored sampling scheme.

EXAMPLE 3.4 (continued) Some children undergoing testing, as described in Ex-
ample 3.4, may not learn the task during the entire study period,
in which case such children would be right-censored. Coupled with
the left-censored observations discussed earlier, this sample would also
contain doubly censored data.

A more general type of censoring occurs when the lifetime is only
known to occur within an interval. Such interval censoring occurs when
patients in a clinical trial or longitudinal study have periodic follow-up
and the patient’s event time is only known to fall in an interval (Li , Ri ]
(L for left endpoint and R for right endpoint of the censoring interval).
This type of censoring may also occur in industrial experiments where
there is periodic inspection for proper functioning of equipment items.
Animal tumorigenicity experiments may also have this characteristic.
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EXAMPLE 3.5 In the Framingham Heart Study, the ages at which subjects first devel-
oped coronary heart disease (CHD) are usually known exactly. How-
ever, the ages of first occurrence of the subcategory angina pectoris
may be known only to be between two clinical examinations, approx-
imately two years apart (Odell et al., 1992). Such observations would
be interval-censored.

EXAMPLE 3.6 In section 1.18, the data from a retrospective study to compare the
cosmetic effects of radiotherapy alone versus radiotherapy and adju-
vant chemotherapy on women with early breast cancer are reported.
Patients were observed initially every 4–6 months but, as their recovery
progressed, the interval between visits lengthened. The event of inter-
est was the first appearance of moderate or severe breast retraction, a
cosmetic deterioration of the breast. The exact time of retraction was
known to fall only in the interval between visits (interval-censored) or
after the last time the patient was seen (right-censored).

In view of the last two examples, it is apparent that any combination
of left, right, or interval censoring may occur in a study. Of course,
interval censoring is a generalization of left and right censoring because,
when the left end point is 0 and the right end point is Cl we have left
censoring and, when the left end point is Cr and the right end point is
infinite, we have right censoring.

The main impact on the analysis, when data are truncated, is that
the investigator must use a conditional distribution in constructing the
likelihood, as shown in section 3.5, or employ a statistical method which
uses a selective risk set, explained in more detail in section 4.6.

3.4 Truncation

A second feature of many survival studies, sometimes confused with
censoring, is truncation. Truncation of survival data occurs when only
those individuals whose event time lies within a certain observational
window (YL, YR) are observed. An individual whose event time is not
in this interval is not observed and no information on this subject is
available to the investigator. This is in contrast to censoring where
there is at least partial information on each subject. Because we are only
aware of individuals with event times in the observational window, the
inference for truncated data is restricted to conditional estimation.

When YR is infinite then we have left truncation. Here we only ob-
serve those individuals whose event time X exceeds the truncation
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time YL. That is we observe X if and only if YL 
 X . A common ex-
ample of left truncation is the problem of estimating the distribution of
the diameters of microscopic particles. The only particles big enough
to be seen based on the resolution of the microscope are observed and
smaller particles do not come to the attention of the investigator. In
survival studies the truncation event may be exposure to some disease,
diagnosis of a disease, entry into a retirement home, occurrence of
some intermediate event such as graft-versus-host disease after a bone
marrow transplantation, etc. In this type of truncation any subjects who
experience the event of interest prior to the truncation time are not
observed. The truncation time is often called a delayed entry time since
we only observe subjects from this time until they die or are censored.
Note that, as opposed to left censoring where we have partial informa-
tion on individuals who experience the event of interest prior to age
at entry, for left truncation these individuals were never considered for
inclusion into the study.

EXAMPLE 3.7 In section 1.16, a survival study of residents of the Channing House
retirement center located in California is described. Ages at death (in
months) are recorded, as well as ages at which individuals entered the
retirement community (the truncation event). Since an individual must
survive to a sufficient age to enter the retirement center, all individuals
who died earlier will not enter the center and thus are out of the
investigator’s cognizance; i.e., such individuals have no chance to be in
the study and are considered left truncated. A survival analysis of this
data set needs to account for this feature.

Right truncation occurs when YL is equal to zero. That is, we observe
the survival time X only when X � YR . Right truncation arises, for
example, in estimating the distribution of stars from the earth in that
stars too far away are not visible and are right truncated. A second
example of a right-truncated sample is a mortality study based on death
records. Right-censored data is particularly relevant to studies of AIDS.

EXAMPLE 3.8 Consider the AIDS study described in section 1.19. Here cases of pa-
tients with transfusion-induced AIDS were sampled. Retrospective de-
termination of the transfusion times were used to estimate the waiting
time from infection at transfusion to clinical onset of AIDS. The reg-
istry was sampled on June 30, 1986, so only those whose waiting time
from transfusion to AIDS was less than the time from transfusion to
June 30, 1986, were available for observation. Patients transfused prior
to June 30, 1986, who developed AIDS after June 30, 1986, were not
observed and are right truncated.
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The main impact on the analysis when data are truncated is that
the investigator must use a conditional distribution in constructing the
likelihood, as shown in section 3.5, or employ a statistical method
which uses a selective risk set, which will be explained in more detail
in section 4.6.

3.5 Likelihood Construction for Censored
and Truncated Data

As stated previously, the design of survival experiments involving cen-
soring and truncation needs to be carefully considered when construct-
ing likelihood functions. A critical assumption is that the lifetimes and
censoring times are independent. If they are not independent, then spe-
cialized techniques must be invoked. In constructing a likelihood func-
tion for censored or truncated data we need to consider carefully what
information each observation gives us. An observation corresponding
to an exact event time provides information on the probability that the
event’s occurring at this time, which is approximately equal to the den-
sity function of X at this time. For a right-censored observation all we
know is that the event time is larger than this time, so the informa-
tion is the survival function evaluated at the on study time. Similarly
for a left-censored observation, all we know is that the event has al-
ready occurred, so the contribution to the likelihood is the cumulative
distribution function evaluated at the on study time. Finally, for interval-
censored data we know only that the event occurred within the interval,
so the information is the probability that the event time is in this interval.
For truncated data these probabilities are replaced by the appropriate
conditional probabilities.

More specifically, the likelihoods for various types of censoring
schemes may all be written by incorporating the following compo-
nents:

exact lifetimes - f (x)
right-censored observations - S (Cr )
left-censored observations - 1 � S (Cl)
interval-censored observations - [S (L) � S (R)]
left-truncated observations - f (x) � S (YL)
right-truncated observations - f (x) � [1 � S (YR)]
interval-truncated observations - f (x) � [S (YL) � S (YR)]

The likelihood function may be constructed by putting together the
component parts as

L �
∏

i�D

f (xi)
∏

i�R

S (Cr )
∏

i�L

(1 � S (Cl))
∏

i�I

[S (Li ) � S (Ri)], (3.5.1)
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where D is the set of death times, R the set of right-censored observa-
tions, L the set of left-censored observations, and I the set of interval-
censored observations. For left-truncated data, with truncation interval
(YLi , YRi) independent from the j th death time, we replace f (Xi) by

f (xi) � [S (YLi) � S (YRi)] and S (Ci ) by S (Ci ) � [S (YLi) � S (YRi )] in (3.5.1).

For right-truncated data, only deaths are observed, so that the likelihood
is of the form

L �
∏

i

f (Yi) � [1 � S (Yi)].

If each individual has a different failure distribution, as might be the
case when regression techniques are used,

L �
∏

i�D

fi(xi)
∏

i�R

Si(Cr)
∏

i�L

[1 � Si (Cl)]
∏

i�I

[Si (Li) � Si(Ri)]. (3.5.2)

We will proceed with explicit details in constructing the likelihood
function for various types of censoring and show how they all basically
lead to equation (3.5.1).

Data from experiments involving right censoring can be conveniently
represented by pairs of random variables (T, �), where � indicates
whether the lifetime X is observed (� � 1) or not (� � 0), and T
is equal to X if the lifetime is observed and to Cr if it is right-censored,
i.e., T � min(X, Cr).

Details of constructing the likelihood function for Type I censoring
are as follows. For � � 0, it can be seen that

Pr [T, � � 0] � Pr [T � Cr | � � 0]Pr [� � 0] � Pr (� � 0)

� Pr (X � Cr) � S (Cr).

Also, for � � 1,

Pr (T, � � 1) � Pr (T � X | � � 1)Pr (� � 1),

� Pr (X � T | X � Cr)Pr (X � Cr)

�

[
f (t)

1 � S (Cr)

]
[
1 � S (Cr)

]
� f (t).

These expressions can be combined into the single expression

Pr (t, �) � [ f (t)]� [S (t)]1�� .

If we have a random sample of pairs (Ti , �i), i � 1, . . . , n , the likeli-
hood function is

L �
n∏

i�1

Pr [ti , �i ] �
n∏

i�1

[ f (ti)]
�i [S (ti )]

1��i (3.5.3)
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which is of the same form as (3.5.1). Because we can write f (ti) �
h(ti)S (ti) we can write this likelihood as

L �
n∏

i�1

[h(ti )]
�i exp[�H (ti)]

EXAMPLE 3.9 Assume f (x) � �e��x .
Then, the likelihood function is

LI �
n∏

i�1

(�e��ti )�i exp[��ti (1 � �i)] (3.5.4)

� �r exp[��ST ],

where r �
∑

�i is the observed number of events and ST is the total
time on test for all n individuals under study.

EXAMPLE 3.10 A simple random censoring process encountered frequently is one in
which each subject has a lifetime X and a censoring time Cr, X and
Cr being independent random variables with the usual notation for the
probability density and survival function of X as in Type I censoring
and the p.d.f. and survival function of Cr denoted by g(cr) and G (cr),
respectively. Furthermore, let T � min(X, Cr) and � indicates whether
the lifetime X is censored (� � 0) or not (� � 1). The data from
a sample of n subjects consist of the pairs (ti , �i), i � 1, . . . , n . The
density function of this pair may be obtained from the joint density
function of X and Cr, f (x, cr), as

Pr (Ti � t, � � 0) � Pr (Cr,i � t, Xi � Cr,i)

�
d

dt

∫ t

0

∫ �

v
f (u, v)du dv. (3.5.5)

When X and Cr are independent with marginal densities f and g,
respectively, (3.5.5) becomes

�
d

dt

∫ t

0

∫ �

v
f (u)g(v)du dv

�
d

dt

∫ t

0
S (v)g(v)dv

� S (t)g(t)

and, similarly,

Pr (Ti � t, � � 1) � Pr (Xi � t, Xi 
 Cr, i) � f (t)G (t).
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So,

L �
n∏

i�1

[
f (ti)G (ti)

]�i
[
g(ti)S (ti)

]1��i

�

{
n∏

i�1

G (ti)
�i g(ti)

1��i

}{
n∏

i�1

f (ti)
�i S (ti)

1��i

}

.

If the distribution of the censoring times, as alluded to earlier, does
not depend upon the parameters of interest, then, the first term will be
a constant with respect to the parameters of interest and the likelihood
function takes the form of (3.5.1)

L �
n∏

i�1

[
f (ti)

]�i
[
S (ti)

]1��i . (3.5.6)

Practical Notes

1. The likelihoods constructed in this section are used primarily for
analyzing parametric models, as discussed in Chapter 12. They also
serve as a basis for determining the partial likelihoods used in the
semiparametric regression methods discussed in Chapters 8 and 9.

2. Even though, in most applications of analyzing survival data, the
likelihoods constructed in this section will not be explicitly used,
the rationale underlying their construction has value in understand-
ing the contribution of the individual data components depicted in
(3.5.1).

Theoretical Notes

1. For Type II censoring, the data consist of the r th smallest lifetimes
X(1) � X(2) � 	 	 	 � X(r ) out of a random sample of n lifetimes
X1, . . . , Xn from the assumed life distribution. Assuming X1, . . . , Xn

are i.i.d. and have a continuous distribution with p.d.f. f (x) and
survival function S (x), it follows that the joint p.d.f. of X(1), . . . , X(r )

is (cf. David, 1981)

LII,1 �
n !

(n � r )!

[
r∏

i�1

f (x(i))

]
[
S (x(r ))

]n�r
. (3.5.7)
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2. For simplicity, in the progressive Type II censoring case, assume that
the censoring (or serial sacrifice) has just two repetitions. Here we
observe the r1 ordered failures X(1) � X(2) � 	 	 	 � X(r1), then, n1

items are removed from the study and sacrificed. Of the remaining
(n � r1 � n1) items we observe the next r2 ordered failures X �

(1) �
X �(2) � 	 	 	 � X �

(r2) after which the study stops with the remaining
n � n1 � r1 � r2 items being censored at X �

r2
. The likelihood for this

type of data may be written as

Pr (X(1), . . . , X(r1), X �
(1), . . . , X �

(r2), )

� P1(X(1), . . . , X(r1))P2(X
�
(1), . . . , X �

(r2) | X(1), . . . , X(r1)).

By equation (3.5.7), the first term above becomes

n !
(n � r1)!

r1∏

i�1

f (t(i))[S (t(r1))]
n�r1

and, by a theorem in order statistics (David, 1981), the second term
above becomes

(n � r1 � n1)!
(n � r1 � n1 � r2)!

r2∏

i�1

f �(x�
(i))[S

�(x�
(r2))]

n�r1�n1�r2

where f �(x) � f (x)
S (xr1 ) , x � x(ri ) is the truncated p.d.f. and S �(x) �

S (x)
S (xr1)

, x � x(ri ) is the truncated survival function so that

LII,2 �
n !(n � r1 � n1)!

(n � r1)!(n � r1 � n1 � r2)!

r1∏

i�1

f (x(i))[S (t(r1))]
n�r1

x

∏r2
i�1 f (t �

(i))

[S (t(r1))]r2

[
S (t �

(r2))

S (t(r1))

]n�r1�n1�r2

so that

LII,2 �
r1∏

i�1

f (x(i))
[
S (x(ri ))

]n1

r2∏

i�1

f (x�
(i))
[
S (x�

(r2))
]n�r1�n1�r2

which, again, can be written in the form of (3.5.1).
3. For random censoring, when X and Cr are not independent, the

likelihood given by (3.5.6) is not correct. If the joint survival function
of X and Cr is S (x, c), then, the likelihood is of the form

LIII �
n∏

i�1

�[��S (x, ti ) � �x ]x�ti �
�i �[��S (ti , c) � �c]c�ti �

1��i ,

which may be appreciably different from (3.5.6).
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3.6 Counting Processes

In the previous section, we discussed the construction of classical like-
lihoods for censored and truncated data. These likelihoods can be used
to develop some of the methods described in the remainder of this
book. An alternative approach to developing inference procedures for
censored and truncated data is by using counting process methodology.
This approach was first developed by Aalen (1975) who combined ele-
ments of stochastic integration, continuous time martingale theory and
counting process theory into a methodology which quite easily allows
for development of inference techniques for survival quantities based
on censored and truncated data. These methods allow relatively simple
development of the large sample properties of such statistics. Although
complete exposition of this theory is beyond the scope of this book,
we will give a brief survey in this section. For a more rigorous survey
of this area, the reader is referred to books by Andersen et al. (1993)
and Fleming and Harrington (1991).

We start by defining a counting process N (t), t � 0, as a stochastic
process with the properties that N (0) is zero; N (t) 
 �, with probability
one; and the sample paths of N (t) are right-continuous and piecewise
constant with jumps of size �1. Given a right-censored sample, the
processes, Ni(t) � I [Ti � t, �i � 1], which are zero until individual
i dies and then jumps to one, are counting processes. The process
N (t) �

∑n
i�1 Ni(t) �

∑
ti �t �i is also a counting process. This process

simply counts the number of deaths in the sample at or prior to time t .
The counting process gives us information about when events occur.

In addition to knowing this information, we have additional information
on the study subjects at a time t . For right censored data, this informa-
tion at time t includes knowledge of who has been censored prior to
time t and who died at or prior to time t . In some problems, our in-
formation may include values for a set of fixed time covariates, such as
age, sex, treatment at time 0 and possibly the values of time-dependent
covariates, at all times prior to t . This accumulated knowledge about
what has happened to patients up to time t is called the history or fil-
tration of the counting process at time t and is denoted by Ft . As time
progresses, we learn more and more about the sample so that a natural
requirement is that Fs � Ft for s � t . In the case of right-censored
data, the history at time t , Ft , consists of knowledge of the pairs (Ti , �i)
provided Ti � t and the knowledge that Ti � t for those individuals
still under study at time t . We shall denote the history at an instant
just prior to time t by Ft�. The history �Ft , t � 0� for a given problem
depends on the observer of the counting process.

For right-censored data, if the death times Xi and censoring times
Ci are independent, then, the chance of an event at time t , given the
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history just prior to t , is given by

Pr [t � Ti � t � dt, �i � 1|Ft�] (3.6.1)

�

{
Pr [t � Xi � t � dt, Ci � t � dti |Xi � t, Ci � t ] � h(t)dt if Ti � t ,
0 if Ti 
 t

For a given counting process, we define dN (t) to be the change in
the process N (t) over a short time interval [t, t � dt). That is dN (t) �
N [(t � dt)�] � N (t�) (Here t� is a time just prior to t). In the right-
censored data example (assuming no ties), dN (t) is one if a death
occurred at t or 0, otherwise. If we define the process Y (t) as the
number of individuals with a study time Ti � t , then, using (3.6.1),

E [dN (t)|Ft� ] � E [Number of observations with

t � Xi � t � dt, Ci � t � dti | Ft� ]

� Y (t)h(t)dt. (3.6.2)

The process �(t) � Y (t)h(t) is called the intensity process of the count-
ing process. �(t) is itself a stochastic process that depends on the in-
formation contained in the history process, Ft through Y (t).

The stochastic process Y (t) is the process which provides us with the
number of individuals at risk at a given time and, along with N (t), is
a fundamental quantity in the methods presented in the sequel. Notice
that, if we had left truncated data and right-censored data, the intensity
process would be the same as in (3.6.2) with the obvious modification
to Y (t) as the number of individuals with a truncation time less than t
still at risk at time t .

We define the process �(t) by
∫ t

0 �(s)ds, t � 0. This process, called
the cumulative intensity process, has the property that E [N (t)|Ft� ] �
E [�(t) | Ft� ] � �(t). The last equality follows because, once we know
the history just prior to t , the value of Y (t) is fixed and, hence, �(t)
is nonrandom. The stochastic process M (t) � N (t) � �(t) is called
the counting process martingale. This process has the property that
increments of this process have an expected value, given the strict past,
Ft� , that are zero. To see this,

E (dM (t) | Ft�) � E [dN (t) � d�(t) | Ft� ]

� E [dN (t) | Ft� ] � E [�(t)dt | Ft� ]

� 0.

The last inequality follows because �(t) has a fixed value, given Ft� .
A stochastic process with the property that its expected value at time

t , given its history at time s 
 t , is equal to its value at time s is called
a martingale, that is, M (t) is a martingale if

E [M (t) | Fs ] � M (s), for all s 
 t. (3.6.3)
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To see that this basic definition is equivalent to having E [dM (t) | Ft� ] �
0 for all t , note that, if E [dM (t) | Ft� ] � 0, then,

E (M (t) | Fs ] � M (s) � E [M (t) � M (s) | Fs ]

� E
[∫ t

s
dM (u) | Fs

]

�

∫ t

s
E [E [dM (u) | Fu�] | Fs ]

� 0.

Thus the counting process martingale is indeed a martingale.
The counting process martingale, M (t) � N (t) � �(t) is made up of

two parts. The first is the process N (t), which is a nondecreasing step
function. The second part �(t) is a smooth process which is predictable
in that its value at time t is fixed just prior to time t . This random function
is called a compensator of the counting process. The martingale can
be considered as mean zero noise which arises when we subtract the
smoothly varying compensator from the counting process

To illustrate these concepts, a sample of 100 observations was gen-
erated from an exponential population with hazard rate hX (t) � 0.2.
Censoring times were generated from an independent exponential dis-
tribution with hazard rate hC(t) � 0.05. Figure 3.6 shows the processes
N (t) and the compensator of N (t), �(t) �

∫ t
0 h (u)Y (u)du, of a single

sample drawn from these distributions. Note that N (t) is an increasing
step function with jumps at the observed death times, Y (t) is a decreas-
ing step function with steps of size one at each death or censoring time,
and �(t) is an increasing continuous function that is quite close to N (t).

Figure 3.7 depicts the values of M (t) for 10 samples generated from
this population. The sample in Figure 3.6 is the solid line on this figure.
We can see in this figure that the sample paths of M (t) look like a
sample of random, mean 0, noise.

An additional quantity needed in this theory is the notion of the
predictable variation process of M (t), denoted by �M �(t). This quantity
is defined as the compensator of the process M 2(t). Although M (t)
reflects the noise left after subtracting the compensator, M 2(t) tends to
increase with time. Here, �M �(t) is the systematic part of this increase
and is the predictable process needed to be subtracted from M 2(t) to
produce a martingale. The name, predictable variation process, comes
from the fact that, for a martingale M (t), var(dM (t) | Ft�) � d�M �(t).
To see this, recall that, by definition, E [dM (t)] � 0. Now,

dM 2(t) � M [(t � dt)�]2 � M (t�)2

� [M (t�) � dM (t)]2 � M (t�)2

� [dM (t)]2 � 2M (t�)dM (t).
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Figure 3.6 Example of a counting process, N(t) (solid line) and its compen-
sator, �(t), (dashed line) for a sample of 100 individuals

So,

Var[dM (t) | Ft� ] � E [(dM (t))2 | Ft� ]

� E [(dM 2(t)) | Ft� ] � 2E [M (t�)dM (t) | Ft� ]

� d�M �(t) � 2M (t�)E [dM (t) | Ft� ] � d�M �(t)

because once Ft� is known, M (t�) is a fixed quantity and E [dM (t) |
Ft� ] � 0.

To find Var[dM (t) | Ft� ] recall that dN (t) is a zero-one random vari-
able with a probability, given the history, of �(t) of having a jump of size
one at time t . The variance of such a random variable is �(t)[1��(t)]. If
there are no ties in the censored data case, �(t)2 is close to zero so that
Var[dM (t) | Ft� ] �� �(t) � Y (t)h(t). In this case, notice that the condi-
tional mean and variance of the counting process N (t) are the same and
one can show that locally, conditional on the past history, the counting



3.6 Counting Processes 83

Time

m
ar

tin
ga

le

0 5 10 15 20 25 30

-20

-10

0

10

20

Figure 3.7 Sample of 10 martingales. The compensated process in Figure 3.6
is the solid line.

process behaves like a Poisson process with rate �(t). When there are
ties in the data, the Bernoulli variance is used. Of course, in either case,
these variances are conditional variances in that they depend on the
history at time t� through Y (t). In many applications these conditional
variances serve as our estimator of the variance of dM (t).

Many of the statistics in later sections are stochastic integrals of the
basic martingale discussed above. Here, we let K (t) be a predictable
process. That is K (t) is a stochastic process whose value is known,
given the history just prior to time t , Ft� . An example of a predictable
process is the process Y (t). Over the interval 0 to t , the stochastic
integral of such a process, with respect to a martingale, is denoted
by
∫ t

0 K (u)dM (u). Such stochastic integrals have the property that they
themselves are martingales as a function of t and their predictable
variation process can be found from the predictable variation process
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of the original martingale by
〈∫ t

0
K (u)dM (u)

〉

�

∫ t

0
K (u)2d�M �(u). (3.6.4)

To illustrate how these tools can be used to derive nonparametric
estimators of parameters of interest, we shall derive a nonparametric
estimator of the cumulative hazard rate H (t) based on right-censored
data, the so-called Nelson–Aalen estimator. Recall that we can write
dN (t) � Y (t)h(t)dt � dM (t). If Y (t) is nonzero, then,

dN (t)
Y (t)

� h(t)dt �
dM (t)
Y (t)

. (3.6.5)

If dM (t) is noise, then, so is dM (t) � Y (t). Because the value of Y (t) is
fixed just prior to time t ,

E
[

dM (t)
Y (t)

| Ft�

]

�
E [dM (t) | Ft� ]

Y (t)
� 0.

Also, the conditional variance of the noise can be found as

Var
[

dM (t)
Y (t)

| Ft�

]

�
Var[dM (t) | Ft�)]

Y (t)2
�

d�M �(t)
Y (t)2

.

If we let J (t) be the indicator of whether Y (t) is positive and we define
0� 0 � 0, then, integrating both sides of equation (3.6.5),

∫ t

0

J (u)
Y (u)

dN (u) �

∫ t

0
J (u)h(u)du �

∫ t

0

J (u)
Y (u)

dM (u) .

The integral
∫ t

0
J (u)
Y (u)dN (u) � Ĥ (t) is the Nelson–Aalen estimator of

H (t). The integral, W (t) �
∫ t

0
J (u)
Y (u)dM (u), is the stochastic integral of

the predictable process J (u)
Y (u) with respect to a martingale and, hence,

is also a martingale. Again, we can think of this integral as random
noise or the statistical uncertainty in our estimate. The random quantity
H �(t) �

∫ t
0 J (u)h(u)du, for right-censored data is equal to H (t) in the

range where we have data, and, ignoring the statistical uncertainty in
W (t), the statistic Ĥ (t) is a nonparametric estimator of the random
quantity H �(t).

Because W (t) � Ĥ (t) � H �(t) is a martingale, E [Ĥ (t)] � E [H �(t)].
Note that H �(t) is a random quantity and its expectation is not, in
general, equal to H (t). The predictable variation process of W (t) is
found quite simply, using (3.6.4), as

�W �(t) �

∫ t

0

[
J (u)
Y (u)

]2

d�M �(u) �

∫ t

0

[
J (u)
Y (u)

]2

Y (u)h(u)du

�

∫ t

0

[
J (u)
Y (u)

]

h(u)du.
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A final strength of the counting process approach is the martingale
central limit theorem. Recall that Y (t) � n and N (t) � n are sample aver-
ages and that, for a large sample, the random variation in both should
be small. For large n , suppose that Y (t) � n is close to a deterministic
function y(t). Let Z (n)(t) �

√
nW (t) �

√
n [Ĥ (t) � H �(t)]. This process

is almost equal to
√

n [Ĥ (t) � H (t)], because for large samples H �(t) is
very close to H (t). Given the history, the conditional variance of the
jumps in Z (n)(t) are found to converge to h(t) � y(t). To see this

Var[dZ (n)(t) | Ft� ] � nVar[dW (t) | Ft� ]

� nVar[
dM (t)
Y (t)

| Ft� ]

� n
d�M (t)�

Y (t)2

� n
�(t)dt

Y (t)2

� n
Y (t)h(t)dt

Y (t)2
�

h(t)dt

Y (t) � n
,

which converges to h(t)dt� y(t) for large samples. Also, for large sam-
ples, Z (n) will have many jumps, but all of these jumps will be small
and of order 1 � √n .

The above heuristics tell us that, for large samples, Z (n) has almost
continuous sample paths and a predictable variation process very close
to

�Z (n)� �
∫ t

0

h(u)du

y(u)
. (3.6.6)

It turns out that there is one and only one limiting process, Z (�) which
is a martingale with continuous sample paths and a deterministic pre-
dictable variation �Z (�)� exactly equal to (3.6.6). This limiting process
has independent increments and normally distributed finite-dimensional
distributions. A process has independent increments if, for any set of
nonoverlapping intervals (ti�1, ti), i � 1, . . . , k the random variables
Z (�)(ti) � Z (�)(ti�1) are independent. The limiting process has normally
distributed finite-dimensional distributions if the joint distribution of
[Z (�)(t1), . . . , Z (�)(tk )] is multivariate normal for any value of k . For the
process Z (�), [Z (�)(t1), . . . , Z (�)(tk )] has a k -variate normal distribution
with mean 0 and a covariance matrix with entries

cov[Z (�)(t), Z (�)(s)] �

∫ min(s,t)

0

h(u)du

y(u)
.

This basic convergence allows us to find confidence intervals for the
cumulative hazard rate at a fixed time because

√
n [Ĥ (t) � H �(t)] will



86 Chapter 3 Censoring and Truncation

have an approximate normal distribution with mean 0 and variance

	 [Z (�)] �

∫ t

0

h(u)du

y(u)
.

An estimate of the variance can be obtained from

n
∫ t

0

dN (u)
Y (u)2

because we can estimate y(t) by Y (t) � n and h(t) by dN (t) � Y (t). The
fact that, as a process, Z (n) is approximated by a continuous process
with normal margins also allows us to compute confidence bands for
the cumulative hazard rate (see section 4.4).

To estimate the survival function, recall that, for a continuous random
variable, S (t) � exp[�H (t)] and, for a discrete, random variable, S (t) �∏t

s�0[1 � dĤ (s)]. Here, we say that S (t) is the product integral of
1 � dĤ (t). To obtain an estimator of the survival function, we take the
product integral of 1 � dĤ (t) to obtain

Ŝ (t) �
t∏

s�0

[1 � dĤ (t)] �
t∏

s�0

[

1 �
dN (s)
Y (s)

]

.

This is the Kaplan–Meier estimator (see section 4.2) which is a step
function with steps at the death times where dN (t) � 0. It turns out that
Ŝ (t) � S (t)�1 is a stochastic integral with respect to the basic martingale
M and is also a martingale. Thus confidence intervals and confidence
bands for the survival function can be found using the martingale central
limit theorem discussed above (see sections 4.3 and 4.4).

Counting processes methods can be used to construct likelihoods for
survival data in a natural way. To derive a likelihood function based on
N (t) consider a separate counting process, Nj(t), for each individual in
the study. Given the history up to time t , dNj (t) has an approximate
Bernoulli distribution with probability � j (t)dt of having dNj(t) � 1. The
contribution to the likelihood at a given time is, then, proportional to

� j (t)
dNj (t)[1 � � j (t)dt ]1�dNj (t).

Integrating this quantity over the range [0, �] gives a contribution to the
likelihood of

� j (t)
dNj (t) exp

[

�

∫ �

0
� j (u)du

]

.

The full likelihood for all n observations based on information up to
time � is, then, proportional to

L �

[ n∏

j�1

� j (t)
dNj (t)

]

exp
[

�
n∑

j�1

∫ �

0
� j (u)du

]

.
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For right-censored data, where � j (t) � Yj(t)h(t), with Yj (t) � 1 if
t � t j , 0 if t � t j , so

L �

[ n∏

j�1

h(t j)
� j

]

exp
(

�
n∑

j�1

H (t j )
)

,

which is exactly the same form as (3.5.1). This heuristic argument is
precisely stated in Chapter 2 of Andersen et al. (1993).

The counting process techniques illustrated in this section can be
used to derive a wide variety of statistical techniques for censored
and truncated survival data. They are particularly useful in developing
nonparametric statistical methods. In particular, they are the basis of
the univariate estimators of the survival function and hazard rate dis-
cussed in Chapter 4, the smoothed estimator of the hazard rate and
the models for excess and relative mortality discussed in Chapter 6,
most of the k -sample nonparametric tests discussed in Chapter 7, and
the regression methods discussed in Chapters 8, 9, and 10. A check of
the martingale property is used to test model assumptions for regres-
sion models, as discussed in Chapter 11. Most of the statistics devel-
oped in the sequel can be shown to be stochastic integrals of some
martingale, so large sample properties of the statistics can be found
by using the predictable variation process and the martingale central
limit theorem. In the theoretical notes, we shall point out where these
methods can be used and provide references to the theoretical de-
velopment of the methods. The books by Andersen et al. (1993) or
Fleming and Harrington (1991) provide a sound reference for these
methods.

3.7 Exercises

3.1 Describe, in detail, the types of censoring which are present in the
following studies.

(a) The example dealing with remission duration in a clinical trial for
acute leukemia described in section 1.2.

(b) The example studying the time to death for breast cancer patients
described in section 1.5.

3.2 A large number of disease-free individuals were enrolled in a study
beginning January 1, 1970, and were followed for 30 years to assess
the age at which they developed breast cancer. Individuals had clinical
exams every 3 years after enrollment. For four selected individuals
described below, discuss in detail, the types of censoring and truncation
that are represented.
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(a) A healthy individual, enrolled in the study at age 30, never devel-
oped breast cancer during the study.

(b) A healthy individual, enrolled in the study at age 40, was diagnosed
with breast cancer at the fifth exam after enrollment (i.e., the disease
started sometime between 12 and 15 years after enrollment).

(c) A healthy individual, enrolled in the study at age 50, died from a
cause unrelated to the disease (i.e., not diagnosed with breast cancer
at any time during the study) at age 61.

(d) An individual, enrolled in the study at age 42, moved away from
the community at age 55 and was never diagnosed with breast cancer
during the period of observation.

(e) Confining your attention to the four individuals described above,
write down the likelihood for this portion of the study.

3.3 An investigator, performing an animal study designed to evaluate the
effects of vegetable and vegetable-fiber diets on mammary carcinogen-
esis risk, randomly assigned female Sprague-Dawley rats to five dietary
groups (control diet, control diet plus vegetable mixture, 1; control diet
plus vegetable mixture, 2; control diet plus vegetable-fiber mixture, 1;
and control diet plus vegetable-fiber mixture, 2). Mammary tumors were
induced by a single oral dose (5 mg dissolved in 1.0 ml. corn oil) of
7,12-dimethylbenz(�)anthracene (DMBA) administered by intragastric
intubation, i.e., the starting point for this study is when DMBA was
given.

Starting 6 weeks after DMBA administration, each rat was examined
once weekly for 14 weeks (post DMBA administration) and the time
(in days) until onset of the first palpable tumor was recorded. We wish
to make an inference about the marginal distribution of the time until
a tumor is detected. Describe, in detail, the types of censoring that are
represented by the following rats.

(a) A rat who had a palpable tumor at the first examination at 6 weeks
after intubation with DMBA.

(b) A rat that survived the study without having any tumors.

(c) A rat which did not have a tumor at week 12 but which had a tumor
at week 13 after inturbation with DMBA.

(d) A rat which died (without tumor present and death was unrelated
to the occurrence of cancer) at day 37 after intubation with DMBA.

(e) Confining our attention to the four rats described above, write down
the likelihood for this portion of the study.

3.4 In section 1.2, a clinical trial for acute leukemia is discussed. In this
trial, the event of interest is the time from treatment to leukemia re-
lapse. Using the data for the 6-MP group and assuming that the time to
relapse distribution is exponential with hazard rate �, construct the like-
lihood function. Using this likelihood function, find the maximum likeli-
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hood estimator of � by finding the value of � which maximizes this
likelihood.

3.5 Suppose that the time to death has a log logistic distribution with param-
eters � and � . Based on the following left-censored sample, construct
the likelihood function.

DATA: 0.5, 1, 0.75, 0.25-, 1.25-, where - denotes a left- censored
observation.

3.6 The following data consists of the times to relapse and the times to
death following relapse of 10 bone marrow transplant patients. In the
sample patients 4 and 6 were alive in relapse at the end of the study
and patients 7–10 were alive, free of relapse at the end of the study.
Suppose the time to relapse had an exponential distribution with hazard
rate � and the time to death in relapse had a Weibull distribution with
parameters � and � .

Patient Relapse Time Death Time
(months) (months)

1 5 11
2 8 12
3 12 15
4 24 33�

5 32 45
6 17 28�

7 16� 16�

8 17� 17�

9 19� 19�

10 30� 30�

� Censored observation

(a) Construct the likelihood for the relapse rate �.

(b) Construct a likelihood for the parameters � and � .

(c) Suppose we were only allowed to observe a patients death time if
the patient relapsed. Construct the likelihood for � and � based on this
truncated sample, and compare it to the results in (b).

3.7 To estimate the distribution of the ages at which postmenopausal
woman develop breast cancer, a sample of eight 50-year-old women
were given yearly mammograms for a period of 10 years. At each exam,
the presence or absence of a tumor was recorded. In the study, no
tumors were detected by the women by self-examination between the
scheduled yearly exams, so all that is known about the onset time of
breast cancer is that it occurs between examinations. For four of the
eight women, breast cancer was not detected during the 10 year study
period. The age at onset of breast cancer for the eight subjects was in
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the following intervals:

(55, 56], (58, 59], (52, 53], (59, 60], � 60, � 60, � 60, � 60.

(a) What type of censoring or truncation is represented in this sample?
(b) Assuming that the age at which breast cancer develops follows a
Weibull distribution with parameters � and � , construct the likelihood
function.

3.8 Suppose that the time to death X has an exponential distribution with
hazard rate � and that the right-censoring time C is exponential with
hazard rate �. Let T � min(X, C ) and � � 1 if X � C ; 0, if X � C .
Assume that X and C are independent.
(a) Find P(� � 1)
(b) Find the distribution of T .
(c) Show that � and T are independent.
(d) Let (T1, �1), . . . , (Tn, �n) be a random sample from this model. Show
that the maximum likelihood estimator of � is

∑n
i�1 �i � ∑n

i�1 Ti . Use
parts a–c to find the mean and variance of �̂.

3.9 An example of a counting process is a Poisson process N (t) with rate
�. Such a process is defined by the following three properties:
(a) N (0) � 0 with probability 1.
(b) N (t) � N (s) has a Poisson distribution with parameter �(t � s) for
any 0 � s � t .
(c) N (t) has independent increments, that is, for 0 � t1 
 t2 
 t3 
 t4,
N (t2) � N (t1) is independent of N (t4) � N (t3).
Let Fs be the 	-algebra defined by N (s). Define the process M (t) �
N (t) � �t .

i. Show that E|M (t)| 
 �.
ii. Show that E [M (t) | N (s)] � M (s) for s 
 t , and conclude that M (t)
is a martingale and that �t is the compensator of N (t). (Hint: Write
M (t) � M (t) � M (s) � M (s).)



4
Nonparametric Estimation

of Basic Quantities for
Right-Censored and
Left-Truncated Data

4.1 Introduction

In this chapter we shall examine techniques for drawing an inference
about the distribution of the time to some event X , based on a sample
of right-censored survival data. A typical data point consists of a time
on study and an indicator of whether this time is an event time or a
censoring time for each of the n individuals in the study. We assume
throughout this chapter that the potential censoring time is unrelated to
the potential event time. The methods are appropriate for Type I, Type
II, progressive or random censoring discussed in section 3.2.

To allow for possible ties in the data, suppose that the events occur at
D distinct times t1 
 t2 
 	 	 	 
 tD , and that at time ti there are di events
(sometimes simply referred to as deaths). Let Yi be the number of indi-
viduals who are at risk at time ti . Note that Yi is a count of the number

91
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of individuals with a time on study of ti or more (i.e., the number of
individuals who are alive at ti or experience the event of interest at ti).
The quantity di � Yi provides an estimate of the conditional probability
that an individual who survives to just prior to time ti experiences the
event at time ti . As we shall see, this is the basic quantity from which
we will construct estimators of the survival function and the cumulative
hazard rate.

Basic estimators of the survival function S (t), the cumulative hazard
function H (t), and their standard errors based on right-censored data
are discussed in section 4.2. In section 4.3, confidence intervals for S (t)
and H (t) for a fixed value of t are presented, and section 4.4 presents
confidence bands which provide a specified coverage probability for
a range of times. Section 4.5 discusses inference for the mean time to
event and for percentiles of X based on right-censored data. The final
section shows how the estimators developed for right-censored data
can be extended to left-truncated data. Estimating for other censoring
and truncating schemes is considered in Chapter 5.

4.2 Estimators of the Survival and Cumulative
Hazard Functions for Right-Censored Data

The standard estimator of the survival function, proposed by Kaplan
and Meier (1958), is called the Product-Limit estimator. This estimator
is defined as follows for all values of t in the range where there is data:

Ŝ (t) �

{
1 if t 
 t1,∏

ti �t [1 � di

Yi
], if t1 � t . (4.2.1)

For values of t beyond the largest observation time this estimator is not
well defined (see Practical Notes 1 and 2 for suggestions as to solutions
to this problem).

The Product-Limit estimator is a step function with jumps at the ob-
served event times. The size of these jumps depends not only on the
number of events observed at each event time ti , but also on the pattern
of the censored observations prior to ti .

The variance of the Product-Limit estimator is estimated by Green-
wood’s formula:

V̂ [ Ŝ (t)] � Ŝ (t)2
∑

ti �t

di

Yi(Yi � di )
. (4.2.2)

The standard error of the Product-Limit estimator is given by �V̂ [ Ŝ (t)]�1 � 2.
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EXAMPLE 4.1 We consider the data in section 1.2 on the time to relapse of patients
in a clinical trial of 6-MP against a placebo. We shall consider only the
6-MP patients. The calculations needed to construct the Product-Limit
estimator and its estimated variance are in Table 4.1A. The Product-Limit
estimator, found in Table 4.1B, is a step function. Figure 4.1A shows a
plot of this estimated survival function. Note that the survival curve is
defined only up to 35 weeks, the largest of the observation times.

TABLE 4.1A
Construction of the Product-Limit Estimator and its Estimated Variance for the
6-MP Group

Time Number Number Product-Limit
ti of events at risk Estimator

di Yi Ŝ (t) �
∏

ti �t [1 � di
Yi

]
∑

ti �t
di

Yi (Yi �di )
Ŝ (t)2

∑
ti �t

di
Yi (Yi �di )

.

6 3 21 [1 � 3
21 ] � 0.857 3

21�18 � 0.0079 0.8572 � 0.0079 � 0.0058

7 1 17 [0.857](1 � 1
17 ) � 0.807 0.0079 � 1

17�16 � 0.0116 0.8072 � 0.0116 � 0.0076

10 1 15 [0.807](1 � 1
15 ) � 0.753 0.0116 � 1

15�14 � 0.0164 0.7532 � 0.0164 � 0.0093

13 1 12 [0.753](1 � 1
12 ) � 0.690 0.0164 � 1

12�11 � 0.0240 0.6902 � 0.0240 � 0.0114

16 1 11 [0.690](1 � 1
11 ) � 0.628 0.0240 � 1

11�10 � 0.0330 0.6282 � 0.0330 � 0.0130

22 1 7 [0.628](1 � 1
7 ) � 0.538 0.0330 � 1

7�6 � 0.0569 0.5382 � 0.0569 � 0.0164
23 1 6 [0.538](1 � 1

6 ) � 0.448 0.0569 � 1
6�5 � 0.0902 0.4482 � 0.0902 � 0.0181

TABLE 4.1B
The Product-Limit Estimator and Its Estimated Standard Error for the 6-MP
Group

Time on Study Standard
(t) Ŝ (t) Error

0 � t 
 6 1.000 0.000
6 � t 
 7 0.857 0.076
7 � t 
 10 0.807 0.087

10 � t 
 13 0.753 0.096
13 � t 
 16 0.690 0.107
16 � t 
 22 0.628 0.114
22 � t 
 23 0.538 0.128
23 � t 
 35 0.448 0.135

The Product-Limit estimator provides an efficient means of estimat-
ing the survival function for right-censored data. It can also be used
to estimate the cumulative hazard function H (t) � � ln[S (t)]. The es-
timator is Ĥ (t) � � ln[ Ŝ (t)]. An alternate estimator of the cumulative
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hazard rate, which has better small-sample-size performance than the
estimator based on the Product-Limit estimator, was first suggested by
Nelson (1972) in a reliability context. The estimator was rediscovered
by Aalen (1978b) who derived the estimator using modern counting
process techniques (see section 3.6 for a sketch of this derivation). This
estimator, which shall be referred to as the Nelson–Aalen estimator of
the cumulative hazard, is defined up to the largest observed time on
study as follows:

H̃ (t) �

{
0, if t � t1,∑

ti �t
di

Yi
, if t1 � t . (4.2.3)

The estimated variance of the Nelson–Aalen estimator is due to Aalen
(1978b) and is given by

	2
H (t) �

∑

ti �t

di

Y 2
i

. (4.2.4)

Based on the Nelson–Aalen estimator of the cumulative hazard rate
(4.2.3), an alternate estimator of the survival function is given by S̃ (t) �
exp[�H̃ (t)].

The Nelson–Aalen estimator has two primary uses in analyzing data.
The first is in selecting between parametric models for the time to

TABLE 4.2
Construction of the Nelson–Aalen Estimator and its Estimated Variance for the
6-MP Group

Time Standard

t H̃ (t) �
∑

ti �t

di

Yi
	2

H �
∑

ti �t

di

Y 2
i

. Error

0 � t 
 6 0 0 0

6 � t 
 7
3
21

� 0.1428
3

212
� 0.0068 0.0825

7 � t 
 10 0.1428 �
1
17

� 0.2017 0.0068 �
1

172
� 0.0103 0.1015

10 � t 
 13 0.2017 �
1
15

� 0.2683 0.0103 �
1

152
� 0.0147 0.1212

13 � t 
 16 0.2683 �
1
12

� 0.3517 0.0147 �
1

122
� 0.0217 0.1473

16 � t 
 22 0.3517 �
1
11

� 0.4426 0.0217 �
1

112
� 0.0299 0.1729

22 � t 
 23 0.4426 �
1
7

� 0.5854 0.0299 �
1
72

� 0.0503 0.2243

23 � t 
 35 0.5854 �
1
6

� 0.7521 0.0503 �
1
62

� 0.0781 0.2795
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event. Here, one plots the Nelson–Aalen estimator on special paper
so that, if a given parametric model fits the data, the resulting graph
will be approximately linear. For example, a plot of H̃ (t) versus t
will be approximately linear if the exponential distribution, with hazard
rate �, fits the data. The use of the Nelson–Aalen estimators in model
identification is discussed further in Chapter 12.

A second use of the Nelson–Aalen estimator is in providing crude
estimates of the hazard rate h(t). These estimates are the slope of the
Nelson–Aalen estimator. Better estimates of the hazard rate are obtained
by smoothing the jump sizes of the Nelson–Aalen estimator with a
parametric kernel (see Chapter 6).

EXAMPLE 4.1 (continued) The construction of the Nelson–Aalen estimator of the
cumulative hazard and its estimated variance for the 6-MP group is
given in Table 4.2.
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Figure 4.1A Comparison of the Nelson–Aalen (------) and Product-Limit
( ) estimates of the survival function for the 6-MP group.
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Figure 4.1B Comparison of the Nelson–Aalen (------) and Product-Limit
( ) estimates of the cumulative hazard rate for the 6-MP group.

Figure 4.1A shows the two estimates of the survival function for
the 6-MP data and Figure 4.1B the two estimates of the cumulative
hazard rate. Note that all estimates are step functions with jumps at the
observed deaths.

EXAMPLE 4.2 To illustrate the use of the Product-Limit estimator and the Nelson–
Aalen estimator in providing summary information about survival, con-
sider the data on the efficiency of a bone marrow transplant in acute
leukemia. Using the data reported in section 1.3, we shall focus on the
disease-free survival probabilities for ALL, AML low risk and AML high
risk patients. An individual is said to be disease-free at a given time after
transplant if that individual is alive without the recurrence of leukemia.
The event indicator for disease-free survival is �3 � 1 if the individual
has died or has relapsed (�3 � max(�1, �2) in Table D.1 of Appendix D).
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The days on study for a patient is the smaller of their relapse or death
time.

Table 4.3 shows the calculations needed for constructing the esti-
mated survival function and hazard rate for the ALL group. Similar
calculations for the two AML groups are left as an exercise.

Figure 4.2 shows a plot of the estimated disease-free survival curves
(4.2.1) for the three groups. In this figure, first notice that the curves
end at different points, because the largest times on study are different
for the three groups (2081 days for ALL, 2569 for AML low risk, and
2640 for AML high risk). Secondly, the figure suggests that AML low risk
patients have the best and AML high risk patients the least favorable
prognosis. The three year disease-free survival probabilities are 0.3531
(SE � 0.0793) for the ALL group; 0.5470 (SE � 0.0691) for the AML

TABLE 4.3
Estimators of the Survival Function and Cumulative Hazard Rate for ALL Pa-
tients

Product-Limit Nelson–Aalen
Estimator Estimator

ti di Yi Ŝ (ti )
√

V̂ [ Ŝ (ti )] H̃ (ti ) 	H (ti )

1 1 38 0.9737 0.0260 0.0263 0.0263
55 1 37 0.9474 0.0362 0.0533 0.0377
74 1 36 0.9211 0.0437 0.0811 0.0468
86 1 35 0.8947 0.0498 0.1097 0.0549

104 1 34 0.8684 0.0548 0.1391 0.0623
107 1 33 0.8421 0.0592 0.1694 0.0692
109 1 32 0.8158 0.0629 0.2007 0.0760
110 1 31 0.7895 0.0661 0.2329 0.0825
122 2 30 0.7368 0.0714 0.2996 0.0950
129 1 28 0.7105 0.0736 0.3353 0.1015
172 1 27 0.6842 0.0754 0.3723 0.1081
192 1 26 0.6579 0.0770 0.4108 0.1147
194 1 25 0.6316 0.0783 0.4508 0.1215
230 1 23 0.6041 0.0795 0.4943 0.1290
276 1 22 0.5767 0.0805 0.5397 0.1368
332 1 21 0.5492 0.0812 0.5873 0.1449
383 1 20 0.5217 0.0817 0.6373 0.1532
418 1 19 0.4943 0.0819 0.6900 0.1620
466 1 18 0.4668 0.0818 0.7455 0.1713
487 1 17 0.4394 0.0815 0.8044 0.1811
526 1 16 0.4119 0.0809 0.8669 0.1916
609 1 14 0.3825 0.0803 0.9383 0.2045
662 1 13 0.3531 0.0793 1.0152 0.2185
2081 0 1 0.3531 0.0793 1.0152 0.2185
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Figure 4.2 Estimated disease free survival for the 137 bone marrow transplant
patients. AML-Low risk ( ); AML-High risk (------); ALL (— — —)

low risk group; and 0.2444 (SE � 0.0641) for the AML high risk group.
Whether these apparent differences are statistically significant will be
addressed in later sections.

Figure 4.3 is a plot of the estimated cumulative hazard rates (4.2.3)
for the three disease groups. Again, this plot shows that AML high risk
patients have the highest combined relapse and death rate, whereas
AML low risk patients have the smallest rate. For each disease group,
the cumulative hazard rates appear to be approximately linear in the first
two years, suggesting that the hazard rate is approximately constant. A
crude estimate of these constant hazard rates is the slopes of the Nelson–
Aalen estimators. These estimates give a rate of about 0.04 events per
month for ALL patients, 0.02 events per month for AML low risk patients,
and 0.06 events per month for AML high risk patients.
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Figure 4.3 Estimated cumulative hazard rate for the 137 bone marrow trans-
plant patients. AML-Low risk ( ); AML-High risk (------); ALL (— — —)

Practical Notes
1. Both the Nelson–Aalen and Product-Limit estimator are based on an

assumption of noninformative censoring which means that knowl-
edge of a censoring time for an individual provides no further infor-
mation about this person’s likelihood of survival at a future time had
the individual continued on the study. This assumption would be
violated, for example, if patients with poor prognosis were routinely
censored. When this assumption is violated, both estimators are es-
timating the wrong function and the investigator can be appreciably
misled. See Klein and Moeschberger (1984) for details.

2. The Kaplan–Meier estimator of the survival function is well defined
for all time points less than the largest observed study time tmax. If the
largest study time corresponds to a death time, then, the estimated
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survival curve is zero beyond this point. If the largest time point is
censored, the value of S (t) beyond this point is undetermined be-
cause we do not know when this last survivor would have died if
the survivor had not been censored. Several nonparametric sugges-
tions have been made to account for this ambiguity. Efron (1967)
suggests estimating Ŝ (t) by 0 beyond the largest study time tmax. This
corresponds to assuming that the survivor with the largest time on
study would have died immediately after the survivor’s censoring
time and leads to an estimator which is negatively biased. Gill (1980)
suggests estimating Ŝ (t) by Ŝ (tmax) for t � tmax, which corresponds
to assuming this individual would die at � and leads to an estimator
which is positively biased. Although both estimators have the same
large-sample properties and converge to the true survival function for
large samples, a study of small-sample properties of the two estima-
tors by Klein(1991) shows that Gill’s version of the Kaplan–Meier is
preferred.

3. The two nonparametric techniques for estimation beyond tmax cor-
respond to the two most extreme situations one may encounter.
Brown, Hollander, and Kowar (1974) suggest completing the tail
by an exponential curve picked to give the same value of S (tmax).
The estimated survival function for t � tmax is given by Ŝ (t) �
exp�t ln[ Ŝ (tmax)]� tmax�. For the data in Example 4.2, this method yields
estimates of Ŝ (t) � exp(�0.0005t) for t � 2081 days for the ALL
Group; Ŝ (t) � exp(�0.00035t) for t � 2569 days for the AML low
risk group; and Ŝ (t) � exp(�0.000053t) for t � 2640 for the AML
high risk group. Based on these estimates, Figure 4.4 shows a com-
parison of the disease-free survival of three-risk groups for the first
eight years after transplant. Moeschberger and Klein (1985) have ex-
tended these techniques to allow using the more flexible Weibull
distribution to complete the tail of the Product-Limit estimator.

4. An alternative estimator of the variance of Ŝ (t), due to Aalen and
Johansen (1978) is given by

Ṽ [ Ŝ (t)] � Ŝ (t)2
∑

ti �t

di

Y 2
i

. (4.2.5)

Both this estimator and Greenwood’s estimator tend to underestimate
the true variance of the Kaplan–Meier estimator for small to moderate
samples. On average, Greenwood’s estimator tends to come closest
to the true variance and has a smaller variance except when Yi is
very small (see Klein, 1991).

5. An alternate estimator of the variance of H̃ (t) is found in Klein (1991).
This estimator is given as
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Figure 4.4 Estimated disease free survival for the 137 bone marrow trans-
plant patients using the Brown-Hollander-Kowar tail estimate. AML-low risk
( ); AML-high risk (------); ALL (————)

V̂ [H̃ (t)] �
∑

ti �t

(Yi � di)di

Y 3
i

. (4.2.6)

This estimator tends to be too small, whereas the estimator (4.2.4)
tends to be too large. The estimator (4.2.4) has a smaller bias than
(4.2.6) and is preferred.

6. An estimator of the variability of the Nelson–Aalen estimator of the
survival function Ŝ (t) is found by substituting S̃ (t) for Ŝ (t) in either
Eq. 4.2.2 or 4.2.5.

7. When there is no censoring, the Product-Limit estimator reduces to
the empirical survival function.

8. The statistical packages SAS, BMDP, SPSS, and S-Plus provide proce-
dures for computing the Product-Limit estimator and the estimated
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cumulative hazard rate based on this statistic. S-Plus also provides
the Nelson–Aalen estimator of the survival function and an estimate
of its variance using (4.2.5).

Theoretical Notes

1. The Product-Limit estimator was first constructed by using a reduced-
sample approach. In this approach, note that, because events are only
observed at the times ti , S (t) should be a step function with jumps
only at these times, there being no information on events occurring at
other times. We will estimate S (t) by a discrete distribution with mass
at the time points t1, t2, . . . , tD . We can estimate the Pr [T � ti | T � ti ]
as the fraction of individuals who are at risk at time ti but who do
not die at this time, that is

P̂ r [T � ti | T � ti ] �
Yi � di

Yi
, for i � 1, 2, . . . , D.

To estimate S (ti ), recall that

S (ti) �
S (ti )

S (ti�1)
S (ti�1)
S (ti�2)

. . .
S (t2)
S (t1)

S (t1)
S (0)

S (0)

� P [T � ti | T � ti ]P [T � ti�1 | T � ti�1] . . .

P [T � t2 | T � t1]P [T � t1 | T � t1],

because S (0) � 1 and, for a discrete distribution, S (ti�1) � Pr [T �
ti�1] � Pr [T � ti ]. Simplifying this expression yields the Product-Limit
estimator (4.2.1).

2. Redistribute to the right algorithm. This derivation is best explained
by an example. Suppose we have ten individuals on study with the
following times on study (� denotes a censored observation): 3, 4,
5� ,6, 6�, 8�, 11, 14, 15, 16�. We start the algorithm by assigning
mass 1 � n to each observation (the estimator we would have if there
was no censoring). Now, start at the far left and take the mass at each
censored observation and redistribute it equally to each observation
greater than this value. (Here censored observations tied with events
are treated as being just to the right of the event.) This process is
repeated until the largest observation is reached. The survival curve
obtained from this final set of probabilities is the Kaplan–Meier esti-
mate. If the largest observation is censored, the mass can be either
left at that point, so that the Kaplan-Meier estimator drops to zero, or
redistributed to ��, so that the curve is constant beyond this value.

3. Self Consistency. If we had no censored observations, the estimator
of the survival function at a time t is the proportion of observations
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Data
Points Step 0 Step 1 Step 2 Step 3 S (t)

3
1
10

0.100 0.100 0.100 0.900

4
1
10

0.100 0.100 0.100 0.800

5�
1
10

0.000 0.000 0.000 0.800

6
1
10

1
10

�
(1

7

) 1
10

� 0.114 0.114 0.114 0.686

6�
1
10

1
10

�
(1

7

) 1
10

� 0.114 0.000 0.000 0.686

8�
1
10

1
10

�
(1

7

) 1
10

� 0.114 0.114 �
1
5
0.114 � 0.137 0.000 0.686

11
1
10

1
10

�
(1

7

) 1
10

� 0.114 0.114 �
1
5
0.114 � 0.137 0.137 �

1
4
0.137 � 0.171 0.515

14
1
10

1
10

�
(1

7

) 1
10

� 0.114 0.114 �
1
5
0.114 � 0.137 0.137 �

1
4
0.137 � 0.171 0.343

15
1
10

1
10

�
(1

7

) 1
10

� 0.114 0.114 �
1
5
0.114 � 0.137 0.137 �

1
4
0.137 � 0.171 0.171

16�
1
10

1
10

�
(1

7

) 1
10

� 0.114 0.114 �
1
5
0.114 � 0.137 0.137 �

1
4
0.137 � 0.171 0.000*

*Efron’s Estimator

which are larger than t , that is,

Ŝ (t) �
1
n

n∑

i�1

�(Xi)

where

�(y) � 1 if y � t ; 0, if y � t.

For right-censored data, we want to construct our estimator in a sim-
ilar manner by redefining the scoring function � . Let T1, T2, . . . , Tn

be the observed times on study. If Ti is a death time, we know with
certainty whether Ti is smaller or greater than t . If Ti is a censored
time greater than or equal to t , then, we know that the true death
time must be larger than t because it is larger than Ti for this indi-
vidual. For a censored observation less than t , we do not know if
the corresponding death time is greater than t because it could fall
between Ti and t . If we knew S (t), we could estimate the probability
of this censored observation being larger than t by S (t) � S (Ti). Using
these revised scores, we will call an estimator Ŝ (t) a self-consistent
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estimator of S if

Ŝ (t) �
1
n

[∑

Ti �t

�(Ti) �
∑

�i �0,Ti �t

Ŝ (t)

Ŝ (Ti)

]

. (4.2.7)

To find Ŝ (t) from this formula one starts with any estimate of S and
substitutes this in the right hand side of (4.2.7) to get an updated
estimate of S . This new estimate of Ŝ (t) is, then, used in the next
step to obtain a revised estimate. This procedure continues until
convergence. Efron (1967) shows that the final estimate of S is exactly
the Product-Limit estimator for t less than the largest observed time.

4. Both the Product-Limit estimator and the Nelson–Aalen estimator can
be derived using the theory of counting processes. Details of this
construction can be found in Andersen et al. (1993) or Fleming and
Harrington (1991). An outline of this approach is found in section
3.6.

5. Under certain regularity conditions, one can show that the Nelson–
Aalen estimator and the Product-Limit estimator are nonparametric
maximum likelihood estimators.

6. Both the Product-Limit and Nelson–Aalen estimators of either the
survival function or the cumulative hazard rate are consistent. The
statistics are asymptotically equivalent.

7. The Nelson–Aalen estimator of the cumulative hazard rate is the first
term in a Taylor series expansion of minus the logarithm of the
Product-Limit estimator.

8. Small-sample-size properties of the Product-Limit estimator have been
studied by Guerts (1987) and Wellner (1985). Small sample size prop-
erties of the variance estimators for the Product-Limit estimator and
the Nelson–Aalen estimator are found in Klein (1991).

9. Under suitable regularity conditions, both the Nelson–Aalen and
Product-Limit estimators converge weakly to Gaussian processes. This
fact means that for fixed t , the estimators have an approximate normal
distribution.

4.3 Pointwise Confidence Intervals for
the Survival Function

The Product-Limit estimator provides a summary estimate of the mortal-
ity experience of a given population. The corresponding standard error
provides some limited information about the precision of the estimate.
In this section, we shall use these estimators to provide confidence
intervals for the survival function at a fixed time to. The intervals are
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constructed to assure, with a given confidence level 1 � � that the true
value of the survival function, at a predetermined time to, falls in the
interval we shall construct.

Before introducing the confidence intervals, we need some additional
notation. Let 	2

S (t) � V̂ [ Ŝ (t)]� Ŝ 2(t). Note that 	2
S (t) is the sum in

Greenwood’s formula (4.2.2).
The most commonly used 100 � (1 � �)% confidence interval for

the survival function at time to, termed the linear confidence interval, is
defined by

Ŝ (to) � Z1��� 2	S (to)Ŝ (to) , Ŝ (to) � Z1��� 2	S (to)Ŝ (to) (4.3.1)

Here Z1��� 2 is the 1 � �� 2 percentile of a standard normal distribution.
This is the confidence interval routinely constructed by most statistical
packages.

Better confidence intervals can be constructed by first transforming
Ŝ (to). These improved estimators were proposed by Borgan and Liestøl
(1990). The first transformation suggested is a log transformation (see
Theoretical Note 4) of the cumulative hazard rate. The 100 � (1 � �)%
log-transformed confidence interval for the survival function at to is
given by

[ Ŝ (to)
1 � �, Ŝ (to)

� ] , where � � exp
{

Z1��� 2	S (to)

ln[ Ŝ (to)]

}

. (4.3.2)

Note that this interval is not symmetric about the estimate of the survival
function.

The second transformation is an arcsine-square root transformation
of the survival function which yields the following 100 � (1 � �)%
confidence interval for the survival function:

sin2

⎧
⎨

⎩
max

⎡

⎣0, arcsin(Ŝ (to)
1 � 2) � 0.5Z1��� 2	S (to)

(
Ŝ (to)

1 � Ŝ (to)

)1 � 2
⎤

⎦

⎫
⎬

⎭

� S (to) � (4.3.3)

sin2

⎧
⎨

⎩
min

⎡

⎣


2
, arcsin(Ŝ (to)

1 � 2) � 0.5Z1��� 2	S (to)

(
Ŝ (to)

1 � Ŝ (to)

)1 � 2
⎤

⎦

⎫
⎬

⎭
.

EXAMPLE 4.2 (continued) To illustrate these confidence intervals, we shall use the
estimated disease-free survival function and cumulative hazard rate for
ALL patients in Table 4.3. Note that at 1 year (365 days) the estimated
survival function S(365) was found to be 0.5492 with an estimated
variance of 0.08122. Thus, 	2

S (365) � (0.0812� 0.5492)2 � 0.14792. A
95% linear confidence interval for the survival function at year one is
0.5492  1.96 � 0.1479 � 0.5492 � (0.3900, 0.7084).
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To find the 95% log-transformed confidence interval for the one year
survival function, we find that � � exp[1.96�0.1479

ln(0.5492) ] � 0.6165, so that the
interval is (0.549211 � 0.6165, 0.54920.6165) � (0.3783, 0.6911).

The 95% arcsine-square root transformation confidence interval for
the one year survival function is

sin2

{

max

[

0, arcsin(0.54921 � 2) � 0.5 � 1.96 � 0.1479 �

(
0.5492

1 � 0.5492

)1 � 2
]}

to

sin2

{

min

[



2
, arcsin(0.54921 � 2) � 0.5 � 1.96 � 0.1479 �

(
0.5492

1 � 0.5492

)1 � 2
]}

� (0.3903, 0.7032).

Table 4.4 shows the three possible 95% confidence intervals that can
be constructed for the disease-free survival function for each of the
three risk groups presented in Figures 4.2. We can see that AML high
risk patients have a smaller chance of surviving beyond one year than
the AML low risk patients.

TABLE 4.4
95% Confidence Intervals for Disease-Free Survival One Year After Transplant

ALL AML low risk AML high risk

Ŝ (365) 0.5492 0.7778 0.3778

V̂ [ Ŝ (365)] 0.08122 0.05662 0.07232

	s (365) 0.1479 0.0728 0.1914
Linear confidence interval 0.3900, 0.7084 0.6669, 0.8887 0.2361, 0.5195

for S (365)
Log-transformed confidence interval 0.3783, 0.6911 0.6419, 0.8672 0.2391, 0.5158

for S (365)
Arcsine square-root confidence interval 0.3903, 0.7032 0.6583, 0.8776 0.2433, 0.5227

for S (365)

Practical Notes

1. Bie et al. (1987) have presented 100(1 � �)% pointwise confidence
intervals for the cumulative hazard function. Similar to the confi-
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dence intervals constructed for the survival function, there are three
possible intervals, which correspond to the three transformations of
the cumulative hazard function. The intervals are

Linear:

H̃ (to) � Z1��� 2	H (to), H̃ (to) � Z1��� 2	H (to). (4.3.4)

Log-Transformed

[H̃ (to) � �, �H̃ (to)] where � � exp[
Z1��� 2	H (to)

H̃ (to)
]. (4.3.5)

Arcsine-Square Root Transformed

�2 ln
{
sin
[
min

(


2
, arcsin[exp��H̃ (to) � 2�]

�0.5Z1��� 2	H (to)�exp�H̃ (to)� � 1��1 � 2
)]}

� H (to) � (4.3.6)

�2 ln�sin[max(0, arcsin[exp��H̃ (to) � 2�]

�0.5Z1��� 2	H (to)�exp H̃ (to)� � 1��1 � 2)]�

Using the data in Example 4.2, we have the following 95% con-
fidence intervals for the cumulative hazard rate at one year after
transplant:

ALL AML low risk AML high risk

Linear confidence interval 0.3034, 0.8713 0.1076, 0.3898 0.5875, 1.3221
for H(365)

Log-transformed confidence interval 0.3622, 0.9524 0.1410, 0.4385 0.6499, 1.4028
for H(365)

Arcsin square root confidence interval 0.3451, 0.9217 0.1293, 0.4136 0.6366, 1.3850
for H(365)

2. Borgan and Liestøl (1990) have shown that both the log-transformed
and arcsine-square root transformed confidence intervals for S per-
form better than the usual linear confidence interval. Both give about
the correct coverage probability for a 95% interval for samples as
small as 25 with as much as 50% censoring except in the extreme
right-hand tail where there will be little data. The sample size needed
for the standard linear confidence interval to have the correct cover-
age probability is much larger. For very small samples, the arcsine-
square root interval tends to be a bit conservative in that the actual



108 Chapter 4 Nonparametric Estimation of Basic Quantities for Right-Censored and Left-Truncated Data

coverage probability is a bit greater than (1 � �), whereas, for the
log-transformed interval, the coverage probability is a bit smaller
than (1��). The coverage probability for the linear interval in these
cases is much smaller than (1 � �). Similar observations were made
by Bie et al. (1987) for the corresponding interval estimates of the
cumulative hazard rate. For very large samples, the three methods
are equivalent.

3. Alternative confidence intervals for the cumulative hazard rate can
be found by taking (minus) the natural logarithm of the confidence
intervals constructed for the survival function. Similarly the expo-
nential of (minus) the confidence limits for the cumulative hazard
yields a confidence interval for the survival function.

4. Both the log-transformed and arcsine-square root transformed con-
fidence intervals, unlike the linear interval, are not symmetric about
the point estimator of the survival function or cumulative hazard rate.
This is appropriate for small samples where the point estimators are
biased and the distribution of the estimators is skewed.

5. The confidence intervals constructed in this section are valid only
at a single point to. A common incorrect use of these intervals is to
plot them for all values of t and interpret the curves obtained as
a confidence band, that is, these curves are interpreted as having,
for example, 95% confidence that the entire survival function lies
within the band. The bands obtained this way are too narrow to
make this inference. The proper bands are discussed in the following
section.

6. Confidence intervals for the survival function are available in the
S-Plus routine surv.fit. The intervals can be constructed using either
the linear or the log-transformed method.

Theoretical Notes

1. Construction of the linear confidence intervals follows directly from
the asymptotic normality of the Product-Limit or Nelson–Aalen esti-
mators.

2. The log-transformed interval was first suggested by Kalbfleisch and
Prentice (1980).

3. The arcsine-square root transformed interval was first suggested by
Nair (1984).

4. The “log”-transformed confidence interval is based on first finding
a confidence interval for the log of the cumulative hazard func-
tion. This is sometimes called a log-log transformed interval since
the cumulative hazard function is the negative log of the survival
function.
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4.4 Confidence Bands for the
Survival Function

In section 4.3, pointwise confidence intervals for the survival function
were presented. These intervals are valid for a single fixed time at
which the inference is to be made. In some applications it is of interest
to find upper and lower confidence bands which guarantee, with a
given confidence level, that the survival function falls within the band
for all t in some interval, that is, we wish to find two random functions
L(t) and U (t), so that 1�� � Pr [L(t) � S (t) � U (t), for all tL � t � tU ].
We call such a [L(t), U (t)] a (1 � �) � 100% confidence band for S (t).

We shall present two approaches to constructing confidence bands
for S (t). The first approach, originally suggested by Nair (1984), pro-
vides confidence bounds which are proportional to the pointwise con-
fidence intervals discussed in section 4.3. These bands are called the
equal probability or EP bands. To implement these bands we pick
t L 
 tU so that t L is greater than or equal to the smallest observed event
time and tU is less than or equal to the largest observed event time.
To construct confidence bands for S (t), based on a sample of size n ,
define

aL �
n	2

S (t L)
1 � n	2

S (t L)
(4.4.1)

and

aU �
n	2

S (tU)
1 � n	2

S (tU)
.

The construction of the EP confidence bands requires that 0 
 aL 

aU 
 1.

To construct a 100(1 � �)% confidence band for S (t) over the range
[t L, tU], we, first, find a confidence coefficient, c�(aL, aU) from Table C.3
in Appendix C. As in the case of 100(1 � �)% pointwise confidence in-
tervals at a fixed time, there are three possible forms for the confidence
bands. The three bands are the linear bands, the log-transformed bands,
and the arcsine-square root transformed bands expressed as follows:

Linear:

Ŝ (t) � c�(aL, aU)	S (t)Ŝ (t), Ŝ (t) � c�(aL, aU)	S (t)Ŝ (t). (4.4.2)

Log-Transformed:

(Ŝ (t)1 � �, Ŝ (t)�),

where � � exp
[

c�(aL, aU)	S (t)

ln[ Ŝ (t)]

]

. (4.4.3)
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Arcsine-Square Root Transformed:

sin 2�max[0, arcsin�Ŝ (t)1 � 2� � 0.5c�(aL, aU)	S (t)[Ŝ (t) � (1 � Ŝ (t))]1 � 2]�

� S (t) � (4.4.4)

sin 2

{

min
[




2
, arcsin�Ŝ (t)1 � 2� � 0.5c�(aL, aU)	S (t)[Ŝ (t) � (1 � Ŝ (t))]1 � 2

]}

.

EXAMPLE 4.2 (continued) To illustrate these confidence intervals, we shall use the
estimated disease-free survival function for ALL patients in Table 4.3.
We construct confidence bands for S (t) over the range 100 � t � 600
days. Here, we have 	2

S (100) � 	2
S (86) � 0.04982 � 0.89472 � 0.0031

and 	2
S (600) � 	2

S (526) � 0.08092 � 0.41192 � 0.0386. From 4.4.1 we
find aL � 38(0.0031) � [1 � 38(0.0031)] � 0.1 and aU � 38(0.0386) � [1 �
38(0.0386)] � 0.6. For a 95% confidence band, we find, from Table C.3
in Appendix C, that c05(0.1, 0.6) � 2.8826.

Table 4.5 shows the three 95% confidence bands for the survival
function based on the EP method. Note that the calculation of the
entries in this table is identical to the calculations performed in section
4.3 for the 95% pointwise confidence intervals at day 365 with the
exception that the Z coefficient, 1.96 is replaced by the appropriate
value from Table C.3 of Appendix C.

An alternate set of confidence bounds has been suggested by Hall
and Wellner (1980). These bands are not proportional to the pointwise
confidence bounds. For these bounds, a lower limit, t L, of zero is al-
lowed. To construct a 100� (1��)% confidence band for S (t) over the
region [t L, tU], we find the appropriate confidence coefficient k�(aL, aU),
from Table C.4 of Appendix C. Again, there are three possible forms for
the confidence bands. These are the linear bands, the log-transformed
bands and the arcsine-transformed bands. These 100 � (1 � �)% confi-
dence bands are expressed as
Linear:

Ŝ (t) �
k�(aL, aU)[1 � n	2

s (t)]
n1 � 2

Ŝ (t), Ŝ (t) �
k�(aL, aU)[1 � n	2

S (t)]
n1 � 2

Ŝ (t).

(4.4.5)
Log-Transformed:

[ Ŝ (t)1 � �, Ŝ (t)� ], (4.4.6)

where � � exp
{

k�(aL, aU)[1 � n	2
S (t)]

n1 � 2 ln[ Ŝ (t)]

}

.
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TABLE 4.5
95% EP Confidence Bands for the Disease Free Survival Function

ti Ŝ (ti )
√

V̂ [ Ŝ (ti )] 	2
S Linear Log-Transformed Arcsine-Transformed

100 0.8947 0.0498 0.0031 0.7511 1.0000 0.6246 0.9740 0.7139 0.9907
104 0.8684 0.0548 0.0040 0.7104 1.0000 0.5992 0.9619 0.6766 0.9812
107 0.8421 0.0592 0.0049 0.6715 1.0000 0.5719 0.9485 0.6408 0.9698
109 0.8158 0.0629 0.0059 0.6345 0.9971 0.5452 0.9339 0.6071 0.9567
110 0.7895 0.0661 0.0070 0.5990 0.9800 0.5188 0.9184 0.5748 0.9421
122 0.7368 0.0714 0.0094 0.5310 0.9426 0.4666 0.8848 0.5130 0.9098
129 0.7105 0.0736 0.0107 0.4983 0.9227 0.4410 0.8670 0.4834 0.8924
172 0.6842 0.0754 0.0121 0.4669 0.9015 0.4162 0.8485 0.4549 0.8739
192 0.6579 0.0770 0.0137 0.4359 0.8799 0.3917 0.8294 0.4270 0.8549
194 0.6316 0.0783 0.0154 0.4059 0.8573 0.3678 0.8097 0.3999 0.8350
230 0.6041 0.0795 0.0173 0.3749 0.8333 0.3431 0.7886 0.3720 0.8137
276 0.5767 0.0805 0.0195 0.3447 0.8087 0.3187 0.7672 0.3448 0.7920
332 0.5492 0.0812 0.0219 0.3151 0.7833 0.2951 0.7451 0.3183 0.7694
383 0.5217 0.0817 0.0245 0.2862 0.7572 0.2719 0.7224 0.2925 0.7462
418 0.4943 0.0819 0.0275 0.2582 0.7304 0.2496 0.6993 0.2675 0.7223
468 0.4668 0.0818 0.0307 0.2310 0.7026 0.2280 0.6753 0.2433 0.6976
487 0.4394 0.0815 0.0344 0.2045 0.6743 0.2069 0.6510 0.2198 0.6723
526 0.4119 0.0809 0.0386 0.1787 0.6451 0.1865 0.6259 0.1970 0.6462
600 0.4119 0.0809 0.0386 0.1787 0.6451 0.1865 0.6259 0.1970 0.6462

TABLE 4.6
95% Hall–Wellner Confidence Bands for the Disease-Free Survival Function

Arcsine-square root
ti Ŝ (ti ) 	2

S Linear Log-Transformed Transformed

100 0.8947 0.0031 0.6804 1.0000 0.3837 0.9872 0.6050 1.0000
104 0.8684 0.0040 0.6541 1.0000 0.4445 0.9757 0.5966 0.9971
107 0.8421 0.0049 0.6277 1.0000 0.4696 0.9617 0.5824 0.9869
109 0.8158 0.0059 0.6015 1.0000 0.4771 0.9455 0.5652 0.9723
110 0.7895 0.0070 0.5752 1.0000 0.4747 0.9278 0.5459 0.9550
122 0.7368 0.0094 0.5225 0.9511 0.4532 0.8888 0.5034 0.9152
129 0.7105 0.0107 0.4961 0.9249 0.4377 0.8682 0.4810 0.8939
172 0.6842 0.0121 0.4699 0.8985 0.4205 0.8468 0.4582 0.8718
192 0.6579 0.0137 0.4435 0.8723 0.4018 0.8251 0.4349 0.8492
194 0.6316 0.0154 0.4172 0.8460 0.3822 0.8029 0.4114 0.8262
230 0.6041 0.0173 0.3894 0.8188 0.3606 0.7796 0.3864 0.8021
276 0.5767 0.0195 0.3616 0.7918 0.3383 0.7561 0.3612 0.7779
332 0.5492 0.0219 0.3337 0.7647 0.3156 0.7324 0.3359 0.7535
383 0.5217 0.0245 0.3057 0.7377 0.2925 0.7087 0.3104 0.7290
418 0.4943 0.0275 0.2779 0.7107 0.2694 0.6849 0.2851 0.7046
468 0.4668 0.0307 0.2500 0.6836 0.2462 0.6609 0.2599 0.6799
487 0.4394 0.0344 0.2221 0.6567 0.2230 0.6372 0.2347 0.6555
526 0.4119 0.0386 0.1942 0.6296 0.2000 0.6133 0.2097 0.6310
600 0.4119 0.0386 0.1942 0.6296 0.2000 0.6133 0.2097 0.6310
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Arcsine-Square Root Transformation:

sin2�max[0, arcsin�Ŝ (t)1 � 2� � 0.5
k�(aL, aU)[1 � n	2

S (t)]
n1 � 2

[(Ŝ (t) � (1 � Ŝ (t))]1 � 2]�

� S (t) � (4.4.7)

sin2

{

min
[




2
, arcsin�Ŝ (t)1 � 2� � 0.5

k�(aL, aU)�1 � n	2
S (t)�

n1 � 2
[ Ŝ (t) � (1 � Ŝ (t))]1 � 2

]}

.

EXAMPLE 4.2 (continued) To illustrate the Hall-Wellner confidence bands, again,
we consider the disease-free survival estimates for S (t) obtained from
the 38 ALL patients in Table 4.3. As for the EP bands, we construct 95%
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Figure 4.5 Comparison of 95% pointwise confidence interval, EP confidence
band and Hall-Wellner confidence band for the disease free survival function
based on the untransformed survival functions for ALL patients. Estimated
Survival ( ); Pointwise confidence interval (–– –– ––); EP confidence band
(------); Hall-Wellner band (—— ——)
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confidence bands for S (t) in the range 100 � t � 600. The required
confidence coefficient, from Table C.4 of Appendix C, is k05(0.1, 0.6) �
1.3211. Table 4.6 shows the Hall-Wellner 95% confidence bands based
on the three transformations.

Figures 4.5–4.7 show the 95% confidence bands for the disease-free
survival function based on either the EP or Hall–Wellner bands for the
three transformations. Also included are the 95% pointwise confidence
intervals obtained from the results of section 4.3. These figures show
that the Hall–Wellner bands are wider for small t and shorter for large
t . Both bands are wider than the curves one obtains by using pointwise
confidence intervals.
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Figure 4.6 Comparison of 95% pointwise confidence interval, EP confidence
band and Hall-Wellner confidence band for the disease free survival func-
tion found using the log transformation for ALL patients. Estimated Survival
( ); Pointwise confidence interval (–– –– ––); EP confidence band (------);
Hall-Wellner band (————)
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Figure 4.7 Comparison of 95% pointwise confidence interval, EP confidence
band and Hall-Wellner confidence band for the disease free survival function
found using the arc sine transformation for ALL patients. Estimated Survival
( ); Pointwise confidence interval (–– –– ––); EP confidence band (------);
Hall-Wellner band (—— ——)

Figure 4.8 shows the 95% EP arcsine-square root transformed confi-
dence bands for the three disease categories over the range of 100 to
600 days.

Practical Notes

1. Confidence bands for the cumulative hazard rate can also be con-
structed by either the EP or Hall–Wellner method. To construct these
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Figure 4.8 EP confidence bands for the disease free survival function based
on the arc sine transformation for bone marrow transplant patients. AML-Low
risk ( ); AML-High risk (------); ALL (— — —)

bands, we first compute

aL �
n	2

H (t L)
1 � n	2

H (t L)
(4.4.8)

and

aU �
n	2

H (tU)
1 � n	2

H (tU)
.

The EP confidence bands, which are valid over the range t L � t �
tU, with 0 
 aL 
 aU 
 1, are found by substituting for Z1��� 2 in
(4.3.4)–(4.3.6) the appropriate confidence coefficient c�(aL, aU) from
Table C.3 of Appendix C.
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Figure 4.9 Comparison of 95% pointwise confidence interval, EP confidence
band and Hall-Wellner confidence band for the cumulative hazard function
found using the arc sine transformation for ALL patients. Estimated Survival
( ); Pointwise confidence interval (–– –– ––); EP confidence band (------);
Hall-Wellner band (—— ——)

The Hall–Wellner confidence bands for the cumulative hazard rate
are found by substituting k� (aL,aU)[1�n	2

H (t)]
n1� 2 for Z1��� 2	H (t) in (4.3.4)–

(4.3.6).
Figure 4.9 shows the 95% arcsine-square root transformed EP and

Hall–Wellner confidence bands and the 95% pointwise confidence
interval for the cumulative hazard rate of the ALL patients over the
interval 100 to 600 days.

2. For the EP bounds for the survival function, Borgan and Liestøl (1990)
have shown that the linear confidence band given by formula (4.4.2)
performs very poorly when the sample size is small (
 200). The
coverage probability for this bound is considerably smaller than the
target level. For both the log- and arcsine-square root transformed
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bands, the coverage probability is approximately correct for smaller
sample sizes. Both seem to give reasonable results for samples with
as few as 20 observed events. The arcsine-square root transformed
band seems to perform a bit better than the log-transformed interval
and is recommended. Similar properties hold for the confidence
bands for the cumulative hazard rate as discussed in Bie et al. (1987).

3. For the Hall–Wellner bounds, Borgan and Liestøl (1990) show that
all three bands for S (t) perform reasonably well for samples with as
few as 20 observed events. For H (t), Bie et al. (1987) show that the
performance of the linear bands is poor for small samples, whereas
the two transformed bands perform well for relatively small samples.

4. For the confidence bands for H (t), linear EP confidence bands tend
to have an upper band which is a bit too low, whereas the log-
transformed lower band is too high for small t and the upper band
too low for large t . For the EP arcsine-square root band, the majority
of the errors occur when the upper boundary is too low. For the HW
bands, the majority of the errors occur in the midrange of t .

Theoretical Notes
1. These bounds are based on weak convergence of the Product-Limit

estimator or the Nelson–Aalen estimator to a mean zero Gaussian
process. The EP bounds are based on the transformation q(x) �
[x(1 � x)]�1 � 2 of the standardized estimator, whereas for the Hall–
Wellner bounds, no transformation of this process is made.

2. The critical values found in Table C.3 of Appendix C are the upper
�th fractile of the random variable U � sup�| W ◦(x)[x(1 � x)]�1 � 2 |,
aL � x � aU�, where W ◦ is a standard Brownian bridge (see Nair,
1984). Miller and Siegmund (1982) show that, for large d , Pr [U �
d) �� 4�(d) � d��(d)(d�d�1) log[aU(1�aL)

aL(1�aU) ], where �( ) is the standard
normal density function.

3. The critical values for the Hall–Wellner bands (Table C.4 of Appendix
C) are the upper �th fractile of a Brownian bridge, computed from
results in Chung (1986).

4.5 Point and Interval Estimates of the Mean
and Median Survival Time

The Product-Limit estimator provides an estimator of the survival func-
tion S (t). In section 2.4, we saw that other summary measures of an
individual’s survival experience, such as the mean or median time to
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the event, are functions of the survival function. Nonparametric esti-
mates of these quantities can be obtained in a straightforward manner
by substituting the Product-Limit estimator for the unknown survival
function in the appropriate formula.

In section 2.4, it was shown that the mean time to the event � is given
by � �

∫ �
0 S (t)dt . A natural estimator of � is obtained by substituting

Ŝ (t) for S (t) in this expression. This estimator is appropriate only when
the largest observation corresponds to a death because in other cases,
the Product-Limit estimator is not defined beyond the largest observa-
tion. Several solutions to this problem are available. First, one can use
Efron’s tail correction to the Product-Limit estimator (see Practical Note
2 of section 4.2) which changes the largest observed time to a death
if it was a censored observation. An estimate of the mean restricted
to the interval 0 to tmax is made. A second solution is to estimate the
mean restricted to some preassigned interval [0, �], where � is chosen by
the investigator to be the longest possible time to which anyone could
survive. For either case, the estimated mean restricted to the interval
[0, �], with � either the longest observed time or preassigned by the
investigator, is given by

�̂� �

∫ �

0
Ŝ (t)dt. (4.5.1)

The variance of this estimator is

V̂ [ �̂� ] �
D∑

i�1

[∫ �

ti

Ŝ (t)dt
]2 di

Yi(Yi � di)
(4.5.2)

A 100(1 � �)% confidence interval for the mean is expressed by

�̂�  Z1��� 2

√
V̂ [ �̂� ]. (4.5.3)

EXAMPLE 4.1 (continued) Consider estimating the mean survival time for the 6-MP
patients based on the Product-Limit estimator presented in Table 4.1.
Because the largest observation is censored, an estimate of the mean
restricted to 35 weeks will be constructed. The following integrals are
needed as intermediate calculations in estimating the variance of our es-
timate and serve as a convenient bookkeeping method for constructing
the estimate of the mean:

∫ 35

23
Ŝ (t)dt � 0.448(35 � 23) � 5.376;

∫ 35

22
Ŝ (t)dt � 5.376 � 0.538 (23 � 22) � 5.914;
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∫ 35

16
Ŝ (t)dt � 5.914 � 0.628(22 � 16) � 9.682;

∫ 35

13
Ŝ (t)dt � 9.682 � 0.690(16 � 13) � 11.752;

∫ 35

10
Ŝ (t)dt � 11.752 � 0.753(13 � 10) � 14.011;

∫ 35

7
Ŝ (t)dt � 14.011 � 0.807(10 � 7) � 16.429;

∫ 35

6
Ŝ (t)dt � 16.429 � 0.857(7 � 6) � 17.286;

∫ 35

0
Ŝ (t)dt � 17.286 � 1.0(6 � 0) � 23.286.

Thus, �̂35 � 23.286 weeks, and

V̂ [ �̂35] �
3 � 17.2862

21 � 18
�

16.4292

17 � 16
�

14.0112

15 � 14
�

11.7522

12 � 11
�

9.6822

11 � 10

�
5.9142

7x6
�

5.3762

6 � 5
� 7.993.

The standard error of the estimated mean time to relapse is 7.9931 � 2 �
2.827 weeks.

EXAMPLE 4.2 (continued) Using Efron’s tail correction, the estimated mean disease-
free survival time for ALL patients is �̂2081 � 899.28 days with a standard
error of 150.34 days. A 95% confidence interval for the mean disease-
free survival time for ALL patients is 899.28  1.96(150.34) � (606.61,
1193.95) days. Similar calculations for the AML low risk group yields
an estimated mean disease-free survival time of �̂2569 � 1548.84 days
with a standard error of 150.62 days (95% confidence interval: (1253.62,
1844.07) days.) For the AML high- risk group, �̂2640 � 792.31 days with a
standard error of 158.25 days (95% confidence interval: (482.15, 1102.5)
days).

Comparison of the duration of the mean disease-free survival time
for the three disease categories is complicated by the differences in the
largest study times between the groups. To make comparisons which
adjust for these differences, the estimated mean, restricted to the interval
0 to 2081 days, is computed for each group. Here, we find the following
estimates:
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Mean Restricted to 95% Confidence
Disease Group 2081 days Standard Error Interval

ALL 899.3 days 150.3 days 606.6–1193.9 days
AML low risk 1315.2 days 118.8 days 1082.4–1548.0 days
AML high risk 655.67 days 122.9 days 414.8–896.5 days

Again, these results suggest that AML high risk patients have a lower
survival rate than AML low risk patients, whereas ALL patients may be
comparable with either of the two AML risk groups.

The Product-Limit estimator can also be used to provide estimates of
quantiles of the distribution of the time-to-event distribution. Recall that
the pth quantile of a random variable X with survival function S (x), is
defined by xp � inf�t : S (t) � 1 � p�, that is, xp is the smallest time
at which the survival function is less than or equal to 1 � p . When
p � 1� 2, xp is the median time to the event of interest. To estimate xp ,
we find the smallest time x̂p for which the Product-Limit estimator is less
than or equal to 1 � p . That is, x̂p � inf�t : Ŝ (t) � 1 � p�. In practice,
the standard error of x̂p is difficult to compute because it requires an
estimate of the density function of X at x̂p (see Practical Note 3 below).
Brookmeyer and Crowley (1982a) have constructed confidence intervals
for x̂p , based on a modification of the confidence interval construction
for S (t) discussed in section 4.3, which do not require estimating the
density function. A 100(1 � �)% confidence interval for xp , based on
the linear confidence interval, is the set of all time points t which satisfy
the following condition:

� Z1��� 2 �
Ŝ (t) � (1 � p)

V̂ 1 � 2[ Ŝ (t)]
� Z1��� 2. (4.5.4)

The 100(1��)% confidence interval for xp based on the log-transformed
interval is the set of all points t which satisfy the condition:

� Z1��� 2 �
[ln�� ln[ Ŝ (t)]� � ln�� ln[1 � p ]�][ Ŝ (t) ln[ Ŝ (t)]

V̂ 1 � 2[ Ŝ (t)]
� Z1��� 2.

(4.5.5)
The 100(1��)% confidence interval for xp based on the arcsine-square
root transformation is given by

� Z1��� 2 �
2�arcsine[

√
Ŝ (t)] � arcsine[

√
(1 � p)]�[ Ŝ (t)(1 � Ŝ (t))]1 � 2

V̂ 1 � 2[ Ŝ (t)]
� Z1��� 2.

(4.5.6)

EXAMPLE 4.2 (continued) We shall estimate the median disease-free survival time
for the ALL group. From Table 4.3 we see that Ŝ (383) � 0.5217 � 0.5
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TABLE 4.7
Construction of a 95% Confidence Interval for the Median

Linear Log Arcsine

ti Ŝ (ti )
√

V̂ [ Ŝ (ti )] (4.5.4) (4.5.5) (4.5.6)

1 0.9737 0.0260 18.242 3.258 7.674
55 0.9474 0.0362 12.350 3.607 6.829
74 0.9211 0.0437 9.625 3.691 6.172
86 0.8947 0.0498 7.929 3.657 5.609

104 0.8684 0.0548 6.719 3.557 5.107
107 0.8421 0.0592 5.783 3.412 4.645
109 0.8158 0.0629 5.022 3.236 4.214
110 0.7895 0.0661 4.377 3.036 3.806
122 0.7368 0.0714 3.316 2.582 3.042
129 0.7105 0.0736 2.862 2.334 2.679
172 0.6842 0.0754 2.443 2.074 2.326
192 0.6579 0.0770 2.052 1.804 1.981
194 0.6316 0.0783 1.681 1.524 1.642
230 0.6041 0.0795 1.309 1.220 1.290
276 0.5767 0.0805 0.952 0.909 0.945
332 0.5492 0.0812 0.606 0.590 0.604
383 0.5217 0.0817 0.266 0.263 0.266
418 0.4943 0.0819 �0.070 �0.070 �0.070
468 0.4668 0.0818 �0.406 �0.411 �0.405
487 0.4394 0.0815 �0.744 �0.759 �0.741
526 0.4119 0.0809 �1.090 �1.114 �1.078
609 0.3825 0.0803 �1.464 �1.497 �1.437
662 0.3531 0.0793 �1.853 �1.886 �1.798
2081 0.3531 0.0793 �1.853 �1.886 �1.798

and Ŝ (418) � 0.4943 � 0.5, so x̂0.5 � 418 days. To construct 95%
confidence intervals for the median, we complete Table 4.7. To illustrate
the calculations which enter into construction of this Table, consider
the first row. Here the entry in the fourth column is the middle term in
(4.5.4), namely, (0.9737 � 0.5)/0.0260 � 18.242. The entry in the fifth
column is the middle term in (4.5.5), namely,

([ln(� ln(0.9737)) � ln(� ln(0.5))]�0.9737 ln[0.9737]�� 0.0260) � 3.258,

and the entry in the last column is the middle term in (4.5.6), namely,
2[arcsine(

√
0.9737) � arcsine(

√
0.5)][0.9737(1 � 0.9737)]1 � 2 � 0.0260 �

7.674. To find the linear 95% confidence interval, we find all those
values of ti which have a value, in column four between �1.96 and
1.96. Thus the 95% linear confidence interval for x0.5 is x0.05 � 194
days. The upper limit of this interval is undetermined because (4.5.4)
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never drops below �1.96 due to the heavy censoring. Based on the log
transformation, a 95% confidence interval for xp is x0.05 � 192 days. The
interval based on the arcsine-transformed interval is x0.05 � 194 days.

Similar calculations for the two groups of AML patients show that
the median disease-free survival time, for the low risk group, is 2204
days and, for the high risk group, is 183 days. For the low risk group,
the lower end points of the 95% confidence intervals for the median
disease-free survival time are 704 days, based on the linear approxi-
mation and 641 days based on either the log or arcsine transformation.
For the high risk group, the 95% confidence intervals for the median
are (115, 363) days for the linear and arcsine-square root transformed
intervals and (113, 363), based on the log-transformed interval.

Practical Notes

1. If there is no censoring, then, the estimator of the mean time to death
reduces to the sample mean. In addition, if there are no ties, then
the estimated variance of the mean estimate reduces to the sample
variance divided by n .

2. Alternate estimators of the mean survival time can be found by find-
ing the area under one of the tail-corrected Product-Limit estimators
discussed in Practical Note 2 of section 4.2.

3. An estimator of the large sample variance of the estimator of the pth
percentile is given by V̂ [ x̂p ] �

V̂ [ Ŝ (xp )]

f̂ (xp )2
, where f̂ (xp) is an estimate of

the density function at the pth percentile. A crude estimate of f̂ (t)
is Ŝ (t�b)�Ŝ (t�b)

2b
based on a uniform kernel density estimate. Here, b

is some small number.
4. Most major statistical packages provide an estimate of the mean

lifetime. When the largest observation is censored, one must carefully
examine the range over which the mean is computed.

Theoretical Notes

1. The asymptotic properties of the estimators of the mean and pth
quantile follow directly from the weak convergence of the Product-
Limit estimator. Details can be found in Andersen et al. (1993).

2. Details of constructing the confidence interval for median survival
are found in Brookmeyer and Crowley (1982a) who also present a
Monte Carlo study of the performance of the linear interval.
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4.6 Estimators of the Survival Function for
Left-Truncated and Right-Censored Data

The estimators and confidence intervals presented in sections 4.2–4.5
were based on right-censored samples. In this section, we shall show
how these statistics can be modified to handle left-truncated and right-
censored data. Here, we have associated, with the j th individual, a
random age Lj at which he/she enters the study and a time Tj at which
he/she either dies or is censored. As in the case of right-censored data,
define t1 
 t2 
 	 	 	 
 tD as the distinct death times and let di be the
number of individuals who experience the event of interest at time ti .
The remaining quantity needed to compute the statistics in the previous
sections is the number of individuals who are at risk of experiencing
the event of interest at time ti , namely Yi . For right-censored data, this
quantity was the number of individuals on study at time 0 with a study
time of at least ti . For left-truncated data, we redefine Yi as the number
of individuals who entered the study prior to time ti and who have a
study time of at least ti , that is, Yi is the number of individuals with
Lj 
 ti � Tj .

Using Yi as redefined for left-truncated data, all of the estimation
procedures defined in sections 4.2–4.4 are now applicable. However,
one must take care in interpreting these statistics. For example, the
Product-Limit estimator of the survival function at a time t is now an
estimator of the probability of survival beyond t , conditional on survival
to the smallest of the entry times L, Pr [X � t | X � L] � S (t) � S (L).
Similarly the Nelson–Aalen statistic estimates the integral of the hazard
rate over the interval L to t . Note that the slope of the Nelson–Aalen
estimator still provides an estimator of the unconditional hazard rate.

Some care in directly applying these estimators is needed. For left-
truncated data, it is possible for the number at risk to be quite small
for small values of ti . If, for some ti , Yi and di are equal, then, the
Product-Limit estimator will be zero for all t beyond this point, even
though we are observing survivors and deaths beyond this point. In
such cases, it is common to estimate the survival function conditional
on survival to a time where this will not happen by considering only
those death times beyond this point. This is illustrated in the following
example.

EXAMPLE 4.3 To illustrate how the statistics developed in the previous sections can
be applied to left-truncated data, consider the Channing House data
described in section 1.16. The data is found in Table D.5 of Appendix D.
Here the truncation times are the ages, in months, at which individuals
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Figure 4.10 Number at risk as a function of age for the 97 males ( )
and the 365 females (-----) in the Channing house data set

entered the community. We shall focus on estimating the conditional
survival function.

Figure 4.10 shows the number of individuals at risk as a function of
the age at which individuals die for both males and females. Note that
the number at risk initially increases as more individuals enter into the
study cohort and that this number decreases for later ages as individuals
die or are censored.

Consider the data on males. Here the risk set is empty until 751
months when one individual enters the risk set. At 759 months, a second
individual enters the risk set. These two individuals die at 777 and 781
months. A third individual enters the risk set at 782 months. Computing
the Product-Limit estimator of S (t) directly by (4.2.1) based on this
data would yield an estimate of Ŝ (t) � 1 for t 
 777, Ŝ (t) � 1� 2
for 777 � t 
 781, and Ŝ (t) � 0 for t � 781. This estimate has little
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meaning since the majority of the males in the study clearly survive
beyond 781 months.

Rather than estimating the unconditional survival function, we esti-
mate the conditional probability of surviving beyond age t , given sur-
vival to age a. We estimate Sa(t) � Pr [X � t | X � a] by considering
only those deaths that occur after age a, that is,

Ŝa(t) �
∏

a�ti �t

[

1 �
di

Yi

]

, t � a . (4.6.1)

Similarly for Greenwood’s formula (4.2.2) or for the Nelson–Aalen esti-
mator (4.2.3), only deaths beyond a are considered.

Figure 4.11 shows the estimated probability of surviving beyond
age t , given survival to 68 or 80 years for both males and females.
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Figure 4.11 Estimated conditional survival functions for Channing house res-
idents. 68 year old females ( ); 80 year old females (------); 68 year old
males (–– –– ––); 80 year old males (—— ——).
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As in the unconditional Product-Limit estimator, the estimates are com-
puted only over the range where Yi � 0. These estimates could be
extended beyond this time by the methods discussed in Practical Note 3
of section 4.2.

Practical Notes

1. A key assumption needed for making an inference with left-truncated
data is the notion of ‘independent truncation’, that is, the Product-
Limit estimator is a maximum likelihood estimator of the survival
function if

Pr [X � x | L � l, X � L]
Pr [X � x | L � l, X � L]

�
Pr [X � x ]
Pr [X � x ]

� h(x),

the hazard rate of X . Tsai (1990) provides a formal test of this
hypothesis which is valid under independent censoring. See Kei-
ding (1992) for further discussion of this point and further ex-
amples.

2. When the data is left truncated and right censored, the Product-Limit
estimator may have a relatively large variance for small t , where the
risk sets are small, and also for large t . This early instability in the
point estimator of the survival function may propagate throughout
the entire curve. Lai and Ying (1991) suggest a solution to this prob-
lem by a slight modification of the Product-Limit estimators where
deaths are ignored when the risk set is small. Their estimator is given
by

S̃ (t) �
∏

ti �t

{

1 �
di

Yi
I [Yi � cn� ]

}

,

where I is the indicator of the set A, n is the sample size, and
c � 0, 0 
 � 
 1 are constants. This estimator is asymptotically
equivalent to the usual product limit estimator.

Theoretical Note

1. The derivation of the Product-Limit estimator and the Nelson–Aalen
estimator follows directly from the theory of counting processes as
presented in section 3.6 with the modified definition of Y (t) as dis-
cussed in Practical Note 2 of that section.
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4.7 Summary Curves for Competing Risks

The summary survival curves presented in sections 4.2–4.6 are based
on the assumption that the event and censoring times are independent.
In the case of competing risks data, as discussed in section 2.7, this
untestable assumption may be suspect. In this section we present three
techniques for summarizing competing risks data.

To help in understanding the difference between the three estima-
tors and their interpretation, consider the bone marrow transplant study
discussed in section 1.3. In earlier sections of this chapter we con-
sidered estimation of the survival function for the time to treatment
failure. Recall that treatment failure is defined as death in remission
or relapse, whichever comes first. Here death in remission and re-
lapse are competing risks and we are interested in summary curves
that tell us how the likelihood of these events develops over time.
Occurrence of one of the events precludes occurrence of the other
event.

The first estimator which is commonly used is the complement of
the Kaplan-Meier estimator. Here occurrences of the other event are
treated as censored observations. For example, the estimated probability
of relapsing before time t is one minus the Kaplan-Meier estimator
of relapse obtained by treating occurrences of relapse as events and
occurrences of death before relapse as censored observations. This
estimator is an attempt to estimate the probability of relapsing before
time t . It can be interpreted as the probability of relapse by time t
if the risk of non-relapse death was removed. It is the probability of
relapse in a hypothetical world where it is impossible for patients to
die in remission. Reversing the roles of death in remission and relapse
yields the treatment-related mortality or death in remission probability.
Here this is an estimate of death in the world where relapse is not
possible. These are rarely the probabilities of clinical interest and we
cannot recommend the use of this estimator.

The second estimator is the cumulative incidence function. This es-
timator is constructed as follows. Let t1 
 t2 
 	 	 	 
 tK be the distinct
times where one of the competing risks occurs. At time ti let Yi be
the number of subjects at risk, ri be the number of subjects with an
occurrence of the event of interest at this time, and di be the number
of subjects with an occurrence of any of the other events of interest at
this time. Note that di � ri is the number of subjects with an occurrence
of any one of the competing risks at this time. Independent random
censoring due to a patient being lost to follow-up is not counted here
as one of the competing risks and affects only the value of Yi . The
cumulative incidence function is defined by
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CI(t) �

⎧
⎪⎪⎨

⎪⎪⎩

0 if t � t1

∑

ti �t

⎧
⎨

⎩

i�1∏

j�1

1 � [dj � rj ]
Yj

⎫
⎬

⎭
ri

Yi
if t1 � t

. (4.7.1)

Note that for t � t1 the cumulative incidence function is

CI(t) �
∑

ti �t

Ŝ (ti�)
ri

Yi

where Ŝ (ti�) is the Kaplan-Meier estimator, evaluated at just before
ti , obtained by treating any one of the competing risks as an event.
The cumulative incidence function estimates the probability that the
event of interest occurs before time t and that it occurs before any of
the competing causes of failure. It is the estimate of the probability
of the event of interest in the real world where a subject may fail
from any of the competing causes of failure. For example, the relapse
cumulative incidence is the chance a patient will have relapsed in the
interval 0 to t in the real world where they may die in remission. The
treatment related mortality cumulative incidence is the chance of death
before relapse in the real world. Note that the sum of the cumulative
incidences for all the competing risks is 1 � Ŝ (t), which in the bone
marrow transplant example is the complement of the treatment failure
Kaplan-Meier estimate found in section 4.2.

The variance of the cumulative incidence is estimated by

V [CI(t)] �
∑

ti �t

Ŝ (ti)
2

{

[CI(t) � CI(ti)]
2 ri � di

Y 2
i

� [1 � 2(CI(t) � CI(ti))]
ri

Y 2
i

}

. (4.7.2)

Confidence pointwise (1 � �) 100% confidence intervals for the cumu-
lative incidence are given by CI(t)  Z1��� 2V [CI(t)]1 � 2.

The third probability used to summarize competing risks data is the
conditional probability function for the competing risk. For a particular
risk, K , let CIK (t) and CIK c (t) be the cumulative incidence functions for
risk K and for all other risks lumped together, respectively. Then the
conditional probability function is defined by

CPK (t) �
CIK (t)

1 � CIK c (t)
. (4.7.3)

The variance of this statistic is estimated by

V [CPK (t)] �
Ŝ (t�)2

�1 � CIK c (t)�4

∑

ti �t

[1 � CIK c (ti)]2ri � CIK (ti)2di

Y 2
i

. (4.7.4)
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The conditional probability is an estimate of the conditional probabil-
ity of event K ’s occurring by t given that none of the other causes
have occurred by t . In the bone marrow transplantation example the
conditional probability of relapse is the probability of relapsing before
time t given the patient is not dead from other causes prior to t . It is
the probability of relapsing among survivors who have not died from
non-relapse-related toxicities.

To understand these probabilities better, consider a hypothetical bone
marrow transplant experiment involving 100 patients. Suppose that
there is no independent censoring and at one year after transplant 10
patients have relapsed and 30 patients have died in remission. When
there is no censoring the cumulative incidence reduces to the cumu-
lative number of events of the given type divided by n so the relapse
cumulative incidence is 10� 100 and the death in remission cumulative
incidence is 30� 100. The death in remission incidence is clearly inter-
preted as the proportion of patients who died in complete remission

TABLE 4.8
Estimates of Relapse and Death in Remission (TRM) for ALL Patients

ti di ri Yi TRM Relapse TRM Relapse TRM Relapse
1-KME 1-KME CI CI CP CP

1 1 0 38 0.0263 0.0000 0.0263 0.0000 0.0263 0.0000
55 0 1 37 0.0263 0.0270 0.0263 0.0263 0.0270 0.0270
74 0 1 36 0.0263 0.0541 0.0263 0.0526 0.0278 0.0541
86 1 0 35 0.0541 0.0541 0.0526 0.0526 0.0556 0.0556

104 0 1 34 0.0541 0.0819 0.0526 0.0789 0.0571 0.0833
107 1 0 33 0.0828 0.0819 0.0789 0.0789 0.0857 0.0857
109 0 1 32 0.0828 0.1106 0.0789 0.1053 0.0882 0.1143
110 0 1 31 0.0828 0.1393 0.0789 0.1316 0.0909 0.1429
122 1 1 30 0.1134 0.1680 0.1053 0.1579 0.1250 0.1765
129 0 1 28 0.1134 0.1977 0.1053 0.1842 0.1290 0.2059
172 1 0 27 0.1462 0.1977 0.1316 0.1842 0.1613 0.2121
192 0 1 26 0.1462 0.2285 0.1316 0.2105 0.1667 0.2424
194 1 0 25 0.1804 0.2285 0.1579 0.2105 0.2000 0.2500
230 0 1 23 0.1804 0.2621 0.1579 0.2380 0.2072 0.2826
276 1 0 22 0.2176 0.2621 0.1854 0.2380 0.2432 0.2921
332 0 1 21 0.2549 0.2621 0.2128 0.2380 0.2793 0.3023
383 0 1 20 0.2549 0.2990 0.2128 0.2654 0.2897 0.3372
418 1 0 19 0.2941 0.2990 0.2403 0.2654 0.3271 0.3494
466 1 0 18 0.3333 0.2990 0.2677 0.2654 0.3645 0.3625
487 1 0 17 0.3725 0.2990 0.2952 0.2654 0.4019 0.3766
526 1 0 16 0.4117 0.2990 0.3227 0.2654 0.4393 0.3919
609 0 1 14 0.4117 0.3490 0.3227 0.2949 0.4576 0.4353
662 0 1 13 0.4117 0.3991 0.3227 0.3243 0.4775 0.4788
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prior to one year. The conditional probabilities estimates are 10 � 70 for
relapse and 30� 90 for death in remission. Here the death in remission
probability is estimated by the number who die in remission divided
by the number who could have died in remission which is the num-
ber at risk at one year who have yet to relapse. The complement of
the Kaplan-Meier estimate depends on the pattern of occurrences of
deaths and relapses. If all deaths occur before the first relapse then
the relapse probability is 10 � 70 while if all the relapses occurred be-
fore the first death we get an estimate of 10 � 100. Any value between
these two extremes is possible. Clearly this estimate has no meaningful
interpretation.

EXAMPLE 4.2 (continued) We consider the data on the 38 patients with ALL given
a transplant and examine the three probabilities for relapse and for
death in remission (TRM). Table 4.8 provides the estimates for the three
probabilities. The estimated standard error for the relapse cumulative
incidence at 1 year is 0.069 so an approximate 95% confidence interval
for the probability of relapsing before death is 0.238  1.96 � 0.069 �

Figure 4.12 Comparison estimated probability of relapse for ALL patients.
Complement of Kaplan-Meier (—–), cumulative incidence (�	�	), conditional
probability (- - -)
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(0.103, 0.373). The estimated conditional probability of relapse at 1 year
was 0.302 with a standard error of 0.087. A 95% confidence interval
for the conditional probability of relapse is 0.302  1.96 � 0.087 �
(0.131, 0.473).

Figures 4.12 and 4.13 show the estimated probabilities for relapse
and death in remission, respectively. Note that the conditional proba-
bility curve changes value at the occurrence of either of the two com-
peting risks. The probabilities have the characteristic property of the
conditional probability estimate being the largest and the cumulative
incidence estimate the smallest.

It is important that summary curves for all the competing risks be
presented since changes in the likelihood of one event cause changes
in the probabilities for the other events. A nice summary curve is shown
in Figure 4.14. Here we plot the relapse cumulative incidence and the
sum of the relapse and death in remission cumulative incidences. The
complement of the sum of the two cumulative incidences is the disease
free survival probability found in section 4.2. At a given time the height
of the first curve is the probability of relapsing, the distance between

Figure 4.13 Comparison estimated probability of death in remission for ALL
patients. Complement of Kaplan-Meier (—–), cumulative incidence (�	�	),
conditional probability (- - -)
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Figure 4.14 Interaction between the relapse and death in remission

the first and second curves the probability of death in remission, and
the distance of the second curve from 1.0 the disease free survival
function. For example, at 400 days the relapse probability is 0.2654,
the death in remission probability is 0.4982 � 0.2654 � 0.2328, and the
disease-free survival function is 1 � 0.4982 � 0.5018. This graph allows
us dynamically to access the relationship between the competing risks.

Theoretical Notes
1. Suppose we have two competing risks X and Y and let T �

min(X, Y ) and I � 1 if X 
 Y , 0 if X � Y . The cause-specific
hazard rate for X is

�X (t) � P [t � X 
 t � � t | min(X, Y ) � t ] � t.

The Kaplan-Meier estimator obtained by treating times with I �
0 as censored observations provides a consistent estimator of
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exp��
∫ t

0 �X (u) du�. This quantity has no interpretation as a proba-
bility.

2. The cumulative incidence estimator was first proposed by Kalbfleisch
and Prentice (1980). The estimator can be derived using techniques
described in Andersen et al. (1993) as a special case of a more
general theory for product-limit estimators for the transitions of a
non-homogeneous Markov process.

3. Pepe and Mori (1993), Pepe et al. (1993), and Gooley et al. (1999)
provide a nice discussion of these three estimates and present alter-
native derivations of the variance estimates.

Practical Note
1. A SAS macro to compute the cumulative incidence curves can be

found on our web site.

4.8 Exercises

4.1 In section 1.11 we discussed a study of the effect of ploidy on the sur-
vival of patients with cancer of the tongue. Using the data on aneuploid
tumors found in Table 1.6.

(a) Estimate the survival function at one (12 months) and five years (60
months) after transplant. Find the standard errors for your estimates.

(b) Estimate the cumulative hazard rate, H (t), at 60 months. Find the
standard error of Ĥ (t). Estimate S (60) by exp��Ĥ (t)� and compare to
your estimate in part a.

(c) Find a 95% linear confidence interval for S (60).

(d) Find a 95% log-transformed confidence interval for S (60).

(e) Find a 95% arcsine-square root confidence interval for S (60).

(f) Using the log transformation find a 95% EP confidence band for
the survival function over the range three years to six years (i.e., 36–72
months).

(g) Using the log transformation find a 95% Hall-Wellner confidence
band for the survival function over the range three years to six years
(i.e., 36–72 months).

(h) Estimate the mean survival time restricted to 400 months. Also pro-
vide a 95% confidence interval for the restricted mean survival time.

(i) Estimate the median time to death and find a 95% confidence interval
for the median survival time based on a linear confidence interval.
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4.2 Using the data reported in section 1.3, find the quantities specified
below for the AML low risk and AML high risk groups. Note that most
of these quantities are worked out in detail in Example 4.2 and its
continuations for the ALL group.

(a) Estimate the survival functions and their standard errors for the AML
low risk and AML high risk groups.

(b) Estimate the cumulative hazard rates and their standard errors for
the AML low risk and AML high risk groups.

(c) Provide a crude estimate of the hazard rates for each group based
on the estimates obtained in (b).

(d) Estimate the mean time to death and find 95% confidence intervals
for the mean survival time for both the AML low risk and AML high risk
groups. (Answers are given in section 4.5.)

(e) Work out estimates of the median time to death and find 95% con-
fidence intervals for the median survival time for both the AML low risk
and AML high risk groups using the linear, log-transformed, and arcsine
formulas. (Answers are given in section 4.5.)

(f) Find 95% confidence intervals for the survival functions at 300 days
post-transplant for both the AML low risk and AML high risk groups
using the log- and arcsine-transformed formulas.

(g) Find 95% EP confidence bands for the survival functions over the
range 100–400 days post-transplant for both the AML low risk and
AML high risk groups using the linear, log-transformed, and arcsine-
transformed formulas.

(h) Find 95% HW confidence bands for the survival functions over
the range 100–400 days post-transplant for both the AML low risk and
AML high risk groups using the linear, log-transformed, and arcsine-
transformed formulas.

(i) Based on the results above and those discussed in Example 4.2 and
its continuations, how do the survival experiences of the ALL, AML low
risk, and AML high risk groups compare?

4.3 The following table contains data on the survival times of 25 patients
with inoperative lung cancer entered on a study between November 1,
1979, and December 23, 1979. Complete follow-up was obtained on all
patients so that the exact date of death was known. The study had one
interim analysis conducted on March 31, 1980, by which time only 13
patients had died.

(a) Estimate the survival function based on the available sample in-
formation at the time of the interim analysis on 3/31/80. Provide the
standard error of your estimate.

(b) Use the Brown, Hollandar, and Kowar technique (Practical Note
2 of section 4.1) to complete the right-hand tail of the product-limit
estimate found in part a.
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Date of Days to
Patient Diagnosis Date of Death Days to death 3/31/80(Status)

1 1/11/79 5/30/79 139 139(Dead)
2 1/23/79 1/21/80 363 363(Dead)
3 2/15/79 8/27/79 193 193(Dead)
4 3/7/79 11/10/79 248 248(Dead)
5 3/12/79 4/8/79 27 27(Dead)
6 3/25/79 10/21/79 210 210(Dead)
7 4/4/79 8/16/79 134 134(Dead)
8 4/30/79 11/19/79 203 203(Dead)
9 5/16/79 5/9/81 724 320 (Alive)

10 5/26/79 7/15/79 50 50(Dead)
11 5/30/79 10/22/80 511 306(Alive)
12 6/3/79 6/25/79 22 22(Dead)
13 6/15/79 12/27/80 561 290(Alive)
14 6/29/79 1/29/81 580 276(Alive)
15 7/1/79 11/14/79 136 136(Dead)
16 8/13/79 6/16/80 308 231(Alive)
17 8/27/79 4/7/80 224 217(Alive)
18 9/15/79 1/9/81 482 198(Alive)
19 9/27/79 4/5/80 191 186(Alive)
20 10/11/79 3/3/80 144 144(Dead)
21 11/17/79 1/24/80 68 68(Dead)
22 11/21/79 10/4/81 683 131(Alive)
23 12/1/79 8/13/80 256 121(Alive)
24 12/14/79 2/27/81 441 108(Alive)
25 12/23/79 4/2/80 101 99(Alive)

(c) Compute the estimate of the survival function and an estimate of its
standard error using the complete follow-up on each patient. Compare
this estimate to that found in part a.

(d) Estimate the mean time to death restricted to 683 days based on
the product-limit estimator found in part c.

(e) Estimate the mean time to death by finding the area under the
survival curve found in part c. Find the standard error of your estimate.

(f) Compute the usual estimate of the time to death based on complete
follow-up data by finding the arithmetic mean of the complete follow-
up data. Find the standard error of this estimate in the usual way as
the sample standard deviation divided by the square root of the sample
size. Compare your answers to those obtained in part e.

4.4 In section 1.4 the times to first exit site infection (in months) of patients
with renal insufficiency was reported. In the study 43 patients had a
surgically placed catheter (Group 1) and 76 patients had a percutaneous
placement of their catheter (Group 0).
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(a) For each group plot the estimated survival function. Which tech-
nique seems better in delaying the time to infection?
(b) Estimate the cumulative hazard rate for each group of patients.
Provide a crude estimate of the hazard rate at 5 months after placement
of the catheter in each group.
(c) Find a 95% confidence interval for the mean time to first exit site
infection restricted to 36 months for both groups.

4.5 Using the survival times of 59 black females given a kidney transplant
at the OSU transplant center discussed in section 1.7—
(a) Estimate the distribution of the time to death, measured from trans-
plant, for black female kidney transplant patients. Provide the standard
error of the estimated survival function.
(b) Find a 95% confidence interval, based on the linear transformation,
for the probability a black female will survive at least 12 months (365
days) after transplantation.
(c) Repeat b using the log-transformed confidence interval.
(d) Repeat c using the arcsine-transformed confidence interval. Com-
pare the intervals found in parts c–e.

4.6 In section 1.6 a study is described to evaluate a protocol change in
disinfectant practice in a large midwestern university medical center.
Control of infection is the primary concern for the 155 patients entered
into the burn unit with varying degrees of burns. The outcome vari-
able is the time until infection from admission to the unit. Censoring
variables are discharge from the hospital without an infection or death
without an infection. Eighty-four patients were in the group which had
chlorhexidine as the disinfectant and 72 patients received the routine
disinfectant povidone-iodine.

(a) Estimate the survival (infection-free) functions and their standard
errors for the chlorhexidine and povidone-iodine groups.
(b) Estimate the cumulative hazard rates and their standard errors for
the chlorhexidine and povidone-iodine groups. Plot these estimates.
Does it appear that the two cumulative hazard rates are proportional to
each other?

(c) Provide estimates of the median time to infection and find 95% con-
fidence intervals for the median time to infection for both the chlorhexi-
dine and povidone-iodine groups using the linear, log-transformed, and
arcsine formulas.

(d) Find 95% confidence intervals for the survival (infection-free)
functions at 10 days postadmission for both the chlorhexidine and
povidone-iodine groups using the log transformed and arcsine trans-
formed formulas.
(e) Find 95% confidence bands for the infection-free functions over the
range 8–20 days postinfection for both the chlorhexidine and povidone-
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iodine groups using the linear, log transformed, and arcsine transformed
formulas.

(f) Find 95% HW confidence bands for the infection-free functions
over the range 8–20 days postinfection for both the chlorhexidine and
povidone-iodine.

(g) Based on the results above, how does the infection experience of
the chlorhexidine and povidone-iodine groups compare?

4.7 Consider a hypothetical study of the mortality experience of diabetics.
Thirty diabetic subjects are recruited at a clinic and followed until death
or the end of the study. The subject’s age at entry into the study and
their age at the end of study or death are given in the table below. Of
interest is estimating the survival curve for a 60- or for a 70-year-old
diabetic.

(a) Since the diabetics needed to survive long enough from birth until
the study began, the data is left truncated. Construct a table showing
the number of subjects at risk, Y , as a function of age.

(b) Estimate the conditional survival function for the age of death of a
diabetic patient who has survived to age 60.

(c) Estimate the conditional survival function for the age of death of a
diabetic patient who has survived to age 70.

(d) Suppose an investigator incorrectly ignored the left truncation and
simply treated the data as right censored. Repeat parts a–c.

Entry Exit Death Entry Exit Death
Age Age Indicator Age Age Indicator

58 60 1 67 70 1
58 63 1 67 77 1
59 69 0 67 69 1
60 62 1 68 72 1
60 65 1 69 79 0
61 72 0 69 72 1
61 69 0 69 70 1
62 73 0 70 76 0
62 66 1 70 71 1
62 65 1 70 78 0
63 68 1 71 79 0
63 74 0 72 76 1
64 71 1 72 73 1
66 68 1 73 80 0
66 69 1 73 74 1

4.8 Table 1.7 reports the results of a study on the survival times of patients
admitted to a psychiatric hospital. In this data set patients were admitted
to the hospital at a random age and followed until death or the end of
the study. Let X be the patient’s age at death. Note that the data we
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have on X is left truncated by the patient’s age at entry into the hospital
and right censored by the end of the study.
(a) Plot the number at risk, Yi , as a function of age.
(b) Estimate the conditional survival function for a psychiatric patient
who has survived to age 30 without entering a psychiatric hospital.

4.9 Hoel and Walburg (1972) report results of an experiment to study the
effects of radiation on life lengths of mice. Mice were given a dose of
300 rads of radiation at 5–6 weeks of age and followed to death. At
death each mouse was necropsied to determine if the cause of death
was thymic lymphoma, reticulum cell sarcoma, or another cause. The
ages of the mice at death are shown below:

Cause Age at Death
of Death (Days)

Thymic 158, 192, 193, 194, 195, 202, 212, 215, 229, 230, 237, 240, 244,
lymphoma 247, 259, 300, 301, 337, 415, 444, 485, 496, 529, 537, 624, 707, 800

Reticulum cell 430, 590, 606, 638, 655, 679, 691, 693, 696, 747, 752, 760, 778,
sarcoma 821, 986

Other causes 136, 246, 255, 376, 421, 565, 616, 617, 652, 655, 658, 660, 662,
675, 681, 734, 736, 737, 757, 769, 777, 801, 807, 825, 855, 857,
864, 868, 870, 873, 882, 895, 910, 934, 942, 1,015, 1,019

(a) For each of the three competing risks estimate the cumulative inci-
dence function at 200, 300, . . . , 1,000 days by considering the two other
risks as a single competing risk.
(b) Show that the sum of the three cumulative incidence functions
found in part a is equal to the Kaplan-Meier estimate of the overall
survival function for this set of data.
(c) Repeat part a using the complement of the marginal Kaplan-Meier
estimates. What are the quantities estimating and how different from
the results found in part a are these estimates?
(d) Compute the conditional probability function for thymic lymphoma
at 500 and 800 days. What are the quantities estimating?

4.10 Using the data reported in section 1.3 for the AML low risk and AML
high risk groups, find the following quantities for the two competing
risks of relapse and death:
(a) The estimated cumulative incidence at one year.
(b) The standard errors of the two estimates in part a.
(c) The estimated conditional probabilities of relapse and of death in
remission.
(d) The standard errors of the probabilities found in part c.
(e) Graphically express the development of relapse and death in re-
mission for these two disease groups.



5
Estimation of Basic

Quantities for Other
Sampling Schemes

5.1 Introduction

In Chapter 4, we examined techniques for estimating the survival func-
tion for right-censored data in sections 4.2-4.5 and for left-truncated data
in section 4.6. In this chapter, we discuss how to estimate the survival
function for other sampling schemes, namely, left, double, and interval
censoring, right-truncation, and grouped data. Each sampling scheme
provides different information about the survival function and requires
a different technique for estimation.

In section 5.2, we examine estimating for three censoring schemes.
In the first scheme, left censoring, censored individuals provide infor-
mation indicating only that the event has occurred prior to entry into
the study. Double-censored samples include some individuals that are
left-censored and some individuals that are right-censored. In both sit-
uations, some individuals with exact event times are observed. The last
censoring scheme considered in this section is interval censoring, where
individual event times are known to occur only within an interval.

139
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In section 5.3, we present an estimator of the survival function for
right-truncated data. Such samples arise when one samples individuals
from event records and, retrospectively determines the time to event.

In section 5.4, we consider estimation techniques for grouped data.
In elementary statistics books, the relative frequency histogram is often
used to describe such data. In survival analysis, however, the compli-
cating feature of censoring renders this simple technique ineffective
because we will not know exactly how many events would have oc-
curred in each interval had all subjects been observed long enough
for them to have experienced the event. The life table methodology
extends these elementary techniques to censored data.

Grouped survival data arises in two different situations. In the first,
discussed in section 5.4, we follow a large group of individuals with a
common starting time. The data consists of only the number who die
or are lost within various time intervals. The basic survival quantities
are estimated using a cohort (sometimes called a generation) life table.

In the second, a different sampling scheme is considered. Here a
cross-sectional sample of the number of events and number at risk at
different ages in various time intervals are recorded. In this instance, the
cohort life table, which is based on longitudinal data, is not appropriate,
and the basic survival quantities are estimated by the current life table.
We refer the reader to Chiang (1984) for details of constructing this type
of life table.

5.2 Estimation of the Survival Function for Left,
Double, and Interval Censoring

In this section we shall present analogues of the Product-Limit estimator
of the survival function for left-, double-, and interval-censored data. As
discussed in section 3.3, left-censoring occurs when some individuals
have experienced the event of interest prior to the start of the period
of observation, while interval censoring occurs when all that is known
is that the event of interest occurs between two known times. Dou-
ble censoring occurs when both left censoring and right censoring are
present. In addition some exact event times are observed. Each censor-
ing scheme requires a distinct construction of the survival function.

For left censoring for some individuals, all we know is that they have
experienced the event of interest prior to their observed study time,
while for others their exact event time is known. This type of censoring
is handled quite easily by reversing the time scale. That is, instead of
measuring time from the origin we fix a large time � and define new
times by � minus the original times. The data set based on these reverse
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times is now right-censored and the estimators in sections 4.2–4.4 can
be applied directly. Note that the Product-Limit estimator in this case is
estimating P [� � X � t ] � P [X 
 � � t ]. Examples of this procedure
are found in Ware and Demets (1976).

Examples of pure left censoring are rare. More common are samples
which include both left and right censoring. In this case a modified
Product-Limit estimator has been suggested by Turnbull (1974). This
estimator, which has no closed form, is based on an iterative procedure
which extends the notion of a self-consistent estimator discussed in
Theoretical Note 3 of section 4.2. To construct this estimator we assume
that there is a grid of time points 0 � t0 
 t1 
 t2 
 	 	 	 
 tm at which
subjects are observed. Let di be the number of deaths at time ti (note
here the ti ’s are not event times, so di may be zero for some points). Let
ri be the number of individuals right-censored at time ti (i.e., the number
of individuals withdrawn from the study without experiencing the event
at ti), and let ci be the number of left-censored observations at ti (i.e.,
the number for which the only information is that they experienced the
event prior to ti). The only information the left-censored observations
at ti give us is that the event of interest has occurred at some t j � ti .
The self-consistent estimator estimates the probability that this event
occurred at each possible t j less than ti based on an initial estimate
of the survival function. Using this estimate, we compute an expected
number of deaths at t j , which is then used to update the estimate of
the survival function and the procedure is repeated until the estimated
survival function stabilizes. The algorithm is as follows:

Step 0: Produce an initial estimate of the survival function at each
t j , So(t j). Note any legitimate estimate will work. Turnbull’s suggestion is
to use the Product-Limit estimate obtained by ignoring the left-censored
observations.

Step (K � 1)1: Using the current estimate of S , estimate pi j � P [t j�1 


X � ti | X � ti ] by SK (t j�1)�SK (t j )
1�SK (ti )

, for j � i .

Step (K � 1)2: Using the results of the previous step, estimate the num-
ber of events at time ti by d̂i � di �

∑m
i� j ci pi j .

Step (K � 1)3: Compute the usual Product-Limit estimator (4.2.1) based
on the estimated right-censored data with d̂i events and ri right-
censored observations at ti , ignoring the left-censored data. If this
estimate, SK �1(t), is close to SK (t) for all ti , stop the procedure; if not,
go to step 1.

EXAMPLE 5.1 To illustrate Turnbull’s algorithm, consider the data in section 1.17 on
the time at which California high school boys first smoked marijuana.
Here left censoring occurs when boys respond that they have used
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TABLE 5.1
Initial Estimate of the Survival Function Formed by Ignoring the Left-Censored
Observations

Number Number Number
Left- of Right-

Age Censored Events Censored

i ti ci di ri Yi �
m∑

j�i

d j � r j So(ti )

0 0 1.000
1 10 0 4 0 179 0.978
2 11 0 12 0 175 0.911
3 12 0 19 2 163 0.804
4 13 1 24 15 142 0.669
5 14 2 20 24 103 0.539
6 15 3 13 18 59 0.420
7 16 2 3 14 28 0.375
8 17 3 1 6 11 0.341
9 18 1 0 0 4 0.341

10 �18 0 4 0 4 0.000
Total 12 100 79 0

marijuana but can not recall the age of first use, while right-censored
observations occur when boys have never used marijuana. Table 5.1
shows the data and the initial Product-Limit estimator, So, obtained by
ignoring the left-censored observations.

In step 1, we estimate the pi j ’s. Note we only need estimates for
those i with ci � 0 for the computations in step 2. For the left-censored
observation at t4 we have

p41 �
1.000 � 0.978

1 � 0.669
� 0.067; p42 �

0.978 � 0.911
1 � 0.669

� 0.202;

p43 �
0.911 � 0.804

1 � 0.669
� 0.320; p44 �

0.804 � 0.669
1 � 0.669

� 0.410.

Similar computations yield the values for pi j in Table 5.2.
Using these values, we have d̂1 � 4�0.067�1�0.048�2�0.039�

3�0.036�2�0.034�3�0.034�1 � 4.487, d̂2 � 13.461, d̂3 � 21.313,
d̂4 � 26.963, d̂5 � 22.437, d̂6 � 14.714, d̂7 � 3.417, d̂8 � 1.206, d̂9 � 0,
and d̂10 � 4. These values are then used in Table 5.3 to compute the
updated estimate of the survival function, S1(t).

Then using these estimates of the survival function the pi j ’s are re-
computed, the d̂ ’s are re-estimated, and the second step estimator S2(ti)
is computed. This estimate is found to be within 0.001 of S1 for all ti , so
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TABLE 5.2
Values of pi j in Step 1

i� j 4 5 6 7 8 9

1 0.067 0.048 0.039 0.036 0.034 0.034
2 0.202 0.145 0.116 0.107 0.102 0.102
3 0.320 0.230 0.183 0.170 0.161 0.161
4 0.410 0.295 0.234 0.218 0.206 0.206
5 0.281 0.224 0.208 0.197 0.197
6 0.205 0.190 0.180 0.180
7 0.072 0.068 0.068
8 0.052 0.052
9 0.000

TABLE 5.3
First Step of the Self-Consistency Algorithm

ti d̂ ri Yi S1(ti )

0 1.000
10 4.487 0 191.000 0.977
11 13.461 0 186.513 0.906
12 21.313 2 173.052 0.794
13 26.963 15 149.739 0.651
14 22.437 24 107.775 0.516
15 14.714 18 61.338 0.392
16 3.417 14 28.624 0.345
17 1.207 6 11.207 0.308
18 0.000 0 4.000 0.308

�18 4.000 0 4.000 0.000

the iterative process stops. The final estimate of the survival function,
to three decimal places, is given by S1(t) in Table 5.3.

In some applications the data may be interval-censored. Here the
only information we have for each individual is that their event time
falls in an interval (Li , Ri ], i � 1, . . . , n , but the exact time is unknown.
An estimate of the survival function can be found by a modification
of above iterative procedure as proposed by Turnbull (1976). Let 0 �
�0 
 �1 
 	 	 	 
 �m be a grid of time points which includes all the
points Li , Ri for i � 1, . . . , n . For the i th observation, define a weight
�i j to be 1 if the interval (� j�1, � j ] is contained in the interval (Li , Ri ], and
0 otherwise. Note that �i j is an indicator of whether the event which
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occurs in the interval (Li , Ri ] could have occurred at � j . An initial guess
at S (� j ) is made. The algorithm is as follows:

Step 1: Compute the probability of an event’s occurring at time � j ,
p j � S (� j�1) � S (� j ), j � 1, . . . , m.

Step 2: Estimate the number of events which occurred at �i by

di �
n∑

i�1

�i j p j
∑

k �ik pk
.

Note the denominator is the total probability assigned to possible event
times in the interval (Li , Ri ].

Step 3: Compute the estimated number at risk at time �i by Yi �∑m
k� j dk .

Step 4: Compute the updated Product-Limit estimator using the pseudo
data found in steps 2 and 3. If the updated estimate of S is close to the
old version of S for all �i ’s, stop the iterative process, otherwise repeat
steps 1–3 using the updated estimate of S .

EXAMPLE 5.2 To illustrate the estimation procedure for interval-censored data con-
sider the data on time to cosmetic deterioration for early breast cancer
patients presented in section 1.18.

Consider first the 46 individuals given radiation therapy only. The
end points of the intervals for the individuals form the �i ’s as listed
in Table 5.4. An initial estimate is found by distributing the mass of
1� 46 for the i th individual equally to each possible value of � con-
tained in (Li , Ri ]. For example, the individual whose event time is in
the interval (0, 7] contributes a value of (1� 46)(1� 4) to the probability
of the event’s occurring at 4, 5, 6, and 7 months, respectively. Using
this initial approximation in step 1, we can compute the p j ’s. Here, for
example, we have p1 � 1. � 0.979 � 0.021, p2 � 0.979 � 0.955 �
0.024, p3 � 0.0214, etc. The estimated number of deaths as shown
in Table 5.4 is then computed. As an example, at � � 4 we have
d1 � 0.021� (0.021 � 0.024 � 0.021 � 0.029 � 0.031) � 0.021� (0.021 �
0.024�0.021�0.029)�0.021� (0.0201�0.024) � 0.842. These estimates
are then used to compute the estimated number at risk at each �i .

Using the estimated number of deaths and number at risk we compute
the updated estimate of the survival function, as shown in Table 5.4.
This revised estimate is then used to re-estimate the number of deaths,
and the process continues until the maximum change in the estimate is
less than 10�7. This requires, in this case, 305 iterations of the process.
The final estimate is shown in the second half of Table 5.4.

Figure 5.1 shows the estimated survival functions for the radiother-
apy only and combination radiotherapy and chemotherapy groups. The
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TABLE 5.4
Calculations for Estimating the Survival Function Based on Interval-Censored
Data

Estimated Estimated
Number Number

Initial of Deaths at Risk Updated
� S (t) d Y S (t) Change

0 1.000 0.000 46.000 1.000 0.000
4 0.979 0.842 46.000 0.982 �0.002
5 0.955 1.151 45.158 0.957 �0.002
6 0.934 0.852 44.007 0.938 �0.005
7 0.905 1.475 43.156 0.906 �0.001
8 0.874 1.742 41.680 0.868 0.006

10 0.848 1.286 39.938 0.840 0.008
11 0.829 0.709 38.653 0.825 0.004
12 0.807 1.171 37.944 0.799 0.008
14 0.789 0.854 36.773 0.781 0.008
15 0.775 0.531 35.919 0.769 0.006
16 0.767 0.162 35.388 0.766 0.001
17 0.762 0.063 35.226 0.764 �0.002
18 0.748 0.528 35.163 0.753 �0.005
19 0.732 0.589 34.635 0.740 �0.009
22 0.713 0.775 34.045 0.723 �0.011
24 0.692 0.860 33.270 0.705 �0.012
25 0.669 1.050 32.410 0.682 �0.012
26 0.652 0.505 31.360 0.671 �0.019
27 0.637 0.346 30.856 0.663 �0.026
32 0.615 0.817 30.510 0.646 �0.031
33 0.590 0.928 29.693 0.625 �0.035
34 0.564 1.056 28.765 0.602 �0.039
35 0.542 0.606 27.709 0.589 �0.047
36 0.523 0.437 27.103 0.580 �0.057
37 0.488 1.142 26.666 0.555 �0.066
38 0.439 1.997 25.524 0.512 �0.073
40 0.385 2.295 23.527 0.462 �0.077
44 0.328 2.358 21.233 0.410 �0.082
45 0.284 1.329 18.874 0.381 �0.097
46 0.229 1.850 17.545 0.341 �0.112
48 0.000 15.695 15.695 0.000 0.000

Survival
Interval Probability

0–4 1.000
5–6 0.954
7 0.920

8–11 0.832
12–24 0.761
25–33 0.668
34–38 0.586
40–48 0.467
�48 0.000
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Figure 5.1 Estimated probability of no evidence of breast retraction based
on interval-censored data. Radiation only group ( ). Radiation plus
chemotherapy group (------)

figure seems to indicate a longer time to cosmetic deterioration for pa-
tients given only radiotherapy.

Practical Notes

1. An example of the left-censored Product-Limit estimator is found
in Ware and DeMets (1976). A key assumption needed for these
calculations is that the death and censoring times are independent.

2. For the case of combined left and right censoring, Turnbull (1974)
shows that an estimator of the variance-covariance matrix of Ŝ (t)
is given by the matrix V� (Vij ), where Vij � Cov[Ŝ (ti), Ŝ (t j)], con-
structed as follows. Let
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Aii �
di

[Ŝ (ti�1) � Ŝ (ti)]2
�

di�1

[Ŝ (ti) � Ŝ (ti�1)]2
�

ri

Ŝ (ti)2
�

ci

(1 � Ŝ (ti))2
, i � 1, 2, . . . , m � 1;

Amm �
dm

[Ŝ (tm�1) � Ŝ (tm)]2
�

rm

Ŝ (tm)2
�

cm

[1 � Ŝ (tm)]2
;

Ai�1,i � Ai,i�1 � �
di�1

[Ŝ (ti) � Ŝ (ti�1)]2
, i � 1, 2, . . . , m � 1; and

Aij � 0 for | i � j |� 2.

Define the matrix J to be the symmetric matrix given by

J �

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

b1 q1 0 0 . . . 0 0
q1 b2 q2 0 . . . 0 0
0 q2 b3 q3 . . . 0 0
0 0 q3 b4 . . . 0 0
	 	 	 	 0 0
	 	 	 	 0 0
	 	 	 	 0 0
0 0 0 0 . . . bm�1 qm�1

0 0 0 0 . . . qm�1 bm

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

where bi � Aii and qi � Ai,i�1. The inverse of this matrix is the
estimated covariance matrix V.

Using the data in Example 5.1, we find that

J �

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

9941.9 �2380.5 0 0 0 0 0 0 0 0
�2380.5 3895.1 �1514.7 0 0 0 0 0 0 0

0 �1514.7 2691.5 �1173.7 0 0 0 0 0 0
0 0 �1173.7 2314.6 �1097.4 0 0 0 0 0
0 0 0 �1097.4 2041.5 �845.5 0 0 0 0
0 0 0 0 �845.5 2328.8 �1358.1 0 0 0
0 0 0 0 0 �1358.1 2210.8 � 730.5 0 0
0 0 0 0 0 0 �730.5 800 0 0
0 0 0 0 0 0 0 0 44.3 �42.2
0 0 0 0 0 0 0 0 �42.2 42.2

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

and the matrix V is

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0.0001 0.0001 0.0001 0.0001 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000
0.0001 0.0005 0.0004 0.0003 0.0003 0.0002 0.0002 0.0002 0.0000 0.0000
0.0001 0.0004 0.0009 0.0008 0.0006 0.0004 0.0004 0.0004 0.0000 0.0000
0.0001 0.0003 0.0008 0.0013 0.0010 0.0007 0.0007 0.0006 0.0000 0.0000
0.0001 0.0003 0.0006 0.0010 0.0015 0.0011 0.0010 0.0009 0.0000 0.0000
0.0000 0.0002 0.0004 0.0007 0.0011 0.0017 0.0015 0.0014 0.0000 0.0000
0.0000 0.0002 0.0004 0.0007 0.0010 0.0015 0.0020 0.0018 0.0000 0.0000
0.0000 0.0002 0.0004 0.0006 0.0009 0.0014 0.0018 0.0029 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.3263 0.3187
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.3187 0.3345

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠
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Thus, the estimated survival function and its standard error are
obtained from the square root of the diagonal elements of the matrix
V. In this example,

Standard
Age Ŝ (t) Error

0.000 1.000 0.000
10.000 0.977 0.011
11.000 0.906 0.022
12.000 0.794 0.031
13.000 0.651 0.036
14.000 0.516 0.039
15.000 0.392 0.041
16.000 0.345 0.044
17.000 0.308 0.054
18.000 0.308 0.571
� 18 0.000 0.578

3. Standard errors for the estimator of the survival function based
on interval-censored data are found in Turnbull (1976) or Finkel-
stein and Wolfe (1985). Finkelstein (1986) and Finkelstein and Wolfe
(1985) provide algorithms for adjusting these estimates for possible
covariate effects.

Theoretical Notes

1. For left-censored data, Gomez et al. (1992) discuss the derivation
of the left-censored Kaplan–Meier estimator and a “Nelson–Aalen”
estimator of the cumulative backward hazard function defined by
G (t) �

∫ �
t

f (x)
F (x) dx . These derivations are similar to those discussed in

the notes after section 4.2. Further derivations are found in Andersen
et al. (1993), using a counting process approach.

2. The estimator of the survival function, based on Turnbull’s algorithms
for combined left and right censoring or for interval censoring, are
generalized maximum likelihood estimators. They can be derived by
a self-consistency argument or by using a modified EM algorithm.
For both types of censoring, standard counting process techniques
have yet to be employed for deriving results.
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5.3 Estimation of the Survival Function for
Right-Truncated Data

For right-truncated data, only individuals for which the event has oc-
curred by a given date are included in the study. Right truncation arises
commonly in the study of infectious diseases. Let Ti denote the chrono-
logical time at which the i th individual is infected and Xi the time
between infection and the onset of disease. Sampling consists of ob-
serving (Ti ,Xi) for patients over the period (0 to �). Note that only
patients who have the disease prior to � are included in the study. Es-
timation for this type of data proceeds by reversing the time axis. Let
Ri � � �Xi . The Ri ’s are now left truncated in that only individuals with
values of Ti � Ri are included in the sample. Using the method dis-
cussed in section 4.6 for left-truncated data, the Product-Limit estimator
of Pr [R � t | R � 0] can be constructed. In the original time scale, this
is an estimator of Pr [X 
 � � t | X � �)]. Example 5.3 shows that this
procedure is useful in estimating the induction time for AIDS.

EXAMPLE 5.3 To illustrate the analysis of right-truncated data, consider the data on the
induction time for 37 children with transfusion-related AIDS, described
in section 1.19. The data for each child consists of the time of infection Ti

(in quarter of years from April 1, 1978) and the waiting time to induction
Xi . The data was based on an eight year observational window, so � � 8
years.

Table 5.5 shows the calculations needed to construct the estimate of
the waiting time to infection distribution. Here Ri � 8�Xi . The column
headed di is the number of individuals with the given value of Ri or, in
the original time scale, the number with an induction time of Xi . The
number at risk column, Yi , is the number of individuals with a value
of R between Xi and Ri or, in the original time scale, the number of
individuals with induction times no greater than Xi and infection times
no greater than 8 � Xi . For example, when Xi � 1.0 (Ri � 7.0) in
the original time scale, there are 19 individuals with induction times
greater than 1 and one individual with an infection time greater than
7, so Yi � 37 � 19 � 1 � 17. The final column of Table 5.5 is the
Product-Limit estimator for Ri based on di and Yi . This is an estimate
of the probability that the waiting time to AIDS is less than x , given X
is less than 8 years, G (t) � Pr [X 
 x | X � 8]. Figure 5.2 shows the
estimated distribution of the induction time for AIDS for the 37 children
and 258 adults.
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TABLE 5.5
Estimation of the Distribution of the Induction Time to AIDS Based on Right-
Truncated Data

Ti Xi Ri di Yi P̂r [X 
 xi | X � 8]

5.25 0.25 7.75
7.25 0.25 7.75 2 2 0.0000
5.00 0.50 7.50
5.50 0.50 7.50
6.00 0.50 7.50
6.25 0.50 7.50
6.75 0.50 7.50 5 7 0.0243
3.50 0.75 7.25
3.75 0.75 7.25
5.00 0.75 7.25
6.50 0.75 7.25
6.75 0.75 7.25
7.00 0.75 7.25 6 13 0.0850
2.75 1.00 7.00
3.75 1.00 7.00
4.00 1.00 7.00
4.75 1.00 7.00
5.50 1.00 7.00 5 17 0.1579
6.00 1.25 6.75
6.25 1.25 6.75 2 18 0.2237
5.00 1.50 6.50
5.25 1.50 6.50
5.50 1.50 6.50 3 19 0.2516
3.00 1.75 6.25
4.25 1.75 6.25
5.75 1.75 6.25 3 21 0.2988
1.50 2.25 5.75
4.75 2.25 5.75 2 19 0.3486
5.00 2.50 5.50
5.25 2.50 5.50 2 20 0.3896
3.75 2.75 5.25 1 18 0.4329
2.25 3.00 5.00
3.75 3.00 5.00 2 17 0.4584
4.50 3.25 4.75 1 14 0.5195
3.75 3.50 4.50 1 13 0.5594
3.75 4.25 3.75 1 11 0.6061
1.00 5.50 2.50 1 3 0.6667
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Figure 5.2 Estimated conditional distribution of the induction time for AIDS
for the 258 adults ( )and 37 children (------)

Practical Note
1. For right-truncated data, standard errors of the survival estimator

function follow directly by using Greenwood’s formula. Lagakos et
al. (1988) discuss techniques for comparing two samples based on
right-truncated data. Gross and Huber–Carol (1992) discuss regres-
sion models for right-truncated data.

Theoretical Note
1. For right-truncated data, as for left censoring, the reversal of time

allows direct estimation of the cumulative backward hazard function.
Keiding and Gill (1990) discuss the large-sample-size properties of
the estimated survival function for this type of data, using a counting
process approach.
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5.4 Estimation of Survival in the
Cohort Life Table

A “cohort” is a group of individuals who have some common origin
from which the event time will be calculated. They are followed over
time and their event time or censoring time is recorded to fall in one
of k � 1 adjacent, nonoverlapping intervals, (aj�1, aj ], j � 1, . . . , k � 1.
A traditional cohort life table presents the actual mortality experience
of the cohort from the birth of each individual to the death of the last
surviving member of the cohort. Censoring may occur because some
individuals may migrate out of the study area, drop out of observation,
or die unrecorded.

The cohort life table has applications in assessing survival in animal or
human populations. The event need not be death. Other human studies
may have, as an end point, the first evidence of a particular disease or
symptom, divorce, conception, cessation of smoking, or weaning of
breast-fed newborns, to name a few.

The basic construction of the cohort life table is described below:

1. The first column gives the adjacent and nonoverlapping fixed inter-
vals, I j � (aj�1, aj ], j � 1, . . . , k � 1, with a0 � 0 and ak�1 � �.
Event and censoring times will fall into one and only one of these
intervals. The lower limit is in the interval and the upper limit is the
start of the next interval.

2. The second column gives the number of subjects Y ′
j , entering the

j th interval who have not experienced the event.

3. The third column gives the number of individuals Wj lost to follow-
up or withdrawn alive, for whatever reason, in the j th interval. As for
the product limit estimator, the censoring times must be independent
of the event times.

4. The fourth column gives an estimate of the number of individuals
Yj at risk of experiencing the event in the j th interval, assuming
that censoring times are uniformly distributed over the interval Yj �
Y ′

j � Wj � 2.

5. The fifth column reports the number of individuals dj who experi-
enced the event in the j th interval.

6. The sixth column gives the estimated survival function at the start of
the j th interval Ŝ (aj�1). For the first interval, Ŝ (a0) � 1. Analogous
to the product-limit estimator for successive intervals (see 4.2.1),
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Ŝ (aj) � Ŝ (aj�1)[1 � dj � Yj ]. (5.4.1)

�
j∏

i�1

(1 � di � Yi)

7. The seventh column gives the estimated probability density function
f̂ (amj ) at the midpoint of the j th interval, amj � (aj � aj�1) � 2. This
quantity is defined as the probability of having the event in the j th
interval per unit time, i.e.,

f̂ (amj) � [Ŝ (aj�1) � Ŝ (aj )]� (aj � aj�1) (5.4.2)

8. The eighth column gives the estimated hazard rate, ĥ(amj ) at the
midpoint of the j th interval, amj . Based on (2.3.2), this quantity is
defined in the usual way as

ĥ(amj ) � f̂ (amj) � Ŝ (amj )

� f̂ (amj) � �Ŝ (aj ) � [Ŝ (aj�1) � Ŝ (aj)]� 2�

�
2 f̂ (amj)

[Ŝ (aj ) � Ŝ (aj�1)]
(5.4.3)

Note that Ŝ (amj ) is based on a linear approximation between the
estimate of S at the endpoints of the interval.

It may also be calculated as the number of events per person-units,
i.e.,

ĥ(amj) � dj � [(aj � aj�1)(Yj � dj � 2)]. (5.4.4)

Because the last interval is theoretically infinite, no estimate of the
hazard or probability density function (and, of course, their standard
errors) may be obtained for this interval.

Other useful quantities in subsequent calculations are the esti-
mated conditional probability of experiencing the event in the j th
interval, q̂ j � dj � Yj , and the conditional probability of surviving
through the j th interval, p̂ j � 1 � q̂ j � 1 � dj � Yj . Specifically, we
could write (5.4.1) as

Ŝ (aj ) � Ŝ (aj�1)p̂ j .

Note, also, that (5.4.2) and (5.4.3) could be written as

f̂ (amj ) � Ŝ (aj�1)q̂ j � (aj � aj�1) and

ĥ(amj ) � 2q̂ j � [(aj � aj�1)(1 � p̂ j)],

respectively.
9. The ninth column gives the estimated standard deviation of survival

at the beginning of the j th interval (see Greenwood, 1926) which is
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approximately equal to

Ŝ (aj�1)

√
√
√
√

j�1∑

i�1

q̂i

Yi p̂i
� Ŝ (aj�1)

√
√
√
√

j�1∑

i�1

di

Yi(Yi � di)
, (5.4.5)

for j � 2, . . . , k �1, and, of course, the estimated standard deviation
of the constant Ŝ (ao) � 1 is 0. Note that this estimated standard
error is identical to the standard error obtained for the product limit
estimator in (4.2.2).

10. The tenth column shows the estimated standard deviation of the
probability density function at the midpoint of the j th interval which
is approximately equal to

⎡

⎣ Ŝ (aj�1)q̂ j

(aj � aj�1)

√
√
√
√

j�1∑

i�1

[q̂i � (Yi p̂i)] � [p̂ j � (Yj q̂ j)]

⎤

⎦ (5.4.6)

11. The last column gives the estimated standard deviation of the hazard
function at the midpoint of the j th interval which is approximately
equal to

{
1 � [ĥ(amj )(aj � aj�1) � 2]2

Yjqj

}1 � 2

	 ĥ(amj ) (5.4.7)

As noted in Chapter 2, the mean would be computed as in formula
(2.4.2) with S (x) replaced by Ŝ (x). There is some ambiguity regarding
the mean lifetime because Ŝ (x) may be defined in several ways, as
explained in Chapter 4, when the largest observation is a censored
observation. For this reason, the median lifetime is often used. The
median survival time may be determined by using relationship (2.4.4).
For life tables, one first determines the interval where Ŝ (aj) � 0.5 and
Ŝ (aj�1) � 0.5. Then, the median survival time can be estimated by
linear interpolation as follows:

x̂0.5 � aj�1 � [Ŝ (aj�1) � 0.5](aj � aj�1) � [Ŝ (aj�1) � Ŝ (aj)] (5.4.8)

� aj�1 � [Ŝ (aj�1) � 0.5]� f̂ (amj)

Because we are often interested in the amount of life remaining after
a particular time, the mean residual lifetime and the median residual
lifetime are descriptive statistics that will estimate this quantity. For
reasons stated above, the median residual lifetime at time x is often
the preferable quantity. If the mean residual lifetime can be estimated
without ambiguity, then, formula (2.4.1) with S (x) replaced by Ŝ (x) is
used. If the proportion of individuals surviving at time ai�1 is S (ai�1),
then the median residual lifetime is the amount of time that needs to
be added to ai�1 so that S (ai�1) � 2 � S (ai�1 � mdrl(ai�1)), i.e., the
mdrl(ai�1) is the increment of time at which half of those alive at



5.4 Estimation of Survival in the Cohort Life Table 155

time ai�1 are expected to survive beyond. Suppose the j th interval
contains the survival probability S (ai�1 � mdrl(ai�1)), then an estimate
of mdrl(ai�1), determined in a similar fashion as (5.4.8) is given by

m̂drl(ai�1) � (5.4.9)

(aj�1 � ai�1) � [Ŝ (aj�1) � Ŝ (ai�1) � 2](aj � aj�1) � [Ŝ (aj�1) � Ŝ (aj )]

Hence the median residual lifetime at time 0 will, in fact, be the median
lifetime of the distribution.

The variance of this estimate is approximately

V̂ar [m̂drl(ai�1)] �
[Ŝ (ai�1)]2

4Yi [ f̂ (amj)]2
(5.4.10)

Some major statistical packages will provide the median residual life-
time and its standard error at the beginning of each interval.

EXAMPLE 5.4 Consider The National Labor Survey of Youth (NLSY) data set discussed
in section 1.14. Beginning in 1983, females in the survey were asked
about any pregnancies that have occurred since they were last inter-
viewed (pregnancies before 1983 were also documented). Questions
regarding breast feeding are included in the questionnaire.

This data set consists of the information from 927 first-born children
to mothers who chose to breast feed their child and who have complete
information for all the variables of interest. The universe was restricted
to children born after 1978 and whose gestation was between 20 and
45 weeks. The year of birth restriction was included in an attempt to
eliminate recall problems.

The response variable in the data set is the duration of breast feeding
in weeks, followed by an indicator if the breast feeding is completed
(i.e., the infant is weaned).

The quantities described above are shown in Table 5.6 for this data
set. Because none of the mothers claimed to wean their child before
one week, the first interval will be from birth to two weeks. As always,
when data are grouped, the selection of the intervals is a major deci-
sion. Generally, guidelines used in selecting intervals for frequency his-
tograms apply, namely, the number of intervals should be reasonable,
there should be enough observations within each interval to adequately
represent that interval, and the intervals should be chosen to reflect the
nature of the data. For example, in this data set, it is of interest to ex-
amine early weaners in smaller intervals and later weaners in broader
intervals. This principle is also true in most population mortality studies
where one wishes to study infant mortality in smaller intervals and later
mortality may be studied in broader intervals.
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TABLE 5.6
Life Table for Weaning Example

Est. Est. Est.
stand. stand. stand.

Number of Est. Cum. Est. Est. dev. of dev of. dev of.
infants Number lost to proportion p.d.f. hazard survival p.d.f. hazard

not follow-up Number not weaned at at at at at
weaned or withdrawn exposed at middle middle beginning middle middle

Week weaned entering without to Number beginning of of of of of
[lower, upper] interval being weaned weaning weaned of interval interval interval interval interval interval

0– 2 927 2 926 77 1.0000 0.0416 0.0434 0 0.0045 0.0049
2– 3 848 3 846.5 71 0.9168 0.0769 0.0875 0.0091 0.0088 0.0104
3– 5 774 6 771 119 0.8399 0.0648 0.0836 0.0121 0.0055 0.0076
5– 7 649 9 644.5 75 0.7103 0.0413 0.0618 0.0149 0.0046 0.0071
7–11 565 7 561.5 109 0.6276 0.0305 0.0537 0.0160 0.0027 0.0051

11–17 449 5 446.5 148 0.5058 0.0279 0.0662 0.0166 0.0021 0.0053
17–25 296 3 294.5 107 0.3381 0.0154 0.0555 0.0158 0.0014 0.0052
25–37 186 0 186 74 0.2153 0.0071 0.0414 0.0138 0.0008 0.0047
37–53 112 0 112 85 0.1296 0.0061 0.0764 0.0114 0.0006 0.0066
53– 27 0 27 27 0.0313 0.0059

An interesting feature of these data is that the hazard rate for weaning
is high initially (many mothers stop breastfeeding between 1 and 5
weeks), levels off between 5 and 37 weeks, and begins to rise after 37
weeks as can be seen in Figure 5.3.

The median weaning time for all mothers starting to breast-feed is
determined from (5.4.8) to be 11.21 weeks (with a standard error of
0.5678 weeks) and the median residual weaning time at 25 weeks is
15.40 weeks (with a standard error of 1.294 weeks).

Practical Notes

1. Summarizing the assumptions made in the life table methodology,
we have seen that i) censored event times (including loss or with-
drawal) are assumed to be independent of the time those individu-
als would have realized the event had they been observed until the
event occurred, ii) the censoring times and death times are assumed
to be uniformly distributed within each interval, (hence Y ′

j � Wj � 2
is taken to be the number exposed (or at risk) in the j th interval
(see the number of people at risk in column 4 and the calculation
of the number of person-units in the denominator of eq. (5.4.4), and
iii) the hazard rate is assumed constant within intervals.

2. Individuals lost to follow-up are lost to observation if they move, fail
to return for treatment, or, for some other reason, their survival status
becomes unknown in the j th interval. On the other hand, individuals
withdrawn alive are those known to be alive at the closing date of the
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study. Such observations typically arise in cohort studies or clinical
trials. One assumption, as stated in the preceding note, is that the
survival experience after the date of last contact of those lost to
follow-up and withdrawn alive is similar to that of the individuals
who remain under observation. Cutler and Ederer (1958) point out
that the survival experience of lost individuals may be better than,
the same as, or worse than individuals continuing under observation.
Thus, every attempt should be made to trace such individuals and
to minimize the number of individuals lost.
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Figure 5.3 Life table estimate of the hazard rate of the time to infant weaning

3. SAS and SPSS have routines which reproduce the cohort life table.

Theoretical Notes
1. An alternative estimator of the hazard function is given by Sacher

(1956) assuming that the hazard rate is constant within each interval
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but is allowed to vary between intervals. This estimator is given by
ĥ(amj ) � (� ln p̂ j ) � (aj � aj�1), which, Gehan and Siddiqui (1973)
show, is slightly more biased than (5.4.3).

2. If the lengths of the grouping intervals approach 0, then, the life
table estimates of the survival function are equivalent to the Kaplan–
Meier estimate (Thompson, 1977). This limiting process provides a
framework to link life table estimates with those using exact lifetimes,
even in the presence of covariates.

5.5 Exercises

5.1 A study of 190 first-year medical students asked the question, How old
were you when you first smoked a cigarette? Responses were either
the exact ages at which they started smoking, that they never smoked,
or that they currently smoke but cannot remember when they started.
The data is summarized below. Using this sample, estimate the survival
function to within 0.001.

Number of Age t Who
Age Number Who Started Smoke Now but Do Not Number of Age t Who Do
(t) Smoking at Age t Know the Age They Started Not Smoke

14 2 0 0
15 3 0 0
16 10 0 0
17 13 0 0
18 5 0 0
19 3 0 1
20 2 4 13
21 1 6 44
22 2 8 39
23 1 2 19
24 0 0 3
25 0 0 4
26 1 0 4

Total 43 20 127

5.2 A study involving 100 veterinarians was performed to estimate the time
until their first needlestick injury. They completed a survey which asked,
How many years after graduation from veterinarian school did you
experience your first needlestick injury? Many of them could remember
or determine from their records the month and year their first injury
occurred, but others could only say that it happened before a certain
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time. Others had had no needlestick injury yet at the time of the survey.
The data below reflects these times after graduation.

Time (t) After Number Who Had Number Who Had Number Who Never
Graduation (in Needlestick Injury at Needlestick Injury Had Needlestick

Months) Time t Prior to Time t Injury at Time t

2 3 0 0
4 2 0 0
8 1 0 0

10 2 1 0
12 4 2 0
15 6 2 1
20 3 4 1
24 3 3 2
28 2 3 3
34 1 4 5
41 0 2 3
62 0 3 4
69 0 2 6
75 0 1 6
79 0 2 3
86 0 3 7

Total 27 32 41

Estimate the survival (injury-free) function to an accuracy of three
decimal places.

5.3 Eighteen elderly individuals who had entered a nursing home in the
past five years were asked when they experienced their first fall (post-
admittance). Some of the individuals only indicated that it occurred
within a certain time period (in months), whereas others said they had
never had a fall. The data (in months post-admittance) is as follows:

Falls occurred in (6–12], (48–60], (24–36], (12–24], (18–24], (9–12], (36–
42], (12–36]

Times since admittance for individuals who never had a fall: 23, 41, 13,
25, 59, 39, 22, 18, 49, 38.

Estimate the survival function of the time from admittance to first fall
to within three decimal places.

5.4 Twenty women who had a lumpectomy as a primary treatment for
breast cancer were followed periodically for the detection of a metasta-
sis. When a metastasis was detected it was only known that the time of
the clinical appearance of the metastasis was between the times of the
last two visits to the physician, so the data is interval-censored. Suppose
the data is as follows:
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Times in months between which a metastasis could be detected:
(12, 18], (20, 24], (10, 13], (14, 15], (25, 33], (33, 44], (18, 22], (19, 25],
(13, 22], (11, 15].

Times last seen for patients disease free at the end of study:
25, 27, 33, 36, 30, 29, 35, 44, 44, 44.

Estimate the survival time for the distribution of the time from surgery
to first clinical evidence of a metastasis.

5.5 A study was performed to estimate the distribution of incubation times
of individuals known to have a sexually transmitted disease (STD).
Twenty-five patients with a confirmed diagnosis of STD at a clinic were
identified on June 1, 1996. All subjects had been sexually active with a
partner who also had a confirmed diagnosis of a STD at some point after
January 1, 1993 (hence � � 42 months). For each subject the date of the
first encounter was recorded as well as the time in months from that first
encounter to the clinical confirmation of the STD diagnosis. Based on
this right-truncated sample, compute an estimate of the probability that

Date of First Months From 1/93 to Time (in months) until STD
Encounter Encounter Diagnosed in Clinic

2/93 2 30
4/93 4 27
7/93 7 25
2/94 14 19
8/94 20 18
6/94 18 17
8/93 8 16
1/94 13 16
5/94 17 15
2/95 26 15
8/94 20 15
3/94 15 13

11/94 23 13
5/93 5 12
4/94 16 11
3/94 15 9

11/93 11 8
6/93 6 8
9/95 33 8
4/93 4 7
8/93 8 6

11/95 35 6
10/93 10 6
12/95 36 4
1/95 25 4
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the infection period is less than x months conditional on the infection
period’s being less than 42 months.

Estimate the distribution of infection-free time (survival).

5.6 Using the data on 258 adults with AIDS reported in section 1.19, estimate
the probability that the waiting time to AIDS is less than x , given the
waiting time is less than eight years.

5.7 The following data is based on a cohort of 1,571 men in the Framingham
Heart Study who were disease free at age 40 and followed for a period
of 40 years. (See Klein, Keiding, and Kreiner (1995) for a detailed
description of the cohort.) Of interest is the distribution of the time
to development or coronary heart disease (CHD). The following life
table data is available to estimate this distribution.

Age Interval Number of CHD Events Number Lost to Follow-Up

45–50 17 29
50–55 36 60
55–60 62 83
60–65 76 441
65–70 50 439
70–75 9 262
75–80 0 7

Construct a cohort life table for this data.

5.8 Individuals seen at a large city sexually transmitted disease (STD) clinic
are considered at high risk for acquiring HIV. The following data is
recorded on 100 high-risk individuals who are infected with some STD,
but did not have HIV, when they were seen at the clinic in 1980. Their
records were checked at subsequent visits to determine the time that
HIV was first detected.

Number of HIV-
Year Intervals Positive Number Lost to Follow-Up

0–2 2 3
2–4 1 2
4–6 4 8
6–8 3 10

8–10 2 18
10–12 2 21
12–14 3 21

Construct a cohort life table for the incidence of HIV.

5.9 An investigator, performing an animal study on mammary carcinogen-
esis risk, wants to describe the distribution of times (in days) until the
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onset of the first palpable tumor for rats fed a control diet. Mammary
tumors were induced by a single oral dose (5 mg dissolved in 1.0 ml.
com oil) of 7,12-dimethylbenz(a)anthracene (DMBA) administered by
intragastric intubation when the animals were seven weeks old. Starting
six weeks after DMBA administration, each rat was examined once daily
and the time (in days) until the onset of the first palpable tumor was
recorded. Three rats had a palpable tumor when the first examination
was made at day 62. The remaining times when the first palpable tumor
was detected are below.

Times (in days) when the first palpable tumor was detected:
46, 49, 54, 61, 62, 64, 68, 120, 150, 160.

Estimate the survival time for the distribution of the time from DBMA
administration until the first palpable evidence of a tumor occurred.

5.10 Wagner and Altmann (1973) report data from a study conducted in the
Amboseli Reserve in Kenya on the time of the day at which members
of a baboon troop descend from the trees in which they sleep. The
time is defined as the time at which half of the troop has descended
and begun that day’s foraging. On some days the observers arrived
at the site early enough to observe at what time this event occurred,
whereas on other days they arrived after this median descent time, so
that day’s observation was left censored at their arrival time. That data
is in the following tables. By reversing the time scale to be the number
of minutes from midnight (2400 hours), estimate the distribution of the
time to descent for a randomly selected troop of baboons.
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Observed Time of Day When Half of the Troop Descended from the Trees

Descent Descent Descent
Day Date Time Day Date Time Day Date Time

1 25/11/63 0656 20 12/7/64 0827 39 10/6/64 0859
2 29/10/63 0659 21 30/6/64 0828 40 11/3/64 0900
3 5/11/63 0720 22 5/5/64 0831 41 23/7/64 0904
4 12/2/64 0721 23 12/5/64 0832 42 27/2/64 0905
5 29/3/64 0743 24 25/4/64 0832 43 31/3/64 0905
6 14/2/64 0747 25 26/3/64 0833 44 10/4/64 0907
7 18/2/64 0750 26 18/3/64 0836 45 22/4/64 0908
8 1 /4/64 0751 27 15/3/64 0840 46 7/3/64 0910
9 8/2/64 0754 28 6/3/64 0842 47 29/2/64 0910

10 26/5/64 0758 29 11/5/64 0844 48 13/5/64 0915
11 19/2/64 0805 30 5/6/64 0844 49 20/4/64 0920
12 7/6/64 0808 31 17/7/64 0845 50 27/4/64 0930
13 22/6/64 0810 32 12/6/64 0846 51 28/4/64 0930
14 24/5/64 0811 33 28/2/64 0848 52 23/4/64 0932
I5 21/2/64 0815 34 14/5/64 0850 53 4/3/64 0935
16 13/2/64 0815 35 7/7/64 0855 54 6/5/64 0935
17 11/6/64 0820 36 6/7/64 0858 55 26/6/64 0945
18 21/6/64 0820 37 2/7/64 0858 56 25/3/64 0948
19 13/3/64 0825 38 17/3/64 0859 57 8/7/64 0952

58 21/4/64 1027
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Observer Arrival Time on Days Where the Descent Time Was Not Observed

Arrival Arrival Arrival
Day Date Time Day Date Time Day Date Time

1 1/12/63 0705 32 13/10/63 0840 63 2/5/64 1012
2 6/11/63 0710 33 4/7/64 0845 64 1/3/64 1018
3 24/10/63 0715 34 3/5/64 0850 65 17/10/63 1020
4 26/11/63 0720 35 25/5/64 0851 66 23/10/63 1020
5 18/10/63 0720 36 24/11/63 0853 67 25/7/64 1020
6 7/5/64 0730 37 15/7/64 0855 68 13/7/64 1031
7 7/11/63 0740 38 16/2/64 0856 69 8/6/64 1050
8 23/11/63 0750 39 10/3/64 0857 70 9/3/64 1050
9 28/11/63 0750 40 28/7/64 0858 71 26/4/64 1100

10 27/11/63 0753 41 18/6/64 0858 72 14/10/63 1205
11 28/5/64 0755 42 20/2/64 0858 73 18/11/63 1245
12 5/7/64 0757 43 2/8/64 0859 74 2/3/64 1250
13 28/3/64 0800 44 27/5/64 0900 75 8/5/64 1405
14 23/3/64 0805 45 28/10/64 0905 76 1/7/64 1407
15 26/10/63 0805 46 15/5/64 0907 77 12/10/63 1500
16 11/7/64 0805 47 10/5/64 0908 78 31/7/64 1531
17 27/7/64 0807 48 27/6/64 0915 79 6/10/63 1535
18 9/6/64 0810 49 11/10/63 0915 80 19/6/64 1556
19 24/6/64 0812 50 17/2/64 0920 81 29/6/64 1603
20 16/ 10/63 0812 51 22/10/63 0920 82 9/5/64 1605
21 25/2/64 0813 52 10/7/64 0925 83 9/10/63 1625
22 6/6/64 0814 53 14/7/64 0926 84 8/3/64 1625
23 22/11/63 0815 54 11/4/64 0931 85 11/2/64 1653
24 10/10/63 0815 55 23/5/64 0933 86 30/5/64 1705
25 2/11/63 0815 56 30/7/64 0943 87 5/3/64 1708
26 23/6/64 0817 57 18/7/64 0945 88 26/2/64 1722
27 24/4/64 0823 58 29/7/64 0946 89 4/5/64 1728
28 3/7/64 0830 59 16/7/64 0950 90 12/3/64 1730
29 29/4/64 0831 60 22/7/64 0955 91 25/10/63 1730
30 4/8/63 0838 61 15/10/63 0955 92 29/11/63 1750
31 7/10/63 0840 62 19/10/63 1005 93 22/2/64 1801

94 22/3/64 1829



6
Topics in Univariate

Estimation

6.1 Introduction

In Chapter 4, we presented two techniques for providing summary
curves which tell us about the survival experience of a cohort of indi-
viduals. These two estimators were the Kaplan–Meier estimator, which
provides an estimate of the survival function, and the Nelson–Aalan
estimator, which provides an estimate of the cumulative hazard rate.
These statistics are readily available in many statistical packages.

Although these two statistics provide an investigator with important
information about the eventual death time of an individual, they provide
only limited information about the mechanism of the process under
study, as summarized by the hazard rate. The slope of the Nelson–
Aalan estimator provides a crude estimate of the hazard rate, but this
estimate is often hard to interpret. In section 6.2, we discuss how these
crude estimates of the hazard rate can be smoothed to provide a better
estimator of the hazard rate by using a kernel-smoothing technique.

In some applications of survival analysis, an investigator has available
very precise information about the mortality rates in a historical control
or standard population. It is of interest to compare the hazard rates in
the sample group to the known hazard rates in the reference popu-
lation to determine how the mortality experience of the experimental
subjects differs. The “excess” mortality in the experimental group can

165
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have either a multiplicative or additive effect on the reference hazard
rate. In section 6.3, estimation techniques for both the additive and
multiplicative models for excess mortality are developed.

In section 6.4, the problem of estimation of the survival function for
right censored data is considered from a Bayesian perspective. In this
framework, an investigator has some prior information on the survival
function from results of similar studies, from a group of experts, or
from some reference population. The prior information is combined
with sample data to provide a posterior distribution of the survival
function on which the estimation is based. The combination of prior
and sample information can be done analytically by Bayes theorem or
by a Monte Carlo method via the Gibbs sampler. Both methods are
illustrated.

6.2 Estimating the Hazard Function

The Nelson–Aalen estimator H̃ (t), discussed in sections 4.2 or 4.6, pro-
vides an efficient means of estimating the cumulative hazard function
H (t). In most applications, the parameter of interest is not H (t), but
rather its derivative h(t), the hazard rate. As noted earlier, the slope
of the Nelson–Aalen estimator provides a crude estimate of the hazard
rate h(t). Several techniques have been proposed in the literature to
estimate h(t). In this section, we shall concentrate on the use of kernel
smoothing to estimate h(t).

Kernel-smoothed estimators of h(t) are based on the Nelson–Aalen
estimator H̃ (t) and its variance V̂ [H̃ (t)]. The estimator H̃ (t) can be
based on right-censored data (see section 4.2) or on left-truncated data
(see section 4.6). Recall that, in either case, H̃ (t) is a step function
with jumps at the event times, 0 � t0 
 t1 
 t2 
 	 	 	 
 tD . Let
�H̃ (ti) � H̃ (ti) � H̃ (ti�1) and �V̂ [H̃ (ti)] � V̂ [H̃ (ti)] � V̂ [H̃ (ti�1)] de-
note the magnitude of the jumps in H̃ (ti) and V̂ [H̃ (ti)] at time ti . Note
that �H̃ (ti) provides a crude estimator of h(t) at the death times. The
kernel-smoothed estimator of h(t) is a weighted average of these crude
estimates over event times close to t . Closeness is determined by a
bandwidth b, so that event times in the range t � b to t � b are in-
cluded in the weighted average which estimates h(t). The bandwidth
is chosen either to minimize some measure of the mean-squared error
or to give a desired degree of smoothness, as illustrated in Example
6.2. The weights are controlled by the choice of a kernel function, K ( ),
defined on the interval [�1, �1], which determines how much weight
is given to points at a distance from t . Common choices for the kernel
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are the uniform kernel with

K (x) � 1� 2 for � 1 � x � 1, (6.2.1)

the Epanechnikov kernel with

K (x) � 0.75(1 � x2) for � 1 � x � 1, (6.2.2)

and the biweight kernel with

K (x) �
15
16

(1 � x2)2 for � 1 � x � 1. (6.2.3)

The uniform kernel gives equal weight to all deaths in the interval
t � b to t � b, whereas the other two kernels give progressively heavier
weight to points close to t .

The kernel-smoothed hazard rate estimator is defined for all time
points t � 0. For time points t for which b � t � tD � b, the kernel-
smoothed estimator of h(t) based on the kernel K ( ) is given by

ĥ(t) � b�1
D∑

i�1

K
(

t � ti
b

)

�H̃ (ti). (6.2.4)

The variance of ĥ(t) is estimated by the quantity

	2[ĥ(t)] � b�2
D∑

i�1

K
(

t � ti
b

)2

�V̂ [H̃ (ti)]. (6.2.5)

When t is smaller than b, the symmetric kernels described in (6.2.1)–
(6.2.3) are not appropriate because no event times less than 0 are
observable. In this region, the use of an asymmetric kernel is suggested.
Let q � t� b. We define a modified kernel which accounts for the
restricted range of the data. Following Gasser and Müller (1979) these
modified kernels, for the uniform kernel (6.2.1), are expressed by

Kq(x) �
4(1 � q3)
(1 � q)4

�
6(1 � q)
(1 � q)3

x, for �1 � x � q, (6.2.6)

for the Epanechnikov kernel (6.2.2),

Kq(x) � K (x)(�E � �E x), for �1 � x � q, (6.2.7)

where

�E �
64(2 � 4q � 6q2 � 3q3)

(1 � q)4(19 � 18q � 3q2)

and

�E �
240(1 � q)2

(1 � q)4(19 � 18q � 3q2)
,
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and for the biweight kernel (6.2.3),

Kq(x) � K (x)(�BW � �BW x), for �1 � x � q, (6.2.8)

where

�BW �
64(8 � 24q � 48q2 � 45q3 � 15q4)

(1 � q)5(81 � 168q � 126q2 � 40q3 � 5q4)

and

�BW �
1120(1 � q)3

(1 � q)5(81 � 168q � 126q2 � 40q3 � 5q4)
.

For time points in the right-hand tail (tD �b 
 t 
 tD) let q � (tD �t) � b.
The asymmetric kernel Kq(x) in (6.2.6)–(6.2.8) is used with x replaced
by �x . The estimated, smoothed, hazard rate and its variance are given
by (6.2.4) and (6.2.5), respectively, using the kernel Kq .

Confidence intervals or confidence bands for the hazard rate, based
on the smoothed hazard rate estimate, can be constructed similarly
to those for the cumulative hazard rate discussed in Chapter 4. For
example a (1 � �) � 100% pointwise confidence interval for the hazard
rate, based on a log transformation, is expressed as

ĥ(t) exp

[


Z1��� 2	(ĥ(t))

ĥ(t)

]

.

Some care in interpreting this interval must be taken because the esti-
mator ĥ(t) may be quite biased (See Practical Note 1).

EXAMPLE 6.1 We shall find the smoothed hazard rate estimates, in the three disease
categories, for the disease-free survival times of bone marrow transplant
patients discussed in section 1.3. To illustrate the calculations, consider
the group of ALL patients. In Example 4.2 the Nelson–Aalen estimator of
the cumulative hazard rate of the disease-free survival time was found
(see Table 4.3). For illustrative purposes, we shall use the Epanechnikov
kernel with a bandwidth of 100 days. An estimate of h(t) over the first
two years (730 days) after transplant is desired.

Table 6.1 shows some of the calculations needed to construct the
estimate. First, consider the estimate at t � 150 days. Here, t is in the
interval b to tD � b (662–100), so that the symmetric kernel (6.2.2) is
used. The estimate of the hazard rate is given by ĥ(150) � [0.0270 �
0.0731�0.0278�0.3168�0.0286�0.4428�0.0294�0.5913�0.0303�
0.6113�0.0313�0.6239�0.0322�0.6300�0.0667�0.6912�0.0357�
0.7169�0.0370�0.7137�0.0385�0.6177�0.0400�0.6048�0.0435�
0.2700]� 100 � 0.00257. Similar calculations, using (6.2.6), yield an esti-
mated standard error of 	(ĥ(150)) � 0.00073.
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TABLE 6.1
Weights Used in Smoothing the Nelson–Aalen Estimator for the ALL Group

ti �H̃ (ti )] �V̂ [H̃ (ti )]
150 � ti

100
K
(150 � ti

100

) 50 � ti
100

K
(50 � ti

100

) 600 � ti
100

K

(
600 � ti

100

)

1 0.0263 0.00069 1.49 0.0000 0.49 1.0618 5.99 0.0000
55 0.0270 0.00073 0.95 0.0731 �0.05 0.9485 5.45 0.0000
74 0.0278 0.00077 0.76 0.3168 �0.24 0.7482 5.26 0.0000
86 0.0286 0.00082 0.64 0.4428 �0.36 0.6047 5.14 0.0000

104 0.0294 0.00087 0.46 0.5913 �0.54 0.3867 4.96 0.0000
107 0.0303 0.00091 0.43 0.6113 �0.57 0.3518 4.93 0.0000
109 0.0313 0.00099 0.41 0.6239 �0.59 0.3290 4.91 0.0000
110 0.0322 0.00103 0.40 0.6300 �0.60 0.3177 4.90 0.0000
122 0.0667 0.00222 0.28 0.6912 �0.72 0.1913 4.78 0.0000
129 0.0357 0.00128 0.21 0.7169 �0.79 0.1275 4.71 0.0000
172 0.0370 0.00138 �0.22 0.7137 �1.22 0.0000 4.28 0.0000
192 0.0385 0.00147 �0.42 0.6177 �1.42 0.0000 4.08 0.0000
194 0.0400 0.00161 �0.44 0.6048 �1.44 0.0000 4.06 0.0000
230 0.0435 0.00188 �0.80 0.2700 �1.80 0.0000 3.70 0.0000
276 0.0454 0.00207 �1.26 0.0000 �2.26 0.0000 3.24 0.0000
332 0.0476 0.00228 �1.82 0.0000 �2.82 0.0000 2.68 0.0000
383 0.0500 0.00247 �2.33 0.0000 �3.33 0.0000 2.17 0.0000
418 0.0527 0.00277 �2.68 0.0000 �3.68 0.0000 1.82 0.0000
468 0.0555 0.00310 �3.18 0.0000 �4.18 0.0000 1.32 0.0000
487 0.0589 0.00345 �3.37 0.0000 �4.37 0.0000 1.13 0.0000
526 0.0625 0.00391 �3.76 0.0000 �4.76 0.0000 0.74 0.2492
609 0.0714 0.00511 �4.59 0.0000 �5.59 0.0000 �0.09 0.8918
662 0.0769 0.00592 �5.12 0.0000 �6.12 0.0000 �0.62 0.6904

At t � 50 days, the asymmetric kernel (6.2.7) is used with q �
50� 100 � 0.5. We have �E � 64(2 � 4 � 0.5 � 6 � 0.52 � 3 � 0.53) � [(1 �
0.5)4(19 � 18 � 0.5 � 3 � 0.52)] � 1.323 and �E � 240(1 � 0.5)2 � [(1 �
.5)4(19 � 18 � 0.5 � 3 � 0.52)] � 1.102. Thus K0.5(�0.05) � 0.75[1.323 �
1.102(�0.05)] � (1 � 0.052) � 0.9485. Applying formulas (6.2.4) and
(6.2.5) yields ĥ(50) � 0.0015 and 	 [ĥ(50)] � 0.00052. Note that the tail
adjustment using this kernel gives a higher weight to estimates of �H̃
smaller than 50 to compensate for the fact that we can not observe any
estimates in the range �50 to 0.

At t � 600 days we make the upper tail correction. Here q � (662 �
600) � 100 � 0.62, which yields �E � 1.148 and �E � 0.560. Only
deaths in the range 500–662 have a nonzero value of the kernel. For
ti � 609 days (x � �0.09) the weight is K (�0.09) � 0.75[1.148 �
0.560(0.09)](1 � 0.092) � 0.8918. Note that, because we are estimating
h in the right-hand tail, we have replaced �0.09 by 0.09. Applying
(6.2.4) and (6.2.5) yields ĥ(600) � 0.0013 and 	 [ĥ(600)] � 0.00084.
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Figure 6.1 Smoothed estimates of the hazard rates for bone marrow transplant
patients based on the Epanechnikov kernel with a bandwidth of 100 days. ALL
(———); AML-Low risk (--------); AML-High risk (— — —).

Figure 6.1 shows the estimated hazard rates for the three disease
groups, indicating that the risk of relapse or death increases in the first
150 days after transplant after which the hazard rate decreases. The
initial peak is higher for AML high-risk patients. The estimated hazard
rates again confirm the impression that AML low-risk patients have the
lowest rate of relapse or death.

EXAMPLE 6.2 We shall illustrate the effects of changing the bandwidth and the choice
of kernel on the kidney transplant data in section 1.7. Here, we shall
ignore the age and race of the patient at the time of transplant. The es-
timate of the hazard rate constructed serves as the unadjusted mortality
rate for these transplant patients.
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Figure 6.2 Estimated cumulative hazard rate for kidney transplant patients

Figure 6.2 shows the Nelson–Aalen estimate of the cumulative hazard
rate on which the smoothed hazard rate estimator is based. Figure 6.3
shows the estimated hazard rate based on a bandwidth of 1 year for the
uniform, Epanechnikov, and biweight kernels. Note that the kernels
provide different degrees of smoothness. The biweight kernel is the
smoothest, whereas the uniform kernel is rather jagged, typical of the
performance of these kernels.

Figure 6.4 shows the effects of changing the bandwidth on the esti-
mate of h(t). In this figure, based on the Epanechnikov kernel, we see
that increasing the bandwidth provides smoother estimates of the haz-
ard rate. This increase in smoothness is at the expense of an increase
in the bias of the estimate (see Practical Note 1).
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Figure 6.3 Effects of changing the kernel on the smoothed hazard rate es-
timates for kidney transplant patients using a bandwidth of 1 year. Uniform
kernel (———); Epanechnikov kernel (------) Biweight kernel (— — —)

One problem in using kernel smoothing to obtain an estimate of the
hazard rate is the selection of the proper bandwidth. One way to pick a
good bandwidth is to use a cross-validation technique for determining
the bandwidth that minimizes some measure of how well the estima-
tor performs. One such measure is the mean integrated squared error
(MISE) of ĥ over the range � L to �U defined by

MISE (b) � E
∫ �U

� L

[ĥ(u) � h(u)]2du

� E
∫ �U

� L

ĥ2(u)du � 2E
∫ �U

� L

ĥ(u)h(u)du � E
∫ �U

� L

h2(u)du.
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Figure 6.4 Effects of changing the bandwidth on the smoothed hazard
rate estimates for kidney transplant patients using the Epanechnikov kernel.
bandwidth � 0.5 years (———) bandwidth � 1.0 years (-------) bandwidth �

1.5 years (— — —) bandwidth � 2.0 years (� 	 � 	 �)

This function depends both on the kernel used to estimate h and on the
bandwidth b. Note that, although the last term depends on the unknown
hazard rate, it is independent of the choice of the kernel and the band-
width and can be ignored when finding the best value of b. The first
term can be estimated by

∫ �U

� L
ĥ2(u)du. If we evaluate ĥ at a grid of points

� L � u1 
 	 	 	 
 uM � �U, then, an approximation to this integral by
the trapezoid rule is

∑M �1
i�1

(
ui�1�ui

2

)
[ĥ2(ui) � ĥ2(ui�1)]. The second term

can be estimated by a cross-validation estimate suggested by Ramlau–
Hansen (1983a and b). This estimate is b�1∑

i� j K ( ti �t j

b
)�H̃ (ti)�H̃ (t j),

where the sum is over the event times between � L and �U. Thus, to find
the best value of b which minimizes the MISE for a fixed kernel, we
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find b which minimizes the function

g(b) �
M �1∑

i�1

(
ui�1 � ui

2

)

[ĥ2(ui) � ĥ2(ui�1)]

� 2b�1
∑

i� j

K
(

ti � t j

b

)

�H̃ (ti)�H̃ (t j).

EXAMPLE 6.2 (continued) To find the best bandwidth for the kidney transplant pa-
tients, in Figure 6.5 we show a plot of b versus g(b) for the three kernels
with � L � 0, �U � 6 years. This figure is based on a grid of 100 equally
spaced values for b over the range 0.01–1.00. The optimal values of b
are 0.17 for the uniform kernel, 0.20 for the Epanechnikov kernel and
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Figure 6.5 Estimated risk function, g(b), for use in determination of the best
bandwidth for the kidney transplant data. Uniform kernel (———); Epanech-
nikov kernel (------) Biweight kernel (— — —).
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Figure 6.6 Smoothed estimate of the hazard rate (———) and 95% confidence
interval (------) for the time to death following a kidney transplant based on the
biweight kernel and the best bandwidth.

0.23 for the biweight kernel. Figure 6.6 shows the estimated hazard rate
and a 95% pointwise confidence interval based on the biweight kernel
with this optimal bandwidth.

EXAMPLE 6.1 (continued) The cross validation technique yields optimal band-
widths, based on the Epanechnikov kernel, of 161 days for the ALL
group, 50 days for the AML low-risk group, and 112 days for the AML
high-risk group for the estimates of the hazard rate over the range
0–730 days. Figure 6.7 shows the estimated hazard rates using these
values of b.
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Figure 6.7 Smoothed estimates of the hazard rates for bone marrow transplant
patients based on the Epanechnikov kernel using optimal bandwidths. AML-Low
risk (------) AML-High risk (— — —) ALL (———)

Practical Notes

1. One must be very careful in interpreting the kernel-smoothed es-
timates constructed by these techniques. What these statistics are
estimating is not the hazard rate h(t), but rather a smoothed ver-
sion of the hazard rate h�(t). This quantity is defined by h�(t) �
b�1

∫
K ( t�u

b
)h(u)du. It depends on both the bandwidth b and the

kernel used in estimation. The confidence interval formula is, in
fact, a confidence interval for h�.

2. All that is required to apply the techniques in this section is an estima-
tor of the cumulative hazard rate and its variance. Hence, these tech-
niques apply equally well to right-censored or left-truncated data.
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3. The smoothed estimator of the hazard rate was first introduced in
Ramlau–Hansen (1983a and b). A detailed discussion of the large-
sample properties of this estimator can be found in Andersen et al.
(1993). A good general survey of smoothing techniques is found in
Izenman (1991).

Theoretical Notes
1. The mean integrated squared error (MISE) measures E �

∫ �U

� L
[ĥ(u) �

h(u)]2du�. This quantity is asymptotically approximately equal to
the sum of a “bias” term,

∫
�h�(u) � h(u)�2du and a “variance” term

∫
E �[ĥ(u) � h�(u)]2�du. A small bandwidth produces a small bias

term, but a large variance term, whereas the reverse holds for a
large bandwidth. The optimal bandwidth is a trade-off between the
two terms.

2. The bias of the smoothed hazard rate estimator, for large n , is ap-
proximately, 0.5b2h ′′(t)k �, where h ′′ is the second derivative of h
and k � �

∫ 1
�1 s2K (s)ds.

6.3 Estimation of Excess Mortality

In some applications of survival analysis techniques, it is of interest
to compare the mortality experience of a group of individuals to a
known standard survival curve. The reference survival curve, which
may be different for each individual in the sample, could be drawn from
published mortality tables or other population-based mortality studies.
Two simple models have been proposed to provide an inference on
how the study population’s mortality differs from that in the reference
population.

Suppose we have data on n individuals. Let � j(t) be the reference
hazard rate for the j th individual in the study. This known reference
hazard rate typically depends on the characteristics of the j th patient,
such as race, sex, age, etc. The first model for excess mortality, com-
monly known as the relative mortality model, assumes that the hazard
rate at time t for the j th patient under study conditions, hj (t), is a
multiple, �(t), of the reference hazard rate for this individual, that is,

hj (t) � �(t)� j(t), j � 1, 2, . . . , n. (6.3.1)

Here, if �(t) is greater than 1, then, individuals in the study group
are experiencing the event of interest at a faster rate than comparable
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individuals in the reference population. Let B(t) �
∫ t

0 �(u)du be the
cumulative relative excess mortality.

The data available for estimating B(t), for each individual, consists
of study times and death indicators. For the j th individual, let Yj(t)
be 1 if the individual is at risk at time t and 0, otherwise. Note that
this definition of Yj(t) allows for left-truncated and right-censored data.
Define the function Q (t) �

∑n
j�1 � j(t)Yj(t). To allow for ties in the data,

let t1 
 t2 
 	 	 	 
 tD be the times at which the events occur and di the
number of events observed at time ti . The estimator of B(t) is given by

B̂(t) �
∑

ti �t

di

Q (ti)
. (6.3.2)

An estimator of the variance of B̂(t) is given by

V̂ [B̂(t)] �
∑

ti �t

di

Q (ti)2
. (6.3.3)

The statistic B̂(t) has a large-sample normal distribution so that confi-
dence intervals or confidence bands for the cumulative relative mortality
can be constructed by replacing the Nelson–Aalen estimator and its vari-
ance by B̂(t) and its variance in the appropriate formulas in sections
4.4 and 4.5. A crude estimator of the relative risk function �(t) is given
by the slope of the estimated cumulative relative mortality estimator.
An improved estimator of B̂(t) can be found by a kernel smoothing of
B̂(t) similar to that developed for the estimated cumulative hazard rate
discussed in the previous section.

EXAMPLE 6.3 To illustrate the estimation of the relative mortality function consider
the data on the 26 psychiatric patients in Iowa described in section
1.15. We shall use the 1959–1961 Iowa State life tables (US Dept. of
Health and Human Services (1959)) as the reference population. This
life table in Table 6.2 is based on the 1960 census and the average
number of deaths in the period 1959–1961 and provides the population
survival functions S ( ) for males and females. For the population hazard
rates, we assume that the hazard rates are constant over each one
year interval reported in the table, so that the hazard rate at age a
is �(a) � � ln[S (a)] � �� ln[S (a � 1)�. Table 6.2 shows values of the
estimated hazard rates for males and female for a � 18, 19, . . . , 77.

The time scale used in this example is the time on study for each
patient. A patient who enters the study at age a has �i(t) found by
using the hazard rate in the (a � t)th row of Table 6.2. For example, the
female who entered the study at age 36 has �(1) � �F (36�1) � 0.00130,
�(2) � �F (38) � 0.00140, etc. Table 6.3 shows the estimate of B(t)
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TABLE 6.2
1960 Iowa Standard Mortality

Males

Survival Hazard Survival Hazard
Age Function Rate Age Function Rate

18–19 0.96394 0.00154 48–49 0.89596 0.00694
19–20 0.96246 0.00164 49–50 0.88976 0.00751
20–21 0.96088 0.00176 50–51 0.88310 0.00810
21–22 0.95919 0.00188 51–52 0.87598 0.00877
22–23 0.95739 0.00190 52–53 0.86833 0.00956
23–24 0.95557 0.00185 53–54 0.86007 0.01052
24–25 0.95380 0.00173 54–55 0.85107 0.01159
25–26 0.95215 0.00158 55–56 0.84126 0.01278
26–27 0.95065 0.00145 56–57 0.83058 0.01402
27–28 0.94927 0.00137 57–58 0.81902 0.01536
28–29 0.94797 0.00134 58–59 0.80654 0.01683
29–30 0.94670 0.00136 59–60 0.79308 0.01844
30–31 0.94541 0.00141 60–61 0.77859 0.02013
31–32 0.94408 0.00146 61–62 0.76307 0.02195
32–33 0.94270 0.00153 62–63 0.74650 0.02386
33–34 0.94126 0.00159 63–64 0.72890 0.02586
34–35 0.93976 0.00170 64–65 0.71029 0.02795
35–36 0.93816 0.00181 65–66 0.69071 0.03020
36–37 0.93646 0.00198 66–67 0.67016 0.03262
37–38 0.93461 0.00215 67–68 0.64865 0.03521
38–39 0.93260 0.00235 68–69 0.62621 0.03800
39–40 0.93041 0.00258 69–70 0.60286 0.04102
40–41 0.92801 0.00284 70–71 0.57863 0.04424
41–42 0.92538 0.00312 71–72 0.55359 0.04773
42–43 0.92250 0.00350 72–73 0.52779 0.05175
43–44 0.91928 0.00397 73–74 0.50117 0.05646
44–45 0.91564 0.00450 74–75 0.47366 0.06188
45–46 0.91153 0.00511 75–76 0.44524 0.06795
46–47 0.90688 0.00575 76–77 0.41599 0.07454
47–48 0.90168 0.00636 77–78 0.38611 0.08181

and its standard error. Figure 6.8 shows the estimated value of B(t)
and a 95% pointwise confidence interval for B(t) based on the log-
transformed confidence interval formula for the cumulative hazard rate.
(See Practical Note 1 in section 4.3. Here we use Eq. 4.3.5 and replace
H̃ (t0) by B̂(t) and 	H (t0) by the standard error of B̂(t).)

The slope of B̂(t) in Figure 6.8 provides a crude estimate of �(t).
Here, we see that, in the first two years of observation, psychiatric pa-
tients were 20–30 times more likely to die than comparable individuals
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TABLE 6.2
1960 Iowa Standard Mortality

Females

Survival Hazard Survival Hazard
Age Function Rate Age Function Rate

18–19 0.97372 0.00057 48–49 0.93827 0.00352
19–20 0.97317 0.00056 49–50 0.93497 0.00381
20–21 0.97263 0.00055 50–51 0.93141 0.00414
21–22 0.97210 0.00054 51–52 0.92756 0.00448
22–23 0.97158 0.00054 52–53 0.92341 0.00481
23–24 0.97106 0.00056 53–54 0.91898 0.00509
24–25 0.97052 0.00059 54–55 0.91431 0.00536
25–26 0.96995 0.00062 55–56 0.90942 0.00565
26–27 0.96935 0.00065 56–57 0.90430 0.00600
27–28 0.96872 0.00069 57–58 0.89889 0.00653
28–29 0.96805 0.00072 58–59 0.89304 0.00724
29–30 0.96735 0.00075 59–60 0.88660 0.00812
30–31 0.96662 0.00079 60–61 0.87943 0.00912
31–32 0.96586 0.00084 61–62 0.87145 0.01020
32–33 0.96505 0.00088 62–63 0.86261 0.01132
33–34 0.96420 0.00095 63–64 0.85290 0.01251
34–35 0.96328 0.00103 64–65 0.84230 0.01376
35–36 0.96229 0.00110 65–66 0.83079 0.01515
36–37 0.96123 0.00121 66–67 0.81830 0.01671
37–38 0.96007 0.00130 67–68 0.80474 0.01846
38–39 0.95882 0.00140 68–69 0.79002 0.02040
39–40 0.95748 0.00152 69–70 0.77407 0.02259
40–41 0.95603 0.00162 70–71 0.75678 0.02494
41–42 0.95448 0.00176 71–72 0.73814 0.02754
42–43 0.95280 0.00193 72–73 0.71809 0.03067
43–44 0.95096 0.00216 73–74 0.69640 0.03446
44–45 0.94891 0.00240 74–75 0.67281 0.03890
45–46 0.94664 0.00268 75–76 0.64714 0.04376
46–47 0.94411 0.00296 76–77 0.61943 0.04902
47–48 0.94132 0.00325 77–78 0.58980 0.05499

in the standard population. In years 3–40, the patients were between
2–5 times more likely to die.

A second model, which can be used for comparing the study popula-
tion to a reference population is the excess or additive mortality model.
Here, we assume that the hazard rate at time t for the j th individual
under study is a sum of the population mortality rate � j (t) and an ex-
cess mortality function �(t). The function �(t), which is assumed to be
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TABLE 6.3
Computation of Cumulative Relative Mortality for 26 Psychiatric Patients

ti di Q (ti ) B̂(t) V̂ [B̂(t)]
√

V̂ [B̂(t)])

1 2 0.05932 33.72 568.44 23.84
2 1 0.04964 53.86 974.20 31.21

11 1 0.08524 65.59 1111.84 33.34
14 1 0.10278 75.32 1206.51 34.73
22 2 0.19232 85.72 1260.58 35.50
24 1 0.19571 90.83 1286.69 35.87
25 1 0.18990 96.10 1314.42 36.25
26 1 0.18447 101.52 1343.81 36.66
28 1 0.19428 106.67 1370.30 37.02
32 1 0.18562 112.05 1399.32 37.41
35 1 0.16755 118.02 1434.94 37.88
40 1 0.04902 138.42 1851.16 43.03
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Figure 6.8 Estimated cumulative relative mortality (solid line) and 95% point-
wise confidence interval (dashed line) for Iowa psychiatric patients
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the same for all individuals in the study group, can be positive when
study patients are dying faster than those in the reference population
or be negative when the study group has a better survival rate than the
reference population. The model is

hj (t) � �(t) � � j (t), j � 1, . . . , n. (6.3.4)

As in the case of the multiplicative model, direct estimation of �( ) is
difficult. Instead, we estimated the cumulative excess mortality function
A(t) �

∫ t
0 �(u)du. The estimator of A(t) is constructed from the differ-

ence of the observed hazard rate, estimated by the ordinary Nelson–
Aalen estimator (see section 4.2) H̃ (t) and an “expected” cumulative
hazard rate �(t) based on the reference hazard rates. The expected cu-
mulative hazard rate is a weighted average of the reference cumulative
hazard rates at each time, where the weights are based on the fraction
of individuals at risk at time t , that is,

�(t) �
n∑

j�1

∫ t

0
� j (u)

Yj(u)
Y (u)

du, (6.3.5)

where Y (t) �
∑n

j�1 Yj (t) is the number at risk at time t .
The estimated excess mortality is given by

Â(t) �
∑

ti �t

di

Y (t)
� �(t). (6.3.6)

The estimated variance of the cumulative excess mortality function is
given by the variance of the Nelson–Aalen estimator, namely,

V̂ [Â(t)] �
∑

ti �t

di

Y (t)2
. (6.3.7)

As for the relative mortality model, confidence intervals and confidence
bands for A(t) can be computed using the techniques in sections 4.3
and 4.4, and smoothed estimates of �(t) can be constructed using the
methods of the previous section.

The Â(t) may be either negative or positive. It will be decreasing and
negative for times smaller than the smallest death time. With this caution
in mind, one may use these estimates to construct “corrected” survival
curves. The Kaplan–Meier estimator, Ŝ (t), provides an estimate of the
observed or uncorrected survival curve. The survival curve, S �(t) �
exp[��(t)], provides an estimate of the expected survival curve if the
reference mortality model is the same as the study population. The
ratio of these two survival functions, S C (t) � Ŝ (t) � S �(t), is taken as
a “corrected” survival function estimate for the study population. Care
must be taken in using this curve because the ratio of the two curves
may be greater than one (especially for small t) and the corrected
survival curve need not be nonincreasing.
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EXAMPLE 6.3 (continued) To estimate the expected hazard rate using the stan-
dard Iowa mortality data, we first compute �(t). Here, we assume,
again, that the hazard rates are constant over each age interval of unit
length which simplifies computations. At one year after entry into the
study, �(1) �

∑n
j�1 �S (aj ) � 26, where aj is the age of the j th indi-

vidual at entry into the study and �S ( ) is the value of the hazard
rate from Table 6.2 for the patient’s sex. For an integer age t � 1,
�(t) � �(t � 1) �

∑
t �S (aj � t � 1) � Y (t), where the sum is over all

patients under observation in the interval [t �1, t). For noninteger times,
�(t) is found by linear interpolation.

Table 6.4 shows the results of the computations. Figure 6.9 shows
the observed cumulative hazard rate [H̃ (t)], the expected cumulative
hazard rate [�(t)] and the cumulative excess mortality [Â(t)]. Notice that
the expected cumulative hazard function is a smooth function of the
number of years on study, whereas the Nelson–Aalen estimator is a step
function with jumps at the observed death times. The excess mortality
function has jumps at the death times and is decreasing between the
death times. From this figure, we see that a crude estimate of �(t),
given by the slope of Â(t), is a function which is about 0.05 for t 
 2,
about 0 for 2 
 t 
 21, and, then, about 0.05 for t � 21. After 30 years
on study, the cumulative excess mortality is about 0.35, so we estimate
that, in a group of 100 patients, we would see 35 more deaths after 30
years than we would expect to see in a standard population. A crude
95% confidence interval for the excess number of deaths after 30 years
is 0.3592  1.96(0.1625) or (0.0407, 0.6777). These estimates are a bit
imprecise due to the relatively small sample size of this study.

Figure 6.10 depicts the adjusted survival curves for this study. Again,
the expected survival function is a smooth curve, and the observed
survival curve is a step function. It is of interest here to note that the
“corrected” survival curve is not monotone decreasing and, as such, is
not strictly a survival curve. A better graphical representation is to plot
this function by connecting the points Ŝ (ti) � S �(ti) only at the death
times.

Practical Notes
1. The estimator of relative mortality is a time-varying extension of

the standard mortality ratio (SMR) estimator (Breslow, 1975) which
assumes a constant relative mortality over time. For this estimator,
one computes E (t) �

∫ t
0 Q (u)du, which is thought of as the expected

number of deaths before time t . If �(t) � �0, a constant, then, the
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TABLE 6.4
Computation for the Excess Mortality Model

ti di Y (ti ) H̃ (ti ) �(ti ) Â(t) SE [Â(t)] Ŝ (t) S �(ti )
Ŝ (ti )
S �(ti )

1 2 26 0.0769 0.0021 0.0748 0.0544 0.9231 0.9979 0.9250
2 1 24 0.1186 0.0041 0.1145 0.0685 0.8846 0.9959 0.8882
3 0 23 0.1186 0.0059 0.1127 0.0685 0.8846 0.9941 0.8899
4 0 23 0.1186 0.0079 0.1107 0.0685 0.8846 0.9921 0.8917
5 0 23 0.1186 0.0101 0.1085 0.0685 0.8846 0.9900 0.8936
6 0 23 0.1186 0.0124 0.1062 0.0685 0.8846 0.9877 0.8956
7 0 23 0.1186 0.0148 0.1038 0.0685 0.8846 0.9853 0.8978
8 0 23 0.1186 0.0175 0.1011 0.0685 0.8846 0.9827 0.9002
9 0 23 0.1186 0.0203 0.0983 0.0685 0.8846 0.9799 0.9028

10 0 23 0.1186 0.0234 0.0952 0.0685 0.8846 0.9769 0.9056
11 1 23 0.1621 0.0268 0.1353 0.0811 0.8462 0.9736 0.8691
12 0 22 0.1621 0.0303 0.1318 0.0811 0.8462 0.9702 0.8722
13 0 22 0.1621 0.0341 0.1279 0.0811 0.8462 0.9664 0.8755
14 1 22 0.2075 0.0384 0.1691 0.0930 0.8077 0.9623 0.8393
15 0 21 0.2075 0.0428 0.1647 0.0930 0.8077 0.9581 0.8430
16 0 21 0.2075 0.0476 0.1599 0.0930 0.8077 0.9535 0.8471
17 0 21 0.2075 0.0530 0.1546 0.0930 0.8077 0.9484 0.8516
18 0 21 0.2075 0.0588 0.1487 0.0930 0.8077 0.9429 0.8566
19 0 21 0.2075 0.0652 0.1423 0.0930 0.8077 0.9369 0.8621
20 0 21 0.2075 0.0722 0.1353 0.0930 0.8077 0.9303 0.8682
21 0 21 0.2075 0.0799 0.1276 0.0930 0.8077 0.9232 0.8749
22 2 21 0.3028 0.0882 0.2145 0.1148 0.7308 0.9155 0.7982
23 0 19 0.3028 0.0968 0.2060 0.1148 0.7308 0.9078 0.8050
24 1 19 0.3554 0.1062 0.2492 0.1263 0.6923 0.8993 0.7698
25 1 18 0.4109 0.1158 0.2952 0.1380 0.6538 0.8907 0.7341
26 1 17 0.4698 0.1257 0.3441 0.1500 0.6154 0.8819 0.6978
27 0 16 0.4698 0.1358 0.3340 0.1500 0.6154 0.8730 0.7049
28 1 16 0.5323 0.1469 0.3854 0.1625 0.5769 0.8634 0.6682
29 0 15 0.5323 0.1594 0.3729 0.1625 0.5769 0.8527 0.6766
30 0 15 0.5323 0.1731 0.3592 0.1625 0.5769 0.8411 0.6860
31 0 13 0.5323 0.1874 0.3449 0.1625 0.5769 0.8291 0.6958
32 1 11 0.6232 0.2028 0.4204 0.1862 0.5245 0.8164 0.6424
33 0 10 0.6232 0.2207 0.4025 0.1862 0.5245 0.8019 0.6540
34 0 8 0.6232 0.2412 0.3820 0.1862 0.5245 0.7857 0.6676
35 1 7 0.7660 0.2631 0.5029 0.2347 0.4496 0.7687 0.5849
36 0 4 0.7660 0.2848 0.4812 0.2347 0.4496 0.7522 0.5977
37 0 3 0.7660 0.3133 0.4527 0.2347 0.4496 0.7310 0.6150
38 0 2 0.7660 0.3510 0.4150 0.2347 0.4496 0.7040 0.6387
39 0 2 0.7660 0.3926 0.3734 0.2347 0.4496 0.6753 0.6658
40 1 1 1.7660 0.4363 1.3297 1.0272 0.0000 0.6464 0.0000
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Figure 6.9 Estimated cumulative excess mortality for Iowa psychiatric patients.
Nelson–Aalen estimator (———) Expected cumulative hazard (------) Cumula-
tive excess mortality (— — —)

maximum likelihood estimator of �0 is the total number of deaths
divided by E (tMAX), where tMAX is the largest on study time. The SMR
is 100 times this value. If the constant mortality model holds, then,
a plot of B̂(t) versus t should be a straight line through the origin.
Andersen and Væth (1989) present a test for constant mortality and a
version of the total time on test plot which can be used as a graphical
check of the assumption of constant relative mortality.

2. An estimator of constant excess mortality �(t) � �0 was proposed
by Buckley (1984). For this estimator, let T (t) �

∫ t
0 Y (u)du be the

total time on test at time t , that is, the number of person-years of
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Figure 6.10 Adjusted survival curves for Iowa psychiatric patients. Observed
survival (———) Expected survival (------) Corrected survival (— — —)

observation prior to time t . At the largest study time, tMAX, T (tMAX)
is the total years of exposure of all study individuals. The statistic
D�E (tMAX)

T (tMAX) estimates �0. Here D is the total number of deaths. This esti-
mate is the difference between the occurrence/exposure rate and the
expected number of deaths per time on test. Buckley also presents
a maximum likelihood estimator that must be found numerically.
Again, the constant excess mortality model is reasonable if the plot
of Â(t) versus t is linear. Andersen and Væth (1989) present a formal
test.

3. A more general model for excess mortality is a mixed model. Here,
hj (t) � �(t)� j(t) � �(t). This model can be fit into an additive
regression formulation discussed in Chapter 10.
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Theoretical Note

1. Detailed derivation of the estimators for excess and relative mortality
are found in Andersen and Væth (1989). These statistics can be
derived using a counting process technique as discussed in Andersen
et al. (1993).

6.4 Bayesian Nonparametric Methods

An alternative to the classical nonparametric approach to estimating
the survival function discussed in Chapters 4 and 5 is to use Bayesian
nonparametric methods. In applying these methods, an investigator’s
a priori belief in the shape of the survival function is combined with the
data to provide an estimated survival function. The prior information,
which may be based on previous experience with the process under
observation or based on expert opinion, is reflected in a prior distri-
bution for the survival function. The sample information is contained
in the likelihood function. These two distinct pieces of information are
combined by Bayes’ theorem to obtain an a posteriori distribution of
the survival function which is the distribution of the survival function,
given the data.

In the Bayesian approach, the parameters of the model are treated as
random variables selected from the prior distribution. This prior distri-
bution, which is a multivariate distribution on the parameters, is selected
to reflect the investigator’s prior belief in the values of the parameters.
Typically, the prior means reflect the investigators best guess, before
seeing any data, of the value of the parameters, and the prior variance
is a measure of the investigator’s uncertainty in his prior means. Often
one can think of the prior variance as being inversely proportional to
the amount of sample information to be represented by the prior.

In our problem, the parameter of interest is the survival function or,
equivalently, the cumulative hazard function. This is to be treated as a
random quantity sampled from some stochastic process. Nature picks
a sample path from this stochastic process, and this is our survival
function. We, then, have data sampled from a population with this
survival function which we shall combine with our prior to obtain the
distribution of the survival function, given the data.

To obtain an estimate of the survival function, we need to specify
a loss function on which to base the decision rule. Analogous to the
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simple parametric case, we shall use the squared-error loss function

L(S, Ŝ ) �

∫ �

0
[Ŝ (t) � S (t)]2dw(t),

where w(t) is a weight function. This loss function is the weighted
integrated difference between the true value of the survival function
and our estimated value. For this loss function, the value of Ŝ , which
minimizes the posterior expected value of L(S, Ŝ ), is the posterior mean
and the Bayes risk E [L(S, Ŝ ) | DATA] is the posterior variance.

Two classes of prior distributions have been suggested for this prob-
lem. Both lead to closed form estimates of the survival function using
the squared-error loss function. These priors are chosen because they
are conjugate priors for either the survival function or the cumulative
hazard function. For a conjugate prior, the prior and posterior distribu-
tions are in the same family.

The first prior is for the survival function. For this prior, we assume
that the survival function is sampled from a Dirichlet process with a
parameter function � . A Dirichlet process, defined on the positive real
line, has the property that, for any set of intervals A1, . . . , Ak , which
partition the positive real line, the joint distribution of the prior prob-
abilities Pr [X � A1] � W1, . . . , Pr [X � Ak ] � Wk has a k dimen-
sional Dirichlet distribution with parameters [�(A1), . . . , �(Ak )]. This
property must hold for any such set of intervals and any k . A k vector
(W1, . . . , Wk ) has a k -dimensional Dirichlet distribution with parameters
(�1, . . . , �k ) if Wi � Zi � ∑k

i�1 Zi where the Zi ’s are independent gamma
random variables with shape parameter �i . The joint density function
of (W1, . . . , Wk�1) is given by

f (w1, . . . , wk�1) �
�[�1 � 	 	 	 � �k ]

�[�1] 	 	 	 �[�k ]

[
k�1∏

i�1

w�i �1
i

] [

1 �
k�1∑

i�1

wi

]�k �1

.

The mean of Wi is �i � � and the variance is (� ��i )�i � (�2 ��3) where
� �

∑k
i�1 �i . When k � 2 the Dirichlet distribution reduces to the beta

distribution with parameters (�1, �2).
To assign a prior distribution to the survival function, we assume

that S (t) follows a Dirichlet distribution with parameter function � .
Typically, we take the parameter function to be of the form �([t, �)) �
cS0(t) where S0(t) is our prior guess at the survival function and c is a
measure of how much weight to put on our prior guess. With this prior
distribution for S (t), the prior mean is expressed by

E [S (t)] �
�(t, �)
�(0, �)

�
cS0(t)
cS0(0)

� S0(t),
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and the prior variance is given by

V [S (t)] �
[�(0, �) � �(t, �)]�(t, �)

[�(0, �)2 � �(0, �)3]
�

S0(t)[1 � S0(t)]
c � 1

.

Note that the prior variance is the equivalent to the sample variance
one would have if we had an uncensored sample of size c � 1 from a
population with a survival function S0(t). To illustrate what the sample
paths of the prior distribution for S look like, we have simulated 10
sample paths for a Dirichlet prior with S0(t) � exp(�0.1t) and c � 5.
These are plotted as dashed lines in Figure 6.11 along with their mean
S0(t), which is plotted as a solid line. Here we see that each sample path
is a nonincreasing function with a value of 1 at 0. Note that, although
the curves are continuous functions, they are not too smooth in this
example. As the value of c increases, the curves will become smoother.
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Figure 6.11 Sample of ten sample paths (dashed lines) and their mean (solid
line) for samples from a Dirichlet prior with S0(t) � exp(�0.1t) and c � 5.
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The data we have available to combine with our prior consists of the
on study times Tj and the event indicator, � j . To simplify calculations
let 0 � to 
 t1 
 	 	 	 
 tM 
 tM �1 � �, denote the M distinct times
(censored or uncensored). At time ti , let Yi be the number of individ-
uals at risk, di the number of deaths and �i the number of censored
observations. Let �i be 1 if di � 0 and 0 if di � 0.

Combining this data with the prior, we find that the posterior distri-
bution of S is also Dirichlet. The parameter of the posterior distribution,
��, is the original � parameter plus a point mass of one at points where
deaths occur. That is, for any interval (a, b),

��((a, b)) � �((a, b)) �
n∑

j�1

I [� j � 0, a 
 Tj 
 b],

where I [ ] is the indicator function.
The Bayes estimator of the survival function is

S̃D(t) �
�(t, �) � Yi�1

�(0, �) � n

i∏

k�1

�(tk , �) � Yk�1 � �k

�(tk , �) � Yk�1
(6.4.1)

for ti � t 
 ti�1, i � 0, . . . , M

The Bayes estimator is a continuous function between the distinct death
times and has jumps at these death times. For large n this reduces to
the Kaplan–Meier estimator, so that the prior information plays no role
in the estimate. For small samples, the prior will dominate, and the
estimator will be close to the prior guess at S .

A second approach to modeling prior information for survival data
is to provide a prior distribution for the cumulative hazard function
H (t) � � ln[S (t)]. Here, we shall use a beta process prior. This prior
depends on two parameters, H0(t) and c(t). H0(t) is a prior guess at
the value of the cumulative hazard rate H (t), and c(t) is a measure of
how much weight to put on the prior guess at the function H (t) at
time t . For this prior, if we let Ai � [ai�1, ai ), i � 1, . . . , k be a series
of nonoverlapping intervals with 0 � a0 
 a1 
 a2 
 	 	 	 
 ak , then,
a priori, W1 � H (a1)�H (a0),. . . Wk � H (ak )�H (ak�1) are independent
beta random variables with parameters pi � c([ai � ai�1]� 2)[H0(ai) �
H0(ai�1)] and qi � c([ai � ai�1]� 2)�1 � [H0(ai) � H0(ai�1)]�. The prior
mean of H (ai) � H (ai�1) is H0(ai) � H0(ai�1) and the prior variance is

V (Wi) �
�H0(ai) � H0(ai�1)��1 � [H0(ai) � H0(ai�1)]�

c([ai � ai�1]� 2) � 1
.

Here, c(t) can be thought of as the weight to be given to our prior guess
at H0(ai) � H0(ai�1) at the time [ai � ai�1]� 2. The beta process prior is
obtained by letting the number of subintervals increase to infinity, so
that the interval lengths go to zero. Roughly speaking, H (t) has a beta
process if dH (s) has a beta distribution with parameters c(s)h0(s) and
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c(s)[1 � h0(s)], and dH (s) is independent of dH (u) for u � s. (Here,
dH (s) � [H (s � ds) � H (s)]ds for a very small increment of time, and
h0(t) � dH0(t) � dt .)

To illustrate what the sample paths of the prior distribution, for S
based on a beta process prior, look like, we have simulated 10 sample
paths for a beta process prior with H0(t) � 0.1t and c(t) � 5. These
are plotted as dashed lines in Figure 6.12 along with the prior guess at
the survival function, exp(�0.1t). Here we see that each sample path
is a nondecreasing function with a value of 1 at 0. As for the Dirichlet
process prior, the sample paths are continuous and nondecreasing. As
compared to the Dirichlet, the sample paths for the beta process prior
are less variable, especially, in the middle section of the curve.

When the data is right-censored with D(t) deaths observed at or prior
to time t and Y (t) individuals at risk at time t and a beta process prior
is used, then, the posterior distribution of H (t) is a beta process with
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Figure 6.12 Sample of ten sample paths (dashed lines) and their mean (solid
line) for samples from a Beta process prior with H0(t) � 0.1t and c(t) � 5.
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parameters [c(t)A0(t) � Y (t)D(t)]� (c(t) � Y (t)) and c(t) � Y (t). Under
squared-error loss the Bayes estimator of the survival function is given
by

S̃B(t) � exp

{

�
i∑

k�1

∫ tk

tk �1

c(u)h0(u)
c(u) � Yk

�

∫ t

ti

c(u)h0(u)
c(u) � Yi�1

du

}

(6.4.2)

�
∏

k :tk �t

[

1 �
c(tk )h0(tk ) � dk

c(tk ) � Yk

]�k

, for ti � t 
 ti�1.

When c(t) is a constant c, this reduces to

S̃B(t) � exp

{

�
i∑

k�1

c[H0(tk ) � H0(tk�1)]
c � Yk

�
c[H0(t) � H0(ti)]

c � Yi�1

}

�
∏

k :tk �t

[

1 �
ch0(tk ) � dk

c � Yk

]�k

, if ti � t 
 ti�1.

The estimator based on the Dirichlet prior has jumps at the death times
and is continuous between deaths. Note that, as c(t) → 0 this estimator
reduces to the Kaplan–Meier estimator.

EXAMPLE 6.4 We shall illustrate these Bayesian estimators, using the data on remission
duration for patients given the drug 6-MP, which was presented in
section 1.2. For the Dirichlet prior, we shall use a prior guess at S0(t)
of �(t, �) � �(0, �) � e�0.1t . This prior estimate was chosen so that the
a priori mean of the 6-MP group is the same as the control group. Our
degree of belief in this prior estimate is that it is worth about C � 5
observations, so that �(0, �) � 5 and �(t, �) � 5e�0.1t . For the beta
process prior, we shall assume the same prior estimate of the survival
function and degree of belief in the validity of this guess, so H0(t) � 0.1t
and c(t) � 5. Figures 6.11 and 6.12 show samples of sample paths from
these two priors.

From the data, we have the following information:

Ti 6 7 9 10 11 13 16 17 19 20 22 23 25 32 34 35
Yi 21 17 16 15 13 12 11 10 9 8 7 6 5 4 2 1
di 3 1 0 1 0 1 1 0 0 0 1 1 0 0 0 0
ci 1 0 1 1 1 0 0 1 1 1 0 0 1 2 1 1
�i 1 1 0 1 0 1 1 0 0 0 1 1 0 0 0 0.
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To illustrate the calculations, first consider a t in the interval [0, 6).
For the Dirichlet prior,

S̃D(t) �

[
5e�0.1t � 21

5 � 21

]

�

[
5e�0.1t � 21

26

]

,

whereas, for the beta process prior,

S̃B(t) � exp
[

�
5[0.1(t) � 0.1(0)]

5 � 21

]

� exp
(

�
0.5t

26

)

.

For a t in the interval [6, 7),

S̃D(t) �

[
5e�0.1t � 17

5 � 21

]{
5e�0.6 � 18
5e�0.6 � 17

}

,

whereas, for the beta process prior,

S̃B(t) � exp
{

�
5[0.1(6) � 0.1(0)]

5 � 21
�

5[0.1(t) � 0.1(6)]
5 � 17

}[

1 �
5(0.1) � 3

5 � 21

]

.

Figure 6.13 shows the two Bayes estimates, the Kaplan–Meier estimator,
and the prior estimate of the survival function. Here, we note that the
beta process prior estimate is closer to the prior mean, which is to be
expected, because the beta process has sample paths which tend to lie
closer to the hypothesized prior guess at the survival function.

The third approach to Bayesian estimation of the survival function is
by Monte Carlo Bayesian methods or the Gibbs sampler. This approach
is more flexible than the other two approaches. For right-censored
data, for which we will describe the procedure, closed form estimates
of the survival function are available. For other censoring or trunca-
tion schemes, such simple estimates are not available, and the Gibbs
sample provides a way of simulating the desired posterior distribution
of the survival function. This approach can also be extended to more
complicated problems, such as the regression problems discussed in
Chapter 8.

To illustrate how this method works, we shall focus on the right-
censored data problem. We let 0 
 t1 
 	 	 	 
 tM be M time points.
Let dj be the number of deaths in the interval (t j�1, t j ] and � j the
number of right-censored observations at t j . Let Pj � S (t j ) be the
survival function at time t j , so the likelihood function is proportional
to
∏M

j�1(Pj�1 � Pj )dj P � j

j . Let � j � Pj�1 � Pj , for j � 1, . . . , M and
�M �1 � PM . For a prior distribution, we assume that the joint distribution
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Figure 6.13 Bayes estimates of the survival function for the 6-MP group. Beta
process prior (———) Dirichlet process prior (------) Prior (– – – – –) Kaplan–
Meier estimate (— — —)

of the �’s is the Dirichlet distribution with density function


(�, . . . , �m) � Constant
M �1∏

j�0

(� j)
� j�1 , (6.4.3)

where � j � C [S0(t j�1) � S0(t j )] for j � 1, . . . , M � 1 with S0(tM �1) � 0
and the constant in (6.4.3) is

�(C )
∏M �1

j�1 �(� j)
.

The Gibbs sampling approach to Bayesian estimation approximates
the posterior distribution via a Monte Carlo simulation. Here, we treat
the censored observations as unknown parameters, and we simulate
death times for each censored observation. Using these values with the



6.4 Bayesian Nonparametric Methods 195

death information, one simulates the parameters � j . These new �’s are
used to generate new death times for the censored observations, and
so forth. Gelfand and Smith (1990) have shown that this procedure
converges to a realization of � drawn from the posterior distribution
�, given the data. This process is repeated a large number of times
to obtain a sample from the posterior distribution of �, given the data
which is analyzed to provide the Bayes estimator.

For our censored data problem, a single Gibbs sample is gener-
ated as follows. If � j � 0, let Zj�1, j , . . . , ZM �1, j denote the num-
ber of observations out of the � j that may have been deaths in
the intervals (t j , t j�1], . . . , (tM �1, tM ], (tM , �), respectively. Note that
� j �

∑M �1
k� j�1 Zk, j . Suppose that, at the i th iteration, we have a realization

of � i � (�i
1, �i

2, . . . , �i
M �1) which sums to 1. We sample Zj�1, j , . . . , ZM �1, j

from a multinomial with sample size � j and probabilities

�k �
�i

k∑M �1
h� j�1 �i

h

.

Having sampled the Z ’s, new �’s are generated from the Dirichlet by
first computing

Ri�1
h � �h � dh �

M∑

j�1

Zh, j

and, then, sampling �i�1 � (�i�1
1 , �i�1

2 , . . . , �i�1
M �1) for a Dirichlet distri-

bution with parameters (Ri�1
1 , Ri�1

2 , . . . , Ri�1
M �1).

The procedure above yields a single realization of � and R after i
steps. Typically i is relatively small, of the order 10 or 20. This process
is repeated S times where S is typically of the order 1000–10,000. The
posterior estimate of �h is, then, given by

�̃h � S �1
S∑

s�1

Ri
hs∑M �1

k�1 Ri
ks

. (6.4.4)

EXAMPLE 6.4 (continued) We shall apply the Gibbs sampling approach to the data
in Example 6.4. As in that example, we assume, a priori, that S0(t) �
e�0.1t and that our prior belief in the accuracy of our prior guess is
C � 5 observations. Intervals are formed by taking t j to be the death
and censoring times. For a death time T , we include an “interval”
(T �, T ] with a �h representing the point mass at time T . (That is, �h is
the jump in the estimated survival function at an observed death.) The
following Table 6.5 shows the 24 intervals needed for this problem and
the values of � j from our prior.

To generate the first Gibbs observation, we generated �0
h,

h � 1, . . . , 24 from the prior distribution (6.4.3) which is Dirichlet
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TABLE 6.5
Estimates Based on Gibbs Sampling

Revised
Death Posterior
Count Probability

j (t j � 1, t j ] dj � j � j �0 Iteration 1 (SE)

1 (0, 6�] 0 0 2.256 0.3378 0 0.0867 (0)
2 (6�, 6] 3 1 0.000 0 3 0.1154 (0)
3 (6, 7�] 0 0 0.261 0.0867 0 0.0105 (0.0001)
4 (7�, 7] 1 0 0.000 0 1 0.0408 (0.0003)
5 (7, 9] 0 1 0.450 0.0228 0 0.0182 (0.0002)
6 (9, 10�] 0 0 0.193 0.0001 0 0.0083 (0.0002)
7 (10�, 10] 1 1 0.000 0 1 0.0430 (0.0004)
8 (10, 11] 0 1 0.175 0.0428 0 0.0077 (0.0002)
9 (11, 13�] 0 0 0.302 0.0001 0 0.0148 (0.0004)

10 (13�, 13] 1 0 0.000 0 1 0.0500 (0.0007)
11 (13, 16�] 0 0 0.353 0.2673 2 0.0169 (0.0004)
12 (16�, 16] 1 0 0.000 0 1 0.0492 (0.0007)
13 (16, 17] 0 1 0.096 0.0000 0 0.0050 (0.0002)
14 (17, 19] 0 1 0.166 0.0028 0 0.0091 (0.0004)
15 (19, 20] 0 1 0.071 0.0721 1 0.0042 (0.0003)
16 (20, 22�] 0 0 0.123 0.0058 0 0.0080 (0.0004)
17 (22�, 22] 1 0 0.000 0 1 0.0678 (0.0012)
18 (22, 23�] 0 0 0.053 0.0045 0 0.0038 (0.0003)
19 (23�, 23] 1 0 0.000 0 1 0.0662 (0.0381)
20 (23, 25] 0 1 0.091 0.0003 0 0.0066 (0.0005)
21 (25, 32] 0 2 0.207 0.1570 5 0.0183 (0.0008)
22 (32, 34] 0 1 0.037 0.0000 0 0.0072 (0.0008)
23 (34, 35] 0 1 0.016 0.0000 0 0.0117 (0.0014)
24 (35, �) 0 0 0.151 0.0000 4 0.3306 (0.0024)

(�1, . . . , �24). To generate observations from the Dirichlet distribution,
one generates W1, . . . , W24 as independent gamma random variables
with parameters �h and � � 1 (i.e., f (wh) � w�h�1

h exp��wh�� �(�h),
and, then, �h � Wh � �Wj . The first realization of the �’s is included
in the table. Using these values, we, then, generate the Z ’s. For exam-
ple, we generate Z3,2, Z4,2, . . . , Z12,2 from the appropriate multinomial
distribution. In our example, this corresponds to picking an interval
(th�1, th] with h � j in which each censored observation at t j is to be
placed and counted as a death. The table includes entries which give
the revised death count at th of dh �

∑M
j�1 Zh, j , for the first iteration.

These revised death counts are used to update the values of �h by
Yh � �h � dh �

∑M
j�1 Zh, j , also given in Table 6.5. The procedure con-

tinues through a total of 10 cycles to produce the Gibbs iterate Y 10
h1 .
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This is repeated 1000 times. The final column of the table provides the
posterior means of the �’s from (6.4.4) and, for reference, the sample
standard errors of the standardized Ri

hs which provide some information
on the rate of convergence of the algorithm. Notice that the posterior
mean estimates in this table are precisely what we would obtain from
the Dirichlet process prior, discussed earlier.

Practical Notes

1. The Bayesian estimator of the survival function obtained from a right-
censored sample from the Dirichlet process prior model can be ex-
tended to other censoring schemes. Johnson and Christensen (1986)
developed the estimation procedure for grouped data as found in a
life table. Cornfield and Detre (1977) also consider a Bayes estima-
tor of the survival function for life table data which is based on a
Dirichlet-like prior.

2. Using the Gibbs sampling approach, additional censoring schemes
can be handled quite easily. For example, Kuo and Smith (1992)
show how to handle combined right- and left-censored data. This
flexibility of the Monte Carlo Bayesian approach is one of the major
strengths of the technique.

3. The Gibbs sampling approach presented here generates a Gibbs
sample based on a large number of short runs of the algorithm. An
alternative is to run a single realization of the algorithm until the suc-
cessive iterations have the desired posterior distribution and, then,
take, as the Gibbs sample, successive �’s generated by the algorithm.
The approach suggested here, although requiring a bit more compu-
tation time, has the advantage of producing independent replications
of the posterior distribution. (See Gelfand and Smith (1990) for a dis-
cussion of the merits of the two approaches.)

4. The posterior estimator of the survival function from the Gibbs sam-
ple, (6.4.4), is based on the fact that the posterior distribution of �h is
a mixture of a beta random variable with parameters Yh and

∑
k�h Yk .

An alternative technique to estimate the posterior distribution of �h

is to use the empirical distribution function of the simulated values
of �, �i

hs , s � 1, . . . , S . This would give a posterior estimator of �h of
the sample mean of S replicates, �i

hs . To achieve the same precision
as found by (6.4.4) for this approach, a larger value of S is required.
By this approach, however, one can routinely provide an estimate of
any functional of the posterior distribution of �, by the appropriate
functional of the empirical distribution of the simulated �’s.

5. Hjort (1992) discusses how the beta process prior can be used in
more complicated censoring schemes and in making adjustments to
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the survival function to account for covariates. He provides a Bayes
approach to the proportional hazard regression problem discussed
in Chapter 8.

Theoretical Notes
1. The Dirichlet process prior estimator of the survival function was first

proposed by Ferguson (1973) for uncensored data. Susarla and Van
Ryzin (1976) and Ferguson and Phadia (1979) extend the estimation
process to right censored data.

2. The beta process prior was introduced in this context by Hjort (1990).
3. Both the Dirichlet and beta process prior estimates converge to the

Product-Limit estimator for large samples for any nontrivial prior
distribution. By an appropriate choice of the prior distribution, the
Product-Limit estimator is a Bayes estimator for any n for both of
these priors.

4. If one chooses c(t) � kS0(t), where S0(t) � exp[�H0(t)] for the
weight parameter of the beta process, then, the beta process prior
on H is the same as a Dirichlet process prior with parameters S0(t)
and k . Thus, the beta process prior is a more general class of priors
than the class of Dirichlet priors.

5. Kuo and Smith (1992) have introduced the use of Monte Carlo
Bayesian methods to survival analysis.

6.5 Exercises
6.1 (a) Using the data on the time to relapse of 6-MP patients found in

section 1.2, estimate the hazard rate at 12 months using the uniform
kernel with a bandwidth of 6 months. Provide the standard error
of your estimate.

(b) Compare the estimates obtained in part a to the estimate of h(12)
obtained using the Epanechnikov kernel.

(c) Repeat part b using the biweight kernel.
(d) Estimate the hazard rate at 5 months using all three kernels.

6.2 Using the data on the leukemia-free survival times of allogeneic bone
marrow transplants in Table 1.4 of Chapter 1 (See Exercise 7 of Chapter
4), estimate the hazard rate at 1, 3, 5, 7, 9, 11, and 13 months using a
uniform kernel with a bandwidth of 5 months. Plot your estimates and
interpret the shape of the estimated hazard rate.

6.3 (a) Using the data on the infection times of kidney dialysis patients in
section 1.4, estimate the hazard rate using a biweight kernel with a
bandwidth of 5 months at 3 months for each of the two groups.
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(b) Using the same bandwidth and kernel estimate the hazard rate at
10 months in both groups.

6.4 In section 1.7 a study of the death times (in years) and the age (in years)
at transplant of 59 black female kidney transplant patients is reported.
From this data, compute the patients’ age in years at death or at the end
of the study. The survival experience of this sample of patients is to be
compared to the standard mortality rates of black females found in the
1990 U.S. census using the all-cause mortality for the U.S. population
in 1990 found in Table 2.1 of Chapter 2.
(a) Estimate the cumulative relative mortality, B(t), for this group of

patients.
(b) Find the standard error of your estimate in part a.
(c) Estimate the excess mortality, A(t), for this group of patients.
(d) Find the standard error of your estimate in part c.
(e) Plot the Kaplan–Meier estimate of the survival function, the ex-

pected survival curve, and the corrected survival curve for this
group of patients.

6.5 An alternative to autologous bone marrow transplantation for leukemia
is chemotherapy. Suppose that it is known that for chemotherapy pa-
tients the time from diagnosis to relapse or death has an exponential
distribution with survival function hazard rate � � 0.045. Assume that
this rate is the same for all patients. To compare the survival experience
of this reference population to autologous bone marrow transplant pa-
tients use the data on autologous transplants in Table 1.4 of Chapter 1
(see Problem 7 of Chapter 4).
(a) Estimate the cumulative relative mortality, B(t), for this group of

patients.
(b) Find the standard error of your estimate in part a.
(c) Estimate the excess mortality, A(t), for this group of patients.
(d) Find the standard error of your estimate in part c.

6.6 Table 1.3 of section 1.5 provides data on the time to death (in months)
of nine immunoperoxidase-positive breast-cancer patients.
(a) Using a Dirichlet prior for S (t) with �(t, �) � 6 exp(�0.1t 0.5), find

the Bayes estimate of the survival function under squared-error loss.
(b) Using a beta prior for H (t) with q � 6 and H0(t) � 0.1t 0.5 find the

Bayes estimate of the survival function under squared-error loss.
(c) Compare the estimates found in parts a and b to the usual Kaplan–

Meier estimate of the survival function.

6.7 Table 1.6 of section 1.11 gives data on the times in weeks from diagnosis
to death of 28 patients with diploid cancers of the tongue.
(a) Using a Dirichlet prior for S (t) with �(t, �) � 4� (1 � 0.15t 0.5), find

the Bayes estimate of the survival function under squared-error loss.
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(b) Using a beta prior for H (t) with q � 4 and H0(t) � ln(1 � 0.15t 0.5),
find the Bayes estimate of the survival function under squared-error
loss.

(c) Compare the estimates found in parts a and b to the usual Kaplan–
Meier estimate of the survival function.



7
Hypothesis Testing

7.1 Introduction

As we have seen in Chapters 4–6, the Nelson–Aalen estimator of the
cumulative hazard rate is a basic quantity in describing the survival ex-
perience of a population. In Chapter 4, we used this estimator along
with the closely related Product-Limit estimator to make crude compar-
isons between the disease-free survival curves of bone marrow trans-
plant patients with different types of leukemia, and in section 6.3, we
used this statistic as the basis for estimating excess mortality of Iowa
psychiatric patients.

In this chapter, we shall focus on hypothesis tests that are based
on comparing the Nelson–Aalen estimator, obtained directly from the
data, to an expected estimator of the cumulative hazard rate, based
on the assumed model under the null hypothesis. Rather than a direct
comparison of these two rates, we shall examine tests that look at
weighted differences between the observed and expected hazard rates.
The weights will allow us to put more emphasis on certain parts of the
curves. Different weights will allow us to present tests that are most
sensitive to early or late departures from the hypothesized relationship
between samples as specified by the null hypothesis.

201
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In section 7.2, we shall consider the single sample problem. Here,
we wish to test if the sample comes from a population with a prespec-
ified hazard rate h0(t). In section 7.3, we will look at tests of the null
hypothesis of no difference in survival between K treatments against
a global alternative that at least one treatment has a different survival
rate. Here, for example, we will discuss censored data versions of the
Wilcoxon or Kruskal–Wallis test and log-rank or Savage test. In section
7.4, we look at K sample tests that have power to detect ordered alter-
natives. A censored data version of the Jonckheere–Terpstra test will be
presented. In section 7.5, we will see how these tests can be modified
to handle stratification on covariates which may confound the analysis.
We shall see how this approach can be used to handle matched data,
and we will have a censored-data version of the sign test. In section
7.6, we will look at tests based on the maximum of the sequential eval-
uation of these tests at each death time. These tests have the ability to
detect alternatives where the hazard rates cross and are extensions of
the usual Kolmogorov–Smirnov test. Finally, in section 7.7, we present
three other tests which have been proposed to detect crossing haz-
ard rates, a censored-data version of the Cramer–von Mises test, a test
based on weighted differences in the Kaplan–Meier estimators, and a
censored-data version of the median test.

The methods of this chapter can be applied equally well to right-
censored data or to samples that are right-censored and left-truncated.
As we shall see, the key statistics needed to compute the tests are the
number of deaths at each time point and the number of individuals
at risk at these death times. Both quantities are readily observed with
left-truncated and right-censored data.

7.2 One-Sample Tests

Suppose that we have a censored sample of size n from some popula-
tion. We wish to test the hypothesis that the population hazard rate is
h0(t) for all t � � against the alternative that the hazard rate is not h0(t)
for some t � �. Here h0(t) is a completely specified function over the
range 0 to �. Typically, we shall take � to be the largest of the observed
study times.

An estimate of the cumulative hazard function H (t) is the Nelson–
Aalen estimator, (4.2.3), given by

∑
ti �t

di

Y (ti )
, where di is the number of

events at the observed event times, t1, . . . , tD and Y (ti) is the number
of individuals under study just prior to the observed event time ti . The
quantity di

Y (ti )
gives a crude estimate of the hazard rate at an event time

ti . When the null hypothesis is true, the expected hazard rate at ti is
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h0(ti). We shall compare the sum of weighted differences between the
observed and expected hazard rates to test the null hypothesis.

Let W (t) be a weight function with the property that W (t) is zero
whenever Y (t) is zero. The test statistic is

Z(�) � O(�) � E (�) �
D∑

i�1

W (ti)
di

Y (ti)
�

∫ �

0
W (s)h0(s)ds. (7.2.1)

When the null hypothesis is true, the sample variance of this statistic is
given by

V [Z(�)] �

∫ �

0
W 2(s)

h0(s)
Y (s)

ds. (7.2.2)

For large samples, the statistic Z(�)2 � V [Z(�)] has a central chi-squared
distribution when the null hypothesis is true.

The statistic Z(�) � V [Z(�)]1 � 2 is used to test the one sided alternative
hypothesis that h(t) � h0(t). When the null hypothesis is true and the
sample size is large, this statistic has a standard normal distribution. The
null hypothesis is rejected for large values of the statistic.

The most popular choice of a weight function is the weight W (t) �
Y (t) which yields the one-sample log-rank test. To allow for possible
left truncation, let Tj be the time on study and Lj be the delayed entry
time for the j th patient. When � is equal to the largest time on study,

O(�) � observed number of events at or prior to time �, (7.2.3)

and

E (�) � V [Z(�)] �
n∑

j�1

[H0(Tj) � H0(Lj)] (7.2.4)

where H0(t) is the cumulative hazard under the null hypothesis.
Other weight functions proposed in the literature include the Harring-

ton and Fleming (1982) family WHF (t) � Y (t)S0(t)p [1 � S0(t)]q , p � 0,
q � 0, where S0(t) � exp[�H0(t)] is the hypothesized survival function.
By choice of p and q, one can put more weight on early departures
from the null hypothesis (p much larger than q), late departures from
the null hypothesis (p much smaller than q), or on departures in the
mid-range (p � q � 0). The log-rank weight is a special case of this
model with p � q � 0.

EXAMPLE 7.1 In section 6.3, we examined models for excess and relative mortality in
a sample of 26 Iowa psychiatric patients described in section 1.15. We
shall now use the one-sample log-rank statistic to test the hypothesis
that the hazard rate of this group of patients is the same as the hazard
rate in the general Iowa population, given by the standard 1960 Iowa
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mortality table. To perform this test, we will use the sex specific survival
rates. Time Tj is taken as the j th individual’s age at death or the end
of the study, and the left-truncation time Lj , is this individual’s age at
entry into the study. We obtain H (t) as � ln[S (t)] from the appropriate
column of Table 6.2. Table 7.1 shows the calculations to compute O(71)
and E (71).

The test statistic is �2 � (15�4.4740)2 � 4.4740 � 24.7645 which has a
chi-squared distribution with one degree of freedom. Here the p-value
of this test is close to zero, and we can conclude that the mortality rates
of the psychiatric patients differ from those of the general public.

TABLE 7.1
Computation of One-Sample, Log-Rank Test

Subject Status Age at Entry Age at Exit
j Sex di Li Tj H0(Lj ) H0(Tj ) H0(Tj ) � H0(Lj )

1 f 1 51 52 0.0752 0.0797 0.0045
2 f 1 58 59 0.1131 0.1204 0.0073
3 f 1 55 57 0.0949 0.1066 0.0117
4 f 1 28 50 0.0325 0.0711 0.0386
5 m 0 21 51 0.0417 0.1324 0.0907
6 m 1 19 47 0.0383 0.1035 0.0652
7 f 1 25 57 0.0305 0.1066 0.0761
8 f 1 48 59 0.0637 0.1204 0.0567
9 f 1 47 61 0.0606 0.1376 0.0770

10 f 1 25 61 0.0305 0.1376 0.1071
11 f 0 31 62 0.0347 0.1478 0.1131
12 m 0 24 57 0.0473 0.1996 0.1523
13 m 0 25 58 0.0490 0.2150 0.1660
14 f 0 30 67 0.0339 0.2172 0.1833
15 f 0 33 68 0.0365 0.2357 0.1992
16 m 1 36 61 0.0656 0.2704 0.2048
17 m 0 30 61 0.0561 0.2704 0.2143
18 m 1 41 63 0.0776 0.3162 0.2386
19 f 1 43 69 0.0503 0.2561 0.2058
20 f 1 45 69 0.0548 0.2561 0.2013
21 f 0 35 65 0.0384 0.1854 0.1470
22 m 0 29 63 0.0548 0.3162 0.2614
23 m 0 35 65 0.0638 0.3700 0.3062
24 m 1 32 67 0.0590 0.4329 0.3739
25 f 1 36 76 0.0395 0.4790 0.4395
26 m 0 32 71 0.0590 0.5913 0.5323

Total 15 4.4740
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Practical Notes
1. An alternate estimator of the variance of Z(�) is given by V [Z(�)] �∑D

i�1 W (ti)2 di

Y (ti )2
which uses the empirical estimator of h0(t) rather

than the hypothesized value. When the alternative hypothesis h(t) �
h0(t) is true, for some t � �, this variance estimator is expected to
be larger than (7.2.2), and the test is less powerful using this value.
On the other hand, if h(t) 
 h0(t), then, this variance estimator will
tend to be smaller, and the test will be more powerful.

2. The statistic O(�) � E (�) based on the log-rank weights is called the
standardized mortality ratio (SMR).

3. A weight function suggested by Gatsonis et al. (1985) is W (t) �
(1 � �log[1 � S0(t)]�� S0(t))Y (t).

Theoretical Notes
1. In this class of tests, the one-sample, log-rank test is the locally

most powerful test against a shift alternative of the extreme value
distribution. The weight function WHF(t) � Y (t)S0(t) is the locally
most powerful test for the logistic distribution. Because the one-
sample Wilcoxon test also has this property, this choice of weights
leads to a censored-data, one-sample, Wilcoxon test. See Andersen
et al. (1993) for details.

2. These one-sample tests arise quite naturally from the theory of count-
ing processes. Under the null hypothesis, using the notation in sec-
tion 3.6,

∫ �
0 [J (u) � Y (u)]dN (u) �

∫ �
0 J (u)h0(u) du is a martingale. The

statistic Z(�) is a stochastic integral of the weight function W (t) with
respect to this martingale, and Var[Z(�)] is the predictable variation
process of this stochastic integral. The asymptotic chi-squared distri-
bution follows by the martingale central limit theorem.

3. The one-sample, log-rank test was first proposed by Breslow (1975)
and generalized to left truncation by Hyde (1977) and Woolson
(1981).

7.3 Tests for Two or More Samples

In section 7.2, we looked at one-sample tests that made a weighted
comparison between the estimated hazard rate and the hypothesized
hazard rates. We now shall extend these methods to the problem of
comparing hazard rates of K (K � 2) populations, that is, we shall test
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the following set of hypotheses:

H0 : h1(t) � h2(t) � 	 	 	 � hK (t), for all t � �, versus (7.3.1)

HA : at least one of the hj (t)’s is different for some t � �.

Here � is the largest time at which all of the groups have at least one
subject at risk.

As in section 7.2, our inference is to the hazard rates for all time
points less than �, which is, typically, the smallest of the largest time
on study in each of the k groups. The alternative hypothesis is a global
one in that we wish to reject the null hypothesis if, at least, one of the
populations differs from the others at some time. In the next section,
we will present tests that are more powerful in the case of ordered
alternatives.

The data available to test the hypothesis (7.3.1) consists of indepen-
dent right-censored and, possibly, left-truncated samples for each of the
K populations. Let t1 
 t2 
 	 	 	 
 tD be the distinct death times in the
pooled sample. At time ti we observe di j events in the j th sample out
of Yij individuals at risk, j � 1, . . . , K , i � 1, . . . , D. Let di �

∑K
j�1 di j

and Yi �
∑K

j�1 Yij be the number of deaths and the number at risk in
the combined sample at time ti , i � 1, . . . , D.

The test of H0 is based on weighted comparisons of the estimated haz-
ard rate of the j th population under the null and alternative hypotheses,
based on the Nelson–Aalen estimator (4.2.3). If the null hypothesis is
true, then, an estimator of the expected hazard rate in the j th popula-
tion under H0 is the pooled sample estimator of the hazard rate di � Yi .
Using only data from the j th sample, the estimator of the hazard rate is
di j � Yij . To make comparisons, let Wj (t) be a positive weight function
with the property that Wj (ti) is zero whenever Yij is zero. The test of
H0 is based on the statistics

Zj (�) �
D∑

i�1

Wj (ti)

{
di j

Yi j
�

di

Yi

}

, j � 1, . . . , K. (7.3.2)

If all the Zj (�)’s are close to zero, then, there is little evidence to believe
that the null hypothesis is false, whereas, if one of the Zj (�)’s is far
from zero, then, there is evidence that this population has a hazard rate
differing from that expected under the null hypothesis.

Although the general theory allows for different weight functions for
each of the comparisons in (7.3.2), in practice, all of the commonly
used tests have a weight function Wj (ti) � YijW (ti). Here, W (ti) is a
common weight shared by each group, and Yij is the number at risk in
the j th group at time ti . With this choice of weight functions

Zj (�) �
D∑

i�1

W (ti)
[

di j � Yij

(
di

Yi

)]

, j � 1, . . . , K. (7.3.3)
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Note that with this class of weights the test statistic is the sum of the
weighted difference between the observed number of deaths and the
expected number of deaths under H0 in the j th sample. The expected
number of deaths in sample j at ti is the proportion of individuals at
risk Yij � Yi that are in sample j at time ti , multiplied by the number of
deaths at time ti .

The variance of Zj (�) in (7.3.3) is given by

	̂ j j �
D∑

i�1

W (ti)
2 Yij

Yi

(

1 �
Yij

Yi

)(
Yi � di

Yi � 1

)

di , j � 1, . . . , K (7.3.4)

and the covariance of Zj (�), Zg(�) is expressed by

	̂ jg � �
D∑

i�1

W (ti)
2 Yij

Yi

Yig

Yi

(
Yi � di

Yi � 1

)

di , g � j. (7.3.5)

The term (Yi �di ) � (Yi �1), which equals one if no two individuals have
a common event time, is a correction for ties. The terms Yij

Yi
(1 �

Yij

Yi
)di

and �
Yij

Yi

Yig

Yi
di arise from the variance and covariance of a multinomial

random variable with parameters di , p j � Yij � Yi , j � 1, . . . , K .
The components vector (Z1(�), . . . , ZK (�)) are linearly dependent be-

cause
∑K

j�1 Zj (�) is zero. The test statistic is constructed by selecting
any K � 1 of the Zj ’s. The estimated variance-covariance matrix of
these statistics is given by the (K � 1) � (K � 1) matrix �, formed by
the appropriate 	̂ jg ’s. The test statistic is given by the quadratic form

�2 � (Z1(�), . . . , ZK �1(�))��1(Z1(�), . . . , ZK �1(�))t . (7.3.6)

When the null hypothesis is true, this statistic has a chi-squared distri-
bution, for large samples with K � 1 degrees of freedom. An � level
test of H0 rejects when �2 is larger than the �th upper percentage point
of a chi-squared, random variable with K � 1 degrees of freedom.

When K � 2 the test statistic can be written as

Z �

∑D
i�1 W (ti)[di1 � Yi1(

di

Yi
)]

√∑D
i�1 W (ti)2 Yi1

Yi
(1 � Yi1

Yi
)(Yi �di

Yi �1 )di

, (7.3.7)

which has a standard normal distribution for large samples when H0

is true. Using this statistic, an � level test of the alternative hypothesis
HA : h1(t) � h2(t), for some t � �, is rejected when Z � Z� , the �th
upper percentage point of a standard normal distribution. The test of
HA : h1(t) � h2(t), for some t , rejects when |Z | � Z�� 2.

A variety of weight functions have been proposed in the literature. A
common weight function, leading to a test available in most statistical
packages, is W (t) � 1 for all t . This choice of weight function leads to
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the so-called log-rank test and has optimum power to detect alternatives
where the hazard rates in the K populations are proportional to each
other. A second choice of weights is W (ti) � Yi . This weight function
yields Gehan’s (1965) generalization of the two-sample Mann–Whitney–
Wilcoxon test and Breslow’s (1970) generalization of the Kruskal–Wallis
test. Tarone and Ware (1977) suggest a class of tests where the weight
function is W (ti) � f (Yi), and f is a fixed function. They suggest
a choice of f (y) � y1 � 2. This class of weights gives more weight to
differences between the observed and expected number of deaths in
sample j at time points where there is the most data.

An alternate censored-data version of the Mann–Whitney–Wilcoxon
test was proposed by Peto and Peto (1972) and Kalbfleisch and Prentice
(1980). Here, we define an estimate of the common survival function
by

S̃ (t) �
∏

ti �t

(

1 �
di

Yi � 1

)

, (7.3.8)

which is close to the pooled Product-Limit estimator. They suggest using
W (ti) � S̃ (ti). Andersen et al. (1982) suggest that this weight should
be modified slightly as W (ti) � S̃ (ti)Yi � (Yi � 1) (see Theoretical Note
2). Either of the weights depends on the combined survival experience
in the pooled sample whereas the weight W (ti) � Yi depends heavily
on the event times and censoring distributions. Due to this fact, the
Gehan-Breslow weights can have misleading results when the censoring
patterns are different in the individual samples (see Prentice and Marek
(1979) for a case study).

Fleming and Harrington (1981) propose a very general class of tests
that includes, as special cases, the log-rank test and a version of the
Mann–Whitney–Wilcoxon test, very close to that suggested by Peto and
Peto (1972). Here, we let Ŝ (t) be the Product-Limit estimator (3.2.1)
based on the combined sample. Their weight function is given by

Wp,q(ti) � Ŝ (ti�1)
p [1 � Ŝ (ti�1)]

q, p � 0, q � 0. (7.3.9)

Here, the survival function at the previous death time is used as a
weight to ensure that these weights are known just prior to the time
at which the comparison is to be made. Note that S (t0) � 1 and we
define 00 � 1 for these weights. When p � q � 0 for this class, we
have the log-rank test. When p � 1, q � 0, we have a version of the
Mann–Whitney–Wilcoxon test. When q � 0 and p � 0, these weights
give the most weight to early departures between the hazard rates in
the K populations, whereas, when p � 0 and q � 0, these tests give
most weight to departures which occur late in time. By an appropriate
choice of p and q, one can construct tests which have the most power
against alternatives which have the K hazard rates differing over any
desired region. This is illustrated in the following example.
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EXAMPLE 7.2 In section 1.4, data on a clinical trial of the effectiveness of two meth-
ods for placing catheters in kidney dialysis patients was presented. We
are interested in testing if there is a difference in the time to cutaneous
exit-site infection between patients whose catheter was placed surgi-
cally (group 1) as compared to patients who had their catheters placed
percutaneously (group 2).

Figure 7.1 shows the survival curves for the two samples. Table 7.2
shows the calculations needed to construct the log-rank test. Here,
Zobs � 3.964�

√
6.211 � 1.59 which has a p-value of 2Pr [Z � 1.59] �

0.1117, so the log-rank test suggests no difference between the two
procedures in the distribution of the time to exit-site infection.

To further investigate these two treatments, we shall apply some
of the other weight functions discussed earlier. Table 7.3 summarizes

0 5 10 15 20 25 30

0.0

0.2

0.4

0.6

0.8

1.0

Time (in Months) to Exit Site Infection

E
st

im
at

ed
 S

ur
vi

va
l F

un
ct

io
ns

Figure 7.1 Estimated (Infection-free) survival function for kidney dialysis pa-
tients with percutaneous (------) and surgical (———) placements of catheters.
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TABLE 7.2
Construction of Two-Sample, Log-Rank Test

ti Yi1 di1 Yi2 di2 Yi di Yi1

(
di

Yi

)
di1 � Yi1

(
di

Yi

)
Yi1

Yi

(
1 �

Yi1

Yi

)(Yi � di

Yi � 1

)
di

0.5 43 0 76 6 119 6 2.168 �2.168 1.326
1.5 43 1 60 0 103 1 0.417 0.583 0.243
2.5 42 0 56 2 98 2 0.857 �0.857 0.485
3.5 40 1 49 1 89 2 0.899 0.101 0.489
4.5 36 2 43 0 79 2 0.911 1.089 0.490
5.5 33 1 40 0 73 1 0.452 0.548 0.248
6.5 31 0 35 1 66 1 0.470 �0.470 0.249
8.5 25 2 30 0 55 2 0.909 1.091 0.487
9.5 22 1 27 0 49 1 0.449 0.551 0.247

10.5 20 1 25 0 45 1 0.444 0.556 0.247
11.5 18 1 22 0 40 1 0.450 0.550 0.248
15.5 11 1 14 1 25 2 0.880 0.120 0.472
16.5 10 1 13 0 23 1 0.435 0.565 0.246
18.5 9 1 11 0 20 1 0.450 0.550 0.248
23.5 4 1 5 0 9 1 0.444 0.556 0.247
26.5 2 1 3 0 5 1 0.400 0.600 0.240
SUM 15 11 26 11.036 3.964 6.211

TABLE 7.3
Comparison of Two-Sample Tests

Test W (ti ) Z1(�) 	2
11 �2 p-value

Log-Rank 1.0 3.96 6.21 2.53 0.112
Gehan Yi �9 38862 0.002 0.964

Tarone–Ware Y 1 � 2
i 13.20 432.83 0.40 0.526

Peto–Peto S̃ (ti ) 2.47 4.36 1.40 0.237
Modified Peto–Peto S̃ (ti )Yi � (Yi � 1) 2.31 4.20 1.28 0.259
Fleming–Harrington [1 � Ŝ (ti�1)] 1.41 0.21 9.67 0.002

p � 0, q � 1
Fleming–Harrington Ŝ (ti�1) 2.55 4.69 1.39 0.239

p � 1, q � 0
Fleming–Harrington Ŝ (ti�1)[1 � Ŝ (ti�1)] 1.02 0.11 9.83 0.002

p � 1, q � 1
Fleming–Harrington Ŝ (ti�1)0.5[1 � Ŝ (ti�1)]0.5 2.47 0.66 9.28 0.002

p � 0.5, q � 0.5
Fleming–Harrington Ŝ (ti�1)0.5[1 � Ŝ (ti�1)]2 0.32 0.01 8.18 0.004

p � 0.5, q � 2
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Figure 7.2 Relative weights for comparison of observed and expected numbers
of deaths for kidney dialysis patients.

the results of these tests. Figure 7.2 shows the relative weights these
tests give to the comparisons at each time point. W (ti) � ∑D

i�1 W (ti) is
plotted here. Note that Gehan’s weight function gives very heavy weight
to early comparisons at ti � 0.5 and leads to a negative test statistic.
The Fleming and Harrington tests, with q � 0, put more weight on
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late comparisons and lead to significant tests because the two survival
curves diverge for larger values of t .

EXAMPLE 7.3 In section 1.16, data on 462 individuals who lived at the Channing
House retirement center was reported. These data are left-truncated
by the individual’s entry time into the retirement center. In Example
4.3, survival curves were constructed for both males and females. We
shall now apply the methods of this section to test the hypothesis that
females tend to live longer than males. We test the hypothesis H0 :
hF (t) � hM (t), 777 months � t � 1152 months against the one sided
hypothesis HA : hF (t) � hM (t) for all t � [777, 1152] and hF (t) 
 hM (t)
for some t � [777, 1152].

To perform this test, we need to compute YiF and YiM as the number
of females and males, respectively, who were in the center at age ti .
The values of these quantities are depicted in Figure 4.10. The test
will be based on the weighted difference between the observed and
expected number of male deaths. Using the log-rank weights, we find
ZM (1152) � 9.682, V̂ (ZM (1152)) � 28.19, so Zobs � 1.82 and the one-
sided p-value is 0.0341, which provides evidence that males are dying
at a faster rate than females.

EXAMPLE 7.4 In Chapter 4, we investigated the relationship between the disease-
free survival functions of 137 patients given a bone marrow transplant
(see section 1.3 for details). Three groups were considered: Group
1 consisting of 38 ALL patients; Group 2 consisting of 54 AML low-
risk patients and Group 3 consisting of 45 AML high-risk patients. The
survival curves for these three groups are shown in Figure 4.2 in section
4.2.

We shall test the hypothesis that the disease-free survival functions of
these three populations are the same over the range of observation, t �
2204 days, versus the alternative that at least one of the populations has
a different survival rate. Using the log-rank weights, we find Z1(2204) �
2.148; Z2(2204) � �14.966 and Z3(2204) � 12.818, and the covariance
matrix is

(	̂ jg, j, g � 1, . . . , 3) �

⎛

⎝
15.9552 �10.3451 �5.6101

�10.3451 20.3398 �9.9947
�5.6101 �9.9947 15.6048

⎞

⎠ .

Notice that the Zj (2204)’s sum to zero and that the matrix (	̂ jg) is singu-
lar. The test is constructed by selecting any two of the Zj (2204)’s, and
constructing a quadratic form, using the appropriate rows and columns
of the covariance matrix. The resulting statistic will be the same regard-
less of which Zj (2204)’s are selected. The test statistic in this case is

�2 � (2.148, �14.966)
(

15.9552 �10.3451
�10.3451 20.3398

)�1 ( 2.148
�14.966

)

� 13.8037.
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When the null hypothesis is true, this statistic has an approximate chi-
square distribution with two degrees of freedom which yields a p-value
of 0.0010.

We can apply any of the weight functions discussed above to this
problem. For example, Gehan’s weight W (ti) � Yi yields �2 � 16.2407
(p � 0.0003); Tarone-Ware’s weight W (ti) � Y 1 � 2

i yields �2 � 15.6529
(p � 0.0040), Fleming and Harrington’s weight, with p � 1, q � 0,
yields �2 � 15.6725 (p � 0.0040), with p � 0, q � 1, yields �2 � 6.1097
(p � 0.0471), and with p � q � 1, yields �2 � 9.9331 (p � 0.0070). All
of these tests agree with the conclusion that the disease-free survival
curves are not the same in these three disease categories.

An important consideration in applying the tests discussed in this sec-
tion is the choice of the weight function to be used. In most applications
of these methods, our strategy is to compute the statistics using the log-
rank weights W (ti) � 1 and the Gehan weight with W (ti) � Yi . Tests
using these weights are available in most statistical packages which
makes their application routine in most problems.

In some applications, one of the other weight functions may be more
appropriate, based on the investigator’s desire to emphasize either late
or early departures between the hazard rates. For example, in com-
paring relapse-free survival between different regimes in bone marrow
transplants for leukemia, a weight function giving higher weights to
late differences between the hazard rates is often used. Such a function
downweights early differences in the survival rates, which are often due
to the toxicity of the preparative regimes, and emphasizes differences
occurring late, which are due to differences in curing the leukemia. This
is illustrated in the following example.

EXAMPLE 7.5 In section 1.9, data from a study of the efficacy of autologous (auto)
versus allogeneic (allo) transplants for acute myelogenous leukemia was
described. Of interest is a comparison of disease-free survival for these
two types of transplants. Here, the event of interest is death or relapse,
which ever comes first. In comparing these two types of transplants, it
is well known that patients given an allogeneic transplant tend to have
more complications early in their recovery process. The most critical
of these complications is acute graft-versus-host disease which occurs
within the first 100 days after the transplant and is often lethal. Because
patients given an autologous transplant are not at risk of developing
acute graft-versus-host disease, they tend to have a higher survival rate
during this period. Of primary interest to most investigators in this area
is comparing the treatment failure rate (death or relapse) among long-
term survivors. To test this hypothesis, we shall use a test with the
Fleming and Harrington weight function W (ti) � 1 � S (ti�1) (Eq. 7.3.9
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with p � 0, q � 1). This function downweights events (primarily due
to acute graft-versus-host disease) which occur early.

For these weights, we find that Z1(t) � �2.093 and 	̂11(�) � 1.02, so
that the chi-square statistic has a value of 4.20 which gives a p-value of
0.0404 . This suggest that there is a difference in the treatment failure
rates for the two types of transplants.

By comparison, the log-rank test and Gehan’s test have p-values
of 0.5368 and 0.7556, respectively. These statistics have large p-values
because the hazard rates of the two types of transplants cross at about 12
months, so that the late advantage of allogeneic transplants is negated
by the high, early mortality of this type of transplant.

Practical Notes
1. The SAS procedure LIFETEST can be used to perform the log-rank

test and Gehan’s test for right-censored data. This procedure has two
ways to perform the test. The first is to use the STRATA statement.
This statement produces Zj (�), the matrix (	̂ jg) and the chi-square
statistics. The second possibility for producing a test is to use the
TEST statement. This statistic is equivalent to those obtained using
the STRATA command when there is only one death at each time
point. When there is more than one death at some time, it computes
a statistic obtained as the average of the statistics one can obtain
by breaking these ties in all possible ways. This leads to different
statistics than those we present here. We recommend the use of the
STRATA command for tests using SAS.

2. The S-Plus function surv.diff produces the Fleming and Harrington
class of tests with q � 0. By choosing p � 0, the log-rank test can
be obtained.

3. All of the tests described in this section are based on large-sample
approximations to the distribution of the chi-square statistics. They
also assume that the censoring distributions are independent of the
failure distributions. Care should be used in interpreting these results
when the sample sizes are small or when there are few events. (Cf.
Kellerer and Chmelevsky 1983, Latta, 1981, or Peace and Flora, 1978,
for the results of Monte Carlo studies of the small-sample power of
these tests.)

4. Based on a Monte Carlo study, Kellerer and Chmelevsky (1983) con-
clude that, when the sample sizes are small for two-sample tests,
the one-sided test must be used with caution. When the sample
sizes are very different in the two groups and when the alternative
hypothesis is that the hazard rate of the smaller sample is larger
than the rate in the larger sample, these tests tend to falsely reject
the null hypothesis too often. The tests are extremely conservative
when the larger sample is associated with the larger hazard rate un-
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der the alternative hypothesis. They and Prentice and Marek (1979)
strongly recommend that only two-sided tests be used in making
comparisons.

5. For the two-sample tests, the log-rank weights have optimal local
power to detect differences in the hazard rates, when the hazard
rates are proportional. This corresponds to the survival functions
satisfying a Lehmann alternative S j (t) � S (t)� j . These are also the
optimal weights for the K sample test with proportional hazards
when, for large samples, the numbers at risk in each sample at each
time point are proportional in size. For the two-sample case, Fleming
and Harrington’s class of tests with q � 0 has optimal local power to
detect the alternatives h2(t) � h1(t)e� [S1(t)p � [1 � S1(t)]qe� ]�1. See
Fleming and Harrington (1981) or Andersen et al. (1993) for a more
detailed discussion.

Theoretical Notes
1. The tests discussed in this section arise naturally using counting pro-

cess theory. In section 3.6, we saw that the Nelson–Aalen estimator
of the cumulative hazard rate in the j th sample was a stochastic
integral of a predictable process with respect to a basic martingale
and, as such, is itself a martingale. By a similar argument, when the
null hypothesis is true, the Nelson–Aalen estimator of the common
cumulative hazard rate is also a martingale. Furthermore, the differ-
ence of two martingales can be shown to also be a martingale. If
Wj (t) is a predictable weight function, then, Zj (�) is the integral of
a predictable process with respect to a martingale and is, again, a
martingale when the null hypothesis is true. The estimated variance
of Zj (�) in (7.3.4) comes from the predictable variation process of
Zj (�) using a version of the predictable variation process for the ba-
sic martingale which allows for discrete event times. More detailed
descriptions of this derivation are found in Aalen (1975) and Gill
(1980) for the two-sample case and in Andersen et al. (1982) for the
K sample case.

2. The modification of Andersen et al. (1982) to the Peto and Peto
weight, W (ti) � S̃ (ti)Yi � (Yi � 1) makes the weight function pre-
dictable in the sense discussed in section 3.6.

3. The statistics presented in this section are generalizations to cen-
sored data of linear rank statistics. For uncensored data, a linear
rank statistic is constructed as Zj �

∑n j

i�1 an(Rij), j � 1, . . . , K .
Here Rij is the rank of the i th observation in the j th sample among

the pooled observations. The scores an(i) are obtained from a score
function � defined on the unit interval by an(i) � E [�(T(i))], where
T(i) is the i th order statistic from a uniform [0, 1] sample of size n
or by an(i) � �[i� (n � 1)]. For a censored sample, these scores are
generalized as follows: An uncensored observation is given a score of
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�[1�S̃ (t)], with S̃ (t) given by (7.3.8); a censored observation is given
a score of 1

1��[1�S̃ (t)]

∫ 1
�[1�S̃ (t)] �(u)du. The score function �(u) �

2u � 1, for example will yield the Peto and Peto version of Gehan’s
test. (See Kalbfleisch and Prentice, 1980 for additional development
of this concept.)

4. Gill (1980) discusses the Pitman efficiency of these tests.
5. Gehan’s two-sample test can be constructed as a generalization of the

Mann–Whitney test as follows. Let (Ti j , �i j ) denote the time on study
and the event indicator for the i th observation in the j th sample.
Define the scoring function � [(Ti1, �i1), (Th2, �h2)] as follows:

� [(Ti1, �i1), (Th2, �h2)] �

⎛

⎜
⎜
⎜
⎜
⎜
⎝

�1, if Ti1 � Th2, �i1 � 1, �h2 � 0,
or Ti1 
 Th2, �i1 � 1, �h2 � 1,

�1, if Ti1 � Th2, �h2 � 1, �i1 � 0,
or Ti1 � Th2, �i1 � 1, �h2 � 1,

0, otherwise

⎞

⎟
⎟
⎟
⎟
⎟
⎠

Then, Z1(�) �
∑n1

i�1

∑n2
h�1 � [(Ti1, �i1), (Th2, �h2)] is the number of ob-

servations from the first sample that are definitely smaller than an
observation in the second sample. Gehan (1965) provides a variance
estimator of this statistic under the null hypothesis, based on assum-
ing a fixed censoring pattern and that all possible permutations of
the two samples over this pattern are equally likely. Essentially, this
estimator assumes that the censoring patterns are the same for both
samples. When this is not the case, this variance estimator may lead
to incorrect decisions.

7.4 Tests for Trend

In the previous section, we examined tests, based on a weighted com-
parison of the observed and expected number of deaths in each of K
samples, to test the null hypothesis that the K population hazard rates
are the same versus the global alternative hypothesis that, at least, one
of the hazard rates is different. In this section, we shall use the statistics
developed in section 7.3 to develop a test statistic with power to detect
ordered alternatives, that is, we shall test

H0 : h1(t) � h2(t) � 	 	 	 � hK (t), for t � �, (7.4.1)

against

HA : h1(t) � h2(t) � 	 	 	 � hK (t) for t � �, with at least one
strict inequality.

The alternative hypothesis is equivalent to the hypothesis that S1(t) �
S2(t) � 	 	 	 � SK (t).
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The test will be based on the statistic Zj (�) given by (7.3.3). Any of the
weight functions discussed in section 7.3 can be used in constructing
the test. As discussed earlier these various weight functions give more
or less weight to the time points at which the comparison between the
observed and expected number of deaths in each sample is made. We
let �̂ be the full K � K covariance matrix, �̂ � (	̂ jg, j, g � 1, . . . , K ).
Here, 	̂ jg is given by Eqs. (7.3.4) and (7.3.5).

To construct the test, a sequence of scores a1 
 a2 
 	 	 	 
 aK

is selected. Any increasing set of scores can be used in constructing
the test, and the test is invariant under linear transformations of the
scores. In most cases, the scores aj � j are used, but one may take the
scores to be some numerical characteristic of the j th population. The
test statistic is

Z �

∑K
j�1 ajZ j (�)

√∑K
j�1

∑K
g�1 ajag	̂ jg

. (7.4.2)

When the null hypothesis is true and the sample sizes are sufficiently
large, then, this statistic has a standard normal distribution. If the alter-
native hypothesis is true, then, the Zj (�) associated with larger values
of aj should tend to be large, and, thus, the null hypothesis is rejected
in favor of HA at an � Type I error rate when the test statistic is larger
than the �th upper percentile of a standard normal distribution.

EXAMPLE 7.6 In section 1.8, a study of 90 patients diagnosed with cancer of the larynx
in the 70s at a Dutch hospital was reported. The data consists of the
times between first treatment and either death or the end of the study.
Patients were classified by the stage of their disease using the American
Joint Committee for Cancer Staging. We shall test the hypothesis that
there is no difference in the death rates among the four stages of the
disease versus the hypothesis that, the higher the stage, the higher the
death rate. The data is found on our web site. The four survival curves
are shown in Figure 7. 3. We shall use the scores aj � j , j � 1, . . . , 4
in constructing our tests.

Using the log-rank weights,

Z(10.7) � (�7.5660, �3.0117, 2.9155, 7.6623) and

�̂ �

⎛

⎜
⎜
⎝

12.0740 �4.4516 �6.2465 �1.3759
�4.4516 7.8730 �2.7599 �0.6614
�6.2465 �2.7599 9.9302 �0.9238
�1.3759 �0.6614 �0.9238 2.9612

⎞

⎟
⎟
⎠ .

The value of the test statistic (7.4.2) is 3.72 and the p-value of the test
is less than 0.0001.
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Figure 7.3 Estimated survival function for larynx cancer patients. Stage I
(———) Stage II (------) Stage III (— — —) Stage IV (—– —–)

Using the Tarone and Ware weights, we find that the value of the test
statistic is 4.06. Using Gehan’s weights, the value of the test statistic is
4.22, and using the Peto and Peto weights, the value of the test statistic
is 4.13. All three tests have a p-value of less than 0.0001, providing
strong evidence that the hazard rates are in the expected order.

Practical Notes

1. The SAS procedure LIFETEST provides the statistics Zj (t) and �̂
based on the log-rank weights and Gehan’s weights.

2. This test should be applied only when there is some a priori infor-
mation that the alternatives are ordered.
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Theoretical Note

1. When there is no censoring, the test using Gehan or Peto–Peto
weights reduces to the Jonckheere–Terpstra test.

7.5 Stratified Tests

Often in applying the tests discussed in section 7.3, an investigator is
faced with the problem of adjusting for some other covariates that af-
fect the event rates in the K populations. One approach is to imbed the
problem of comparing the K populations into a regression formulation,
as described in section 2.6, and perform the test to compare the popula-
tions, after an adjustment for covariates, by using one of the techniques
described in Chapters 8–10. An alternative approach is to base the test
on a stratified version of one of the tests discussed in section 7.3. This
approach is feasible when the number of levels of the covariate is not
too large or when a continuous covariate is discretized into a workable
number of levels. In this section, we shall discuss how such stratified
tests are constructed, and we shall see how these tests can be used to
analyze the survival of matched pairs.

We assume that our test is to be stratified on M levels of a set of
covariates. We shall test the hypothesis

H0 : h1s(t) � h2s(t) � 	 	 	 � hKs(t), for s � 1, . . . , M, t 
 �. (7.5.1)

Based only on the data from the sth strata, let Zjs(�) be the statistic

(7.3.3) and �̂s be the variance-covariance matrix of the Zjs(�)’s obtained
from (7.3.4) and (7.3.5). As in the previous two sections, any choice of
weight functions can be used for Zjs . These statistics can be used to
test the hypothesis of difference in the hazard rates within stratum s by
constructing the test statistic (7.3.6). A global test of (7.5.1) is constructed
as follows:

Let Zj.(�) �
M∑

s�1

Zjs(�) and 	̂ jg. �
M∑

s�1

	̂ jgs . (7.5.2)

The test statistic, as in (7.3.6), is

(Z1.(�), . . . , ZK �1.(�))��1
	 (Z1.(�), . . . , ZK �1.(�))t (7.5.3)

where �. is the (K � 1) � (K � 1) matrix obtained from the 	̂ jg.’s. When
the total sample size is large and the null hypothesis is true, this statistic
has a chi-squared distribution with K � 1 degrees of freedom. For the
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two-sample problem, the stratified test statistic is
∑M

s�1 Z1s(�)
√∑M

s�1 	̂11s

(7.5.4)

which is asymptotically standard normal when the null hypothesis is
true.

EXAMPLE 7.7 In section 1.10, the results of a small study comparing the effectiveness
of allogeneic (allo) transplants versus autogeneic (auto) transplants for
Hodgkin’s disease (HOD) or non-Hodgkin’s lymphoma (NHL) was pre-
sented. Of interest is a test of the null hypothesis of no difference in
the leukemia-free-survival rate between patients given an allo ( j � 1)
or auto ( j � 2) transplant, adjusting for the patient’s disease state.

From only the data on Hodgkin’s patients, we find Z1HOD(2144) �
3.1062 and 	̂11HOD � 1.5177 using log-rank weights. For the non-
Hodgkin’s lymphoma patients, we find Z1NHL(2144) � �2.3056 and
	̂11NHL � 3.3556. The stratified log-rank test is

Z �
3.1062 � (�2.3056)
√

1.5177 � 3.3556
� 0.568,

which has a p-value of 0.5699.
In this example, if we perform the test only on the Hodgkin’s disease

patients, we find that the test statistic has a value of 2.89 (p � 0.004),
whereas using only non-Hodgkin’s patients, we find that the test statistic
is �1.26 (p � 0.2082). The small value of the combined statistic is due,
in part, to the reversal of the relationship between transplant procedure
and disease-free survival in the Hodgkin’s group from that in the non-
Hodgkin’s group.

EXAMPLE 7.4 (continued) In Example 7.4, we found that there was evidence of
a difference in disease-free survival rates between bone marrow pa-
tients with ALL, low-risk AML and high-risk AML. A proper comparison
of these three disease groups should account for other factors which
may influence disease-free survival. One such factor is the use of a
graft-versus-host prophylactic combining methotretexate (MTX) with
some other agent. We shall perform a stratified Gehan weighted test
for differences in the hazard rates of the three disease states. Using
(7.3.2)–(7.3.5), for the no MTX strata,

Z1NOMTX � �103, Z2NOMTX � �892, Z3NOMTX � 995,

�̂NOMTX �

⎛

⎝
49366.6 �32120.6 �17246.0

�32120.6 69388.9 �37268.2
�17246.0 �37268.2 54514.2

⎞

⎠ ,

and, for the MTX strata,
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Z1MTX � 20, Z2NOMTX � �45, Z3NOMTX � 25,

and

�̂NOMTX �

⎛

⎝
5137.1 �2685.6 �2451.6

�2685.6 4397.5 �1711.9
�2451.6 �1711.9 4163.5

⎞

⎠ .

Pooling the results in the two strata,

Z1. � �83, Z2. � �937, Z3. � 1020, and

�̂. �

⎛

⎝
54503.7 �34806.2 �19697.6

�34806.2 73786.1 �38980.1
�19697.6 �38980.1 58677.7

⎞

⎠ .

The stratified Gehan test statistic is

(�83, �937)
(

54503.7 �34806.2
�34806.2 73786.1

)�1 (
�83

�937

)

� 19.14

which has a p-value of less than 0.0001 when compared to a chi-square
with two degrees of freedom. The tests on the individual strata give
test statistics of �2 � 19.1822 (p � 0.0001) for the no MTX group and
�2 � 0.4765 (p � 0.7880) in the MTX arm. The global test, ignoring
MTX, found a test statistic of 16.2407 with a p-value of 0.0003.

Another use for the stratified test is for matched pairs, censored,
survival data. Here we have paired event times (T1i , T2i) and their cor-
responding event indicators (�1i , �2i), for i � 1, . . . , M . We wish to
test the hypothesis H0 : h1i(t) � h2i(t), i � 1, . . . , M . Computing the
statistics (7.3.3) and (7.3.4),

Z1i(�) �

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

W (T1i)(1 � 1� 2) � W (T1i) � 2 if T1i 
 T2i , �1i � 1
or T1i � T2i , �1i � 1, �2i � 0

W (T2i)(0 � 1� 2) � �W (T2i) � 2 if T2i 
 T1i , �2i � 1
or T2i � T1i , �2i � 1, �1i � 0

0 otherwise

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

,

(7.5.5)

and

	̂11i �

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

W (T1i)2(1� 2)(1 � 1� 2) � W (T1i)2 � 4 if T1i 
 T2i , �1i � 1
or T1i � T2i , �1i � 1, �2i � 0

W (T2i)2(1� 2)(1 � 1� 2) � W (T2i)2 � 4 if T2i 
 T1i , �2i � 1
or T2i � T1i , �2i � 1, �1i � 0

0 otherwise

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

.

For any of the weight functions we have discussed,

Z1.(�) � w
D1 � D2

2
(7.5.6)
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and

	̂11. � w2 D1 � D2

4
,

where D1 is the number of matched pairs in which the individual from
sample 1 experiences the event first and D2 is the number in which
the individual from sample 2 experiences the event first. Here w is the
value of the weight function at the time when the smaller of the pair
fails. Because these weights do not depend on which group this failure
came from, the test statistic is

D1 � D2√
D1 � D2

, (7.5.7)

which has a standard normal distribution when the number of pairs is
large and the null hypothesis is true. Note that matched pairs, where
the smaller of the two times corresponds to a censored observation,
make no contribution to Z1. or 	̂11..

EXAMPLE 7.8 In section 1.2, the results of a clinical trial of the drug 6-mercaptopurine
(6-MP) versus a placebo in 42 children with acute leukemia was de-
scribed. The trial was conducted by matching pairs of patients at a
given hospital by remission status (complete or partial) and randomiz-
ing within the pair to either a 6-MP or placebo maintenance therapy.
Patients were followed until their leukemia returned (relapse) or until
the end of the study.

Survival curves for the two groups were computed in Example 4.1.
We shall now test the hypothesis that there is no difference in the rate
of recurrence of leukemia in the two groups. From Table 1.1, we find
DPlacebo � 18 and D6-MP � 3, so that the test statistic is (18 � 3) � (18 �
3)1 � 2 � 3.27. The p-value of the test is 2Pr [Z � 3.27] � 0.001, so that
there is sufficient evidence that the relapse rates are different in the two
groups.

Practical Notes
1. The test for matched pairs uses only information from those pairs

where the smaller of the two times corresponds to an event time.
The effective sample size of the test is the number of such pairs.

2. The test for matched pairs is the censored-data version of the sign
test.

3. The stratified tests will have good power against alternatives that are
in the same direction in each stratum. When this is not the case,
these statistics may have very low power, and separate tests for each
stratum are indicated. (See Example 7.5.)
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Theoretical Notes
1. The test for matched pairs relies only on intrapair comparisons. Other

tests for matched pairs have been suggested which assume a bivari-
ate model for the paired times, but make interpair comparisons.

2. The asymptotic chi-squared distribution of the stratified tests dis-
cussed in this section is valid when either the number of strata is
fixed and the number within each stratum is large or when the num-
ber in each stratum is fixed and the number of strata is large. See
Andersen et al. (1993) for details on the asymptotics of these tests.

7.6 Renyi Type Tests

In section 7.3, a series of tests to compare the survival experience of
two or more samples were presented. All of these tests were based on
the weighted integral of estimated differences between the cumulative
hazard rates in the samples. When these tests are applied to samples
from populations where the hazard rates cross, these tests have little
power because early differences in favor of one group are canceled out
by late differences in favor of the other treatment. In this section, we
present a class of tests with greater power to detect crossing hazards.
We will focus on the two sample versions of the test.

The test statistics to be used are called Renyi statistics and are
censored-data analogs of the Kolmogorov–Smirnov statistic for com-
paring two uncensored samples. To construct the tests, we will find
the value of the test statistic (7.3.3) for some weight function at each
death time. When the hazard rates cross, the absolute value of these
sequential evaluations of the test statistic will have a maximum value
at some time point prior to the largest death time. When this value is
too large, then, the null hypothesis of interest H0 : h1(t) � h2(t), t 
 �,
is rejected in favor of HA : h1(t) � h2(t), for some t . To adjust for the
fact that we are constructing multiple test statistics on the same set of
data, a correction is made to the critical value of the test.

To construct the test, suppose that we have two independent samples
of size n1 and n2, respectively. Let n � n1 � n2. Let t1 
 t2 
 	 	 	 
 tD
be the distinct death times in the pooled sample. In sample j let di j be
the number of deaths and Yij the number at risk at time ti , i � 1, . . . , D,
j � 1, 2. Let Yi � Yi1 � Yi2 be the total number at risk in both samples
and di � di1 � di2 be the total number of deaths in the combined
sample at time ti . Let W (t) be a weight function. For example, for the
“log-rank” version of this test W (t) � 1 and, for the “Gehan–Wilcoxon”
version, W (ti) � Yi1 � Yi2. For each value of ti we compute, Z(ti),
which is the value of the numerator of the statistic (7.3.7) using only



224 Chapter 7 Hypothesis Testing

the death times observed up to time ti , that is,

Z(ti) �
∑

tk �ti

W (tk )
[

dk1 � Yk1

(
dk

Yk

)]

, i � 1, . . . , D. (7.6.1)

Let 	(�) be the standard error of Z(�) which, from (7.3.7), is given
by

	2(�) �
∑

tk ��

W (tk )
2

(
Yk1

Yk

)(
Yk2

Yk

)(
Yk � dk

Yk � 1

)

(dk ); (7.6.2)

where � is the largest tk with Yk1, Yk2 � 0.
The test statistic for a two-sided alternative is given by

Q � sup�|Z(t)|, t � ��� 	(�). (7.6.3)

When the null hypothesis is true, then, the distribution of Q can be
approximated by the distribution of the sup(|B(x)|, 0 � x � 1) where
B is a standard Brownian motion process. Critical values of Q are found
in Table C.5 in Appendix C.

The usual weighted log rank test statistic is Z(�) � 	(�). For this test,
when the two hazard rates cross, early positive differences between
the two hazard rates are canceled out by later differences in the rates,
with opposite signs. The supremum version of the statistic should have
greater power to detect such differences between the hazard rates.

EXAMPLE 7.9 A clinical trial of chemotherapy against chemotherapy combined with
radiotherapy in the treatment of locally unresectable gastric cancer was
conducted by the Gastrointestinal Tumor Study Group (1982). In this
trial, forty-five patients were randomized to each of the two arms and
followed for about eight years. The data, found in Stablein and Koutrou-
velis (1985), is as follows:

Chemotherapy Only

1 63 105 129 182 216 250 262 301 301 342 354
356 358 380 383 383 388 394 408 460 489 499 523
524 535 562 569 675 676 748 778 786 797 955 968

1000 1245 1271 1420 1551 1694 2363 2754* 2950*

Chemotherapy Plus Radiotherapy

17 42 44 48 60 72 74 95 103 108 122 144
167 170 183 185 193 195 197 208 234 235 254 307
315 401 445 464 484 528 542 547 577 580 795 855

1366 1577 2060 2412* 2486* 2796* 2802* 2934* 2988*

*Denotes censored observation.
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Figure 7.4 Values of |Z(ti )| for the gastrointestinal tumor study

We wish to test the hypothesis that the survival rate of the two groups
is the same by using the log rank version (W (ti) � 1) of the Renyi
statistics. Figure 7.4 shows the value of |Z(ti)|. Here, the maximum
occurs at ti � 315 with a value of 9.80. The value of 	(2363) � 4.46, so
Q � 2.20. From Table C.5 in Appendix C we find that the p-value of
this test is 0.053 so the null hypothesis of no difference in survival rates
between the two treatment groups is not rejected at the 5% level. If we
had used the nonsequential log-rank test, we have Z(2363) � �2.15,
yielding a p-value of 0.6295 which is not significant. From Figure 7.5,
which plots the Kaplan–Meier curves for the two samples, we see that
the usual log rank statistic has a small value because early differences
in favor of the chemotherapy only group are negated by a late survival
advantage for the chemotherapy plus radiotherapy group.
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Figure 7.5 Estimated survival functions for the gastrointestinal tumor study.
Chemotherapy only (———) Chemotherapy plus radiation (------)

Practical Notes
1. A one-sided test of the hypothesis H0 : S1(t) � S2(t) against HA :

S1(t) 
 S2(t) can be based on Q � � sup[Z(t), t � �]� 	(�). When H0

is true, Q � converges in distribution to the supremum of a Brownian
motion process B(t) (see Theoretical Note 3 above). The p-value
of a one-sided test is given by Pr [sup B(t) � Q �] � 2[1 � �(Q �)],
where �( ) is the standard normal cumulative distribution function.

Theoretical Notes
1. The supremum versions of the weighted, log-rank tests were pro-

posed by Gill (1980). He calls the statistic (7.6.3) a “Renyi-type”
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statistic. Further development of the statistical properties of the test
can be found in Fleming and Harrington (1991) and Fleming et al.
(1980). Schumacher (1984) presents a comparison of this class of
statistics to tests based on the complete test statistic and other ver-
sions of the Kolmogorov–Smirnov statistic.

2. For a standard Brownian motion process B(t), Billingsly (1968)
shows that

Pr [sup |B(t)| � y] � 1 �
4



�∑

k�0

(�1)k

2k � 1
exp[�
2(2k � 1)2 � 8y2].

3. Using the counting process methods introduced in section 3.6, one
can show, under H0, that, if 	2(t) converges in probability to a limit-
ing variance 	2

0(t) on [0, �) then, Z(t) converges weakly to the pro-
cess B[	2

0(t)] on the interval [0, �]. This implies that sup[Z(t) � 	(�) :
0 
 t 
 �] converges in distribution to [sup B(t) : t � A] where
A � �	2

0(t) � 	2
0(�), 0 � t � ��. When the underlying common sur-

vival function is continuous, then, A is the full unit interval, so the
asymptotic p-values are exact. When the underlying common sur-
vival function is discrete, then, A is a subset of the interval (0, 1), and
the test is a bit conservative. See Fleming et al. (1987) for details of
the asymptotics.

4. Other extensions of the Kolmogorov–Smirnov test have been sug-
gested in the literature. Schumacher (1984) provides details of tests
based on the maximum value of either log[Ĥ 1(t)] � log[Ĥ 2(t)] or
Ĥ 1(t)�Ĥ 2(t). In a Monte Carlo study, he shows that the performance
of these statistics is quite poor, and they are not recommended for
routine use.

5. Both Schumacher (1984) and Fleming et al. (1987) have conducted
simulation studies comparing the Renyi statistic of this section to
the complete test statistic of section 7.3. For the log-rank test, they
conclude there is relatively little loss of power for the Renyi statistics
when the hazard rates are proportional and there is little censoring.
For nonproportional or crossing hazards the Renyi test seems to
perform much better than the usual log-rank test for light censoring.
The apparent advantage of the Renyi statistic for light censoring
diminishes as the censoring fraction increases.

7.7 Other Two-Sample Tests

In this section, we present three other two-sample tests which have
been suggested in the literature. These tests are constructed to have
greater power than the tests in section 7.3 to detect crossing hazard
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rates. All three tests are analogs of common nonparametric tests for
uncensored data.

The first test is a censored-data version of the Cramer–von Mises
test. For uncensored data, the Cramer–Von Mises test is based on the
integrated, squared difference between the two empirical survival func-
tions. For right-censored data, it is more appropriate to base a test on
the integrated, squared difference between the two estimated hazard
rates. This is done to obtain a limiting distribution which does not de-
pend on the relationship between the death and censoring times and
because such tests arise naturally from counting process theory. We
shall present two versions of the test.

To construct the test, recall, from Chapter 4, that the Nelson–Aalen
estimator of the cumulative hazard function in the j th sample is given
by

H̃ j(t) �
∑

ti �t

di j

Yi j
, j � 1, 2. (7.7.1)

An estimator of the variance of H̃ j (t) is given by

	2
j (t) �

∑

t j �t

di j

Yi j(Yij � 1)
, j � 1, 2. (7.7.2)

Our test is based on the difference between H̃ 1(t) and H̃ 2(t), so that
we need to compute 	2(t) � 	2

1(t) � 	2
2(t), which is the estimated

variance of H̃ 1(t) � H̃ 2(t). Also let A(t) � n	2(t) � [1 � n	2(t)].
The first version of the Cramer-von Mises statistic is given by

Q 1 �

(
1

	2(�)

)2 ∫ �

0
[H̃ 1(t) � H̃ 2(t)]

2d	2(t)

which can be computed as

Q 1 �

(
1

	2(�)

)2∑

ti ��

[H̃1(ti) � H̃ 2(ti)]
2[	2(ti) � 	2(ti�1)], (7.7.3)

where t0 � 0, and the sum is over the distinct death times less than �.
When the null hypothesis is true, one can show that the large sample
distribution of Q 1 is the same as that of R1 �

∫ 1
0 [B(x)]2dx , where B(x)

is a standard Brownian motion process. The survival function of R1 is
found in Table C.6 of Appendix C.

An alternate version of the Cramer–von Mises statistic is given by

Q 2 � n
∫ �

0

[
H̃ 1(t) � H̃2(t)
1 � n	2(t)

]2

dA(t)

which is computed as
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Q 2 � n
∑

ti ��

[
H̃ 1(ti) � H̃ 2(ti)

1 � n	2(ti)

]2

[A(ti) � A(ti�1)]. (7.7.4)

When the null hypothesis is true, the large sample distribution of Q 2

is the same as that of R2 �
∫ A(�)

0 [B0(x)]2dx , where B0( ) is a Brownian
bridge process. Table C.7 of Appendix C provides critical values for the
test based on Q 2.

EXAMPLE 7.2 (continued) We shall apply the two Cramer–von Mises tests to the
comparison of the rate of cutaneous exit-site infections for kidney dial-
ysis patients whose catheters were placed surgically (group 1) as com-
pared to patients who had percutaneous placement of their catheters
(group 2). Routine calculations yield Q 1 � 1.8061 which, from Table
C.6 of Appendix C, has a p-value of 0.0399. For the second version of
the Cramer–von Mises test, Q 2 � 0.2667 and A(�) � 0.99. From Table
C.7 of Appendix C, we find that this test has a p-value of 0.195.

A common test for uncensored data is the two-sample t-test, based
on the difference in sample means between the two populations. The
second test we present is a censored-data version of this test based
on the Kaplan–Meier estimators in the two samples, Ŝ1(t) and Ŝ2(t).
In section 4.5, we saw that the population mean can be estimated by
the area under the Kaplan–Meier curve Ŝ (t). This suggests that a test
based on the area under the curve Ŝ1(t) � Ŝ2(t), over the range where
both of the two samples still have individuals at risk, will provide a
censored data analog of the two-sample t-test. For censored data, we
have seen that the estimate of the survival function may be unstable
in later time intervals when there is heavy censoring, so that relatively
small differences in the Kaplan–Meier estimates in the tail may have
too much weight when comparing the two survival curves. To handle
this problem, the area under a weighted difference in the two survival
functions is used. The weight function, which downweights differences
late in time when there is heavy censoring, is based on the distribution
of the censoring times.

To construct the test, we pool the observed times in the two samples.
Let t1 
 t2 
 	 	 	 
 tn denote the ordered times. Notice that, here, as
opposed to the other procedures where only event times are consid-
ered, the ti ’s consist of both event and censoring times. Let di j , ci j , Yij

be, respectively, the number of events, the number of censored obser-
vations, and the number at risk at time ti in the j th sample, j � 1, 2. Let
Ŝ j (t) be the Kaplan–Meier estimator of the event distribution using data
in the j th sample and let Ĝj (t) be the Kaplan–Meier estimator of the
time to censoring in the j th sample, that is, Ĝj (t) �

∏
ti �t [1 � ci j � Yij ].
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Finally, let Ŝp(t) be the Kaplan–Meier estimator based on the combined
sample.

To construct the test statistic, we define a weight function by

w(t) �
nĜ1(t)Ĝ2(t)

n1Ĝ1(t) � n2Ĝ2(t)
, 0 � t � tD (7.7.5)

where n1 and n2 are the two sample sizes and n � n1 �n2. Notice that
w(t) is constant between successive censored observations and, when
there is heavy censoring in either sample, w(t) is close to zero. When
there is no censoring, w(t) is equal to 1. The test statistic is given by

WKM �

√
n1n2

n

∫ tD

0
w(t)[Ŝ1(t) � Ŝ2(t)]dt

which can be computed by

WKM �

√
n1n2

n

D�1∑

i�1

[ti�1 � ti ]w(ti)[Ŝ1(ti) � Ŝ2(ti)]. (7.7.6)

To find the variance of WKM, first, compute

Ai �

∫ tD

ti

w(u)Ŝp(u)du �
D�1∑

k�i

(tk�1 � tk )w(tk )Ŝp(tk ). (7.7.7)

The estimated variance of WKM � 	̂2
p is given by

	̂2
p �

D�1∑

i�1

A2
i

Ŝp(ti)Ŝp(ti�1)

n1Ĝ1(ti�1) � n2Ĝ2(ti�1)

nĜ1(ti�1)Ĝ2(ti�1)
[Ŝp(ti�1) � Ŝp(ti)]. (7.7.8)

Note that the sum in (7.7.8) has only nonzero contributions when ti is
a death time, because, at censored observations, Ŝp(ti�1) � Ŝp(ti) � 0.
When there is no censoring, 	̂2

p reduces to the usual sample variance
on the data from the combined sample.

To test the null hypothesis that S1(t) � S2(t), the test statistic used is
Z � WKM � 	̂p which has an approximate standard normal distribution
when the null hypothesis is true. If the alternative hypothesis is that
S1(t) � S2(t), then, the null hypothesis is rejected when Z is larger than
the �th upper percentage point of a standard normal, whereas, for a
two-sided alternative, the null hypothesis is rejected when the absolute
value of Z is larger than �� 2 upper percentage point of a standard
normal.

EXAMPLE 7.5 (continued) We shall calculate the weighted difference of Kaplan–
Meier estimators statistic for the comparison of auto versus allo trans-
plants. The calculations yield a value of 5.1789 for WKM and 141.5430
for 	̂2

p , so Z � 0.4353. The p-value of the two-sided test of equality of
the two survival curves is 2Pr [Z � 0.4553] � 0.6634.
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The final test we shall present is a censored-data version of the two-
sample median test proposed by Brookmeyer and Crowley (1982b).
This test is useful when one is interested in comparing the median
survival times of the two samples rather than in comparing the differ-
ence in the hazard rates or the survival functions over time. The test
has reasonable power to detect differences between samples when the
hazard rates of the two populations cross. It is sensitive to differences
in median survival for any shaped survival function.

To construct the test, we have two, independent, censored samples
of sizes n1 and n2, respectively. Let n � n1 � n2 be the total sample
size. For each sample, we construct the Kaplan–Meier estimator (4.2.1),
Ŝ j (t), j � 1, 2. When the null hypothesis of no difference in survival
between the two groups is true, an estimator of the common survival
function is the weighted Kaplan–Meier estimator,

ŜW (t) �
n1Ŝ1(t) � n2Ŝ2(t)

n
. (7.7.9)

This weighted Kaplan–Meier estimator represents the survival function
of an average individual on study and is a function only of the survival
experiences in the two samples. It does not depend on the censoring
patterns in the two samples, as would the Kaplan–Meier estimate based
on the combined sample.

Using the weighted Kaplan–Meier estimator, an estimate of the
pooled sample median M̂ is found as follows. Let t1 
 t2 
 	 	 	 
 tD be
the event times in the pooled sample. If ŜW (ti) � 0.5 for some death
time, set M̂ � ti . If no event time gives a value of ŜW equal to 0.5, set
ML as the largest event time with ŜW (ML) � 0.5 and MU as the smallest
event time with ŜW (MU) 
 0.5. The pooled median must lie in the
interval (ML, MU) and is found by linear interpolation, that is,

M̂ � ML �
(0.5 � ŜW (ML))(MU � ML)

ŜW (MU) � ŜW (ML)
. (7.7.10)

To compute this median, we are using a version of the weighted
Kaplan–Meier estimator, which connects the values of the estimator
at death times by a straight line, rather than the usual estimator which
is a step function.

Once the pooled sample median is found, the estimated probability
that a randomly selected individual in the j th sample exceeds this
value is computed from each sample’s Kaplan–Meier estimator. Again,
a smoothed version of the Kaplan–Meier estimator, which connects the
values of the estimator at each death time, is used in each sample. We
find the two death times in the j th sample that bracket M̂ , TL j � M̂ 


TU j . The estimated probability of survival beyond M̂ in the j th sample,
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found by linear interpolation, is given by

Ŝ j (M̂ ) � Ŝ j (TL j) �
(Ŝ j(TU j ) � Ŝ j (TL j ))(M̂ � TL j )

(TU j � TL j )
, j � 1, 2. (7.7.11)

The test is based on comparing this value to 0.5, the expected survival if
the null hypothesis of no difference in median survival between the two
groups is true, that is, the test is based on the statistic n1 � 2[S1(M̂ ) � 0.5].
For sufficiently large samples, this statistic has an approximate normal
distribution with a variance found as follows. As usual, let ti j denote
the distinct death times in the j th sample, di j the number of deaths at
time ti j and Yij the number at risk at time ti j . For j � 1, 2, define

Vj �

[

Ŝ j (TU j )

(
M̂ � TL j

TU j � TL j

)]2 ∑

ti j �TU j

di j

Yi j(Yij � di j )
(7.7.12)

�

⎧
⎨

⎩

[

Ŝ j (TL j)

(
TU j � M̂

TU j � TL j

)]2

�
2(M̂ � TL j )(TU j � M̂ )

(TU j � TL j )2
Ŝ (TU j )Ŝ (TL j)

⎫
⎬

⎭

�
∑

ti, j �TL j

di j

Yi j(Yij � di j )
.

Then, the variance of n1 � 2[S1(M̂ ) � 0.5] is estimated consistently by

	2 �
n2

2

n
�V1 � V2�, (7.7.13)

and the (two-sided) test statistic is

�2 � n
[S1(M̂ ) � 0.5]2

	2
, (7.7.14)

which has a chi-squared distribution with one degree of freedom when
the null hypothesis is true.

EXAMPLE 7.5 (continued) We shall illustrate the median test on the data comparing
allo and auto transplants. Here the estimated median from the pooled
sample M̂ � 17.9225. Using the data from the first sample, we find
Ŝ1(M̂ ) � 0.5409 and Ŝ2(M̂ ) � 0.4395. Routine calculations find that
V1 � 0.0122 and V2 � 0.0140, so 	2 � 0.6754. Thus, �2 � 101(0.5409�
0.5)2 � 0.6754 � 0.2496. The p-value of the test is the probability that a
chi-squared, random variable with one degree of freedom will exceed
this value, which is 0.6173.
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Practical Notes
1. Schumacher (1984) has studied the small-sample properties of the

two Cramer–von Mises type tests. He concludes that there is some
loss of power using these tests, compared to the log-rank test of sec-
tion 7.3, when the hazard rates in the two samples are proportional.
However the test based on Q 1 seems to perform quite well in this
case. Tests based on Q 2 perform extremely well compared to other
tests, when there is a large early difference in the hazard rates or
when the hazard rates cross.

2. An alternative Cramer–von Mises test was proposed by Koziol (1978).
This test is based on the statistic

�
n1n2

n1 � n2

∫ �

0
[Ŝ1(t) � Ŝ2(t)]

2d [Ŝp(t)],

where Ŝ1(t), Ŝ2(t), and Ŝp(t) are the Kaplan–Meier estimates of the
survival function from the first, second, and pooled samples, re-
spectively. This statistic reduces to the usual Cramer–von Mises test
when there is no censoring. The asymptotic distribution of the statis-
tic, however, can only be derived under the additional assumption
that the two censoring distributions are equal and that the hazard
rate of the censoring distribution is proportional to the hazard rate of
the death distribution. In his Monte Carlo study, Schumacher (1984)
shows that the performance of this test is similar to that of Q 2.

3. Any weight function with the property that |w(t)| � �Ĝ (1 � 2)��
j , for

�, � � 0 can be used in the calculation of WKM. Another choice of
w(t), suggested by Pepe and Fleming (1989), is the square root of
equation (7.7.5). If one wishes to compare the two survival curves
over some range, say t � t0, the weight function w(t)I [t � t0] may be
appropriate. Other choices of weights could be motivated by some
measure of quality of life or the cost of treatment.

4. When there is no censoring, the estimated variance based on (7.7.8)
is equal to the sample variance based on the pooled sample. This is a
different estimator of the common variance in the two samples than
the usual pooled sample variance constructed as a weighted average
of the individual sample variances found in most elementary text
books.

5. An alternate estimator of the variance of WKM can be constructed by
using an unpooled variance estimator. Here, let

Aij �

∫ tD

ti

w(u)Ŝ j (u)du, j � 1, 2, i � 1, . . . , D � 1.

The unpooled estimator of the variance is

	̂2
up �

n1n2

n

⎧
⎨

⎩

2∑

j�1

1
n j � 1

D�1∑

i�1

A2
i j

Ŝ j (ti)Ŝ j(ti�1)Ĝj (ti�1)
[Ŝ j (ti�1) � Ŝ j (ti)]

⎫
⎬

⎭
,
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which, in the uncensored-data case, reduces to (n2 � n)S 2
1 �(n1 � n)S 2

2 ,
with S 2

j the usual sample variance. Monte Carlo studies by Pepe and
Fleming (1989) show that this variance estimator performs poorer
than the pooled estimator (7.7.8) and that its performance is poor
when the censoring patterns are different in the two samples.

6. For n j moderately large (� 50), one can approximate Vj in (7.7.12)
by the simple expression

Ŝ j (M̂ )2
∑

ti j �M̂

di j

Yi j(Yij � di j )
.

7. Brookmeyer and Crowley (1982b) present an extension of this two-
sample median test to the K -sample problem.

Theoretical Notes
1. The weighted Kaplan–Meier test was proposed by Pepe and Fleming

(1989) who developed its properties. This statistic can not be derived
using counting process techniques. Pepe and Fleming (1991) give
details of the asymptotic properties of the test.

2. A small-sample Monte Carlo study reported in Pepe and Fleming
(1989) shows that, when the hazard rates in the two populations are
proportional, the power of WKM is slightly less than that of the log-
rank test. The test performs substantially better when the two hazard
rates cross. This observation is confirmed in Pepe and Fleming (1991)
who base these observations on the asymptotic relative efficiency of
the two tests.

3. Brookmeyer and Crowley (1982b) discuss the asymptotic relative ef-
ficiency of the median test as compared to the log-rank and Wilcoxon
tests. They show that the asymptotic relative efficiency is about half
of that of the log-rank test for proportional hazards alternatives, but
about twice that of the log-rank test for a translation alternative. The
performance of these tests is also presented for small-sample sizes
based on a Monte Carlo study.

7.8 Test Based on Differences in Outcome at a
Fixed Point in Time

Up to this point we have considered tests that compare hazard rates or
survival functions over a range of time points. Occasionally we are inter-
ested in comparing K survival curves or K cumulative incidence curves
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at a predetermined fixed point in time, t0. It is important to emphasize
that the fixed point, t0, must be selected before the data is examined.
It would make the p-values invalid if the curves were compared for
a variety of points. For example, one may wish to compare the sur-
vival curves at 1 year or the cumulative incidence curves at 3 years. We
have available to us Kaplan–Meier estimators of the survival function
or estimated cumulative incidence functions as well as estimates of the
variances of these statistics (See Chapter 4 for the calculation of these
quantities).

The tests statistics we use are special cases of tests for contrasts be-
tween a set of parameters. If we let � t � (�1, . . . , �p) be a p-parameter
� j vector, then a contrast is a linear combination of the covariates. A
contrast is a set of coefficients c � (c1 . . . cp) which define a new pa-
rameter �c � c� � c1�1 � 	 	 	 � cp�p . For example, if p � 3, then the
vector c � (1, �1, 0) yields �c � �1 � �2 and a test of the hypothesis
that �C � 0 is a test that �1 � �2.

Suppose that we have q contrasts ck � (ck1, . . . , ckp), k � 1, . . . , q,
and we wish to test the hypothesis that ck � � 0 for all k , then the
test statistic will be a quadratic form constructed using the estimates of
�1, . . . , �p . To construct the quadratic form we define a q � p contrast
matrix

C �

⎛

⎜
⎜
⎜
⎝

c1

c2
...

cq

⎞

⎟
⎟
⎟
⎠

. (7.8.1)

We compute an estimate of � j , �̂ j and the variance matrix, V, with
elements, V̂ar[�̂ j , �̂k ]. To test the hypothesis H0 : C� t � 0, the test
statistic is

�2 � [C�̂]t [CVCt ]�1C�̂. (7.8.2)

When the estimators are approximately normally distributed, this
form has an asymptotically chi-squared with q degrees of freedom.

In a survival analysis context we wish to test

H0 : S1(t0) � S2(t0) � 	 	 	 � SK (t0) versus (7.8.3)

HA : at least one of theS j (t0)’s is different, for predetermined t0,

or

H0 : CI1(t0) � CI2(t0) � 	 	 	 � CIK (t0) versus (7.8.4)

HA : at least one of theCI j(t0)’s is different, for predetermined t0.

Notation similar to that used in sections 4.2, 4.7, and 7.3 will be used
and the groups will be assumed to be independent. Let �̂ j be the
Kaplan–Meier estimate of the j th survival curve or the estimate of the
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j th cumulative incidence curve at the predetermined time point t0. C
will be taken to be the p � 1 � p matrix

C �

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 0 0 . . . 0 �1
0 1 0 . . . 0 �1

.

.

.
0 0 0 . . . 1 �1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

Here V is a diagonal matrix with elements Vk � V̂ (�̂k (t0)), k �
1, . . . , p .

The quadratic form (7.8.2) is

�2 �

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

�̂1 � �̂p

�̂2 � �̂p

.

.

.
�̂p�1 � �̂p

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

t ⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

V1 � Vp Vp . . . Vp

Vp V2 � Vp . . . Vp

. . . . .

. . . . .

. . . . .
Vp Vp . . . Vp�1 � Vp

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

�1 ⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

�̂1 � �̂p

�̂2 � �̂p

.

.

.
�̂p�1 � �̂p

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

(7.8.5)

EXAMPLE 7.2 (continued) In example 7.2, data from a clinical trial of the effective-
ness of two methods for placing catheters in kidney dialysis patients
was used to illustrate various two-sample tests over the entire range of
time. The estimated survival functions for the two groups are given in
Figure 7.1. Suppose an investigator is interested in comparing the sur-
vival functions at 3 months (short duration of time to infection). Thus,
using the Kaplan–Meier estimates of the survival functions from (4.2.1)
and the estimated variances of these survival functions from (4.2.2) for
the j th goup, we obtain the Z test statistic as the square root of the
chi-squared quadratic form with one degree of freedom from (7.8.5) to
be

Z �
Ŝ1(t0) � Ŝ2(t0)√

V̂ [Ŝ1(t0)] � V̂ [Ŝ2(t0)]
(7.8.6)

which, when H0 is true, has a standard normal ditribution for large
samples. Using this statistic, an � level test of the alternative hypothesis
HA : S1(t0) � S2(t0) is rejected when Z � Z� , the �th upper percentage
point of a standard normal distribution. The test of HA : S1(t0) � S2(t0)
rejects when |Z | � Za � 2.

The estimates of the survival functions are

Ŝ1(3) � 0.9767 and Ŝ2(3) � 0.882,
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and estimates of the variances are

V̂ [Ŝ1(3)] � 0.00053 and V̂ [Ŝ2(3)] � 0.00141.

This leads to a test statistic of

Z �
0.9767 � 0.8882

√
0.00053 � 0.00141

� 2.01,

which leads to a two-sided p-value of 0.044. This difference is due to the
first group’s (surgical placement of catheters) having a smaller proba-
bility of infection at three months than the second group (percutaneous
placement of catheters).

It should be noted that another investigator comparing the survival
function of the different placement of the catheters at a large time period
would get the opposite conclusion. This again emphasizes the need to
preselect t0 before examining the data.

This example is also an illustration of what can occur when the
hazards are not proportional (an assumption formally tested in Chapter
9, Example 9.2).

EXAMPLE 7.4 (continued) In the example of section 4.7 the relapse cumulative in-
cidence curve for 39 ALL patients was calculated as shown in Table 4.8.
At one year the estimated cumulative incidence was 0.2380 (variance
� 0.0048). In this data set there are two additional groups, AML low-
risk and AML high-risk, whose relapse cumulative incidences are 0.0556
(variance � 0.0010) and 0.3556 (variance � 0.0054), respectively. A test
of the hypothesis of no difference in three-year cumulative incidence
between the three disease groups at one year has a �2 � 17.32, which
has a p-value of 0.0002 when compared to a chi-square distribution
with 2 degrees of freedom.

If one is interested in comparing K groups in a pairwise simultaneous
manner then an adjustment for multiple tests must be made. One such
method that can be used is the Bonferroni method of multiple compar-
isons. Here if K (K � 1) � 2 pairwise comparisons are made and one still
wants to maintain an overall �-level test, then each individual test is
carried out at an �� � �� K (K �1) � 2 (or �� 2K (K �1) � 2 � �� K (K �1)
for two-sided tests) level of significance and if all null hypotheses are
actually true, then the probability is at least 1 � � that none of the null
hypotheses will be wrongly rejected. This method is somewhat conser-
vative and becomes more conserative as the number of comparisons
increases.

EXAMPLE 7.4 (continued) For our previous example of the three groups (ALL, AML
low-risk, AML high-risk) when the Bonferroni method of multiple com-



238 Chapter 7 Hypothesis Testing

parisons (in our case, K � 3) is used to make pairwise comparisons
of the cumulative incidence curves, each test needs to be carried out
at the 0.05� 3 � 0.017 level of significance. The contrasts (1, �1, 0),
(1, 0, �1), and (0, 1, �1) may be used to test each of the individual
pairwise comparisons. Using the appropriate variances in (7.8.5), we
get

for H0 : CI1(t0) � CI2(t0) at t0 � 1

we have

Z � 2.41, p-value � 0.016,

for H0 : CI1(t0) � CI3(t0) at t0 � 1

we have

Z � �1.17, p-value � 0.242,

and

for H0 : CI2(t0) � CI3(t0) at t0 � 1

we have

Z � �3.76, p-value � 0.0002.

Thus we conclude that the AML high-risk group is statistically different
from the other two groups and that the ALL and AML low-risk groups
are not statistically different from each other.

Practical Notes
1. One may test a hypothesis for any linear combination of several
groups. For example, if one wants to test whether the cumulative inci-
dence curves for the ALL patients are different than those for the AML
(both high-risk and low-risk) patients, then one may select the linear
contrast (2, �1, �1) and use the quadratic form (7.8.5).

7.9 Exercises

7.1 In a study of the effectiveness of a combined drug regimen for the
treatment of rheumatoid arthritis, 40 white patients were followed for
a period ranging from 1 to 18 years. During the course of the study, 9
patients died. The ages at entry into the study and at death for these 9
patients were as follows:
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Female deaths: (66, 74), (60, 76), (70, 77), (71, 81)
Male deaths: (50, 59), (60, 66), (51, 69), (69, 71), (58, 71)

For the 31 patients still alive at the end of the study their ages at entry
and last follow-up were as follows:

Female Survivors: (50, 68), (55, 72), (56, 60), (45, 55), (48, 51), (44, 55), (33, 51), (44,
50), (60, 70), (55, 60), (60, 72), (77, 80), (70, 75), (66, 70), (59, 63), (62, 63)
Male Survivors: (53, 68), (55, 62), (56, 63), (45, 51), (48, 61), (49, 55), (43, 51),
(44, 54), (61, 70), (45, 60), (63, 72), (74, 80), (70, 76), (66, 72), (54, 70)

Using the all-cause U.S. mortality table for 1989 (Table 2.1) test the
hypothesis that the death rate of these rheumatoid arthritis patients is
not different from that in the general population using the log-rank test.

7.2 In Exercise 5 of Chapter 6, the survival experience of patients given
an autologous transplant was compared to a postulated exponential
survival rate with a hazard rate of 0.045. Using the data in Table 1.4
of Chapter 1, test the hypothesis that the hazard rate of these auto
transplant patients is equal to 0.045 against the alternative that it is
larger than 0.045 using the one-sample, log-rank test. Repeat this test
using a weight function which gives heavier weight to departures early
in time from this hazard rate.

7.3 Consider the data reported in section 1.6 on the times until staphylo-
coccus infection of burn patients (see our web page).

(a) Using the log-rank test, test the hypothesis of no difference in
the rate of staphylococcus infection between patients whose burns
were cared for with a routine bathing care method versus those
whose body cleansing was initially performed using 4% chlorhexi-
dine gluconate. Use a two-sided test and a 0.05 significance level.

(b) Repeat the test using Gehan’s test.

(c) Repeat the test using the Tarone and Ware weights.

7.4 In section 1.11, data from a study of the effect of ploidy on survival for
patients with tumors of the tongue was reported.

(a) Test the hypothesis that the survival rates of patients with cancer
of the tongue are the same for patients with aneuploid and diploid
tumors using the log-rank test.

(b) If primary interest is in detecting differences in survival rates be-
tween the two types of cancers which occur soon after the diagnosis
of the cancer, repeat part a using a more appropriate test statistic.

7.5 Using the data on laryngeal cancers in Example 7.6, test, by the log-rank
statistic, the null hypothesis of no difference in death rates among the
four stages of cancer against the global alternative that at least one of
the death rates differs from the others. Compare your results to those
found in Example 7.6.
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7.6 One of the goals of recent research is to explore the efficacy of
triple-drug combinations of antiretroviral therapy for treatment of HIV-
infected patients. Because of limitations on potency and the continuing
emergence of drug resistance seen with the use of currently available
antiretroviral agents in monotherapy and two-drug regimens, triple-
combination regimens should represent a more promising approach
to maximize antiviral activity, maintain long-term efficacy, and reduce
the incidence of drug resistance. Towards this end, investigators per-
formed a randomized study comparing AZT � zalcitabine (ddC) versus
AZT � zalcitabine (ddC) � saquinavir. The data, time from administra-
tion of treatment (in days) until the CD4 count reached a prespecified
level, is given below for the two groups.

AZT � zalcitabine (ddC): 85, 32, 38�, 45, 4�, 84, 49, 180�, 87, 75, 102, 39, 12, 11, 80,
35, 6
AZT � zalcitabine (ddC) � saquinavir: 22, 2, 48, 85, 160, 238, 56�, 94�, 51�, 12, 171,
80, 180, 4, 90, 180�, 3

Use the log rank statistic to test if there is a difference in the distribution
of the times at which patient’s CD4 reaches the prespecified level for
the two treatments.

7.7 A study was performed to determine the efficacy of boron neutron
capture therapy (BNCT) in treating the therapeutically refractory F98
glioma, using boronophenylalanine (BPA) as the capture agent. F98
glioma cells were implanted into the brains of rats. Three groups of rats
were studied. One group went untreated, another was treated only with
radiation, and the third group received radiation plus an appropriate
concentration of BPA. The data for the three groups lists the death times
(in days) and is given below:

Untreated Radiated Radiated � BPA

20 26 31
21 28 32
23 29 34
24 29 35
24 30 36
26 30 38
26 31 38
27 31 39
28 32 42�

30 35� 42�

�Censored observation

(a) Compare the survival curves for the three groups.
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(b) Perform pairwise tests to determine if there is any difference in
survival between pairs of groups.

(c) There is a priori evidence that, if there is a difference in survival,
there should be a natural ordering, namely, untreated animals will
have the worst survival, radiated rats will have slightly improved
survival, and the radiated rats � BPA should have the best survival.
Perform the test for trend which would test this ordered hypothesis.

7.8 In Example 7.4, we compared the disease-free survival rates of ALL
patients with those of high-risk and low risk AML patients. Because
acute graft-versus-host (aGVHD) disease is considered to have an an-
tileukemic effect, one would expect lower relapse rates for patients who
have developed aGVHD than for those that do not develop aGVHD.
Using the data on out web page, examine the validity of this finding by

(a) testing if the hazard rate for the occurrence of aGVHD is the same
for the three groups,

(b) testing if the hazard rate for relapse is the same in all three groups,
and

(c) testing if the hazard rate for relapse in the three disease groups is
the same for patients who have developed aGVHD. (Hint: For this
test, the data is left-truncated at the time of aGVHD).

7.9 On our web page, data is reported on the death times of 863 kidney
transplant patients (see section 1.7). Here, patients can be classified by
race and sex into one of four groups.

(a) Test the hypothesis that there is no difference in survival between
the four groups.

(b) Provide individual tests, for each sex, of the hypothesis of no racial
differences in survival rates. Also, adjusting by stratification for the
sex of the patient, test the hypothesis that blacks have a higher
mortality rate than whites.

7.10 In Example 7.6 we found that the four populations of cancer patients
had ordered hazard rates. Of interest is knowing which pairs of the
hazard rates are different. Using the log-rank test, perform the three
pairwise tests of the hypothesis H0 j : hj (t) � hj�1(t) versus HAj : hj (t) 

hj�1(t), for j � 1, 2, 3. For each test, use only those individuals with
stage j or j �1 of the disease. Make an adjustment to your critical value
for multiple testing to give an approximate 0.05 level test.

One method to making the pairwise comparisons is to base the pair-
wise tests on the full Z(�) vector. To perform this test, recall that this
vector has an asymptotic K variate normal distribution with mean 0
and covariance matrix �̂ under the null hypothesis. Thus, the statistic
Zj (�) � Zj�1(�) has a normal distribution with mean 0 and variance
	̂ j j � 	̂ j�1 j�1 � 2	̂ j j�1 when the null hypothesis is true. Large neg-
ative values of this test statistic will suggest that the hazard rate in
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sample j is smaller than in sample j � 1, so the hypothesis H0 j :
hj (t) � hj�1(t) is rejected in favor of HAj : hj (t) 
 hj�1(t) when
[Zj (�)�Zj�1(�)]� [	̂ j j � 	̂ j�1 j�1 �2	̂ j j�1]1 � 2 is smaller than the �th lower
percentile of a standard normal. Use the information in Example 7.6
and this statistic to make the multiple comparisons.

7.11 The data on laryngeal cancer patients was collected over the period
1970–1978. It is possible that the therapy used to treat laryngeal cancer
may have changed over this nine year period. To adjust for this pos-
sible confounding fact, test the hypothesis of no difference in survival
between patients with different stages of disease against a global alter-
native using a test which stratifies on the cancer being diagnosed prior
to 1975 or not. Also perform a separate test of the hypothesis of interest
in each stratum.

7.12 (a) Repeat Exercise 3 using the log-rank version of the Renyi statistic.
(b) Repeat Exercise 4 using the Gehan version of the Renyi statistic.

7.13 In Table 1.3 of section 1.5, the data on time to death for breast cancer-
patients who where classed as lymph node negative by standard light
microscopy (SLM) or by immunohistochemical (IH) examination of their
lymph nodes is reported. Test the hypothesis that there is no difference
in survival between theses two groups using
(a) the log-rank test,
(b) the Renyi statistic based on the log-rank test,
(c) the Cramer-von Mises statistic, and
(d) the weighted difference in the Kaplan–Meier statistic WKM.

7.14 Repeat Exercise 7 using
(a) the Renyi statistic based on the log-rank test,
(b) the Cramer-von Mises statistic, and
(c) the weighted difference in the Kaplan–Meier statistic WKM.

7.15 Using the data of section 1.3,
(a) compare the three survival functions for ALL, AML low-risk, and

AML high-risk at one year;
(b) perform pairwise multiple comparisons for the three groups em-

ploying the Bonferroni correction for multiple tests.



8
Semiparametric

Proportional Hazards
Regression with Fixed

Covariates

8.1 Introduction

Often one is interested in comparing two or more groups of times-to-
event. If the groups are similar, except for the treatment under study,
then, the nonparametric methods of Chapter 7 may be used directly.
More often than not, the subjects in the groups have some additional
characteristics that may affect their outcome. For example, subjects
may have demographic variables recorded, such as age, gender, socio-
economic status, or education; behavioral variables, such as dietary
habits, smoking history, physical activity level, or alcohol consumption;
or physiological variables, such as blood pressure, blood glucose lev-
els, hemoglobin levels, or heart rate. Such variables may be used as
covariates (explanatory variables, confounders, risk factors, indepen-
dent variables) in explaining the response (dependent) variable. After
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adjustment for these potential explanatory variables, the comparison of
survival times between groups should be less biased and more precise
than a simple comparison.

Another important problem is to predict the distribution of the time
to some event from a set of explanatory variables. Here, the interest is
in predicting risk factors for the event of interest. Statistical strategies for
prediction are similar to those utilized in ordinary regression. However,
the details for regression techniques in survival studies are unique.

In section 2.6, we introduced models which allow us to quantify
the relationship between the time to event and a set of explanatory
variables. In this chapter, we will consider in more detail the widely
used multiplicative hazards model due to Cox (1972), often called the
proportional hazards model.

As before, let X denote the time to some event. Our data, based on a
sample of size n , consists of the triple (Tj , � j , Z j (t)), j � 1, . . . , n where
Tj is the time on study for the j th patient, � j is the event indicator for
the j th patient (� j � 1 if the event has occurred and � j � 0 if the
lifetime is right-censored) and Z j (t) � (Zj1(t), . . . , Z jp(t))t is the vector
of covariates or risk factors for the j th individual at time t which may
affect the survival distribution of X . Here the Zjk (t)’s, k � 1, . . . , p , may
be time-dependent covariates whose value changes over time, such
as current disease status, serial blood pressure measurements, etc., or
they may be constant (or fixed) values known at time 0, such as sex,
treatment group, race, initial disease state, etc. In this chapter, we shall
consider the fixed-covariate case where Z j (t) � Z j � (Zj1, . . . , Z jp)t ,
and the former situation involving time-dependent covariates will be
treated in Chapter 9.

Let h(t | Z) be the hazard rate at time t for an individual with risk
vector Z. The basic model due to Cox (1972) is as follows:

h(t | Z) � h0(t)c(�tZ) (8.1.1)

where h0(t) is an arbitrary baseline hazard rate, � � (�1, . . . , �p)t is a
parameter vector, and c(�tZ) is a known function. This is called a semi-
parametric model because a parametric form is assumed only for the
covariate effect. The baseline hazard rate is treated nonparametrically.
Because h(t | Z) must be positive, a common model for c(�tZ) is

c(�tZ) � exp(�tZ) � exp

(
p∑

k�1

�k Zk

)

yielding

h(t | Z) � h0(t) exp(�tZ) � h0(t) exp

(
p∑

k�1

�k Zk

)

(8.1.2)
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and, thus, the logarithm of h(t | Z) � h0(t) is
∑p

k�1 �k Zk in the spirit of
the usual linear models formulation for the effects of covariates. The
coding of factors and their interaction effects follows the usual rules for
linear models. For example, if a factor has four levels, three indicator
(or dummy) variables may be constructed to model the effect of the
factor. An interaction between two or more factors may be examined
by constructing new variables which are the product of the variables
associated with the individual factors as is commonly done in other
(least squares or logistic) regression contexts. One needs to take care
in interpreting coefficients so constructed.

The Cox model is often called a proportional hazards model because,
if we look at two individuals with covariate values Z and Z�, the ratio
of their hazard rates is

h(t | Z)
h(t | Z�)

�
h0(t) exp

[∑p
k�1 �k Zk

]

h0(t) exp
[∑p

k�1 �k Z �
k

] � exp

[
p∑

k�1

�k (Zk � Z �
k )

]

(8.1.3)

which is a constant. So, the hazard rates are proportional. The quantity
(8.1.3) is called the relative risk (hazard ratio) of an individual with risk
factor Z having the event as compared to an individual with risk factor
Z�. In particular, if Z1 indicates the treatment effect (Z1 � 1 if treatment
and Z1 � 0 if placebo) and all other covariates have the same value,
then, h(t | Z) � h(t | Z�) � exp(�1), is the risk of having the event if the
individual received the treatment relative to the risk of having the event
should the individual have received the placebo.

In section 8.2 coding of both quantitative and qualitative covariates
and a discussion of their interpretation is presented. Typically the goal
of an investigation is to make an inference about � in a global sense,
as discussed in sections 8.3 (for distinct event time data) and 8.4 (when
ties are present), or, more often than not, to make an inference about a
subset of � (called a local test) as discussed in section 8.5. Sometimes
an investigator would like to treat a continuous covariate as binary.
An example of such a covariate might be blood pressure, which is, in
theory, a continuous variate; but a researcher might want to classify a
patient as being normotensive or hypertensive. The rationale and details
of the methodology of discretizing a continuous covariate are provided
in section 8.6.

In section 8.7 these techniques are used to build the most appropriate
model for survival. Inference for � in these sections is based on a
partial or conditional likelihood rather than a full likelihood approach.
In these analyses, the baseline hazard, h0(t), is treated as a nuisance
parameter function. Sometimes, however, one is interested in estimating
the survival function for a patient with a certain set of conditions and
characteristics. This is accomplished by utilizing the results described
in section 8.8.
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8.2 Coding Covariates

In general regression analyses one may have either quantitative or qual-
itative independent variables. The dependent variable, in the context
of this book, is a quantitative variable, the time-to-event, along with an
indicator variable which indicates whether or not the event of interest
occurred. As indicated in section 8.1, the independent variables may be
quantitative—such as blood pressure, blood glucose levels, age, heart
rate, or waiting time until a transplant—or they may be qualitative—
such as gender, smoking behavior, stage of disease, or the presence or
absence of any particular characteristic which the researcher wishes to
investigate. Qualitative variables can be used in a regression analysis,
just as quantitative variables can be used; however, more care needs
to be taken in the manner they are coded and interpreted. Usually,
independent variables are known at the start of the study. They are
called fixed time covariates. Occasionally independent variables may
change values after the study starts and are known as time-dependent
covariates. It is extremely important to make this distinction since the
methods of analyses differ substantially for time-dependent covariates.
First, we shall discuss fixed time covariates. Time-dependent covariates
are discussed in Chapter 9.

There are many ways of coding qualitative variables. For dichoto-
mous variables, like gender, the obvious way is to code one of the
genders as 1, the other as 0. Which way we do this coding is ar-
bitrary and immaterial. The interpretation of the results, of course,
will depend on the way the coding is actually done. For example,
if we code the gender variable as Z1 � 1 if male, 0 if female, the
hazard rate for males will be h (t | Z) � h0(t)exp(�1), and for fe-
males will be h(t | Z) � h0(t)exp(0) � h0(t). Here the natural log-
arithm of the ratio of the hazard function for males relative to the
hazard function for females is �1, and the ratio of the hazard func-
tions for males relative to females (the relative risk) will be exp(�1).
The variable Z1 is called an indicator (or dummy) variable since it
indicates to which group the subject under consideration belongs. If
we had coded another variable as Z2 � 1 if female, 0 if male, then
the hazard rate for females would have been h(t | Z) � h0(t)exp(�2)
and for males will be h(t | Z) � h0(t)exp(0) � h0(t). Here the nat-
ural logarithm of the ratio of the hazard function for females rel-
ative to the hazard function for males is �2, and the ratio of the
hazard functions for females relative to males (the relative risk) will
be exp(�2) � 1� exp(�1) � exp(��1). Either way the coding is per-
formed, the interpretation will lead to the same conclusion. Consider
the coding for an example which will be used in a subsequent sec-
tion.
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EXAMPLE 8.1 In section 1.5 we introduced a study designed to determine if female
breast cancer patients, originally classified as lymph-node-negative by
standard light microscopy (SLM), could be more accurately classified by
immunohistochemical (IH) examination of their lymph nodes with an
anticytokeratin monoclonal antibody cocktail. The data for 45 female
breast cancer patients with negative axillary lymph nodes and a mini-
mum 10-year follow-up were selected from The Ohio State University
Hospitals Cancer Registry. Of the 45 patients, 9 were immunoperoxidase
positive and the remaining 36 still remained negative.

In this example we wish to perform a proportional hazards regression
with immunoperoxidase status as the single covariate in the model. We
adopt the usual regression formulation of a dichotomous independent
variable and construct a dummy (or indicator) variable as follows.

Let Z � 1 if the patient is immunoperoxidase positive, 0 otherwise.
The model is h(t | Z) � h0(t)exp(�Z), where h0(t) is an arbitrary base-
line hazard rate and � is the regression coefficient for Z . The ratio
of the hazard functions for patient being immunoperoxidase positive
relative to the patient being immunoperoxidase negative (the relative
risk) will be exp(�). In a later example in section 8.3, the estimate
of �, denoted by b, is determined to be 0.9802. Thus the relative
risk of dying for an immunoperoxidase-positive patient relative to an
immunoperoxidase-negative patient is exp(0.9802)�2.67. That is, a pa-
tient who is immunoperoxidase positive is 2.67 times more likely to die
than an immunoperoxidase-negative patient.

When the qualitative variables (sometimes called factors) have more
than two categories, there is more choice in the coding schemes. For
example, when coding a factor, sometimes termed a “risk group,” which
has three categories, we utilize a simple extension of the indicator
variable coding scheme described above. In particular, we code two
indicator variables as

Z1 � 1 if the subject is in category 1, 0 otherwise,

Z2 � 1 it the subject is in category 2, 0 otherwise. (8.2.1)

One might be tempted to make a third category Z3 � 1 if the subject is
in category 3, 0 otherwise; but to do this would make the three variables
Zi (i � 1, 2, 3) dependent upon each other. This can be seen because if
you know the value of Z1 and the value of Z2, then you would know
the value of Z3. This is contrary to the principle of multiple regression,
where you wish to introduce independent variables into the model.
The independent variables may be correlated but they should not be
completely dependent, since this introduces an undesirable complexity
in analysis and interpretation.
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There are many other ways to code the categories so as to obtain two
“independent” variables which perform the same test of �1 � �2 � 0,
but we shall not dwell on them, except to say that the interpretation
must be carefully understood. Instead we will elaborate a bit more on
the coding scheme discussed above. Consider a three level factor, such
as race (black, white, Hispanic), using the coding as in (8.2.1)

Z1 � 1 if the subject is black, 0 if otherwise,

Z2 � 1 if the subject if white, 0 otherwise,

The hazard rate, in general, is h(t | Z) � h0(t)exp�
∑2

k�1 �k Zk � and, in
particular, the hazard rates for blacks, whites, and Hispanics, respec-
tively, is as follows:

h(t | Z1 � 1, Z2 � 0) � h0(t)exp(�1),

h(t | Z1 � 0, Z2 � 1) � h0(t)exp(�2),

h(t | Z1 � 0, Z2 � 0) � h0(t). (8.2.2)

Here we can see that the risk of the events occurring among blacks
relative to the risk of the events occurring among Hispanics is exp(�1),
the risk of the events occurring among whites relative to the risk of the
events occurring among Hispanics is exp(�2), and the risk of the events
occurring among blacks relative to the risk of the events occurring
among whites is exp(�1 � �2).

A note of caution is in order here. If the independent variable is
strictly categorical with more than two groups, then it would be inap-
propriate to code the variable as a single covariate. Suppose we have
a categorical covariate with k (� 2) categories and we define a single
covariate Z � i , if the individual belongs to category i, i � 1, . . . , k .
The proportional hazards model assumes that the relative risk of an
event for an individual in category i as compared to an individual in
category i � 1 is e� for any i � 2, . . . , k .

For example, suppose we code the patient’s race as 1 if black, 2
if white, and 3 if Hispanic. A consequence of this model is that the
following relationships between the relative risks must hold:

RR(White/Black) � RR(Hispanic/White) � e�

and

RR(Hispanic/Black) � e2�

relationships which are not likely to be true.

EXAMPLE 8.2 In section 1.8, a study of 90 males diagnosed with cancer of the larynx
was described. In addition to the outcome variable, time from first
treatment until either death or the end of the study, the independent
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variables, patient’s age (in years) at the time of diagnosis and the stage
of the patient’s cancer, were recorded. A basic test for trend on stage
was performed in section 7.4.

Here we wish to illustrate the coding of the variable stage of disease
in preparation for performing a proportional hazards regression test
with only stage in the model. Since stage has four levels, we adopt the
usual indicator variable coding methodology as in (8.2.1) and construct
the dummy (or indicator) variables as follows.

Let Z1� 1 if the patient is in stage II, 0 otherwise,

Z2� 1 if the patient is in Stage III, 0 otherwise,

and

Z3� 1 if the patient is in Stage IV, 0 otherwise. (8.2.3)

This places the patient with Stage I cancer in the referent group; i.e.,
such a patient will have Z1 � Z2 � Z3 � 0. Usually the coding is
accomplished so that the referent group is expected to be at either
extreme of risk from a subject matter point of view.

In section 8.4 we shall see that b1 � 0.06576, b2 � 0.61206, b3 �
1.172284. The full model for this situation is

h(t | Z) � h0(t)exp��tZ � � h0(t)exp��1Z1 � �2Z2 � �3Z3�.

Thus the estimated relative risks of dying for patients with Stage II,
III, and IV disease relative to Stage I disease is exp(0.06576) � 1.068,
exp(0.61206) � 1.844, and exp(1.72284) � 5.600, respectively. One
may also calculate the relative risk of dying for patients for Stage III dis-
ease relative to patients for Stage II disease as exp(0.61206�0.06576) �
1.727.

A basic test for trend was performed on the data of section 1.8 in
Example 7.6 of section 7.4. Since the scores test in the proportional
hazards model is identical to the log rank test, when there are no ties
(see Practical Note 3 in section 8.3), one could approximate the test
for trend in Example 7.6 by taking the stage variable as a continuous
variable (stage � 1, 2, 3, 4). The scores test in this proportional hazards
model has a chi-squared of 13.64 with 1 degree of freedom, a result
consistent with what we found in Example 7.6. As discussed earlier, the
estimate of � must be interpreted with caution since it assumes equal
relative risk between adjacent stages of disease.

On the other hand, if an independent variable is continuous, such
as age, then it would be appropriate to code the variable as a single
covariate. In this case, the exponentiated coefficient, e�, for the variable

Z � age (in years)
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would be the relative risk of an event for an individual of age i years
compared to an individual of age i � 1 years. Sometimes we wish to
speak of the relative risk of the event for an individual 10 years older
than another individual. In this case, the ratio of the hazard (or risk) of
the individual 10 years older compared to the hazard (or risk) of the
referent individual would be relative risk � exp(10�). There may be
other covariates in the model, in which case, the coefficient is termed a
partial regression coefficient. Such partial regression coefficients relate
the relationship of that variable, say, age, to the outcome variable, time-
to-event, controlling for all other variables in the model. Tests based on
partial regression coefficients utilize local tests as described in section
8.5. The results from a data set analyzed in section 8.5 are used to
illustrate the interpretation of such parameters below.

EXAMPLE 8.2 (continued) Continuing the examination of the data set in section 1.8,
we will introduce the age covariate, Z4 � age of the patient, in addition
to the stage indicator variables defined in (8.2.3). The model then is

h(t | Z) � h0(t)exp��tZ�

� h0(t)exp��1Z1 � �2Z2 � �3Z3 � �4Z4�. (8.2.4)

Here the natural logarithm of the ratio of the hazard function for a 50-
year-old individual with Stage IV disease relative to the hazard function
for a 40-year-old individual with Stage IV disease is 10�4; i.e., the relative
risk for a 50-year-old patient compared to a 40-year-old (both with Stage
IV disease) is exp(10�4), since the stage of disease parameter will cancel
out in the proportional hazards model.

The estimates of the parameters are obtained in section 8.5 as

b1 � 0.1386, b2 � 0.6383, b3 � 1.6931, and b4 � 0.0189. (8.2.5)

Thus the relative risk for a 50-year-old patient compared to a 40-year-
old (both with Stage IV disease) is exp(10b4) � 1.2. Another way of
stating the interpretation of a partial relative risk is that a 50-year-old
patient has a probability of dying 1.2 times greater than the probability
of dying for a 40-year-old patient with the same stage of disease.

Factors such as gender, age, race, or stage of disease taken individ-
ually are often referred to as main effects, i.e., their relationship with
the time-to-event outcome is tested for statistical significance as if their
relationship does not depend on other factors. An important concept in
regression is the consideration of the effect of one factor in the presence
of another factor. This concept is termed interaction.

As in other (least squares or logistic) regression contexts, interaction
effects between variables may exist and these effects may be very im-
portant. An interaction effect exists if the relative risk for two levels of
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one factor differs for distinct levels of a second factor. Consider mod-
eling a clinical trial of two treatments based on a proportional hazards
model with covariate coded as Z1 � 1 for treatment 1, 0 for treatment
2. Here exp(�1) is the risk of the first treatment relative to the second.
Suppose there is the potential for males and females to respond differ-
ently to the two treatments so the relative risk of treatment 1 compared
to treatment 2 may depend on sex. As usual we code sex as Z2 � 1
if male and 0 if female. Interactions are formed by multiplying the in-
dependent variables of the two individual factors, termed main effects,
together. That is, a third variable Z3 � Z1 �Z2 will be created. Here, the
exponential of the coefficient of Z3, the product of the treatment and
gender covariate, is the excess relative risk of treatment 1 compared to
treatment 2 for males compared to females. Now the full model will be

h(t | Z) � h0(t)exp��tZ� � h0(t)exp��1Z1 � �2Z2 � �3Z3�. (8.2.6)

The relative risk of treatment 1 compared to treatment 2 for males is
exp��1 � �3�, while for females it is exp��1�. If �3 � 0, then the relative
risk of treatment 1 compared to treatment 2 will be identical for the two
sexes.

The following example illustrates the construction of the interaction
of two categorical variables.

EXAMPLE 8.3 In section 1.7 a data set of 863 kidney transplant patients with data on
race (white, black) and gender is described. In this study there were 432
white males, 92 black males, 280 white females, and 59 black females.
Again, there are various coding options. First, one may treat this study
as a four-group problem as we have done in Example 8.2. The three
indicator variables may be defined in any desirable way but usually one
wants either the best or the worst survival group as the referent group.
For example, we may code

Z1 � 1 if the subject is a black male, 0 otherwise,

Z2 � 1 if the subject is a white male, 0 otherwise,

and

Z3 � 1 if the subject is a black female, 0 otherwise.

Here the referent group is being a white female. Again the full model
will be

h(t | Z) � h0(t)exp��tZ� � h0(t)exp��1Z1 � �2Z2 � �3Z3�.

The estimates of the parameters are obtained in section 8.5 as

b1 � 0.1596, b2 � 0.2484, b3 � 0.6567.

Thus the relative risks for black male, white male, and black female
relative to white female are 1.17, 1.28, 1.93, respectively.
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Alternatively, we may code the variables as two main effect terms,
race and gender, and an interaction term. For example,

Z1 � 1 if the subject is a female, 0 otherwise,

Z2 � 1 if the subject is black, 0 otherwise,

and

Z3 � Z1 � Z2 � 1 if the subject is a black female, 0 otherwise.

Again the full model will be

h(t | Z) � h0(t)exp��tZ� � h0(t)exp��1Z1 � �2Z2 � �3Z3�.

Note that the parameters �t will have a different interpretation. The es-
timates of the parameters are obtained in section 8.5 as b1 � �0.2484,
b2 � �0.0888, b3 � 0.7455. Here the interest will center on the interac-
tion term �3, which will be tested in section 8.5. Here, the exponential
of the coefficient of Z3, the product of the treatment and gender covari-
ate, is the excess relative risk of being black for females compared to
males, exp(0.7455) � 2.11. It is also instructive to see that the relative
risks for black male, white male, and black female relative to white fe-
male are exp(�0.0888�(�0.2484)) � 1.17, exp(0�(�0.2484)) � 1.28,
exp(�0.2484 � 0.0888 � 0.7455 � (�0.2484)) � 1.93, respectively, just
as we obtained for the earlier coding. These are two different coding
schemes; the first treats the samples as four groups and the second
treats the samples as a 2 � 2 factorial, where interest may center on
the interaction between gender and race. The interpretation of the two
coding schemes are equivalent in that they lead to the same relative
risks and the same likelihood.

The following example illustrates the construction of the interaction
of a continuous variable and a categorical variable.

EXAMPLE 8.2 (continued) Consider two of the factors, namely age and stage of
disease, in the data introduced in section 1.8. As usual, Zi , i � 1, 2, 3
are defined as before in (8.2.3) and Z4 will be the age of the patient.
The interaction between age and stage will involve three product terms,
namely, Z5 � Z1Z4; Z6 � Z2Z4 and Z7 � Z3Z4. Thus, for a 50-year-old
man with Stage II cancer, the three interaction variables will take on the
following values: Z5 � Z1Z4 � (1)(50) � 50; Z6 � Z2Z4 � (0)(50) � 0
and Z7 � Z3Z4 � (0)(50) � 0. Other combinations of age and stage can
be appropriately formed. Now the full model will be

h(t | Z) � h0(t)exp��tZ�

� h0(t)exp��1Z1 � �2Z2 � �3Z3 � �4Z4 � �5Z5 � �6Z6 � �7Z7�.

(8.2.7)
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The null hypothesis of no interaction between age and stage may be
written as H0 : �5 � �6 � �7 � 0 vs. the alternate hypothesis, which
will be the negation of the null. This example will be considered in
much more detail in section 8.5. The estimates of the parameters and
their interpretation will be delayed until that discussion.

8.3 Partial Likelihoods for Distinct-Event
Time Data

As indicated earlier, our data is based on a sample of size n consisting
of the triple (Tj , � j , Z j ), j � 1, . . . , n . We assume that censoring is
noninformative in that, given Z j , the event and censoring time for the
j th patient are independent. Suppose that there are no ties between
the event times. Let t1 
 t2 
 	 	 	 
 tD denote the ordered event times
and Z(i)k be the k th covariate associated with the individual whose
failure time is ti . Define the risk set at time ti , R(ti), as the set of all
individuals who are still under study at a time just prior to ti . The partial
likelihood (see Theoretical Notes 1 and 2), based on the hazard function
as specified by (8.1.2), is expressed by

L(�) �
D∏

i�1

exp
[∑p

k�1 �k Z(i)k

]

∑
j�R(ti ) exp

[∑p
k�1 �k Z jk

] . (8.3.1)

This is treated as a usual likelihood, and inference is carried out by usual
means. It is of interest to note that the numerator of the likelihood de-
pends only on information from the individual who experiences the
event, whereas the denominator utilizes information about all individu-
als who have not yet experienced the event (including some individuals
who will be censored later).

Let LL(�) � ln[L(�)]. Then, after a bit of algebra, we can write LL(�)
as

LL(�) �
D∑

i�1

p∑

k�1

�k Z(i)k �
D∑

i�1

ln

⎡

⎣
∑

j�R(ti )

exp

(
p∑

k�1

�k Z jk

)⎤

⎦ . (8.3.2)

The (partial) maximum likelihood estimates are found by maximizing
(8.3.1), or, equivalently, (8.3.2). The efficient score equations are found
by taking partial derivatives of (8.3.2) with respect to the �’s as follows.
Let Uh(�) � �LL(�) � ��h, h � 1, . . . , p .
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Then,

Uh(�) �
D∑

i�1

Z(i)h �
D∑

i�1

∑
j�R(ti ) Zjh exp

[∑p
k�1 �k Z jk

]

∑
j�R(ti ) exp

[∑p
k�1 �k Z jk

] . (8.3.3)

The information matrix is the negative of the matrix of second deriva-
tives of the log likelihood and is given by I(�) � [Igh(�)]p�p with the
(g, h)th element given by

Igh(�) �
D∑

i�1

∑
j�R(ti ) ZjgZ jh exp

[∑p
k�1 �k Z jk

]

∑
j�R(ti ) exp

[∑p
k�1 �k Z jk

]

�
D∑

i�1

[∑
j�R(ti ) Zjg exp

(∑p
k�1 �k Z jk

)

∑
j�R(ti ) exp

(∑p
k�1 �k Z jk

)

]

[∑
j�R(ti ) Zjh exp

(∑p
k�1 �k Z jk

)

∑
j�R(ti ) exp

(∑p
k�1 �k Z jk

)

]

.

(8.3.4)

The (partial) maximum likelihood estimates are found by solving the
set of p nonlinear equations Uh(�) � 0, h � 1, . . . , p . This can be done
numerically, as shown in Appendix A, using a Newton–Raphson tech-
nique (or some other iterative method), with (8.3.3) and (8.3.4). Most
major software packages will perform this iterative maximization. Note
that (8.3.2) does not depend upon the baseline hazard rate h0(x), so
that inferences may be made on the effects of the explanatory variables
without knowing h0(x).

There are three main tests (described in more detail in Appendix
B) for hypotheses about regression parameters �. Let b � (b1, . . . , bp)t

denote the (partial) maximum likelihood estimates of � and let I(�) be
the p�p information matrix evaluated at �. The first test is the usual test
based on the asymptotic normality of the (partial) maximum likelihood
estimates, referred to as Wald’s test. It is based on the result that, for
large samples, b has a p-variate normal distribution with mean � and
variance-covariance estimated by I �1(b). A test of the global hypothesis
of H0 : � � �0 is

X 2
W � (b � �0)

tI(b)(b � �0) (8.3.5)

which has a chi-squared distribution with p degrees of freedom if H0 is
true for large samples.

The second test is the likelihood ratio test of the hypothesis of H0 :
� � �0 and uses

X 2
LR � 2[LL(b) � LL(�0)] (8.3.6)

which has a chi-squared distribution with p degrees of freedom under
H0 for large n .
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The third test is the scores test. It is based on the efficient scores,
U(�) � (U1(�), . . . , Up(�))t where Uh(�) is defined by (8.3.3). For large
samples, U(�) is asymptotically p-variate normal with mean 0 and co-
variance I(�) when H0 is true. Thus a test of H0 : � � �0 is

X 2
SC � U(�0)

tI�1(�0)U(�0) (8.3.7)

which has a large-sample chi-squared distribution with p degrees of
freedom under H0.

EXAMPLE 8.1 (continued) In section 1.5, we introduced a study designed to de-
termine if female breast-cancer patients, originally classified as lymph
node negative by standard light microscopy (SLM), could be more ac-
curately classified by immunohistochemical (IH) examination of their
lymph nodes with an anticytokeratin, monoclonal antibody cocktail.

In this example, we wish to perform a proportional hazards regres-
sion with immunoperoxidase status as the single covariate in the model.
We adopt the usual regression formulation of a dichotomous indepen-
dent variable and construct a dummy (or indicator) variable as follows.

Let Z � 1 if the patient is immunoperoxidase positive, 0 otherwise.
The model is h(t | Z) � h0(t) exp(�Z), where h0(t) is an arbitrary
baseline hazard rate and � is the regression coefficient.

For this model,
∑D

i�1 Z(i) � d1, the number of deaths in the im-
munoperoxide positive sample, and

∑
j�R(ti ) exp(�Zj ) � Y0i � Y1i e� ,

where Y0i (Y1i) is the number of individuals at risk in the immunoper-
oxidase negative (positive) sample at time ti . From (8.3.2)–(8.3.4),

LL(�) � �d1 �
D∑

i�1

ln[Y0i � Y1i e
� ],

U (�) � d1 �
D∑

i�1

Y1i e�

Y0i � Y1i e�
,

and

I (�) �
D∑

i�1

[
Y1i e�

(Y0i � Y1i e�)
�

Y 2
1i e

2�

(Y0i � Y1i e�)2

]

.

The simplest test of the hypothesis that � � 0 is the score test. In this
case,

U (0) � d1 �
D∑

i�1

Y1i

Y0i � Y1i
,
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and

I (0) �
D∑

i�1

Y1i

(Y0i � Y1i)
�

Y 2
1i

(Y0i � Y1i)2
�

D∑

i�1

Y1iY0i

(Y0i � Y1i)2
.

Note that, in this case, where there are no ties between the death times,
the score statistic X 2

Sc � U (0)2 � I (0) is precisely the two-sample, log-
rank test presented in section 7.3. In this example, U (0) � 4.19 and
I (0) � 3.19 so the value of X 2

Sc � 5.49 which has a p-value of 0.019,
when compared to the chi-squared distribution, with one degree of
freedom.

To obtain the estimate of �, the likelihood is maximized by a nu-
merical technique. Routines for this maximization are available in most
statistical packages. Using the Newton–Raphson algorithm described in
Appendix A, we start with an initial guess at � of b0 � 0 and compute
an updated estimate at the mth stage by bm � bm�1 � U (bm�1) � I (bm�1).
The iterative process is declared converged when the relative change in
log likelihoods between successive steps is less than 0.0001. Here we
have the results of three iterations:

bm � bm�1�

m bm�1 LL(bm�1) U (bm�1) I (bm�1)
U (bm�1)
I (bm�1)

LL(bm)
LL(bm) � LL(bm�1)

|LL(bm�1)|
1 0 �83.7438 4.1873 3.1912 1.3121 �81.8205 0.0230
2 1.3121 �81.8205 �1.8382 5.7494 0.9924 �81.5210 0.0037
3 0.9924 �81.5210 �0.0646 5.3084 0.9802 �81.5206 
0.0001

The Newton-Raphson algorithm converges after three steps.
To test the hypothesis H0 : � � 0 using the likelihood ratio test,

X 2
LR � 2�LL(0.9802)�LL(0)� � 2[�81.52� (�83.74)] � 4.44 which has a

p-value of 0.035. To perform the Wald test we first estimate the standard
error of our estimate of � as SE(b) � 1� I (0.9802)1 � 2 � 1� 5.28711 � 2 �
0.4349. The Wald test is (0.9802 � 0)2 � (0.4349)2 � 5.08, which has a
p-value of 0.024.

The exponential of b gives the estimated relative risk, which in this
example is e0.9802 � 2.67. This number tells us that a patient, who is
immunoperoxidase positive, is 2.67 times more likely to die than an
immunoperoxidase negative patient. Using the asymptotic normality of
b, a 95% confidence interval for the relative risk is exp(0.9802  1.96 �
0.4349) � (1.14, 6.25).
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Practical Notes
1. Algorithms for the estimation of � in the Cox regression model are

available in many statistical packages. The procedure PHREG in SAS
and coxph in S-Plus provide estimates of �, its standard error and
the Wald, score and likelihood ratio tests of the global hypothesis of
no covariate effect. A Newton–Raphson algorithm is used to estimate
� with 0 as an initial value.

2. If a covariate is perfectly correlated with the event times, that is,
the covariates are ordered with Z(1)k � Z(2)k � 	 	 	 � Z(D)k (or
Z(1)k � Z(2)k � 	 	 	 � Z(D)k ) the (partial) maximum likelihood es-
timate of �k will be � (or ��). When declaring convergence of a
numerical maximization routine based on differences in likelihoods
at successive iterations, one should carefully check that successive
values of the estimates are close to each other as well to avoid this
problem.

3. If there are no ties between the event times, the scores test in the
proportional hazards model is identical to the log-rank test.

4. Empirical studies have shown that the convergence rate of the like-
lihood ratio and Wald tests are similar. The score test converges less
rapidly to the limiting chi-squared distribution.

5. The tests performed in this section have assumed that the hazard
rates are proportional. They, indeed, are but we shall present tools
for checking this assumption in Chapters 9 and 11.

Theoretical Notes
1. The probability that an individual dies at time ti with covariates Z(i),

given one of the individuals in R(ti) dies at this time, is given by

P [individual dies at ti | one death at ti ]

�
P [individual dies at ti | survival to ti ]

P [one death at ti | survival to ti ]

�
h[ti | Z(i)]

∑
j�R(ti ) h[ti | Z j ]

�
h0(ti) exp[�tZ(i)]

∑
j�R(ti ) h0(ti) exp[�tZ j ]

�
exp[�tZ(i)]

∑
j�R(ti ) exp[�tZ j ]

.

The partial likelihood is formed by multiplying these conditional
probabilities over all deaths, so we have the likelihood function

L(�) �
D∏

i�1

exp[�tZ(i)]
∑

j�R(ti ) exp��tZ j �
as in (8.3.1).
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2. The Cox partial likelihood can be derived as a profile likelihood from
the full censored-data likelihood, as discussed by Johansen (1983).
Here, we start with the complete censored-data likelihood, which,
by the discussion in section 3.5, is given by

L[�, h0(t)] �
n∏

j�1

h(Tj | Zj)
� j S (Tj | Zj)

�
n∏

j�1

h0(Tj )
� j [exp(�tZj)]

� j exp
(
�H0(Tj ) exp(�tZj)

)
.

(8.3.8)

Now, fix � and consider maximizing this likelihood as a function of
h0(t) only. The function to be maximized is

L�(h0(t)) �

[
D∏

i�1

h0(ti) exp(�tZ(i))

]

exp

⎡

⎣�
n∑

j�1

H0(Tj) exp(�tZ j )

⎤

⎦ .

(8.3.9)

This function is maximal when h0(t) � 0 except for times at which
the events occurs. Let h0i � h0(ti), i � 1, . . . , D so H0(Tj) �∑

ti �Tj
h0i . Thus, after some simplification, (8.3.9) can be written as

L�(h01, . . . , h0D) �
D∏

i�1

h0i exp

⎡

⎣�h0i

∑

j�R(ti )

exp(�tZ j )

⎤

⎦

and the profile maximum likelihood estimator of h0i is given by

ĥ0i �
1

∑
j�R(ti ) exp(�tZj)

.

Combining these estimates yields an estimate of H0(t) given by

Ĥ 0(t) �
∑

ti �t

1
∑

j�R(ti ) exp(�tZ j)
.

This is Breslow’s estimator of the baseline cumulative hazard rate in
the case of, at most, one death at any time and is discussed in more
detail in section 8.8. Substituting Ĥ 0(t) in (8.3.8) and simplifying
yields a profile likelihood proportional to the partial likelihood of
Eq. (8.3.1).
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8.4 Partial Likelihoods When Ties Are Present

In section 8.3, we presented the partial likelihood for the proportional
hazards regression problem when there are no ties between the event
times. Often, due to the way times are recorded, ties between event
times are found in the data. Alternate partial likelihoods have been
provided by a variety of authors when there are ties between event
times.

Let t1 
 t2 
 	 	 	 
 tD denote the D distinct, ordered, event times. Let
di be the number of deaths at ti and �i the set of all individuals who
die at time ti . Let si be the sum of the vectors Z j over all individuals
who die at ti . That is si �

∑
j��i

Z j . Let Ri be the set of all individuals
at risk just prior to ti .

There are several suggestions for constructing the partial likelihood
when there are ties among the event times. The first, due to Bres-
low (1974), arises naturally from the profile likelihood construction
discussed in Theoretical Note 2 of the previous section. The partial
likelihood is expressed as

L1(�) �
D∏

i�1

exp(�tsi)
[∑

j�Ri
exp(�tZ j)

]di
. (8.4.1)

This likelihood considers each of the di events at a given time as distinct,
constructs their contribution to the likelihood function, and obtains the
contribution to the likelihood by multiplying over all events at time ti .
When there are few ties, this approximation works quite well, and this
likelihood is implemented in most statistical packages.

Efron (1977) suggests a partial likelihood of

L2(�) �
D∏

i�1

exp(�tsi)
∏di

j�1

[∑
k�Ri

exp(�tZk ) � j�1
di

∑
k��i

exp(�tZk )
] , (8.4.2)

which is closer to the correct partial likelihood based on a discrete
hazard model than Breslow’s likelihood. When the number of ties is
small, Efron’s and Breslow’s likelihoods are quite close.

The third partial likelihood due to Cox (1972) is based on a discrete-
time, hazard-rate model. This likelihood is constructed by assuming a
logistic model for the hazard rate, that is, if we let h(t | Z) denote the
conditional death probability in the interval (t, t � 1) given survival to
the start of the interval and if we assume

h(t | Z)
1 � h(t | Z)

�
h0(t)

1 � h0(t)
exp(�tZ),

then, this likelihood is the proper partial likelihood. To construct the
likelihood, let Qi denote the set of all subsets of di individuals who
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could be selected from the risk set Ri . Each element of Qi is a di -
tuple of individuals who could have been one of the di failures at time
ti . Let q � (q1, . . . , qdi ) be one of these elements of Qi and define
s�

q �
∑dj

j�1 Zq j . Then, the discrete log likelihood is given by

L3(�) �
D∏

i�1

exp(�tsi)
∑

q�Qi
exp(�ts�

q)
. (8.4.3)

When there are no ties between the event times, this likelihood and
Breslow’s and Efron’s likelihoods reduce to the partial likelihood in the
previous section.

EXAMPLE 8.4 A study to assess the time to first exit-site infection (in months) in pa-
tients with renal insufficiency was introduced in section 1.4. Forty-three
patients utilized a surgically placed catheter and 76 patients utilized a
percutaneous placement of their catheter. Catheter failure was the pri-
mary reason for censoring. To apply a proportional hazards regression,
let Z � 1 if the patient has a percutaneous placement of the catheter,
and 0 otherwise.

To see how the three likelihoods differ, consider the contribution of
the six deaths at time 0.5. All six deaths have Z � 1, and there are 76
patients at risk with Z � 1 and 43 patients at risk with Z � 0. The
contribution to the likelihood is

Breslow:
exp(6�)

[43 � 76 exp(�)]6
,

Efron:
exp(6�)

∏6
j�1[76e� � 43 � j�1

6 (6e�)]
,

Discrete:
exp(6�)

(43
6

)
�
(43

5

)(76
1

)
e� �

(43
4

)(76
2

)
e2� �

(43
3

)(76
3

)
e3� �

(43
2

)(76
4

)
e4� �

(43
1

)(76
5

)
e5� �

(76
6

)
e6�

.

Using the three likelihoods, we have the following results:

Breslow’s Efron’s Discrete
Likelihood (8.4.1) Likelihood (8.4.2) Likelihood (8.4.3)

Initial likelihood �104.4533 �104.2319 �94.1869
Final likelihood �103.2285 �103.0278 �92.9401
b �0.6182 �0.6126 �0.6294
SE(b) 0.3981 0.3979 0.4019
Relative risk, eb 0.539 0.542 0.553
Score test X 2 � 2.49 (p � 0.115) X 2 � 2.44 (p � 0.117) X 2 � 2.53 (p � 0.112)
Wald test X 2 � 2.41 (p � 0.121) X 2 � 2.37 (p � 0.124) X 2 � 2.45 (p � 0.117)
Likelihood ratio test X 2 � 2.45 (p � 0.118) X 2 � 2.41 (p � 0.121) X 2 � 2.49 (p � 0.114)
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Here, we see that, assuming the proportional hazards model is ap-
propriate, for any of the three likelihoods the regression coefficient is
not statistically significant and the relative risk is about 0.54. As we
shall test formally in Chapter 9, the proportional hazards assumption is
not appropriate for this data. Thus the relative risk is not constant but
depends upon time, and the reported relative risk of 0.54 is not cor-
rect. Furthermore, a potentially significant result could be overlooked
because the proportional hazards assumption is not satisfied. This has
implications for procedures used in model building, which will be dis-
cussed in section 8.7. As a graphical check of the proportional hazards
assumption, we compute the Nelson–Aalen estimator of the cumulative
hazard rate for each treatment. If the proportional hazards model is cor-
rect, then, we should have H (t | Z � 1) � e�H (t | Z � 0), so that a plot
of ln[H̃ (t | Z � 1)] � ln[H̃ (t | Z � 0)] versus t should be roughly equal
to �. The plot for this data set, shown in Figure 8.1, strongly suggests

Time
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Figure 8.1 Graphical check of the proportional hazards assumption for the
renal insufficiency study.
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nonproportional hazards. Other graphical checks of the proportional
hazards assumption are discussed in section 11.4.

EXAMPLE 8.2 (continued) In section 1.8, a study of 90 males diagnosed with cancer
of the larynx was described. In addition to the outcome variable, time
from first treatment until either death or the end of the study, the
independent variables, patient’s age (in years) at the time of diagnosis
and the stage of the patient’s cancer, were recorded. A basic test for
trend on stage was performed in section 7.4.

Here, we shall perform a global proportional hazards regression test
with only stage in the model. Because stage has four levels, we adopt
the usual indicator variable coding methodology as in (8.2.3). The max-
imum likelihood parameter estimates, bi(i � 1, . . . , 4), (and their corre-
sponding standard errors) are 0.0658 (0.4584), 0.612 (0.3552), and 1.723
(0.4197), respectively. It follows that the relative risks, RR(Stage II/Stage
I) � 1.07, RR(Stage III/Stage I) � 1.84, and RR(Stage IV/Stage I) � 5.60.

The global likelihood ratio, Wald, and score chi-squared (with three
degrees of freedom) statistics for stage are 16.26 (p-value � 0.001),
18.95 (p-value � 0.0003), and 22.46 (p-value � 0.0001), respectively,
using Breslow’s method of handling ties. All three tests suggest that
the survival rates are different for, at least, one stage of cancer. In the
next section, we shall consider local tests which provide information
on which stages differ in survival.

The following example illustrates another example of performing a
global test for different groups and will be followed up in the next
section with a local test for interaction.

EXAMPLE 8.3 (continued) In section 1.7 a data set of 863 kidney transplant patients
with data on race (white, black) and gender is described. In this study
there were 432 white males, 92 black males, 280 white females, and
59 black females. Again, there are various coding options, as described
in section 8.2. First, one may treat this study as a four-group problem.
The three indicator variables have been defined in the usual way as
described in section 8.2 as

Z1 � 1 if the subject is a black male, 0 otherwise

Z2 � 1 if the subject is a white male, 0 otherwise

and

Z3 � 1 if the subject is a black female, 0 otherwise.
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Here the referent group is being a white female. Again, the full model
will be

h(t | Z) � h0(t)exp��tZ� � h0(t)exp��1Z1 � �2Z2 � �3Z3�.

The maximum likelihood estimates of the parameters are obtained as

b1 � 0.160, b2 � 0.248, b3 � 0.657.

Thus the relative risks for black male, white male, and black female rel-
ative to white female are 1.17, 1.28, 1.93, respectively. The global like-
lihood ratio, Wald, and score chi-squared (with 3 degrees of freedom)
statistics for groups are 4.37 (p-value � 0.22), 4.64 (p-value � 0.20), and
4.74 (p-value � 0.19), respectively, using the Breslow method of han-
dling ties. All three tests suggest the survival rates are not different for
the four groups of subjects. In the next section we shall consider local
tests which provide information on testing for an interaction between
race and gender.

Practical Notes
1. SAS PHREG uses Breslow’s likelihood as a default and allows the

user to specify that calculations be carried out using either the dis-
crete or Efron likelihood. SAS also allows the user to specify an
“exact” likelihood based on a generalized rank statistic derivation of
the likelihood (see Kalbfleisch and Prentice (1980) for details). This
likelihood requires a bit more computer time to implement and gives
results quite close to the discrete likelihood.

2. The S-Plus function coxph uses Efron’s likelihood as a default when
there are ties between the event times. Breslow’s likelihood and the
exact likelihood are also available.

8.5 Local Tests

Often, one is interested in testing a hypothesis about a subset of the
�’s. The hypothesis is then H0 : �1 � �10, where � � (�t

1, �t
2)

t . Here
�1 is a q � 1 vector of the �’s of interest and �2 is the vector of the
remaining p � q �’s.

The Wald test of H0 : �1 � �10 is based on the maximum partial
likelihood estimators of �. Let b � (bt

1, bt
2)

t be the maximum partial
likelihood estimator of �. Suppose we partition the information matrix
I as

I �

(
I11 I12

I21 I22

)

,
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where I11 (I22) is the q �q [(p �q)�(p �q)] submatrix of second partial
derivatives of the minus log likelihood with respect to �1 (�2) and I12

and I21, the matrices of mixed second partial derivatives. The Wald test
statistic is

X 2
W � (b1 � �10)

t [I11(b)]�1(b1 � �10) (8.5.1)

where I11(b) is the upper q � q submatrix of I�1(b) (see Appendix B).
For large samples, this statistic has a chi-squared distribution with q
degrees of freedom under H0.

Let b2(�10) be the (partial) maximum likelihood estimates of �2 based
on the log likelihood (8.3.2) with the first q �’s fixed at a value �10.
The likelihood ratio test of H0 : �1 � �10 is expressed by

X 2
LR � 2�LL(b) � LL[�10, b2(�10)]� (8.5.2)

which has a large sample chi-squared distribution with q degrees of
freedom under H0.

To test H0 : �1 � �10 using the score statistic, let U1[�10, b2(�10)] be
the q � 1 vector of scores for �1, evaluated at the hypothesized value
of �10 and at the restricted partial maximum likelihood estimator for �2.
Then,

X 2
SC � U1[�10, b2(�10)]

t [I11(�10, b2(�10))]U1[�10, b2(�10)] (8.5.3)

which has a large sample chi-squared distribution with q degrees
of freedom under H0. We shall illustrate these tests in the following
example.

EXAMPLE 8.2 (continued) In section 8.4, a global test was performed on stage of
cancer in a study of 90 males diagnosed with cancer of the larynx.
Here we shall test the hypothesis that there is no difference in survival
between patients with different stages of disease, adjusting for the age
of the patient. Our test is based on the model with covariates Z1, Z2,
and Z3, which, as in section 8.2, are the indicators of stage II, III, and
IV disease, respectively, and a covariate Z4 which is the patient’s age
at diagnosis. The local hypothesis of interest is H0 : �1 � 0, �2 � 0,
�3 � 0 against the alternative hypothesis that, at least, one of these �’s
is nonzero.

To apply the score test or the likelihood ratio test, we need to estimate
the coefficient for age, �4, in the model, with �1 � �2 � �3 � 0. This
involves fitting a Cox model with only the single covariate, age. Fitting
this model, we find b4 � 0.023 with a log partial likelihood of �195.906.

Using this value of b4, we find that the score is

U(0, 0, 0, 0.023) � (�2.448, 3.0583, 7.4400, 0.000)t
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and that

I(0, 0, 0, 0.023) �

⎛

⎜
⎜
⎝

7.637 �2.608 �0.699 �24.730
�2.608 9.994 �0.979 �8.429
�0.699 �0.979 3.174 11.306

�24.730 �8.429 11.306 4775.716

⎞

⎟
⎟
⎠ .

The inverse of this information matrix is given by

I�1(0, 0, 0, 0.023) �

⎛

⎜
⎜
⎝

0.1529 0.0449 0.0448 0.0008
0.0449 0.1164 0.0446 0.0003
0.0448 0.0446 0.3404 �0.0005
0.0008 0.0003 �0.0005 0.0002

⎞

⎟
⎟
⎠ ,

so the score statistic is given by

X 2
SC � (�2.448, 3.0583, 7.4400)

⎛

⎝
0.1529 0.0449 0.0448
0.0449 0.1164 0.0446
0.0448 0.0446 0.3404

⎞

⎠

⎛

⎝
�2.448
3.0583
7.4400

⎞

⎠

� 20.577.

Comparing this quantity to a chi-squared distribution with three degrees
of freedom, we find that the p-value of the test of no stage effect is
0.0001.

To perform the Wald and likelihood ratio tests, we need to fit the full
model with all four covariates. Here, we find

bt � (0.1386, 0.6383, 1.6931, 0.0189)

with a partial log likelihood of �188.179. The likelihood ratio test of
H0 is

X 2
LR � 2[�188.179 � (�195.906)] � 15.454.

The p-value of this test is 0.0015.
To perform the Wald test, we need the information matrix based on

b. This matrix is

I(b) �

⎛

⎜
⎜
⎝

5.9987 �2.3913 �1.4565 �22.8634
�2.3913 10.9917 �3.3123 �14.0650
�1.4565 �3.3123 7.4979 25.6149

�22.8634 �14.0650 25.6149 5088.5378

⎞

⎟
⎟
⎠ .

The inverse of this matrix is the covariance matrix of b, given by

I�1(b) �

⎛

⎜
⎜
⎝

0.2137 0.0683 0.0690 0.0008
0.0683 0.1268 0.0682 0.0003
0.0690 0.0682 0.1783 �0.0004
0.0008 0.0003 �0.0004 0.0002

⎞

⎟
⎟
⎠ . (8.5.4)
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The Wald chi-squared statistic is given by

X 2
W � (0.1386, 0.6383, 1.6931)

⎛

⎝
0.2137 0.0683 0.0690
0.0683 0.1268 0.0682
0.0690 0.0682 0.1783

⎞

⎠

�1⎛

⎝
0.1386
0.6383
1.6931

⎞

⎠

� 17.63

which has a p-value of 0.0005.

Often it is desirable to perform tests involving one (or more) linear
combination(s) of the parameters. For the Wald test, one can form a
matrix of q linear combinations of parameters to test such hypotheses.
Here one forms a q � p matrix of full rank (q � p),

C �

⎛

⎜
⎜
⎜
⎝

ct
1

ct
2
...

ct
q

⎞

⎟
⎟
⎟
⎠

(8.5.5)

where ct
k � (ck1, ck2, . . . , ckp) is a vector of coefficients for the k th linear

combination of the betas, and the hypothesis to be tested is

H0 : C� � C�0. (8.5.6)

From large-sample theory,

(Cb � C�0)
t [CI�1(b)Ct ]�1(Cb � C�0) (8.5.7)

will have an asymptotic chi-squared distribution with q degrees of free-
dom.

EXAMPLE 8.2 (continued) In the previous example, we fitted a model to data on
patients with cancer of the larynx. In this example, we wish to test
the hypothesis H0 : �1 � 0. Note that the upper 1 � 1 submatrix of
V̂(b) is precisely the matrix I11(b) required in (8.5.1) and the Wald
chi-squared test is calculated as (0.1386)(0.2137)�1(0.1386) � 0.0898.
If we choose the linear combination approach, c � (1, 0, 0, 0) and
(Cb)t [CI�1(b)Ct ]�1Cb � 0.0898, the same result as above. Note that this
statistic, which has a large-sample chi-squared distribution with one
degree of freedom under H0, is testing for a difference in risk of death
between stage I and stage II cancer patients, adjusting for age. Here
the p-value of that test is 0.7644 which suggests no difference between
stage I and II patients.

Most statistics packages will produce an “Analysis of Variance”
(ANOVA) table describing all such univariate Wald tests along with
the estimated standard error and relative risk of the effects. Note that,
in such tables, the relative risk, exp(b), is the relative risk in a differ-
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TABLE 8.1
Analysis of Variance Table for Stage of the Laryngeal Cancer Patients, Utilizing
the “Breslow” Method of Handling Ties

Degrees of Parameter Standard Wald Relative
Variables Freedom Estimates Errors Chi Square p-Value risk

Z1: Stage II 1 0.1386 0.4623 0.09 0.7644 1.15
Z2: Stage III 1 0.6383 0.3561 3.21 0.0730 1.89
Z3: Stage IV 1 1.6931 0.4222 16.08 
0.0001 5.44
Z4: Age 1 0.0189 0.0143 1.76 0.1847 1.02

ence of one unit in the covariate values. So the relative risk for age
in Table 8.1 reflects the excess risk of dying for each additional year
of age at diagnosis. Similarly, the risks of death for a patient in Stages
II, III, and IV relative to a patient in Stage I are 1.15, 1.89, and 5.44,
respectively. The corresponding confidence intervals for the �i are
[bi � z1��� 2SE(bi), bi � z1��� 2SE(bi)] which may be obtained from the
ANOVA table and tables of the unit normal distribution. Confidence
intervals for the relative risk may be found by exponentiating the lower
and upper limits, respectively. For example, a 95% confidence interval
for the risk of death for patients in Stage IV relative to the risk of
death for patients in Stage I would be �exp[1.6931 � 1.96(0.4222)],
exp[1.6931 � 1.96(0.4222)]� � (2.38, 12.44). This means that, with ap-
proximately 95% confidence, exp(�3) will lie between 2.38 and 12.44,
so that we will reject the hypothesis that �3 � 0 when � � 0.05, as
indicated in the table (p-value 
 0.0001).

Often, one is interested in relative risks that may not appear directly
in the table. For example, the risk of death for patients in Stage III
relative to the risk of death for patients in Stage II is found by taking
exp(�2) � exp(�1) � exp(�2 � �1). The point estimate of this risk is
exp(0.6383 � 0.1386) � 1.65 which could also have been obtained
directly from the table as 1.89/1.15 (aside from round-off error). The
confidence interval for this relative risk cannot be obtained directly
from the table. One needs the standard error of b2 � b1 which means
we need the variance-covariance matrix of the bi ’s as given in (8.5.4).
Calculating Var(b2 � b1) � Var(b2) � Var(b1) � 2 Cov(b2, b1) � 0.1268 �
0.2137 � 2(0.0683) � 0.2039 we are led, by taking the square root,
to the standard error of (b2 � b1) � 0.4515. Now, we can find a 95%
confidence interval for �2 � �1 as [b2 � b1 � 1.96 SE(b2 � b1), b2 �
b1 �1.96 SE(b2 �b1)] � [0.4997�1.96(0.4515), 0.4997�1.96(0.4515)] �
(�0.3852, 1.3846). Exponentiating the lower and upper limit leads to the
approximate 95% confidence interval for exp(�2 � �1) as (0.68, 3.99).
Thus, this relative risk cannot be judged to differ from one.
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Both the Wald and the likelihood ratio test can be used to test the
hypothesis H0 : �1 � �2, �2 � �3 or, equivalently, H0 : �1 � �2 � �3.
This is a test of the hypothesis that, adjusted for age of the patient,
survival is the same for stage II, III and IV patients, but not necessarily
the same as for stage I patients. To perform the likelihood ratio test,
we fit the full model with all four covariates which has a log partial
likelihood of �188.179, and we fit a model with two covariates Z � �
Z1 � Z2 � Z3 and age (Z4). Here Z � is the indicator of stage II, III or
IV disease. The log partial likelihood from this model is �193.137. The
likelihood ratio chi-squared is 2[�188.179 � (�193.137)] � 9.916. For
large samples under H0, this statistic has a chi-squared distribution with
two degrees of freedom. (The degrees of freedom are the number of
parameters in the full model minus the number of parameters in the
reduced model.) The p-value of this test is 0.0070 which suggests that
survival is different for at least one of the three advanced stages.

To perform the Wald test, we define the C matrix with two contrasts,
namely,

C �

(
1 �1 0 0
0 �1 1 0

)

,

and apply (8.5.7). The resulting statistic has a value of 10.7324 with two
degrees of freedom for the large-sample chi square. The p-value of the
test is 0.0047, so the conclusion is the same as for the likelihood ratio
test.

Now we turn our attention to a discussion of interaction. The first
example is an example of an interaction between two categorical vari-
ables.

EXAMPLE 8.3 (continued) An alternative coding scheme for the data in section 1.7
discussed earlier is to code the variables as two main effect terms, race
and gender, and an interaction term. For example

Z1 � 1 if the subject is a female, 0 otherwise,

Z2 � 1 if the subject is black, 0 otherwise,

and

Z3 � Z1 � Z2 if the subject is a black female, 0 otherwise.

Again the full model will be

h(t | Z) � h0(t)exp��tZ� � h0(t)exp��1Z1 � �2Z2 � �3Z3�.
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Note that the parameters �t will have a different interpretation. The
estimates of the parameters are obtained as

b1 � �0.2484, b2 � 0.0888, b3 � 0.7455.

The complete analysis is in Table 8.2.

TABLE 8.2
Analysis of Variance Table for Race, Gender, and Interaction for the Kidney
Transplant Patients Utilizing the “Breslow” Method of Handling Ties

Degrees of Parameter Standard Wald Relative
Variables Freedom Estimates Errors Chi-sqaure p-Values Risk

Z1: Female 1 �0.2484 0.1985 1.57 0.2108 0.78
Z2: Black 1 �0.0888 0.2918 0.09 0.7609 0.92
Z3: Interaction 1 0.7455 0.4271 3.05 0.0809 2.11

Here the interest will center on the interaction term �3. However, it
is instructive to see that the relative risks for black male, white male,
and black female relative to white female are exp(�0.0888�(�0.2484))
� 1.17, exp(0 � (�0.2484)) � 1.28, exp(�0.2484 � 0.0888 � 0.7455 �
(�0.2484)) � 1.93, respectively, just as we obtained for the earlier cod-
ing. These are two different coding schemes; the first treats the samples
as four groups and the second treats the samples as a 2 � 2 factorial
where interest may center on the interaction between gender and race.
The interpretation of the two coding schemes are not inconsistent in
that they lead to the same relative risks.

Next, we shall consider an example of an interaction between a
continuous and a categorical variable.

EXAMPLE 8.2 (continued) The interaction between age and stage will involve three
product terms, namely, Z5 � Z1Z4; Z6 � Z2Z4 and Z7 � Z3Z4, where
Zi , i � 1, . . . , 4 are defined as before. Thus, for a 50-year-old man
with Stage II cancer, the three interaction variables will take on the
following values: Z5 � Z1Z4 � (1)(50) � 50; Z6 � Z2Z4 � (0)(50) � 0
and Z7 � Z3Z4 � (0)(50) � 0. Other combinations of age and stage can
be appropriately formed.

For this model, the estimates of the b’s are b1 � �7.9461, b2 �
�0.1225, b3 � 0.8470, b4 � �0.0026, b5 � 0.1203, b6 � 0.0114, and
b7 � 0.0137. The estimated variance-covariance matrix of the estimated
parameters, obtained as the inverse of the Fisher information matrix, is
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V̂(b) �

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

13.529 2.932 2.956 0.045 �0.191 �0.044 �0.045
2.932 6.093 2.957 0.044 �0.044 �0.091 �0.044
2.956 2.957 5.884 0.044 �0.044 �0.044 �0.086
0.045 0.044 0.044 0.001 �0.001 �0.001 �0.001

�0.191 �0.044 �0.044 �0.001 0.003 0.001 0.001
�0.044 �0.091 �0.044 �0.001 0.001 0.001 0.001
�0.045 �0.044 �0.086 �0.001 0.001 0.001 0.001

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

Table 8.3 gives the analysis of variance table for this model.

TABLE 8.3
Analysis of Variance Table for Stage, Age, and the Interaction of Stage by Age
for Laryngeal Cancer Patients, Utilizing the “Breslow” Method of Handling Ties

Degrees of Parameter Standard Wald
Variables Freedom Estimates Errors Chi Square p-Value

Z1: Stage II 1 �7.946 3.6782 4.67 0.03
Z2: Stage III 1 �0.1225 2.4683 0.003 0.96
Z3: Stage IV 1 0.8470 2.4257 0.12 0.73
Z4: Age 1 �0.0026 0.0261 0.01 0.92
Z5: Z1 � Z4 1 0.1203 0.0523 5.29 0.02
Z6: Z2 � Z4 1 0.0114 0.0375 0.09 0.76
Z7: Z3 � Z4 1 0.0137 0.0360 0.14 0.70

Table 8.3 suggests that the effect of stage II on survival may be
different for different ages because a local test of �5 � 0 may be
rejected (p-value � 0.02). Furthermore, it is suggested by the local tests
of �6 � 0 (p-value � 0.76) and �7 � 0 (p-value � 0.70) that the effects
of stages III and IV on survival may not be different for different ages.

To test the hypothesis that �6 � �7 � 0, we need the full �2 log
likelihood for all seven parameters which is 370.155 and the reduced
�2 log likelihood for the first five parameters which is 370.316. The
local likelihood ratio chi-squared statistic for testing that there is no
interaction between age and either stage III or IV disease (H0 : �6 �
�7 � 0) is the difference between the reduced �2 log likelihood for
the first five parameters minus the full �2 log likelihood for all seven
parameters � 370.316 � 370.155 � 0.161 with two degrees of freedom
(p-value � 0.92). This provides strong confirmation that the latter two
interaction terms may be dropped from the model and that the risks of
dying for patients with Stages III and IV relative to the risk of dying for
patients with Stage I does not depend on age.

In Table 8.4 the analysis of variance table for the reduced model with
only an interaction between age and stage II disease is presented.

This table suggests that there is a significant interaction between age
and stage II disease, that is, the relative risk of dying for a stage II
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TABLE 8.4
Analysis of Variance Table for Stage, Age, and One Interaction Term (Stage II by
Age) for Laryngeal Cancer Patients, Utilizing the “Breslow” Method of Handling
Ties

Degrees of Parameter Standard Wald
Variables Freedom Estimates Errors Chi Square p-Value

Z1:Stage II 1 �7.3820 3.4027 4.71 0.03
Z2:Stage III 1 0.6218 0.3558 3.05 0.08
Z3:Stage IV 1 1.7534 0.4240 17.11 
0.0001
Z4:Age 1 0.0060 0.0149 0.16 0.69
Z5: Z1 � Z4 1 0.1117 0.0477 5.49 0.02

patient of age Z4 as compared to a stage I patient of the same age
depends on that age. This relative risk is exp(�1��5Z4) � exp(�7.382�
0.1117 Age). For example, for a 76-year-old patient, this relative risk is
3.03 whereas for a 60-year-old it is 0.51. This linear combination of the
estimated coefficients not only leads one to an estimated relative risk
which depends on a patient’s age at diagnosis, but also allows us to test
the hypothesis that the the risk of dying for stage I and II patients is the
same for a given age, that is, we wish to test that the relative risk is one
or, equivalently, that �1 � �5(age) � 0. To test the hypothesis that this
linear combination of the parameters is zero, one forms the quadratic
form based on C � (1, 0, 0, 0, age)t . The resulting chi-squared statistic
is

X 2
W �

(b1 � b5 age)2

V (b1) � age2V (b5) � 2 age Cov(b1 b5)
,

which has a large-sample chi-squared distribution with one degree
of freedom. In this example, V (b1) � 11.5787, V (b5) � 0.00227
and Cov(b1, b5) � �0.1607, so for a 76-year-old person, X 2

W equals
(1.1072)2 � 0.2638 � 4.65 (p-value � 0.03). For a 60-year-old we have a
chi-square of 0.99 with a p-value of 0.32. This suggests that for “young”
ages there is little difference in survival between stage I and II patients
whereas, for older patients, those with stage II disease are more likely
to die.

Practical Notes
1. A Monte Carlo study (Li et al., 1996) of the small-sample proper-

ties of the likelihood ratio, Wald, and scores tests was performed
with respect to inference on a dichotomous covariate effect in a Cox
proportional hazards model, as assessed by size and power consid-
erations, under a variety of censoring fractions, sample sizes, and
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hazard distributions. The general conclusion of this study was that
the likelihood ratio test and Wald test performed similarly (although
the likelihood test ratio test slightly outperformed the Wald test for
smaller sample sizes). The score test was markedly inferior and is not
recommended because it tends to inflate the size of the test. These
conclusions held for a variety of censoring fractions.

2. Proc PHREG provides local tests based on the Wald statistic. Tests
for contrasts are available.

3. S-Plus provides building blocks of the likelihood ratio test by running
a series of models. Wald tests can be constructed using the estimated
covariance matrix and parameter estimates.

8.6 Discretizing a Continuous Covariate

As we saw in the previous section the Cox model can be applied when
the covariates are continuous or categorical. The interpretation of the
model, however, is simplest when the covariate is a binary. Here the
relative risk, exp{b}, is the ratio of the risk of the event for a patient
with the characteristic versus a patient without the characteristic. Often
a medical investigator would like to treat a continuous covariate, X ,
as a binary covariate by assigning a score of 1 to subjects with large
values of X and 0 to those with small values of X . This may be done to
assign patients to poor- and high-risk groups based on the value of X ,
to aid in making graphical plots of patients with good or bad prognosis
based on the binary covariate or simply to make the resulting relative
risk calculations simpler for others to understand.

In most cases a major problem is determining the value of the cut
point between high- and low-risk groups. In some cases this cut point
can be based on biological reasoning and this is the optimal strategy for
determination of the cut point. When no a priori information is available
a “data-oriented” method is sometimes used to choose the cut point.
These methods look at the distribution of the continuous covariate and
divide subjects into groups based on some predetermined statistic on
the covariate. For example, quite often subjects are divided into two
equal groups based on whether they are larger or smaller than the
sample median. These methods tend not to perform well.

In this section we will look at the “outcome-oriented” approach to this
problem. Here we seek a cut point for the covariate which gives us the
largest difference between individuals in the two data-defined groups.
That is, for a continuous covariate, X , we seek a binary covariate Z
defined by Z � 1 if X � C and 0 if X 
 C , which makes the outcomes
of the groups with Z � 1 as different from the group with Z � 0
as possible based on some statistic. We would also like to test the
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hypothesis that this covariate in its discretized version has no effect on
outcome. This test must be adjusted for the fact that we have biased
the outcome of the test by considering the cut point which gives the
maximum separation between the two groups.

The inference procedure we describe is due to Contal and O’Quigley
(1999) and is based on the log rank test statistic discussed in section
7.3. This statistic is the score statistic from the Cox model. For the
procedure we look at all possible cut points; and for each cut point,
Ck , we compute the log rank statistic based on the groups defined by
X being less than the cut point or greater than the cut point. That is,
at each event time, ti , we find the total number of deaths, di , and the
total number at risk, ri . We also find the total number of deaths with
X � Ck , d�

i and the total number at risk with X � Ck , r �
i . We then

compute the log rank statistic,

Sk �
D∑

i�1

[

d�
i � di

r �
i

ri

]

, (8.6.1)

where D is the total number of distinct death times.
The estimated cut point Ĉ is the value of Ck which yields the maxi-

mum | Sk |. At this cut point the Cox regression model is

h(t | X ) � h0(t)exp�bZ �,

where Z � 1 if X � Ĉ , 0 otherwise. The usual tests of H0 : b � 0
can not be used here since we picked the cut point Ĉ , which is most
favorable to rejecting H0. To compute the proper test statistic we need
first to compute the quantity s2 defined by

s2 �
1

D � 1

D∑

i�1

⎧
⎨

⎩
1 �

i∑

j�1

1
D � j � 1

⎫
⎬

⎭
(8.6.2)

The test statistic is then

Q �
max | Sk |
s
√

D � 1
(8.6.3)

which under the null hypothesis has a limiting distribution of the supre-
mum of the absolute value of a Brownian Bridge. For Q � 1 the p-value
of the test is approximately equal to 2exp��2Q 2�.

EXAMPLE 8.3 (continued) In section 1.7 we discussed a trial of 863 kidney transplant
patients. We would like to examine categorizing the patients into high-
or low-risk groups based on their age at transplant. We shall look at
separate analyses by race and sex.

Consider first the sample of 92 black males. Here the transplants
occurred at 43 distinct ages, which are potential candidates for a cut
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point. There were 14 distinct death times, which gives s2 � 0.8268. The
maximum value of | Sk | is at age 58 and Q � 0.8029, which gives a
p-value of at least 0.30 (see Theoretical Note 3). This suggests that age
is not related to outcome for black males.

The following table gives the results for other race and sex combina-
tions. It also gives the estimated relative risk of the high-risk (Age � cut-
point) group compared to the low-risk group. Also presented are the
results of a model which treats age continuously. Figure 8.2 depicts the
estimates | Sk | for each of the four sex and race combinations that
are used to find the estimated cut point. Here we find close agreement
between the discrete model for age and the continuous model.

TABLE 8.5
Age Cut Points for Kidney Transplant Patients

Discrete Model Continuous Model
for Age for Age

Race/Sex Cut Point Q p-value RR(95%CI) b(SE) p

Black/male 58 0.8029 � 0.30 2.3(0.5 � 10.4) 0.036(0.024) 0.14
White/male 41 3.1232 
 0.001 2.6(1.6 � 4.1) 0.060(0.010) 
 0.001
Black/female 48 0.9445 � 0.30 2.6(0.8 � 8.4) 0.034(0.026) 
 0.20
White/female 36 1.9310 0.001 4.4(1.9 � 10.6) 0.042(0.012) 
 0.001

Theoretical Notes

1. Wu (2001) shows that if a test is based on the best cut point without
some adjustment for multiple testing then this test rejects too often
when the null hypothesis is true.

2. The method discussed here, based on the score statistic, is due to
Contal and O’Quigley (1999). An alternative method, due to Jes-
persen (1986), is also based on the supremum of the absolute value
of the log rank tests. His variance is slightly different than that pre-
sented here and in a Monte Carlo study. Wu (2001) shows that
this statistic’s performance is not quite as good as the Contral and
O’Quigley statistic.

3. The limiting distribution of Q under the null hypothesis is the same
as the supremum of the absolute value of a Brownian bridge. The
p-value can be found by

P [Q � q ] � 2
�∑

j�1

(�1) j�1exp��2 j 2q2�, (8.6.4)
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Figure 8.2

which is approximately equal to 2exp��2q2� when q � 1. For q � 1
the p-value is at least 0.30.

Practical Notes

1. Estimation of the cut point can be performed by finding the cut point
which maximizes any of the three statistics discussed in section 8.4,
the Wald, Score, or likelihood ratio tests. All give approximately the
correct answer.

2. Basing inference on an unadjusted Cox model with a binary covariate
based on the cut-point model leads to tests which falsely reject the
null hypothesis of treatment effect too often. Some correction must
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be made to these tests to ensure that the overall level of inference is
correct.

3. Estimation of the cut point can be performed by using existing soft-
ware to identify the model which gives the maximum test statistic.
The test discussed here requires additional calculations.

4. The Martingale residual plot discussed in section 11.3 can be used
to check the appropriateness of discretizing a continuous covariate.

8.7 Model Building Using the Proportional
Hazards Model

In an earlier example, we explored the modeling of age and stage on
the survival of patients with laryngeal cancer. In many studies, a variety
of explanatory factors are measured and a major question in analyzing
such data sets is how to incorporate these factors in the modeling
procedure.

The distinction between factors and variables is sometimes a bit vague
although we shall refer to single-degree-of-freedom independent vari-
ables (such as age that is treated continuously) as either factors or
variables, whereas we shall refer to multiple-degree-of-freedom inde-
pendent variables (such as stage) as factors.

As mentioned at the beginning of this chapter, two distinctly different,
yet important, problems in regression are i) to adjust for potential con-
founding (or explanatory) variables when one has a specific hypothesis
in mind and the desire is to compare two or more groups with respect
to survival times or ii) to predict the distribution of the time to some
event from a list of explanatory variables with no particular prior hy-
pothesis in mind. Utilizing the proportional hazards model introduced
in section 2.6 and the testing procedures more fully explained in this
chapter, we shall detail the approaches used for these two situations
and illustrate them with two examples.

First, if one has a particular hypothesis in mind, then interest centers
upon that particular hypothesis and any model building will be done
to adjust that particular comparison (or comparisons) for other noncon-
trollable factors. Often, the other explanatory factors are simply viewed
as adjusters or confounders and interest in them matters only insofar as
they affect the assessment of the basic hypothesis. Examples of such
possible confounders are demographic variables, such as age, gender,
race, etc.; patient clinical variables at the onset of the clinical trial that
may reflect the patient’s condition, such as severity of disease, size of
tumor, physiological variables, etc.; and, in the case of transplantation,
characteristics of the donor.
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The starting point of the model building process for this problem is to
perform the global test of the primary hypothesis described in sections
8.3 and 8.4. This gives the investigator an impression of the simple,
unadjusted relationship between the basic hypothesized factor and sur-
vival. In searching for possible confounders, it is useful to examine the
simple relationship between the other explanatory factors and survival,
adjusted for the factor of interest because, if there is obviously no re-
lationship between a factor and survival, then, it is not likely to be a
confounder. Thus, the next step is to consider the relationship between
each of the other explanatory factors and survival, given that the factor
stated in the basic hypothesis is already in the model. These local tests
were described in detail in section 8.5. This process is continued by
exploring the relationships between each of the remaining explanatory
variables and survival, given that the factor stated in the basic hypoth-
esis and the one next most related to survival (assuming that the basic
variable is in the model) are in the model. If no significant confounders
are found at any step in this process, then we stop and base our infer-
ence about the primary hypothesis on the last model. This approach is
illustrated in the next example.

Another approach advocated as useful in model building, is one due
to Akaike (1973) which examines the likelihood and the number of
parameters included in the model. It attempts to balance the need for
a model which fits the data very well to that of having a simple model
with few parameters. More specifically, the Akaike information criterion
(AIC), examines the statistic

AIC � �2 Log L � kp,

where p is the number of regression parameters in the model, k is some
predetermined constant (which we shall take as 2), and L is the usual
likelihood function. This criterion, will decrease as variables are added
to the model. At some point, the criterion will increase which is a signal
that the added variables are unnecessary. The AIC is reminiscent of the
adjusted R2 in least-squares regression, in that both are attempting to
adjust the fit of the model by the number of parameters included. This
criterion will also be recorded in the following example.

EXAMPLE 8.5 Continuing the discussion of the study of acute leukemia patients being
given a bone marrow transplant, as introduced in section 1.3 and con-
tinued in Examples 4.2 and 7.5, we shall adjust the basic comparisons
of the three risk groups, acute lymphoblastic leukemia (ALL), low-risk
acute myeloctic leukemia (AML low-risk), and high- risk acute myeloctic
leukemia (AML high-risk), so as to reduce the possible bias which may
exist in making those comparisons (because this was not a randomized
clinical trial). Because this chapter discusses only fixed-time covariates,
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we will use only the fixed-time covariates as possible confounders in
making the comparisons among risk groups.

The first step in the model-building process is the global test of the
hypothesis of no difference in disease-free survival. As discussed in
section 8.2, we define two binary covariates (Z1 � 1 if AML low-risk:
Z2 � 1 if AML high-risk) for the factor of interest. The global Wald
chi-squared (with two degrees of freedom) statistic is 13.01 (p-value �
0.001). The AIC for this model is 737.29.

In this example, there are two sets of factors. The first set of factors is
measured only on the patient. These are Z3: waiting time from diagnosis
to transplant, Z4: indicator of FAB (French-American-British) classifica-
tion M4 or M5 for AML patients, and Z5: indicator of whether the pa-
tient was given a graft-versus-host prophylactic combining methotrexate
(MTX) with cyclosporine and possibly methylprednisilone. Tests involv-
ing these factors will have one degree of freedom.

The second set of factors is based on combinations of patient and
donor characteristics and cannot be described by a single covariate.
These factors are sex (Z6 � 1 if male donor, Z7 � 1 if male recipient,
and Z8 � Z6 � Z7 � 1 if donor and recipient are male), CMV status
(Z9 � 1 if donor is CMV positive, Z10 � 1 if recipient is CMV positive,
and Z11 � Z9�Z10 � 1 if donor and recipient are CMV positive), and age
(Z12 � donor age � 28, Z13 � recipient age � 28, and Z14 � Z12 � Z13).
Tests involving these factors will have three degrees of freedom.

Table 8.6 gives the local Wald tests for the six factors. Here, all models
include the covariates Z1 and Z2 for the factor of primary interest.
We find that the factor FAB classification (Z4) has the smallest Akaike
information criterion and the smallest p-value. This factor is added to
the model. Table 8.7 gives the local Wald tests of all other factors not
in the model with Z1, Z2, and Z4 in the model. From this table, we see
that the factor age (Z12, Z13, and Z14) should be added to the model.
Table 8.8 continues the model building by testing for factors not in the
model, adjusted for risk group, FAB class, and age. In this table, we

TABLE 8.6
Local Tests for Possible Confounders, Adjusted for Risk Groups

Degrees of Wald
Factor Freedom Chi-Square p-Value AIC

Waiting time (Z3) 1 1.18 0.277 737.95
FAB class (Z4) 1 8.08 0.004 731.02
MTX (Z5) 1 2.03 0.155 737.35
Sex (Z6, Z7, Z8) 3 1.91 0.591 741.44
CMV status (Z9, Z10, Z11) 3 0.19 0.980 743.10
Age (Z12, Z13, Z14) 3 11.98 0.007 733.18
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see that all the local tests are nonsignificant and that the AIC is larger
than that for the model with disease group, FAB class, and age alone.
Thus, the model building process stops and the final model is given in
Table 8.9. In this model, the local Wald test of the primary hypothesis
of no difference between risk groups has a p-value of 0.003, which
suggests that there is a difference in survival rates between at least two
of the risk groups after adjustment for the patient’s FAB class and for
the donor and patient’s age. Although we have used Wald tests in this

TABLE 8.7
Local Tests for Possible Confounders, Adjusted for Risk Groups and FAB Class

Degrees of Wald
Factor Freedom Chi-Square p-Value AIC

Waiting time (Z3) 1 1.18 0.277 731.68
MTX (Z5) 1 2.05 0.152 731.06
Sex (Z6, Z7, Z8) 3 0.92 0.820 736.11
CMV status (Z9, Z10, Z11) 3 0.02 0.999 737.00
Age (Z12, Z13, Z14) 3 13.05 0.004 725.98

TABLE 8.8
Local Tests for Possible Confounders, Adjusted for Risk Groups, FAB Class, and
Age

Degrees of Wald
Factor Freedom Chi-Square p-Value AIC

Waiting time (Z3) 1 0.46 0.495 727.48
MTX (Z5) 1 1.44 0.229 726.58
Sex (Z6, Z7, Z8) 3 1.37 0.713 730.61
CMV status (Z9, Z10, Z11) 3 0.58 0.902 731.42

TABLE 8.9
Analysis of Variance Table for the Final Model for Bone Marrow Transplants

Degrees of Wald
Freedom b SE(b) Chi-Square p-Value

Z1 1 �1.091 0.354 9.48 0.002
Z2 1 �0.404 0.363 1.24 0.265
Z4 1 0.837 0.279 9.03 0.003
Z12 1 0.004 0.018 0.05 0.831
Z13 1 0.007 0.020 0.12 0.728
Z14 1 0.003 0.001 11.01 0.001
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example, similar conclusions are obtained if the likelihood ratio statistic
is used throughout.

The second situation, where regression techniques are useful, is in
modeling the distribution of the time-to-some-event from a list of ex-
planatory variables with no particular prior hypothesis in mind. Here,
interest centers upon identifying a set of variables which will aid an
investigator in modeling survival or identifying a set of variables which
may be used in testing a hypothesis in some future study (hypothesis
generating).

The starting point of model building for this problem is to perform
separate global tests for each explanatory factor, as described in sec-
tions 8.3 and 8.4, so as to examine the simple relationship between
the explanatory variables and survival. The purpose in this step is to
ascertain which factor is most related to survival. The next step is to
consider the relationship between each of the other explanatory fac-
tors (not the one identified as the most significant one) and survival,
given that the factor identified as the most significant is already in the
model. These local tests are also described in detail in section 8.5. This
process is continued by exploring the relationship between each of the
remaining explanatory factors and survival, assuming that the variable
identified as the most significant one and the one next most related
to survival (given the first variable is in the model) are already in the
model. The p-value approach requires a significance level for entering
variables into the model. This approach is illustrated in the next ex-
ample. Furthermore, the Akaike information criterion may be used to
assess the extent to which the investigator wishes to include variables
into the model. This approach is especially useful for deciding how
many variables to include.

EXAMPLE 8.6 In section 1.14 (see Example 5.4), a data set including times to weaning
of breast-fed infants was described. In this example, we wish to find
a model predictive of the distribution of time to weaning. Fixed-time
factors measured by questionaire include race of mother (black, white,
or other), poverty status indicator, smoking status of mother at birth of
child, alcohol drinking status of mother at birth of child, age of mother
at child’s birth, education of mother at birth of child (less than high
school, high school graduate, some college), and lack of prenatal care
indicator (mother sought prenatal care after third month or never sought
prenatal care).

In building a model, we are mainly interested in finding factors which
contribute to the distribution of the time to weaning. Because there are
are many ties in this data set, we shall use the “discrete” likelihood
for handling ties. Table 8.10 contains the results of the single-factor
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TABLE 8.10
Global Tests for Each Factor Potentially Related to Weaning Time

Degrees of Wald
Factor Freedom Chi-Square p-Value AIC

Race of mother 2 8.03 0.018 5481.67
Poverty at birth 1 0.71 0.399 5486.69
Smoking 1 10.05 0.002 5477.61
Alcohol 1 2.01 0.157 5485.48
Age 1 0.15 0.698 5487.26
Education 2 6.95 0.031 5482.36
No prenatal care 1 0.16 0.687 5487.25

TABLE 8.11
Local Tests for Each Factor Potentially Related to Weaning Time, Adjusted for
Mother’s Smoking Status

Degrees of Wald
Factor Freedom Chi-Square p-Value AIC

Race of mother 2 12.38 0.002 5469.71
Poverty at birth 1 1.42 0.234 5478.17
Alcohol 1 1.04 0.307 5478.59
Age 1 0.01 0.954 5479.61
Education 2 3.87 0.145 5477.71
No prenatal care 1 0.02 0.888 5479.59

Wald tests. Race of mother, mother’s smoking status, and education
of mother are all significantly related to the time to weaning in the
simple regressions. The most significant factor, mother’s smoking status,
is added to the model, and local tests for the remaining factors are given
in Table 8.11. From this table, we add the race factor to the model and
perform the local tests for the remaining factors (Table 8.12). In Table
8.12, we see that all the remaining risk factors are not significant at a 5
percent significance level. If model selection criterion is based on the
p-value (
 0.05) of the local tests, we would stop at this point and take,
as our final model, one with two factors, smoking status and race. The
ANOVA Table for this model is given in Table 8.13A. Model building
based on the AIC, however, suggests adding the poverty factor to the
model because the AIC with this factor is smaller than that without the
factor. Proceeding based on the AIC, we find that the AIC is increased
when any other factor is added to a model with race, smoking, and
poverty included as factors (table not shown). The ANOVA table for the
final model, based on the AIC, is in Table 8.13B.
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TABLE 8.12
Local Tests for Each Factor Potentially Related to Weaning Time, Adjusted for
Mother’s Smoking Status and Race

Degrees of Wald
Factor Freedom Chi-Square p-Value AIC

Poverty at birth 1 2.99 0.084 5468.65
Alcohol 1 1.16 0.281 5470.58
Age 1 0.19 0.660 5471.51
Education 2 2.08 0.353 5471.60
No prenatal care 1 0.03 0.854 5471.67

TABLE 8.13A
ANOVA Table for the Time to Weaning Based on the p-Value Approach

Degrees of Wald
Freedom b SE(b) Chi-Square p-Value

Smoking 1 0.308 0.081 14.34 
0.001
Race–Black 1 0.156 0.111 1.98 0.159
Race–Other 1 0.350 0.102 11.75 
0.001

TABLE 8.13B
ANOVA Table for the Time to Weaning, Based on the AIC Approach

Degrees of Wald
Freedom b SE(b) Chi-Square p-Value

Smoking 1 0.328 0.082 15.96 
0.001
Race–Black 1 0.184 0.112 2.70 0.100
Race–Other 1 0.374 0.103 13.18 
0.001
Poverty 1 �0.163 0.094 2.99 0.084

Practical Notes
1. In the example, the stepwise model building was based on the Wald

statistic. The choice of this statistic is arbitrary and either the score
or likelihood ratio statistic could be used. For data sets with a large
number of covariates, the score statistic may be more efficient in
early steps of this process because high-dimensional models need
not be fit at each step. Automated procedures which can be used,
when all factors are a single covariate, are available in SAS using
either the score or Wald statistic.
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2. The model selection procedure discussed here is a forward selection
procedure. An alternative model building procedure is a backward
selection procedure which starts with the model with all factors, and,
at each step, removes the least significant factor from the model. A
stepwise model selection procedure combines the forward and back-
ward procedures. All three procedures for single covariate factors are
available in SAS.

3. The choice of k in the AIC reflects how conservative one wishes to
be in model building (larger values of k will include fewer variables).

8.8 Estimation of the Survival Function

Once we have obtained estimates of the risk coefficients � from a
proportional hazards regression model, it may be of interest to estimate
the survival probability for a new patient with a given set of covariates
Z0. The estimator of the survival function is based on Breslow’s estimator
of the baseline cumulative hazard rate derived in the Theoretical Notes
of section 8.3.

To construct this estimator we, first, fit a proportional hazards model
to the data and obtain the partial maximum likelihood estimators b and
the estimated covariance matrix V̂(b) from the inverse of the information
matrix. Let t1 
 t2 
 	 	 	 
 tD denote the distinct death times and di be
the number of deaths at time ti . Let

W (ti ; b) �
∑

j�R(ti )

exp

(
p∑

h�1

bhZ jh

)

. (8.8.1)

The estimator of the cumulative baseline hazard rate H0(t) �
∫ t

0 h0(u) du
is given by

Ĥ 0(t) �
∑

ti �t

di

W (ti ; b)
, (8.8.2)

which is a step function with jumps at the observed death times. This
estimator reduces to the Nelson–Aalen estimator of section 4.2, when
there are no covariates present, and can be derived naturally using a
profile likelihood construction (see Theoretical Note 2 of section 8.3).
The estimator of the baseline survival function, S0(t) � exp[�H0(t)] is
given by

Ŝ0(t) � exp[�Ĥ 0(t)]. (8.8.3)

This is an estimator of the survival function of an individual with a
baseline set of covariate values, Z � 0. To estimate the survival function
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for an individual with a covariate vector Z � Z0, we use the estimator

Ŝ (t | Z � Z0) � Ŝ0(t)
exp(bt Z0). (8.8.4)

Under rather mild regularity conditions this estimator, for fixed t ,
has an asymptotic normal distribution with mean S (t | Z � Z0) and a
variance which can be estimated by

V̂ [Ŝ (t | Z � Z0)] � [Ŝ (t | Z � Z0)]
2[Q 1(t) � Q 2(t ; Z0)]. (8.8.5)

Here,

Q 1(t) �
∑

ti �t

di

W (ti , b)2
(8.8.6)

is an estimator of the variance of Ĥ 0(t) if b were the true value of �.
Here

Q 2(t ; Z0) � Q3(t ; Z0)
t V̂ (b)Q3(t ; Z0) (8.8.7)

with Q3 the p-vector whose k th element is defined by

Q 3(t, Z0)k �
∑

ti �t

[
W (k )(ti ; b)
W (ti ; b)

� Z0k

] [
di

W (ti , b)

]

, k � 1, . . . , p (8.8.8)

where

W (k )(ti ; b) �
∑

j�R(ti )

Zjk exp(btZ j )

Q 2 reflects the uncertainty in the estimation process added by estimating
�. Here, Q 3(t, Z0) is large when Z0 is far from the average covariate in
the risk set. Using this variance estimate, pointwise confidence intervals
for the survival function can be constructed for S (t | Z � Z0) using
the techniques discussed in section 4.3. Again, the log-transformed or
arcsine-square-root-transformed intervals perform better than the naive,
linear, confidence interval.

EXAMPLE 8.2 (continued) We shall estimate the survival functions for survival after
detection of laryngeal cancer based on the Cox regression model sum-
marized in Table 8.1. Here, we wish to produce a curve for each of
the four stages of disease. Because an adjustment for age is included in
our model, we shall provide an estimate for a sixty-year-old male. The
baseline survival function S0, is estimated directly from Eqs. (8.8.2) and
(8.8.3). The estimate of survival for a stage I cancer patent (of age 60 at
diagnosis) is S0(t)exp(0.0189�60); for a stage II patient S0(t)exp(0.0189�60�0.1386);
for a stage III patient S0(t)exp(0.0189�60�0.6383); and for a stage IV patient
S0(t)exp(0.0189�60�1.6931). Figure 8.3 shows the estimates of the four survival
curves.



8.8 Estimation of the Survival Function 285

Years

E
st

im
at

ed
 S

ur
vi

va
l F

un
ct

io
n,

 S
(t

)

0 2 4 6 8

0.0

0.2

0.4

0.6

0.8

1.0

Figure 8.3 Estimated survival functions for a 60 year old larynx cancer pa-
tient. Stage I Cancer (———) Stage II Cancer (------) Stage II Cancer (— — —)
Stage IV (– – – – –)

At five years, the estimated survival probabilities for a 60-year-
old are 0.7031 for a Stage I patient, 0.6672 for a Stage II patient,
0.5132 for a Stage III patient, and 0.1473 for a Stage IV patient. Using
Eqs. (8.8.5)–(8.8.8), we find that the standard errors of these estimators
are 0.0737, 0.1059, 0.0949, and 0.0996, respectively. At 5 years, 95%
confidence intervals for the survival function, based on the log transfor-
mation (4.3.2), are (0.5319, 0.8215), (0.4176, 0.8290), (0.3171, 0.6788),
and (0.0218, 0.3834), for stages I, II, III, and IV, respectively.

Practical Notes
1. An alternative estimator of the baseline hazard rate has been pro-

posed by Kalbfleisch and Prentice (1973). When there is at most a
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single death at each time, this estimator is given by

H̃ 0(t) �
∑

ti �t

[

1 �

(

1 �
�i exp(btZi)

W (ti ; b)

)exp(�bt Zi )
]

.

When there are ties between the death times, then, the estimator is
found numerically by solving a system of equations. This statistic is
used in SAS.

2. Alternative estimators of the baseline survival function are the prod-
uct integral of the Breslow estimator of the cumulative hazard rate,
which, in the case of no tied deaths, is given by

Ŝ2(t | 0) �
∏

ti �t

(

1 �
�i

W (ti ; b)

)

,

or the product integral of the Kalbfleisch and Prentice estimator (see
Note 1 above)

Ŝ3(t | 0) �
∏

ti �t

[

1 �
�i exp(btZi)

W (ti ; b)

]exp(�bt Zi )

.

Each of these can be used in Eq. (8.8.4) to obtain an estimator of the
survival for an individual with a covariate vector Z0. An alternative
estimator to S (t | Z0) is given by first adjusting Ĥ 0(t) by the factor
exp(btZ0) and, then, constructing a product-limit estimator based on
Ĥ (t | Z0) � Ĥ (t) exp(btZ0) given by

Ŝ4(t | Z0) �
∏

ti �t

[

1 �
�i exp(btZ0)

W (ti ; b)

]

Under rather mild regularity conditions, each of the four estimators
of S (t | Z0) is asymptotically normal with the correct mean and a
variance estimated by (8.8.5).

The estimators S2 and S4 can take negative values. This is only a
problem when the risks sets are small in the right-hand tail of the
estimates. Typically, this happens when one is attempting to predict
survival for a covariate value which is extreme as compared to the
covariate values of those remaining at risk when the prediction is
being made. The negative value is a signal to the investigator that
predictions for this covariate value should not be made in this region.

3. The SAS procedure PHREG uses the Kalbfleisch and Prentice estima-
tor described in Note 1. A recent Monte Carlo study by Andersen and
Klein (1996) shows that this estimator has a larger bias and mean-
squared error than the other three estimators of survival. Breslow’s
estimator is also available in SAS.

4. S-Plus has both the Breslow and Kalbfleisch and Prentice estimator
available in the function surv.fit.
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5. As was the case for confidence intervals for the survival function
discussed in Chapter 4, Andersen and Klein (1996) show that the log-
transformed confidence interval for S (t | Z0) seems to work best, and
the arcsine-square-root confidence interval is a close second. The
routine use of the linear confidence interval is not recommended.

6. Based on an extensive Monte Carlo study by Andersen and Klein
(1996), it can be shown that the estimators S2 and S4 have the small-
est bias and are recommended. The estimator S3, available in SAS,
seems to perform quite poorly for continuous and mixed, continuous
covariate models.

8.9 Exercises

8.1 In section 1.10, times to death or relapse (in days) are given for 23 non-
Hodgkin’s lymphoma (NHL) patients, 11 receiving an allogenic (Allo)
transplant from an HLA-matched sibling donor and 12 patients receiving
an autologous (Auto) transplant. Also, data on 20 Hodgkin’s lymphoma
(HOD) patients, 5 receiving an allogenic (Allo) transplant from an HLA-
matched sibling donor and 15 patients receiving an autologous (Auto)
transplant is given.

(a) Treating NHL Allo as the baseline hazard function, state the appro-
priate coding which would allow the investigator to test for any
difference in survival functions for the four groups, treating them
as four independent groups.

(b) Treating NHL Allo as the baseline hazard function, state the ap-
propriate coding which would allow the investigator to test for an
interaction between type of transplant and disease type using main
effects and interaction terms.

(c) Suppose that we have the following model for the hazard rates in
the four groups:

h(t | NHL Allo) � h0(t)

h(t | HOD Allo) � h0(t)exp(2)

h(t | NHL Auto) � h0(t)exp(1.5)

h(t | HOD Auto) � h0(t)exp(.5)

What are the risk coefficients, �i , i � 1, 2, 3, for the interaction
model in part b ?

8.2 In section 1.6 a study is described which evaluates a protocol change in
disinfectant practices in a large midwestern university medical center.
Of primary interest in the study is a comparison of two methods of
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body cleansing. The first method, used exclusively from January 1983
to June 1984, consisted of a routine bathing care method (initial sur-
face decontamination with 10% povidone-iodine followed with regular
bathing with Dial soap). From June 1984 to the end of the study pe-
riod in December 1985, body cleansing was initially performed using 4%
chlorhexidine gluconate. Eighty-four patients were in the group who re-
ceived the new bathing solution, chlorhexidine, and 70 patients served
as the control group who received routine bathing care, povidone-
iodine. Included in the data set is a covariate that measures the total
surface area burned. The data is reported on our web site.

State the appropriate coding which would allow the investigator to
test for:

(a) any difference in survival functions for the two groups.

(b) any difference in survival functions for the two groups adjusting for
total area burned.

8.3 In section 1.11, a study was conducted on the effects of ploidy on the
prognosis of patients with cancer of the tongue. Tissue samples were
examined to determine if the tumor had a aneuploid or diploid DNA
profile. Times to death for these two groups of patients are recorded
in Table 1.6. To analyze this data create a single indicator variable, Z ,
which reflects the type of tumor.

(a) Find the p-value of a test of the hypothesis of no effect of ploidy on
survival using the score test and the Breslow method of handling
ties.

(b) Estimate � and its standard error using the Breslow method of
handling ties. Find a 95% confidence interval for the relative risk of
death of an individual with an aneuploid tumor as compared to an
individual with a diploid tumor.

(c) Repeat (a) using the likelihood test. Compare your answer to that
of part a.

(d) Repeat (a) using the Wald test. Compare your answer to those in
parts a and c.

8.4 In Exercise 7 of Chapter 7, three different treatments were administered
to rats who had F98 glioma cells implanted into their brains. The data
for the three groups of rats lists the death times (in days) in that exercise.
Create two dummy variables, Z1 � 1 if animal is in the “radiation only”
group, 0 otherwise; Z2 � 1 if animal is in the “radiation plus BPA”
group, 0 otherwise. Use the Breslow method of handling ties in the
problems below.

(a) Estimate �1 and �2 and their respective standard errors. Find a
95% confidence interval for the relative risk of death of an animal
radiated only compared to an untreated animal.
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(b) Test the global hypothesis of no effect of either radiation or radia-
tion plus BPA on survival. Perform the test using all the three tests
(Wald, likelihood ratio, and score test).

(c) Test the hypothesis that the effect a radiated only animal has on
survival is the same as the effect of radiation plus BPA (i.e., Test
H0 : �1 � �2).

(d) Find an estimate and a 95% confidence interval for the relative risk
of death for a radiation plus BPA animal as compared to a radiated
only animal.

(e) Test the hypothesis that any radiation given as a treatment (either
radiation alone or with BPA) has a different effect on survival than
no radiation. Use the likelihood ratio test.

(f) Repeat part (e) using a Wald test.

8.5 Using the data set in Exercise 1, using the Breslow method of handling
ties,

(a) Analyze the data by performing a global test of no effect of group
as defined in Exercise 8.1(a) on survival. Construct an ANOVA table
to summarize estimates of the risk coefficients and the results of the
one degree of freedom tests for each covariate in the model.

(b) Repeat part (a) using the coding as described in Exercise 8.1(b).
Furthermore, test the hypothesis of disease type by transplant in-
teraction using a likelihood ratio rest based on this coding. Repeat
using the Wald test.

(c) Find point estimates and 95% confidence intervals for the relative
risk of death for an NHL Auto transplant patient as compared to an
NHL Allo transplant patient.

(d) Find the p-value of a test of the hypothesis that the hazard rates
are the same for HOD Allo transplants and NHL Allo patients, using
the Wald test. Repeat a similar test for Auto patients.

(e) Test the hypothesis, using the Wald test, that the hazard rates for
Auto transplant and Allo transplant patients are the same for each
disease group against the alternative that the hazard rates for Auto
transplant and Allo transplant patients for at least one group are dif-
ferent using a two-degree of freedom test of H0 : h(t | NHL Allo) �
h(t | NHL Auto) and H0 : h(t | HOD Allo) � h(t | HOD Auto).

8.6 In section 1.13, data on the time to hospitalization of pneumonia in
young children was discussed. The data is presented on our web site.
In the sample there were 3,470 annual personal interviews. An investi-
gator is interested in assessing race, poverty status, and their interaction
on time to hospitalization of pneumonia. Use the discrete method for
handling ties to answer the following questions.

(a) Estimate the parameters of your model and their standard errors.
Construct and interpret an “ANOVA” table for this model.
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(b) Provide point estimates and 95% confidence intervals for the relative
risk of hospitalization for pneumonia for a person raised in poverty
relative to a person not raised in poverty for each race.

(c) Test that blacks raised in poverty have a different hospitalization
for pneumonia rate than whites not raised in poverty.

8.7 In section 1.6 a study is described which evaluates the relationship
of various covariates to staphylococcus infection in a large midwest-
ern university medical center (see Exercise 8.2). One of the covariates
recorded in the data set is the total surface area burned. Use Breslow’s
method for handing ties to answer the following questions.
(a) Find the optimal cutpoint to categorize patients into high- or low-

risk groups for staphylococcus infection based on their total surface
area burned for each disinfectant practice.

(b) Test the hypothesis that there is a difference in times to infection for
high- and low-risk groups using the cutpoints obtained in (a). Using
the cut points obtained in (a) find the relative risk of the high-risk
group compared to the low-risk group for each disinfectant practice.

(c) Analyze the data using total surface area burned as a continuous
variable. Give the parameter estimate, standard error, and relative
risk for total surface area burned. Compare with the answer in (b).

8.8 In section 1.3, data gathered from a multicenter trial of patients in
three groups (ALL, AML low-risk, and AML high-risk) was followed
after transplantation until relapse, death, or end of study. One of the
covariates recorded in the data set is the waiting time to transplant (in
days). Use Breslow’s method for handling ties in the following.
(a) You are asked to categorize patients into high- or low-risk groups

for disease-free survival based on the waiting time to transplant
variable for the ALL group.

(b) Analyze the data using waiting time to transplant as a categorized
variable using the cut point obtained in (a). Give the parameter
estimate, standard error, and relative risk of the high-risk group
compared to the low-risk group for the ALL group.

(c) Analyze the data using waiting time to transplant as a continuous
variable. Give the parameter estimate, standard error, and relative
risk for waiting time to transplant for the ALL group. Compare with
answer in (b).

8.9 Use the Breslow method for handling ties and the Wald test in the
following.
(a) Using the data set in section 1.6, test the hypothesis that the dis-

tributions of the times to staphylococcus infection are the same in
the two disinfectant groups.

(b) Test the hypothesis that the distributions of the times to staphylo-
coccus infection are the same in the two disinfectant groups adjust-
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ing for the total area burned, Z4. Compare your results to those in
part a.

(c) Also available in the data set is information on other factors that may
be associated with the timing of staphylococcus infection. Some of
these factors are gender, race, total surface area burned, and type
of burn (chemical, scald, electrical, flame). For each factor create
a set of fixed-time covariates. Test the hypothesis that the times
to staphylococcus infection are the same for the two disinfectant
groups using a model which adjusts for each of these factors.

(d) Since one is primarily interested in comparing the two bathing so-
lutions, interest will center upon building a model with the view
of testing that particular comparison adjusting for the other non-
controllable factors in part (c). Using a forward selection approach,
build such a model using the p-value approach. Based on the final
model, test the hypothesis of primary interest.

8.10 In section 1.3, several event times are described for patients receiving
a bone marrow transplant for leukemia. Consider the time to devel-
opment of acute graft-versus-host disease (AGVHD). As a prophylactic
treatment, patients at two of the hospitals were given a treatment com-
bining methotrexate (MTX) with cyclosporine and possibly methylpred-
nisilone. Patients at the other hospitals were not given methotrexate but
rather a combination of cyclosporine and methylprednisilone. Of pri-
mary interest in studying AGVHD is a test of the effectiveness of the
MTX regime to prevent AGVHD. Use Breslow’s method for handling
ties to answer the following exercises.

(a) Using an appropriate Cox model test the hypothesis of no difference
in the rate of development of AGVHD between MTX and no MTX
patients. Find a point estimate and a 95% confidence interval for
the relative risk of AGVHD for patients on the MTX protocol as
compared to those not given MTX.

(b) Patients were also grouped into risk categories based on their sta-
tus at the time of transplantation. These categories were as follows:
acute lymphoblastic leukemia (ALL) with 38 patients and acute mye-
loctic leukemia (AML). The latter category was further subdivided
into low-risk—first remission (54 patients) and high-risk—second
remission or untreated first relapse or second or greater relapse or
never in remission (45 patients). Test the hypothesis of interest (no
effect of MTX on development of AGVHD) adjusting for the three
disease categories.

(c) Test for the possibility of an interaction effect on AGVHD between
the disease categories and the use MTX.

(d) Using the factors of age, sex, CMV status, FAB class, waiting time
to transplant, and disease category as defined in Example 8.5, find
the best model to test the primary hypothesis of no MTX effect on



292 Chapter 8 Semiparametric Proportional Hazards Regression with Fixed Covariates

the occurrence of AGVHD. Test the primary hypothesis and find an
estimate of the relative risk of occurrence of AGVHD for an MTX
patient as compared to a non-MTX patient.

8.11 In section 1.13, data gathered from annual personal interviews con-
ducted for the National Longitudinal Survey of Youth (NLSY) from 1979
through 1986 was presented. This data was used to study whether or
not the mother’s feeding choice protected the infant against hospitalized
pneumonia in the first year of life. Ages of young children at the time
they were hospitalized with pneumonia were recorded as well as the
observed ages of those infants that were not hospitalized with pneu-
monia during the study period. The data is available from our web site,
which can be reached via the authors’ pages at http://www.springer-
ny.com. Use the discrete method for handling ties in the following.

(a) Consider the dummy variable Z � 1 if infants were breast fed at
birth, 0 if infants were never breast fed, and test the hypothesis
H0 : � � 0, i.e., the survival functions for the two types of breast
feeding are equal, using the score, likelihood ratio, and Wald tests.
Find the estimate of �, b, the standard error of b, and the relative
risk using the Wald test.

(b) Also available in the data set is information on other factors that may
be associated with the timing of hospitalized pneumonia. These
factors are age of the mother at the infant’s birth, rural-urban en-
vironment of the mother, use of alcohol by the mother (no drinks,
less than one drink, 1–2 drinks, 3–4 drinks, or more than 4 drinks
per month), mother’s cigarette use (none, less than 1 pack/day, 1 or
more pack/day), region of country (northeast, north central, south,
or west), birthweight of infant (less the 5.5 lbs or 5.5 lbs or more),
poverty status of mother (yes/no), race of mother (white, black,
or other), or number of siblings of infant. For each factor create a
set of fixed-time covariates. Test the hypothesis that the times to
hospitalized pneumonia are the same for the two feeding groups
adjusting for each of these factors in a separate model using the
Wald test.

(c) Since one is primarily interested in comparing the two types of
breast feeding, interest will center upon building a model with the
view of testing the particular comparison of interest adjusting for
the other noncontrollable fixed covariates in part b. Build such a
model using the AIC approach and the Wald test.

(d) Summarize your findings from this data set.

8.12 A major problem in certain sub-populations is the occurrence of sexu-
ally transmitted diseases (STD). Even if one ignores the lethal effects of
the acquired immune deficiency syndrome, other STD’s still have a sig-
nificant impact on the morbidity of the community. Two of these STD’s
are the focus of this investigation—gonorrhea and chlamydia. Both of
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these diseases can be prevented and effectively treated. The purpose
of the study described in section 1.12 is to identify those factors which
are related to time until reinfection by either gonorrhea or chlamydia
given a patient with an initial infection of gonorrhea or chlamydia. The
data for this study is available from our web site.

Possible factors related to reinfection are the individual’s race
(black/white), marital status (divorced/separated, married, single), age
at time of initial infection, years of schooling, initial infection type (gon-
orrhea, chlamydia, both), number of partners within the last 30 days,
oral sex within the last year, rectal sex within the past year, presence of
symptoms (abdominal pain, discharge, dysuria, itch, lesion, rash, lymph
node involvement), and condom use. If the factors that are related to a
greater risk of reinfection can be identified, then interventions could be
targeted to those individuals who are at greatest risk for reinfection. Use
regression techniques to find those factors which are most predictive
of the distribution of the time until reinfection from this list of fixed
explanatory factors with no particular prior hypothesis in mind. Build
such a model using the p-value approach. Use the Breslow method for
handling ties and the Wald test in the model building.

8.13 Find 95% confidence intervals for the survival functions for the two
bathing solutions at 20 days for a patient with 25% of total surface area
of body burned, using data in Section 1.6.

8.14 (a) Estimate the survival functions of the time to AGVHD for the MTX
and no MTX treatment groups discussed in Exercise 8.10, adjusted
for disease category. Provide a separate estimate for each disease
group.

(b) Find 95% confidence intervals for the survival functions for the two
patient treatment groups at 80 days for AML high-risk patients.



9
Refinements of the

Semiparametric
Proportional Hazards

Model

9.1 Introduction

In Chapter 8, we modeled the hazard function for an individual as
a function of fixed-time covariates. These are explanatory variables
recorded at the start of the study whose values are fixed throughout the
course of the study. For instance, in Example 8.5, where acute leukemia
patients were given a bone marrow transplant, we considered the three
risk groups, donor age, recipient age, and several other variables, as
fixed-time covariates. The basic interest there was to evaluate the rela-
tionship of the risk groups to the hazard of relapse or death, controlling
for possible confounding variables which might be related to relapse or
death. As is typical in many survival studies, individuals are monitored
during the study, and other explanatory variables are recorded whose
values may change during the course of the study. Some of these vari-

295
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ables may be instrumental in predicting survival and need to be taken
into consideration in evaluating the survival distribution. Such variables
which change over time are called time-dependent variables. A covari-
ate that takes on the value 0 until some intermediate event occurs when
it becomes 1 is an example of a discrete-time dependent covariate. It is
also possible to include time-dependent covariates that are essentially
continuous where the value of the covariate is a series of measurements
of some explanatory characteristic. Examples of this type of covariate
might be blood pressure, cholesterol, body mass index, size of the tu-
mor, or rate of change in the size of the tumor recorded at different
times for a patient. Section 9.2 will present methods which detail how
these variables may be evaluated for their impact on survival.

As before, let X denote the time to some event and Z(t) �
[Z1(t), . . . , Zp(t)]t denote a set of covariates or risk factors at time t
which may effect the survival distribution of X . Here the Zk (t)’s may be
time-dependent covariates, whose value changes over time or they may
be constant (or fixed) values known at time 0, as we have discussed in
Chapter 8. For time-dependent covariates, we assume that their value
is predictable in the sense that the value of the covariate is known at
an instant just prior to time t . The basic model due to Cox (1972) is as
in (8.1.2) with Z replaced by Z(t) and, for the commonly used model,

h[t | Z(t)] � ho(t) exp[�tZ(t)] � ho(t) exp

[
p∑

k�1

�k Zk (t)

]

. (9.1.1)

A common use of time-dependent covariates is for testing the pro-
portional hazards assumption. Here a new covariate is created which
incorporates a time variable into the relative risk formulation. Section
9.2 discusses details of this application of time-dependent covariates.

If the proportional hazard assumption is violated for a variable, then,
one approach to dealing with this problem is to stratify on this variable.
Stratification fits a different baseline hazard function for each stratum, so
that the form of the hazard function for different levels of this variable
is not constrained by their hazards being proportional. It is assumed,
however, that the proportional hazards model is appropriate within
strata for the other covariates. Usually one assumes the same �’s for
the other variables in each stratum. Details of this approach are given
in section 9.3.

The basic proportional hazards model can be extended quite easily
to allow for left-truncated survival data. These extensions are discussed
in section 9.4. In section 9.5 we see how these methods can be used
to analyze multistate survival data. By combining the notions of time-
dependent covariates along with left-truncated regression models, it is
possible to develop predicted survival probabilities for a patient, given
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the patient’s history at some time. This prediction changes as more and
more of the patient’s history is observed. This approach is illustrated by
the bone marrow transplant experiment first presented in section 1.3.

9.2 Time-Dependent Covariates

In this section, our data, based on a sample of size n , consists of
the triple [Tj , � j , [Z j (t), 0 � t � Tj ]], j � 1, . . . , n where Tj is the
time on study for the j th patient, � j is the event indicator for the j th
patient (� j � 1 if event has occurred, 0 if the lifetime is right-censored)
and Z j(t) � [Zj1(t), . . . , Z jp(t)]t is the vector of covariates for the j th
individual. For the covariate process, we assume that the value of Z j (t)
is known for any time at which the subject is under observation. As in
Chapter 8, we assume that censoring is noninformative in that, given
Z j (t), the event and censoring time for the j th patient are independent.
If the event times are distinct and t1 
 t2 
 	 	 	 
 tD denotes the ordered
event times, Z(i)(ti) is the covariate associated with the individual whose
failure time is ti and R(ti) is the risk set at time ti (that is, R(ti ) is the set
of all individuals who were still under study at a time just prior to ti),
then, the partial likelihood as described by (8.2.1) is given by

L(�) �
D∏

i�1

exp

[
p∑

h�1

�hZ(i)h(ti)

]

∑

j�R(ti )

exp

[
p∑

h�1

�hZ jh(ti)

] (9.2.1)

based on the hazard formulation (9.1.1). Estimation and testing may
proceed as in Chapter 8 with the appropriate alterations of Z to Z(t). If
ties are present, then, generalizations of the partial likelihoods described
in section 8.4 may be used.

We shall illustrate the use of time-dependent covariates in the follow-
ing example which is a continuation of Example 8.5.

EXAMPLE 9.1 In Chapter 8, we examined the relationship between disease-free sur-
vival and a set of fixed-time factors for patients given a bone marrow
transplant. In addition to the covariates fixed at the time of transplant,
there are three intermediate events that occur during the transplant
recovery process which may be related to the disease-free survival
time of a patient. These are the development of acute graft-versus-
host disease (aGVHD), the development of chronic graft-versus-host
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disease (cGVHD) and the return of the patient’s platelet count to a
self-sustaining level (platelet recovery). The timing of these events, if
they occur, is random. In this example, we shall examine their relation-
ship to the disease-free survival time and see how the effects of the
fixed covariates change when these intermediate events occur. As in
the case of fixed factors, we shall make adjustments for these factors in
the light of the primary comparison of interest, the potential differences
in leukemia-free survival among the risk groups.

Each of these time-dependent variables may be coded as an indicator
variable whose value changes from 0 to 1 at the time of the occurrence
of the intermediate event. We define the covariates as follows:

ZA(t) �

{
0 if t 
 time at which acute graft-versus-host disease occurs
1 if t � time at which acute graft-versus-host disease occurs

Zp(t) �

{
0 if t 
 time at which the platelets recovered
1 if t � time at which the platelets recovered

and

ZC(t) �

{
0 if t 
 time at which chronic graft-versus-host disease occurs
1 if t � time at which chronic graft-versus-host disease occurs

Because the interest in this example is in eliminating possible bias
in comparing survival for the three risk groups, local tests may be
performed to assess the significance for each time-dependent covariate
in a model that already has covariates for the two risk groups included.
As in Chapter 8, we define Z1 � 1 if AML low-risk; Z2 � 1 if AML high-
risk, and we fit a separate Cox model for each of the three intermediate
events which include the disease factor (Z1, Z2). The likelihood ratio
chi-squared statistics (and the associated p-values) of the local tests
that the risk coefficient � is zero for the time-dependent covariate are
X 2 � 1.17 (p � 0.28) for ZA(t), 0.46 (p � 0.50) for ZC(t), and 9.64
(p � 0.002) for Zp(t). A summary of the coefficients, standard errors,
Wald chi-square statistics and Wald p-values appears in Table 9.1 for
each of the three regressions.

Here, we see that only the return to a self-sustaining level of the
platelets has a significant impact on disease-free survival. The nega-
tive value of bp suggests that a patient whose platelets have recov-
ered at a given time has a better chance of survival than a patient
who, at that time, has yet to have platelets recover. The relative risk
of exp(�1.1297) � 0.323 suggests that the rate at which patients are
relapsing or dying after their platelets recover is about one-third the
rate prior to the time at which their platelets recover.
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TABLE 9.1
Time Dependent Variables and the Results of Univariate Proportional Hazards
Regression in Comparing Risk Groups in Bone Marrow Transplant Study

Degrees of Wald
Freedom b SE(b) Chi Square p-Value

Z1 1 �0.5516 0.2880 3.669 0.0554
Z2 1 0.4338 0.2722 2.540 0.1110
ZA(t) 1 0.3184 0.2851 1.247 0.2642

Z1 1 �0.6225 0.2962 4.4163 0.0356
Z2 1 0.3657 0.2685 1.8548 0.1732
ZC(t) 1 �0.1948 0.2876 0.4588 0.4982

Z1 1 �0.4962 0.2892 2.9435 0.0862
Z2 1 0.3813 0.2676 2.0306 0.1542
ZP(t) 1 �1.1297 0.3280 11.8657 0.0006

In the next example, we will continue the model building process,
started in Example 8.5 with fixed-time covariates, by incorporating time-
dependent covariates into the study of leukemia patients being given a
bone marrow transplant. The basic strategy is the same as discussed in
section 8.7.

EXAMPLE 9.1 (continued): In Example 8.5, using a forward stepwise model building
procedure, we found that the factors FAB class (Z3: AML with FAB Grade
4 or 5) and age (Z4: Patient age �28; Z5: Donor age �28; Z6 � Z4 �Z5),
were key explanatory factors for disease-free survival when comparing
risk groups (Z1: AML low-risk; Z2: AML high-risk) to explain disease-
free survival after a bone marrow transplant. In the previous example,
we found that the time-dependent covariate, ZP(t), which indicates
whether the patient’s platelets have returned to a self-sustaining level,
was an important time-dependent factor in making this comparison. A
natural question is whether these factors are still significantly related
to disease-free survival in a model that includes both fixed and time-
dependent factors. To test for this, we fitted three proportional hazards
models, the first with the fixed factors of FAB class and age, the second
with Zp(t), and the third, a combined model with both the fixed and
time-dependent factors. The disease type factor is included in each of
the models. The results of these three regressions are summarized in
Table 9.2.

Using these results, we see that a local likelihood ratio test of no
time-dependent covariate effect (adjusting for all fixed effects) has a chi
square of �2[�356.99� (�353.31)] � 7.36 with one degree of freedom
(p � 0.0067) whereas the local likelihood ratio test of no FAB or age
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TABLE 9.2
Fixed Factor Model, Time Dependent Factor Model and Combined Model for
the BMT Example

Fixed Factors Only Time-Dependent Factor All Factors
b SE(b) p-Value b SE(b) p-Value b SE(b) p-Value

Z1 �1.091 0.354 0.002 �0.496 0.289 0.086 �1.032 0.353 0.004
Z2 �0.404 0.363 0.265 0.381 0.267 0.154 �0.415 0.365 0.256
Z3 0.837 0.279 0.003 – – – 0.813 0.283 0.004
Z4 0.007 0.020 0.728 – – – 0.009 0.019 0.626
Z5 0.004 0.018 0.831 – – – 0.004 0.018 0.803
Z6 0.003 0.001 0.001 – – – 0.003 0.001 0.002
ZP(t) – – – �1.130 0.328 0.001 �0.996 0.337 0.003
ln likelihood �356.99 �361.82 �353.31

factor adjustment has a chi square of �2[�361.82 � (�353.31)] � 17.02
with four degrees of freedom (p � 0.0019). Clearly, both the fixed-time
and time-dependent factors should be adjusted for when comparing
risk groups.

Next, we examine the relationships between the time-dependent fac-
tor and the fixed time factors. We define an additional set of time-
dependent covariates that represent interactions between the timing of
the return of the platelets to normal levels and the fixed-time covariates.
The factors to be considered are as follows:

Fixed-Time Main Effect Factors

Risk group factor: (Z1: AML low-risk; Z2: AML high risk)

FAB factor: (Z3: AML with FAB Grade 4 or 5)

Age factor (Z4: Patient age �28; Z5: Donor age �28; Z6 � Z4 � Z5)

Time-Dependent Main Effect Factor:

Platelet recovery factor [ZP(t)]

Time-Dependent Interaction Factors

Risk group � Platelet recovery factor: (Z7(t) � Z1 � ZP(t); Z8(t) �
Z2 � ZP(t))

FAB � Platelet recovery factor: (Z9(t) � Z3 � ZP(t))

Age � Platelet recovery factor: (Z10(t) � Z4 � ZP(t); Z11(t) � Z5 �
ZP(t); Z12(t) � Z6 � ZP (t))
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Note that, in this model, exp(�1), for example, is the relative risk
of death or relapse for an AML low-risk patient as compared to an
ALL patient, and exp��7� is the excess relative risk between these two
groups when the patient’s platelets return to a normal level, that is,
exp(�1) is the relative risk of these two groups before platelet recovery
and exp��1 � �7� is the relative risk after platelet recovery.

To determine which of the time-dependent interaction factors should
be included in the final model, we shall use a forward, stepwise se-
lection procedure. Each model will include the three fixed-time factors
and the platelet recovery factor. Here, we will base the inference on
the likelihood ratio test although one would get the same final result
using the Wald test. The results of this procedure are summarized in
Table 9.3.

This analysis suggests that the three interaction terms between the
fixed factors and the time-dependent covariate should be included in

TABLE 9.3
Likelihoods And Likelihood Ratio Tests for the Inclusion of Interactions Between
Fixed Effects and the Time of Platelet Recovery

Likelihood DF of
Factors in Model Log Likelihood Ratio X 2 X 2 p-Value

Group, FAB, age, Zp(t) �353.31
Group, FAB, age, Zp(t), group � Zp(t) �349.86 6.89 2 0.0318
Group, FAB, age, Zp(t), FAB � Zp(t) �351.64 3.33 1 0.0680
Group, FAB, age, Zp(t), age � Zp(t) �349.36 7.90 3 0.0482

Group �Zp(t) Added to Model

Likelihood DF of
Factors in Model Log Likelihood Ratio X 2 X 2 p-Value

Group, FAB, Age, Zp(t) �347.78 4.15 1 0.0416
Group � Zp(t),FAB � Zp(t)
Group, FAB, Age, Zp(t) �343.79 12.14 3 0.0069
Group � Zp(t), Age � Zp(t)

Age �Zp(t) Added to Model

Likelihood DF of
Factors in Model Log Likelihood Ratio X 2 X 2 p-Value

Group, FAB, Age, Zp(t),Group � Zp(t) �341.521 4.53 1 0.0333
FAB � Zp(t), Age � Zp(t)

FAB � Zp(t) Added To Model
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the model. The ANOVA table for the final model is given in Table 9.4.
Some care must be taken in interpreting these covariates. For example,
here, we see that the relative risk of treatment failure (death or relapse)
before platelet recovery for an AML low-risk patient compared to an
ALL patient is exp(1.3073) � 3.696 and a 95% confidence interval for
the relative risk is exp(1.3073  1.96 � 0.8186) � [0.74, 18.39]. The
risk of treatment failure after platelet recovery for an AML low-risk
patient relative to an ALL patient is exp(1.3073 � (�3.0374)) � 0.18.
The standard error of the estimate of the risk coefficient after platelet
recovery, b1�b7 is [V (b1)�V (b7)�2 Cov(b1, b7)]1 � 2 � [0.6701�0.8570�
2(�0.6727)]1 � 2 � 0.4262, so a 95% confidence interval for the relative
risk of treatment failure after platelet recovery for an AML low-risk
patient is exp(�1.7301  1.96 � 0.4262) � [0.08, 0.41]. This suggests
that the difference in outcome between the AML low-risk patients and
the ALL patients is due to different survival rates after the platelets
recover and that, prior to platelet recovery, the two risk groups are
quite similar.

TABLE 9.4
ANOVA Table for a Model With Fixed Factors, Time to Platelet Recovery, and
Their Interactions

Degrees of Wald
Freedom b SE(b) Chi Square p-Value

Z1: AML low risk 1 1.3073 0.8186 2.550 0.1103
Z2: AML high risk 1 1.1071 1.2242 0.818 0.3658
Z3: AML with FAB

Grade 4 or 5 1 �1.2348 1.1139 1.229 0.2676
Z4: Patient age �28 1 �0.1538 0.0545 7.948 0.0048
Z5: Donor age �28 1 0.1166 0.0434 7.229 0.0072
Z6 � Z4 � Z5 1 0.0026 0.0020 1.786 0.1814
ZP(t): Platelet Recovery 1 �0.3062 0.6936 0.195 0.6589
Z7(t) � Z1 � ZP(t) 1 �3.0374 0.9257 10.765 0.0010
Z8(t) � Z2 � ZP(t) 1 �1.8675 1.2908 2.093 0.1479
Z9(t) � Z3 � ZP(t) 1 2.4535 1.1609 4.467 0.0346
Z10(t) � Z4 � ZP(t) 1 0.1933 0.0588 10.821 0.0010
Z11(t) � Z5 � ZP(t) 1 �0.1470 0.0480 9.383 0.0022
Z12(t) � Z6 � ZP(t) 1 0.0001 0.0023 0.003 0.9561

A major use of time-dependent covariate methodology is to test the
proportional hazards assumption. To test the proportionality assumption
for a fixed-time covariate Z1, we artificially create a time-dependent
covariate, Z2(t), defined as

Z2(t) � Z1 � g(t). (9.2.2)
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Here, g(t) is a known function of the time t . In most applications, we
take g(t) � ln t . A proportional hazards model is fit to Z1 and Z2(t) and
the estimates of �1 and �2 along with the local test of the null hypothesis
that �2 � 0 is obtained. Under this proportional hazards model, the
hazard rate at time t is h(t | Z1) � ho(t) exp[�1Z1 � �2(Z1 � g(t))], so if
we compare two individuals with distinct values of Z1, the ratio of their
hazard rates is

h[t | Z1]
h[t | Z �

1 ]
� exp��1[Z1 � Z �

1 ] � �2g(t)[Z1 � Z �
1 ]�,

which depends on t if �2 is not equal to zero. (Compare this to (8.1.3)
where the proportional hazards assumption holds.) Thus, a test of Ho :
�2 � 0 is a test for the proportional hazards assumption. The ability of
this test to detect nonproportional hazards will depend on the choice
of g(t). This method will be illustrated in the following examples.

EXAMPLE 9.2 In Example 8.2, a proportional hazards model, with a single covariate
Z1 denoting the placement of a catheter either percutaneously (Z1 � 1)
or surgically (Z1 � 0), was fit to the time to first exit-site infection (in
months) in patients with renal insufficiency. In Figure 8.1, a graphical
check of the proportional hazards assumption was made which casts
doubt on the assumption of proportional hazards between the event
times for the two types of catheters. Here, we will formally test this
assumption employing the methodology of time-dependent covariates.
To perform the test, we define Z2(t) � Z1 � ln t and fit the Cox model
with covariates Z1 and Z2(t). Thus the relative risk of an individual
with a percutaneously placed catheter compared to a surgically placed
catheter is given by

h(t | Z1 � 1) � h(t | Z1 � 0) � exp(�1 � �2 ln t) � t�2 exp(�1),

which is a constant only if �2 � 0. This is the rationale for testing
the local hypothesis Ho : �2 � 0 to check the proportional hazards
assumption.

The likelihood ratio statistic (and associated p-value) for this local
test is 12.22 (p � 0.0005). The Wald chi-squared statistic for this local
test is (�1.4622)2 � 0.345 � 6.19 (p-value � 0.013). Thus, the evidence
is strong that the hazards are not proportional, and, hence, the statistical
model in Example 8.2 needs to be modified accordingly.

EXAMPLE 9.1 (continued): We shall illustrate the testing of the proportionality haz-
ards assumption for the fixed-time factors used in Example 8.5. As in
that example, we create fixed-time covariates for the patient’s disease
status (Z1 � 1 if AML low-risk: Z2 � 1 if AML high-risk); waiting time
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from diagnosis to transplant (Z3); FAB classification (Z4 � 1 if M4 or
M5 for AML patients); use of graft-versus-host prophylactic combining
methotrexate (Z5 � 1 if MTX used); and for the combined patient and
donor characteristics including sex (Z6 � 1 if male donor; Z7 � 1 if
male recipient; Z8 � Z6 � Z7 � 1 if donor and recipient are male); CMV
status (Z9 � 1 if donor is CMV positive; Z10 � 1 if recipient is CMV pos-
itive; Z11 � Z9 � Z10 � 1 if donor and recipient are CMV positive); and
age (Z12 � donor age � 28; Z13 � recipient age � 28; Z14 � Z12 � Z13).

For each factor, we create a set of time-dependent covariates of the
form Zi�14(t) � Zi �ln t . To check the proportional hazards assumption,
we fit separate models for each factor which include the fixed values
of covariates constituting the factor and the artificial time-dependent
covariates created from these fixed-time covariates. A local test is then
performed of the hypothesis that all �’s are zero for the time-dependent
covariates for this factor. The results are given in Table 9.5. Here we
see that the factor MTX has nonproportional hazards whereas there is
no reason to doubt the proportionality assumption for the other factors.
In the next section, we will reexamine this model, adjusting for the use
of MTX by fitting a stratified proportional hazards regression model.

TABLE 9.5
Tests of the Proportional Hazards Assumption for the Bone Marrow Transplant
Data

Wald Degrees of
Factor Chi Square Freedom p-Value

Group 1.735 2 0.4200
Waiting time 0.005 1 0.9441
Fab status 0.444 1 0.5051
MTX 4.322 1 0.0376
Sex 0.220 3 0.9743
CMV status 1.687 3 0.6398
Age 4.759 3 0.1903

When the proportional hazards assumption is not satisfied, as in
Example 9.2, and interest centers upon a binary covariate, Z1, whose
relative risk changes over time, one approach is to introduce a time-
dependent covariate as follows. Let

Z2(t) � Z1 � g(t) � g(t) if the covariate Z1 takes on the value 1

� 0 if the covariate Z1 takes on the value 0,

where g(t) is a known function of time. In Example 9.2, we took
g(t) � ln t . One difficulty with this approach is that the function g(t) is
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usually unknown. In such cases, it may be preferable to use a procedure
that would allow the function g(t) to be estimated from the data.

One simple approach to this problem is to fit a model with an in-
dicator function for g(t). In the simplest approach, we define a time-
dependent covariate

Z2(t) �

{
Z1 if t � �
0 if t � �

. (9.2.3)

Here we have a proportional hazards model with hazard rate

h[t | Z(t)] �

{
ho(t) exp(�1Z1) if t � �
ho(t) exp[(�1 � �2)Z1] if t � �

where ho(t) is the baseline hazard rate. Note that, in this model, exp(�1)
is the relative risk, prior to time �, for the group with Z1 � 1 relative to
the group with Z1 � 0, and exp(�1 � �2) is the relative risk, after time
�, for the group with Z1 � 1 relative to the group with Z1 � 0, that is,
exp(�2) is the increase in relative risk after time � and � is sometimes
referred to as the “change point” for the relative risk (Matthews and
Farewell 1982 and Liang et al., 1990).

An equivalent coding for this piecewise proportional hazards model
is to use a model with two time-dependent covariates, Z2(t) and Z3(t).
Here, Z2(t) is as in (9.2.3),

Z3(t) �

{
Z1 if t � �
0 if t � �

, (9.2.4)

For this coding we have

h(t | Z(t)) �

{
ho(t)e�3Z1 if t � �
ho(t)e�2Z1 if t � �

.

The two models will have an identical log likelihood with �1 in model
1 equal to �3 in the second model and �1 � �2 in the first model equal
to �2 in the second model. Note that e�3 is the relative risk before Z and
e�2 is the relative risk after Z .

To determine the optimal value of �, either model is fit for a set
of � values, and the value of the maximized log partial likelihood is
recorded. Because the likelihood will change values only at an event
time, a model is fit with � equal to each of the event times. The value
of � which yields the largest log partial likelihood is the optimal value
of �. Proportional hazards can, then, be tested for each region and if it
fails, for t on either side of �, then this process can be repeated in that
region. This procedure is illustrated in the next example.

EXAMPLE 9.2 (continued): In Example 9.2, the proportional hazards assumption
was rejected with respect to placement of the catheter. Instead of in-
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troducing a time-dependent covariate with a known function of time,
a “change point” � for the relative risk will be introduced. Because the
likelihood changes only at the event times, Table 9.6 presents the log
partial likelihood using the Breslow modification for ties, as a function
of all �’s at the failure times.

TABLE 9.6
Log Partial Likelihood as a Function of � at the Failure Times

Event Times Log Partial Likelihood

0.5 �97.878
1.5 �100.224
2.5 �97.630
3.5 �97.500
4.5 �99.683
5.5 �100.493
6.5 �98.856
8.5 �100.428
9.5 �101.084

10.5 �101.668
11.5 �102.168
15.5 �100.829
16.5 �101.477
18.5 �102.059
23.5 �102.620

We see from this table that a value of � equal to 3.5 maximizes the
log partial likelihood. Using this model and the coding as in model two
we have the following ANOVA table.

Degrees of Wald
Freedom b SE(b) Chi Square p-Value

Z3(t) : Z1 if t � 3.5 1 �2.089 0.7597 7.56 0.0060
Z2(t) : Z1 if t � 3.5 1 1.081 0.7832 1.91 0.1672

Here, we see that, up to 3.5 months, patients with a percutaneously
placed catheter do significantly better than patients given a surgically
placed catheter (relative risk � exp(�2.089) � 0.124) whereas, after
3.5 months, there is no evidence of any difference between the two
groups of patients.

To check for proportional hazards within the two time intervals, we
fit a model with two additional time-dependent covariates, Z4(t) �
Z2(t) � ln t and Z5(t) � Z3(t) � ln t . In this model, the test of the null
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hypothesis that �4 � 0 is a test of proportional hazards in the first 3.5
months, whereas the test of the null hypothesis that �5 � 0 is a test
of the proportional hazards assumption after 3.5 months. The p-values
of the local Wald tests of these hypotheses are 0.8169 and 0.2806,
respectively. Thus, there is no need to further divide the subintervals.

Practical Notes

1. SAS PHREG, in the presence of ties, defaults to Breslow’s likelihood
and allows the user to specify either the discrete, Efron, or “exact”
likelihood.

2. In S-Plus, time-dependent covariates in the proportional hazards
model are handled in the routine coxph which uses Efron’s like-
lihood as a default. Breslow’s likelihood and the exact likelihood are
available when there are ties between the event times.

3. To treat a covariate as a fixed-time covariate, it must be known at
the onset of the study. For example, the covariate that signifies that
platelets return to a self-sustaining level is not a fixed-time covariate
because it is not known at the onset of the study whether a patient
will experience this event or not. Such events, which occur at some
intermediate time, are treated as time-dependent covariates.

4. Estimating the survival function or the cumulative hazard function
is difficult for proportional hazards models with time-dependent co-
variates because the integral of ho(t) exp[�tZ(t)] depends on the ran-
dom process Z(t). Unless this is a deterministic function, this integral
requires additionally estimating the distribution of the development
of Z(t). Christensen et al. (1986) suggest an estimator to use in this
case.

Theoretical Note

1. Kalbfleisch and Prentice (1980) distinguish between two types of
time-dependent covariates. The first are external covariates whose
value at any time does not depend on the failure process. Examples
of such covariates are fixed-time covariates, time-dependent covari-
ates whose value is completely under the control of the investigator
(e.g., a planned schedule of treatments under the control of the in-
vestigator), and ancillary time-dependent covariates that are the out-
put of a stochastic process external to the failure process (e.g., daily
temperature as a predictor of survival from a heart attack). Inference



308 Chapter 9 Refinements of the Semiparametric Proportional Hazards Model

for external covariates follows by the notions discussed in Chapter
8 and the survival function is estimated by the obvious changes to
the estimator in section 8.6. The second type of time-dependent co-
variates are internal covariates which are time measurements taken
on an individual. These covariates are measured only as long as the
individual is still under observation, so that the distribution of these
covariates carries information about the failure process. Examples of
internal covariates are the times to acute or chronic GVHD and the
time to the return of platelets to a normal level in Example 9.1. For
this type of covariate, the partial likelihood construction is still valid,
but it is not possible to estimate the conditional survival function
because P [X � t | Z(t)] � 1 (if Z(t) is known, the subject must be
alive and at risk of failure).

9.3 Stratified Proportional Hazards Models

As we saw in the previous section, there are instances when the propor-
tional hazards assumption is violated for some covariate. In such cases,
it may be possible to stratify on that variable and employ the propor-
tional hazards model within each stratum for the other covariates. Here
the subjects in the j th stratum have an arbitrary baseline hazard func-
tion hoj (t) and the effect of other explanatory variables on the hazard
function can be represented by a proportional hazards model in that
stratum as

hj [t | Z(t)] � hoj (t) exp[�tZ(t)], j � 1, . . . , s. (9.3.1)

In this model, the regression coefficients are assumed to be the same in
each stratum although the baseline hazard functions may be different
and completely unrelated.

Estimation and hypothesis testing methods follow as before, where
the partial log likelihood function is given by

LL(�) � [LL1(�)] � [LL2(�)] � 	 	 	 � [LLs(�)], (9.3.2)

where LLj (�) is the log partial likelihood (see (8.3.2)) using only the
data for those individuals in the j th stratum. The derivatives for the
log likelihood in (9.3.2) are found by summing the derivatives across
each stratum. LL(�) is, then, maximized with respect to � utilizing the
methods in Chapter 8. The survival function for the j th stratum, when
the covariates are all fixed at time 0, may be estimated as described in
section 8.8.
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EXAMPLE 9.1 (continued): As we saw in the previous section, the patients who
where given MTX as a graft-versus-host prophylactic did not have haz-
ard rates proportional to those patients not given MTX. One way to deal
with this problem is to stratify on the use of MTX which involves fitting
distinct baseline hazard rates to the two groups. Of interest, as seen in
Table 9.2, is a model for the factors of disease group (Z1, Z2), FAB class
(Z3), Age (Z4, Z5, Z6) and platelet recovery time ZP(t). Assuming that
the effects of the covariates are the same for patients given MTX or not
given MTX, we have the model summarized in Table 9.7.

TABLE 9.7
Anova Table for a Cox Model Stratified on the Use of MTX

Degrees of Wald
Effect Freedom b SE(b) Chi Square p-Value

Z1: AML Low-Risk 1 �0.9903 0.3666 7.298 0.0069
Z2: AML High-Risk 1 �0.3632 0.3714 0.957 0.3280
Z3: AML with FAB

Grade 4 or 5 1 0.8920 0.2835 9.902 0.0017
Z4: Patient age �28 1 0.0095 0.0198 0.231 0.6305
Z5: Donor age �28 1 �0.0014 0.0179 0.006 0.9373
Z6 � Z4 � Z5 1 0.0026 0.0009 7.425 0.0064
ZP(t): Platelet Recovery 1 �1.0033 0.3445 8.481 0.0036

The Wald chi square of the test of the hypothesis of no group effect
(H0 : �1 � �2 � 0) is 8.916 with a p-value of 0.0116. The results from
the stratified model in this case are quite close to those obtained in the
unstratified model.

A key assumption in using a stratified proportional hazards model is
that the covariates are acting similarly on the baseline hazard function
in each stratum. This can be tested by using either a likelihood ratio test
or a Wald test. To perform the likelihood ratio test, we fit the stratified
model, which assumes common �’s in each stratum, and obtain the log
partial likelihood, LL(b). Using only data from the j th stratum, a Cox
model is fit and the estimator b j and the log partial likelihood LLj (b j ) are
obtained. The log likelihood under the model, with distinct covariates
for each of the s strata, is

∑s
j�1 LLj (b j). The likelihood ratio chi square

for the test that the �’s are the same in each stratum is �2[LL(b) �∑s
j�1 LLj (b j)] which has a large-sample, chi-square distribution with

(s � 1)p degrees of freedom under the null hypothesis.
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To construct the Wald test, the model with distinct �’s in each stratum
is found by fitting distinct proportional hazards models to each stratum.
Estimates from different strata are asymptotically independent because
the information matrix of the combined model is block diagonal. The
Wald test is constructed by using an appropriate contrast matrix as
discussed in section 8.5. This method of testing is equivalent to testing
for an interaction between a stratification variable and the covariates in a
stratified proportional hazards model. These approaches are illustrated
in the following continuation of the previous example.

EXAMPLE 9.1 (continued) To test the hypothesis that the effects of disease group,
FAB status, age, and platelet recovery are the same in both MTX
strata, we fitted distinct Cox models to the two strata. The log partial
likelihoods are �219.677, based on the 97 patients not given MTX,
and �80.467 based on the 40 patients given MTX. The log partial
likelihood from the stratified model, assuming the same �’s in each
stratum (Table 9.7), is �303.189. The likelihood ratio chi square is
�2��303.189 � [(�219.677) � (�80.467)]� � 6.09. The degrees of free-
dom of the test are 7, so the p-value of the test is 0.5292, suggesting no
evidence that the covariates are operating differently on patients with
or without MTX as a preventive treatment for graft-versus-host disease.

To further check the assumption of equal effects of the covariates on
the two strata, we shall do a series of one-degree-of-freedom Wald tests
comparing each of �’s in the two strata. Here, we use the results from
fitting the proportional hazards model, separately, in the two strata. For
a given covariate, the estimates in the two strata are asymptotically in-
dependent, so a Wald test that �1i � �2i , where � ji is the risk coefficient

TABLE 9.8
One Degree of Freedom Wald Tests Comparing Risk Coefficients in the MTX and
No MTX Strata

No MTX MTX
Effect b SE(b) b SE(b) X 2 p-Value

Z1: AML low-risk �1.1982 0.4585 �0.5626 0.6385 0.654 0.4188
Z2: AML high-risk �0.2963 0.4454 �0.8596 0.9175 0.305 0.5807
Z3: AML with FAB

Grade 4 or 5 1.0888 0.3385 0.3459 0.6511 1.025 0.3114
Z4: Patient age �28 0.0276 0.0259 0.0114 0.0391 0.120 0.7290
Z5: Donor age �28 �0.0203 0.0253 0.0343 0.0310 1.858 0.1729
Z6 � Z4 � Z5 0.0022 0.0014 0.0014 0.0023 0.103 0.7489
ZP(t): Platelet recovery �0.8829 0.4759 �1.0089 0.5511 0.030 0.8626
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of the i th covariate in the j th strata, is

X 2 �
[b1i � b2i ]2

SE2[b1i ] � SE2[b2i ]
, i � 1, . . . , 7.

The results, summarized in Table 9.8, confirm that, for each of the
covariates, there is no reason to suspect that the �’s are different in the
two strata and the stratified model is appropriate.

The stratified proportional hazards model can be used to model
matched pair experiments. Here, for each pair, we assume the model
(9.3.1) with the strata defined by the matched pairs. When the number
of pairs is large, then, the large-sample properties of the estimators from
this model are valid. In this approach, the factors used in the match-
ing are not adjusted for in the regression function, but are adjusted for
by fitting distinct baseline rates for each pair. This is illustrated in the
following example.

EXAMPLE 9.3 In section 1.2, the results of a clinical trial of a drug 6-mercaptopurine
(6-MP) versus a placebo in 42 children with acute leukemia was de-
scribed. The trial was conducted by matching pairs of patients at a
given hospital by remission status (complete or partial) and randomiz-
ing within the pair to either a 6-MP or placebo maintenance therapy.
Patients were followed until their leukemia returned (relapse) or until
the end of the study. In Example 4.1, the survival curves for the two
groups were estimated, and, in Example 7.7, using a stratified log rank
test, we saw that survival was different in the two groups.

To estimate the relative risk of relapse in the 6-MP group as compared
to the placebo group, we fit a Cox model stratified on the pair number. A
single covariate is used with the value Z � 1 if the patient was given 6-
MP and 0 if given a placebo. The estimate of � is �1.792 with a standard
error of 0.624. The likelihood ratio chi square of the test of � � 0 is
11.887 (p � 0.0006), the score chi square is 10.714 (p � 0.0011) and
the Wald chi square is 8.255 (p � 0.0041) suggesting a significant
difference in relapse rates between the two treatment groups. Note that
the score test chi square is exactly the stratified log-rank chi square
found in Example 7.7. A 95% confidence interval for the relative risk
is exp(�1.792  1.96 � 0.6236) � [0.049, 0.566]. Thus, patients given a
placebo are between 2 to 20 times more likely to relapse than patients
given 6-MP.
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Practical Notes

1. When stratification is employed, the tests of hypotheses on regres-
sion coefficients will have good power only if the deviations from
the null hypotheses are the same in all strata.

2. The large sample stratified tests of hypotheses on regression coeffi-
cients are appropriate when either the sample size within strata is
large or when when the number of strata is large.

3. Estimation of the survival function or cumulative hazard function for
each stratum can be obtained using the estimators in section 8.8.

9.4 Left Truncation

In this section, we shall examine how to apply the proportional hazards
regression model when the data is left-truncated. The most common
situation, where left-truncated data arises, is when the event time X is
the age of the subject and persons are not observed from birth but rather
from some other time V corresponding to their entry into the study.
This is the case for the example introduced in section 1.16 where the
age, Xi , at death for the i th subject in a retirement center in California
was recorded. Because an individual must survive to a sufficient age Vi

to enter the retirement community, and all individuals who died prior
to entering the retirement community were not included in this study,
the life lengths considered in this study are left-truncated.

Another situation which gives rise to this type of data is when the
event time X is measured from some landmark, but only subjects who
experience some intermediate event at time V are to be included in the
study. This is the case for the bone marrow transplant example where
we wish to draw an inference about X , the time from transplant to death
or relapse, for those patients whose platelets have recovered to a self-
sustaining level. If V is the time until platelets recover for the patient,
then only patients who experience this intermediate event are entered
into the study. Again, life lengths in this study will be left-truncated.
The times Vi are sometimes called delayed entry times.

To formulate a proportional hazards regression model for a set of
covariates Z, we model the conditional hazard rate of t , given Z and
X � V , that is, we model

h(t | Z, X � V ) ��
P(X � t | Z, X � V )
P(X � t | Z, X � V )

.
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If the event time X and the entry time V are conditionally independent,
given the covariates Z, then a simple calculation shows that the con-
ditional hazard h(t | Z(t), X � V ) and the unconditional hazard rate,
h(t | Z) are equivalent (Andersen, et al., 1993).

To estimate the regression coefficients with left-truncated data, the
partial likelihoods are modified to account for delayed entry into the
risk set. To do this, in all of the partial likelihoods presented thus far,
we define the risk set R(t) at time t as the set of all individuals who are
still under study at a time just prior to t . Here, R(t) � � j | Vj 
 t 
 Tj �.
With this modification, the techniques, discussed in Chapter 8 and in
earlier sections of this chapter, can be applied to left-truncated data. We
shall illustrate these methods in the following two examples.

EXAMPLE 9.4 For the Channing House data set introduced in section 1.16, we look at
the effect of gender on survival. To fit this model, we modify the risk set
to include only those individuals at age t who entered the retirement
home at an earlier age and are still under study. The size of this risk set
changes with time as depicted in Figure 4.10. The estimated regression
coefficient for gender is 0.3158 with a standard error of 0.1731 (Wald p-
value of 0.0682). Thus, there is not a significant difference, with respect
to survival, between males and females.

EXAMPLE 9.5 In the bone marrow transplant study described in section 1.3, we found,
in Example 9.1, one important variable predicting that disease-free sur-
vival is the time until the platelet count returns to a self-sustaining
level. It is of interest to make an inference about disease-free survival
among only those patients who have had their platelets return to a
self-sustaining level.

We shall fit the model stratified on the use of MTX to prevent graft-
versus-host disease:

h(t | Z, MTX) � h0 j(t) exp(�tZ), for j � MTX, No MTX.

The data is left-truncated because only patients whose platelets have
returned to a normal level at time t are included in the risk set at that
time. The resulting ANOVA table for this model is given in Table 9.9.

The Wald test of the hypothesis of no group effect has a chi square of
18.27 with two degrees of freedom. The p-value of this test is smaller
than 0.0001, strongly suggesting differences among the three disease
groups in disease-free survival after platelet recovery.
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TABLE 9.9
Anova Table for a Cox Model for Patients Whose Platelets Have Returned to
Normal Levels, Stratified on the Use of MTX

Degrees of Wald
Effect Freedom b SE(b) Chi Square p-Value

Z1: AML low-risk 1 �1.7521 0.4376 16.03 
0.0001
Z2: AML high-risk 1 �0.7504 0.4077 3.39 0.0657
Z3: AML with FAB

Grade 4 or 5 1 1.2775 0.3249 15.46 
0.0001
Z4: Patient age �28 1 0.0417 0.0223 3.51 0.0611
Z5: Donor age �28 1 �0.0346 0.0207 2.80 0.0943
Z6 � Z4 � Z5 1 0.0023 0.0012 3.49 0.0617

Practical Notes

1. Age is often used as a covariate when it should be used as a left-
truncation point. When age is used as a left-truncation point, it is
unnecessary to use it as a covariate in the model.

2. Left truncation can be performed in S-Plus and SAS.
3. The survival function for left-truncated proportional hazards regres-

sion models with fixed covariates can be estimated by using the
techniques in section 8.8.

Theoretical Note

1. A key assumption for the left-truncated Cox model is that the event
time X and the delayed entry time V are independent, given the
covariates Z. If this assumption is not valid, then, the estimators of
the risk coefficients are not appropriate. See Keiding (1992) for a
discussion of this assumption and additional examples.

9.5 Synthesis of Time-varying Effects
(Multistate Modeling)

In previous sections of this chapter, we saw how we can use time-
dependent covariates or left-truncation to study time-varying effects on
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survival. Time-dependent covariates, in particular, provide us with im-
portant information on how changes in a subject’s history effect survival.
In this section, using the bone marrow transplant example, we shall il-
lustrate how these analyses can be combined to give an investigator a
complete picture of the way changes in a patient’s status can affect the
prediction of patient outcome.

The basis of this approach is the notion of a patient’s history at a given
time. Intuitively, a “history” is all the information collected on a patient
up to a given time t . It consists of all the patient’s covariates measured
at time 0 (the fixed time covariates) and the complete knowledge of all
time-dependent covariates up to time t . In the bone marrow transplant
example discussed in Example 9.1, there are two possible histories
when we consider the effects of platelet recovery on disease-free sur-
vival. The first history, at time t , consists of all the fixed-time covariates
(Z1: AML low-risk; Z2: AML high-risk; Z3: AML with FAB Grade 4 or 5;
Z4: Patient age �28; Z5: Donor age �28; Z6 : Z4 � Z5), the knowledge
that platelets have yet to return to normal levels by time t , and the
knowledge that the patient is alive and disease free. If we denote the
patient’s random platelet recovery time by Tp and the event time by X ,
then, this history can be denoted as H1(t) � �Z, Tp � t, X � t�. The
second history a patient could have at time t consists of the patient’s
fixed-time covariates, the fact that platelets have returned to nominal
levels, and the knowledge that the patient is alive and disease free.
This history is denoted by H2(t) � �Z, Tp � t, X � t�. We shall call the
process H � [H (t), 0 � t 
 �] a “history process” for a patient. The
history process reflects what happens to the patient over the course of
their lifetime under study.

The goal of a survival synthesis is to make predictions of patient
outcome based on their history at time t . We shall look at estimating

[s | H (t)] � Pr [X � s | H (t)]. This function, called a prediction pro-
cess, in our example is the probability that a patient will relapse or die
in the interval t to s given all the information we have observed about
the patient up to time t . Notice that the prediction process depends
on the patient’s history H , the time t at which the history is known,
and the point at which we wish to make a prediction s. By fixing t and
s and varying the history, we can compare how different patient histo-
ries effect outcome. By fixing H and s and varying t , we can see how
learning more and more about the patient’s history affects outcome. By
fixing H and t and varying s, we can obtain an analog of the survival
function.

For the transplant example, the computation of 
 depends on three
hazard rates that are functions of the fixed time covariates (see Fig-
ure 9.1). For simplicity, we will, for the moment, ignore the dependence
of these rates on the fixed covariates. The first rate hp(t) is the hazard
rate for the time to platelet recovery. The second hazard rate h1(t) is
the rate at which individuals, whose platelets have yet to recover, either
die or relapse. The third hazard rate h2(t) is the rate at which patients,
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Figure 9.1 Possible paths to relapse or death

whose platelets have returned to normal level, die or relapse. As we
shall see, these rates are directly estimable from an appropriate Cox
model.

Using these rates,


2(s; t) � 
(s | H2(t)) � Pr (t 
 X � s | Tp � t)

�

∫ s

t
h2(r ) exp[�

∫ r

t
h2(u)du]dr.

(9.5.1)

Here the function exp[�
∫ r

t h2(u)du] is the chance that a patient will not
die or relapse between t to r and h2(r ) is approximately the conditional
probability of treatment failure at time r , given survival to time r , so
that their product is approximately the probability of failure at time r .
For H1(t),


1(s; t) � 
[s | H1(t)] (9.5.2)

�

∫ s

t
exp

[

�

∫ r

t
h1(u)du �

∫ r

t
hp(u)du

]
[
h1(r ) � hp(r )
2(s, r )

]
dr.

Here, the exponential is the probability of not failing and not having
platelet recovery between t to r , h1(r ) is the conditional probability of
failure at time r , and hp(r )
1(s, r ) is the probability of platelet recovery
at time r and, then, failure in the interval r to s.

To estimate 
1 and 
2 we needed to estimate hp, h1, and h2. We shall
present two approaches, one based on assuming proportional hazards
between h1 and h2 and the second based on assuming distinct baseline
hazard rates. The first approach uses a Cox model with time-dependent
covariates whereas the second uses a left-truncated Cox model. Both
approaches require estimating the hazard rate for platelet recovery time.
To estimate this rate, we fit a Cox proportional hazard rate model to
the data, using platelet recovery as the event. For individuals whose
platelets do not return to a nominal level, we censor their on study
time at the time of treatment failure (death or relapse) or at the end
of the study period if they are disease free. A careful modeling of the
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TABLE 9.10
Risk Factors for Platelet Recovery

Effect b SE(b) p-Value

Patient age �28 �0.0360 0.0163 0.0266
Donor age �28 �0.0262 0.0148 0.0766
Patient � donor age �0.0027 0.0010 0.0052
MTX used �1.0423 0.2233 �0.0001

risk factors for platelet recovery is performed using the covariates, as
in Example 8.5. The best fitting model, given in Table 9.10, shows that
platelet recovery depends on the use of MTX as a graft-versus-host
treatment and on the patient’s and donor’s ages. Using these estimates,
we compute Breslow’s estimate of the cumulative baseline hazard rate
for Tp (see 8.8.2), Ĥ op(t).

The first approach to estimating h1 and h2 is based on assuming
proportional hazards between h1 and h2. A time-dependent covariate
approach is used, and we define 12 time-dependent covariates as fol-
lows:

Before Platelet Recovery: After Platelet Recovery:

Z1(t) � 1 if AML low-risk and t � Tp Z7(t) � 1 if AML low-risk and t � Tp

Z2(t) � 1 if AML high-risk and t � Tp Z8(t) � 1 if AML high-risk and t � Tp

Z3(t) � 1 if AML FAB Grade 4 or 5 and t � Tp Z9(t) � 1 if AML FAB Grade 4 or 5 and t � Tp

Z4(t) � Patient age �28 if t � Tp Z10(t) � Patient age �28 if t � Tp

Z5(t) � Donor age �28 if t � Tp Z11(t) � Donor age �28 if t � Tp

Z6(t) � Z4(t) � Z5(t); Z12(t) � Z10(t) � Z11(t).

Here, Z1(t), . . . , Z6(t) are the effects of the fixed-time covariates on
disease-free survival before platelet recovery, and Z7(t), . . . , Z12(t) are
the corresponding effects on disease-free survival after platelet recovery.

The Cox model we fit is

h(t | Z(u), 0 � u � t) � ho(t) exp

⎡

⎣
12∑

j�1

� jZ j (t)

⎤

⎦ (9.5.3)

�

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

ho(t) exp

⎡

⎣
6∑

j�1

� jZ j (t)

⎤

⎦ if t 
 Tp

ho(t) exp

⎡

⎣
12∑

j�7

� jZ j (t)

⎤

⎦ if t � Tp

.
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TABLE 9.11
Estimates Of Risk Coefficients for the Two Models

Before Platelet Recovery

Proportional Hazards Left-Truncated
Model I Model II

Effect b SE(b) p-Value b SE(b) p-Value

AML low-risk 1.5353 0.6347 0.0156 1.4666 0.9117 0.1100
AML high-risk 1.3066 1.1602 0.2601 1.4478 1.3333 0.2776
AML FAB Grade 4 or 5 �1.2411 1.1155 0.2659 �1.7536 1.3214 0.1838
Patient age �28 �0.1596 0.0539 0.0031 �0.1616 0.0619 0.0091
Donor age �28 0.1194 0.0437 0.0063 0.1258 0.0475 0.0081
Patient � donor age interaction 0.0028 0.0019 0.1413 0.0032 0.0021 0.1304

After Platelet Recovery

Proportional Hazards Left-Truncated
Model I Model II

Effect b SE(b) p-Value b SE(b) p-Value

AML low-risk �1.7622 0.4183 
 0.0001 �1.7161 0.4255 
 0.0001
AML high-risk �0.7914 0.3991 0.0474 �0.7565 0.4075 0.0634
AML FAB Grade 4 or 5 1.2222 0.3224 
 0.0001 1.2116 0.3222 0.0002
Patient age �28 0.0404 0.0216 0.0610 0.0387 0.0218 0.0754
Donor age �28 �0.0308 0.0203 0.1305 �0.0292 0.0205 0.1540
Patient � donor age interaction 0.0027 0.0012 0.0294 0.0027 0.0012 0.0305

Fitting this model, we obtain the partial likelihood estimates b1, . . . , b12

(see Table 9.11), and, using these estimates, Breslow’s estimate of the
cumulative baseline hazard rate Ĥ o(t) is computed. The estimates of
Hk (t) �

∫ t
0 hk (u)du, k � 1, 2 are given by

Ĥ 1(t) � Ĥ o(t) exp

⎡

⎣
6∑

j�1

bj Z j (t)

⎤

⎦

and (9.5.4)

Ĥ 2(t) � Ĥ o(t) exp

⎡

⎣
12∑

j�7

bj Z j (t)

⎤

⎦ .

An alternative to the proportional hazards model is to fit a model
with distinct baseline hazard rates for the time to death or relapse for
patients before and after platelet recovery, that is, we fit the Cox model
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h1(t | Z) � h01(t) exp(
∑6

j�1 � jZ j ) to the data before platelet recovery
by censoring any individual whose platelets recover prior to death or
relapse at their platelet recovery time. Using this modified data set, we
obtain an estimate H̃ 1(t) � H̃ 01(t) exp[

∑6
j�1 bjZ j (t)], where H̃ 01 is Bres-

low’s estimator of the baseline hazard function. To estimate the hazard
rate after the platelet recovery time, notice that only patients whose
platelets return to nominal levels provide any information on this rate.
To estimate parameters of the model h2(t | Z) � h02(t) exp(

∑6
j�1 � jZ j ),

we use a left-truncated likelihood with patients entering the risk set at
time Tp . Using the estimates of � obtained from maximization of this
partial likelihood, an estimate of H02(t) is obtained using Breslow’s es-
timator (8.8.2) where W (t ; a) is based on the left-truncated risk set at
time t . The estimate of H2(t) is H̃ 2(t) � H̃ 02(t) exp[

∑6
j�1 ajZ j (t)].
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Figure 9.2 Estimated baseline cumulative hazard rates under the two models.
Model 1 (------) Model 2: pre platelet recovery (———) post platelet recovery
(— — —)



320 Chapter 9 Refinements of the Semiparametric Proportional Hazards Model

Having estimated the basic cumulative hazard rates Hp, H1, and H2,
estimating 
1 and 
2 proceeds by substituting these values in Eq. (9.5.1)
and (9.5.2). Thus, we have the following estimates:


̂2(s, t) �
∑

i :(t
ri �s)

exp��[Ĥ 2(ri) � Ĥ 2(t)]��Ĥ 2(ri ), (9.5.5)

and


̂1(s, t) �
∑

i :(t
ri �s)

exp��[Ĥ 1(ri) � Ĥ 1(t)] � [Ĥ p(ri) � Ĥ p(t)]� (9.5.6)

	 ��Ĥ 1(ri) � �Ĥ p(ri)
̂2(s, ri)�.

Here, the times ri are when an individual either has platelets recover or
when they experience an event. The values �Ĥ (ri) are the jump sizes
of the estimate Ĥ (ri) at the time ri .
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Figure 9.3 Comparison of predicted probability of death or relapse in the
first two years after transplant for an ALL patient. Platelets recovered (———)
Platelets not recovered No MTX (------) Platelets not recovered MTX (— — —)
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In the current example, the two models give quite similar pictures
of the effects of fixed covariates and of platelet recovery on disease-
free survival. Figure 9.2 is a plot of the cumulative baseline hazards for
model I, Ĥ op(t), and the before and after platelet recovery rates, Ĥ 01(t)
and Ĥ 02(t), respectively. From these plots, we see that the baseline rates
from the two models are quite similar. In the remainder of this section,
we shall base our discussion on Model I, because this model, which
requires estimating a single baseline hazard rate, has a higher statistical
precision.

First, we consider the effects of platelet recovery for a fixed time
period. Here, we look at a comparison of 
1(2 years, t) and 
2(2 years,
t) as a function of the number of weeks post transplant at which the
prediction is to be made. Because these probabilities depend on the
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Figure 9.4 Comparison of predicted probability of death or relapse in the
first two years after transplant for an AML low risk patient. Platelets recovered
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fixed-time covariates, we fix the patient FAB status at not being M4 or
M5 (Z3 � 0 � Z9) and patient and donor age at 28 years (Z4 � Z5 �
Z6 � Z10 � Z11 � Z12 � 0). In Figure 9.3, we present results for ALL
patients (Z1 � Z2 � Z7 � Z8 � 0), in Figure 9.4 for AML low-risk
patients (Z1 � Z7 � 1; Z2 � Z8 � 0), and, in Figure 9.5, for AML
high-risk patients (Z1 � Z7 � 0; Z2 � Z8 � 1). A single curve (the
solid line) is given for the probability of death or relapse within the first
two years after transplant for a patient who at t weeks has had platelets
recover. Two curves are presented for the corresponding probability for
a patient who has yet to have platelets recover. The first (short dashed
line) is for patients not given MTX and the second (long dashed line)
for those that did receive MTX. Note that, because this covariate affects
only the platelet recovery rate, there is a single curve for individuals
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Figure 9.5 Comparison of predicted probability of death or relapse in the first
two years after transplant for an AML high risk patient. Platelets recovered
(———) Platelets not recovered No MTX (------) Platelets not recovered MTX
(— — —)
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whose platelets have recovered. A careful examination of these figures
shows that, for ALL patients (with this set of other covariates), delayed
platelet recovery seems to have only a small effect. For AML patients, it
seems clear that delayed platelet recovery beyond about 4 weeks seems
to predict a much greater chance of death or relapse than individuals
who have had platelets return to normal prior to this time. Clearly,
for AML patients, if the platelets do not recover by week 10–11, the
patient has a very poor prognosis, and some therapeutic measures are
indicated.

Figures 9.6–9.8 provide an alternate approach to looking at the effect
of platelet recovery on disease-free survival. Here, we fix the time,
when the history is known, at either 3, 7, or 10 weeks and look at
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Figure 9.6 Disease free survival probabilities for an ALL patient given their
history at 3 weeks. Platelets recovered (———) Platelets not recovered No MTX
(------) Platelets not recovered MTX (— — —)
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Figure 9.7 Disease free survival probabilities for an ALL patient given their
history at 7 weeks. Platelets recovered (———) Platelets not recovered No MTX
(------) Platelets not recovered MTX (— — —)

the disease-free survival curves for an ALL patient with one of the two
histories at that time, that is, we compute 1 � 
1(s, to) and 1 � 
2(s, to),
for to � 3, 7, or 10 weeks. Again, the fixed-time covariates for FAB
status and age are set at 0, and separate curves are fitted for patients
with or without the MTX treatment. From Figure 9.6, again, we see
only a small effect of platelet recovery if we make estimates based on
the history at week 3. At week 7 we see that patients who were given
MTX at transplant at this time, and whose platelets have yet to return
to normal do much worse than other patients. At week 10, this pattern
is dramatically enhanced and, here, patients, who were not given MTX
and whose platelets have yet to recover, also do poorly.
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Figure 9.8 Disease free survival probabilities for an ALL patient given their
history at 10 weeks. Platelets recovered (———) Platelets not recovered No MTX
(------) Platelets not recovered MTX (— — —)

Practical Notes

1. A more detailed example, which extends these techniques to mul-
tiple intermediate events and end points using Model I, can be found
in Klein, Keiding and Copelan (1994).

2. Extensions of Model II to more complex situations can be found in
Andersen et al. (1993).

3. Qian (1995) provides standard error estimates for these estimators.
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9.6 Exercises

9.1 In Exercise 8.1, a proportional hazards model was fit to data from a
study of the effects of ploidy on survival for patients with cancer of
the tongue. A single binary covariate was used. Using an appropriate
time-dependent covariate, test the hypothesis that the hazard rates for
the two groups are proportional.

9.2 In Exercise 8.2, a proportional hazards model was fit to data from a
study of the survival of rats implanted with F98 glioma cells in their
brains. Three groups of rats were considered: control rats, rats given
radiation only, and rats given radiation plus BPA. Using an appropriate
set of time-dependent covariates, test that the hazard rates of the three
groups are proportional.

9.3 In Example 7.9, data from a clinical trial of chemotherapy and chemo-
therapy combined with radiotherapy in treating locally unresectable
gastric cancer is given. Of interest in this study is a comparison of the
efficacy of the two treatments on overall survival.

(a) Using an appropriate proportional hazards model, test the hypoth-
esis of difference in survival between the two treatment regimes.
Find a 95% confidence interval for the relative risk of death for pa-
tients treated only with chemotherapy compared to patients treated
with chemotherapy plus radiation.

(b) Confirm that the hazard rates for the two treatment groups have
nonproportional hazards using a time-dependent covariate in the
proportional hazards model.

(c) Because the hazard rates for the two treatment groups are not pro-
portional, consider a model with two time-dependent covariates:

Z1(t) �

{
1 if chemotherapy only and t � �, and
0 otherwise

Z2(t) �

{
1 if chemotherapy only and t � �,
0 otherwise

.

Find the value of � which maximizes the partial likelihood for this
model.

(d) Using the model constructed in part c discuss the relationship be-
tween the two treatments for locally unresectable gastric cancer
and survival. Compare the relative risks obtained from this model
with the relative risks obtained in part a. Explain how a physician
should present this model to a patient.

9.4 Consider the data on bone marrow transplantation for acute leukemia
patients discussed in section 1.3. As noted in Exercise 7.8, graft-versus-
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host (GVHD) disease is considered to have an antileukemic effect. To
test this hypothesis, a Cox regression model will be fit to the times
to relapse of these leukemia patients. Here patients who die prior to
relapse are considered as censored observations.

Fit a proportional hazards model with appropriate time-dependent
covariates which can be used to determine which of four time-varying
GVHD groups (patient’s yet to develop any GVHD, patient’s who have
had acute GVHD, chronic GVHD, or both acute and chronic GVHD)
has the lowest relapse risk. Estimate model parameters, and make the
appropriate hypothesis tests. Provide point estimates and 95% confi-
dence intervals for the relative risk of relapse for the GVHD groups as
compared to the group with no GVHD at time t .

9.5 In Exercise 12 of Chapter 7, a stratified test of the equality of the four
stages of laryngeal cancer was conducted. In that problem, the test was
stratified on the cancer being diagnosed prior to 1975 or not. The data
for this comparison is found on our web site.

(a) Fit a proportional hazards model, stratified on the cancer being
diagnosed either prior to 1975 or not. Include, in the model, indi-
cator variables for stage of disease and a continuous covariate for
patient age, as in Example 8.3. Produce an ANOVA table for the
fitted model, and compare this to the results for the unstratified
model found in Example 8.3.

(b) Using a likelihood ratio test, test the hypothesis that the effects of
the stage and age factors are the same in the two strata.

(c) Repeat part b using a Wald test.

9.6 In Exercise 13 of Chapter 7, data was presented on a litter-matched
study of the tumorigenesis of a drug. The data is found in that exercise.

(a) Ignoring the fact that this was a litter-matched study, fit a propor-
tional hazards model to this data to estimate the relative risk of
tumorigenesis of the drugged rats as compared to the control rats.
Find a 95% confidence interval for this relative risk.

(b) Repeat part a using a proportional hazards model stratified on litter.
Compare your results.

9.7 In Example 8.5, a proportional hazards model was built to the data on
disease-free survival for bone marrow transplantation patients. Of pri-
mary interest in that example was the comparison of disease states, and
possible factors to be adjusted for were the patients’ FAB status, their
waiting time to transplant, donor and recipient gender, CMV status, and
age. Because patients who developed acute graft-versus-host disease
may have different risk factors for disease-free survival, find the best
fitting model for these factors for those patients who have experienced
acute graft-versus-host disease. Compare your final model to that found
in Example 8.5.
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9.8 In the burn study described in section 1.6 and as a follow-up to Exer-
cises 8.2 and 8.9—
(a) Introduce a time-dependent covariate that reflects the time at which

a wound was excised. Investigate the effects of the timing of wound
excision on the time until infection occurs.

(b) Introduce another time-dependent covariate that reflects the time
when a prophylactic antibiotic treatment was administered. Investi-
gate the effect of having a prophylactic antibiotic treatment on the
time until infection occurs.

(c) Fit a full model, adjusting for all other explanatory covariates as
needed to the time until infection occurs. Test for proportional
hazards and deal with any variables with nonproportional hazards,
as you deem appropriate.

(d) Make an inference about the time until infection among those indi-
viduals who had a prophylactic antibiotic treatment administered.
Adjust for all other explanatory covariates, as needed. Test for pro-
portional hazards, and deal with any variables with nonproportional
hazards, as you deem appropriate.



10
Additive Hazards

Regression Models

10.1 Introduction

In the last two chapters, we examined regression models for survival
data based on a proportional hazards model. In this model, the effect
of the covariates was to act multiplicatively on some unknown baseline
hazard rate. Covariates which do not act on the baseline hazard rate in
this fashion were modeled either by the inclusion of a time-dependent
covariate or by stratification.

In this chapter, we shall consider an alternative to the semiparametric
multiplicative hazard model, namely, the additive hazard model. As in
the multiplicative hazards model, we have an event time X whose dis-
tribution depends on a vector of, possibly, time-dependent covariates,
Z(t) � [Z1(t), . . . , Zp(t)]. We assume that the hazard rate at time t , for
an individual with covariate vector Z(t), is a linear combination of the
Zk (t)’s, that is,

h[t | Z(t)] � �o(t) �
p∑

k�1

�k (t)Zk (t),

where the �k (t)’s are covariate functions to be estimated from the data.
Two additive models are presented in this chapter. The first, due to

Aalen (1989), allows the regression coefficients, bk (t), to be functions

329
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whose values may change over time. This model is flexible enough to
allow the effects of a fixed time covariate to change over time. For this
model, discussed in Section 10.2, a “least-squares” approach is used to
estimate the cumulative regression functions, Bk (t) �

∫ t
0 bk (u)du and

the standard errors of these functions. These estimators can then be
smoothed to obtain estimators of bk (t).

The second model presented in section 10.3, due to Lin and Ying
(1995), replaces the regression functions, bk (t), by constants, bk . The
model is

h(t | Z(t)) � b0(t) �
p∑

k�1

bk Zk (t).

For this model estimation is based on an estimating equation which is
obtained from the score equation.

10.2 Aalen’s Nonparametric, Additive
Hazard Model

The proportional hazards model, discussed in the previous two chap-
ters, assumes that the effects of the covariates are to act multiplicatively
on an unknown baseline hazard function. Estimation of the risk coeffi-
cients was based on the partial likelihood. In the proportional hazards
model, these risk coefficients were unknown constants whose value
did not change over time. In this section, we present an alternative
model based on assuming that the covariates act in an additive manner
on an unknown baseline hazard rate. The unknown risk coefficients in
this model are allowed to be functions of time so that the effect of a
covariate may vary over time. As opposed to the proportional hazards
model where likelihood based estimation techniques are used, estima-
tors of the risk coefficients are based on a least-squares technique. The
derivation of these estimators, which is outlined in the technical notes,
is based on the counting process approach to survival analysis and is
similar to the derivation of the Nelson–Aalen estimator of the cumula-
tive hazard rate presented in section 3.6. Tests of hypotheses are based
on stochastic integrals of the resulting estimators, as in Chapter 7.

The data consists of a sample [Tj , � j , Z j(t)], j � 1, . . . , n where, as in
Chapters 8 and 9, Tj is the on study time, � j the event indicator, and
Z j(t) � [Zj1(t), . . . , Z jp(t)] is a p-vector of, possibly, time-dependent
covariates. For the j th individual we define

Yj(t) �

{
1 if individual j is under observation (at risk) at time t ,
0 if individual j is not under observation (not at risk) at time t .
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If the data is left-truncated, then, note that Yj (t) is 1 only between an
individual’s entry time into the study and exit time from the study. For
right-censored data Yj (t) is 1 if t � Tj .

For individual j , we shall model the conditional hazard rate at time
t , given Z j (t), by

h[t | Z j (t)] � �o(t) �
p∑

k�1

�k (t)Zjk (t) (10.2.1)

where �k (t), k � 1, . . . , p , are unknown parametric functions to be es-
timated. Direct estimation of the �(t)’s is difficult in practice. Analogous
to the estimation of the hazard rate in Chapters 4 and 6, we directly
estimate the cumulative risk function Bk (t), defined by

Bk (t) �

∫ t

0
�k (u)du, k � 0, 1, . . . , p. (10.2.2)

Crude estimates of �k (t) are given by the slope of our estimate of Bk (t).
Better estimates of �k (t) can be obtained by using a kernel-smoothing
technique, as discussed in section 6.2 (see Example 10.2).

To find the estimates of Bk (t) a least-squares technique is used. We
need to define an n � (p � 1) design matrix, X(t), as follows: For
the i th row of X(t), we set Xi (t) � Yi(t)(1, Z j(t)). That is, Xi (t) �
(1, Z j1(t), . . . , Z jp(t)) if the i th subject is at risk at time t , and a p � 1
vector of zeros if this subject is not at risk. Let I(t) be the n � 1 vector
with i th element equal to 1 if subject i dies at t and 0 otherwise. The
least-squares estimate of the vector B(t) � (B0(t), B1(t), . . . , Bp(t))t is

B̂(t) �
∑

Ti �t

[Xt (Ti)X(Ti)]
�1Xt(Ti)I(Ti). (10.2.3)

The variance-covariance matrix of B(t) is

V̂ar(B̂(t)) �
∑

Ti �t

[Xt (Ti)X(Ti)]
�1Xt (Ti)I

D(Ti)X(Ti)�[Xt(Ti)X(Ti)]
�1�t .

(10.2.4)

Here the matrix, ID(t) is the diagonal matrix with diagonal elements
equal to I(t). The estimator B(t) only exists up to the time, t , which is
the smallest time at which Xt(Ti)X(Ti) becomes singular.

The estimators B̂k (t) estimate the integral of the regression func-
tions bk in the same fashion as the Nelson–Aalen estimator discussed in
Chapter 4 estimates the integral of the hazard rate in the univariate case.
Confidence intervals and confidence bands, based on the linear formu-
lation, for the integrated regression functions, B̂k (t), are constructed in
exactly the same fashion as were confidence intervals or confidence
bands for the cumulative hazard functions discussed in sections 4.3 and
4.4 (see Practical Notes 4.3.1 and 4.4.1). Here, one replaces H̃ (t) and
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TH (t) in (4.3.4) by B̂k (t) and V̂ar[B̂k (t)]1 � 2, respectively. Crude estimates
of the regression functions can be found by examining the slope of the
fitted B̂k (t)’s. Better estimates of the regression function can be found by
using the kernel smoothing techniques discussed in section 6.2. To ob-
tain the smoothed estimates one simply replaces DH̃ (t) and DV̂ [Ĥ (t)]
by DB̂k (t) and DV̂ar[B̂k (t)], respectively, in (6.2.4–6.2.5).

To illustrate these calculations we will derive the estimates in Aalen’s
model for the two sample problems. Here we have a single covariate
Zj1 equal to 1 if the j th observation is from sample 1 and 0 otherwise.
The design matrix is

X(t) �

⎛

⎜
⎝

Y1(t) Y1(t)Z11
...

Yn(t) Yn(t)Z1n

⎞

⎟
⎠

and

Xt(t)X(t) �

(
N1(t) � N2(t) N1(t)

N1(t) N1(t)

)

.

Here Nk (t) is the number at risk in the k th group at time t . The Xt(t)X(t)
matrix is nonsingular as long as there is at least one subject still at risk
in each group. The inverse of the Xt(t)X(t) is

[Xt(t)X(t)]�1 �

⎛

⎜
⎜
⎜
⎝

1
N2(t)

�
1

N2(t)

�
1

N2(t)
1

N1(t)
�

1
N2(t)

⎞

⎟
⎟
⎟
⎠

.

From (10.2.3) we find that

B̂0(t) �
∑

Ti �t

di

{
1

N2(Ti)
�

Zi1

N2(Ti)

}

�
∑

Ti �t
i� sample 2

di

N2(Ti)
, t � t, (10.2.5)

the Nelson–Aalen estimator of the hazard rate using the data in sample
2 only. Also

B̂1(t) �
∑

Ti �t

di

{
�1

N2(Ti)
� Zi1

[
1

N1(Ti)
�

1
N2(Ti)

]}

�
∑

Ti �t
i� sample 1

di

Y1(Ti)
�

∑

Ti �t
i� sample 2

di

Y2(Ti)
, t � t, (10.2.6)

the difference of the Nelson–Aalen estimators of the hazard rate in
the two samples. The estimates of the variance-covariance functions of
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B̂0(t) and B̂1(t) are

V̂ar[B̂0(t)] �
∑

Ti �t
i� sample 2

di

N2(Ti)2
; (10.2.7)

V̂ar[B̂1(t)] �
∑

Ti �t
i� sample 1

di

N1(Ti)2
�

∑

Ti �t
i� sample 2

di

N2(Ti)2
; (10.2.8)

and

Ĉov[B̂0(t), B̂1(t)] � �
∑

Ti �t
i� sample 2

di

N2(t)2
, t � t. (10.2.9)

To illustrate these estimation procedures we present two examples.

EXAMPLE 10.1 To illustrate the additive hazard model in the two-sample problem, we
shall use the data on death times of breast cancer patients, presented in
section 1.5 and analyzed by the use of a proportional hazards model in
Example 8.1. We shall denote the immunoperoxidase negative group as
sample 1 and the immunoperoxidase positive group as sample 2. B0(t),
B1(t) and their respective variances are estimated by Eqs. (10.2.5)–
(10.2.9). Here, � � 144, which is the maximal time when, at least, one
patient is at risk in both samples. When all subjects remaining at risk
are in one of the samples the Xt(t)X(t) matrix has a zero determinant.

Figures 10.1 and 10.2 show the estimated cumulative regression func-
tions, B̂0(t) and B̂1(t), and 95% pointwise naive confidence intervals.
Pointwise confidence intervals were found here as

B̂k (t)  1.96
√

V̂ar[B̂k (t)], k � 0, 1. (10.2.10)

Figure 10.1, which shows the plot of B0(t) in this two-sample case, is
a plot of the cumulative hazard rate of the immunoperoxidase posi-
tive sample. The slope of this line is an estimate of �0(t), in this case
the hazard rate of the immunoperoxidase positive sample. Here, it ap-
pears that �0(t) is roughly constant over the range 20–90 months with
�0(t) � 0.009 deaths/month. B̂1(t) (see Figure 10.2) is an estimate of the
cumulative excess risk of death due to being immunoperoxidase nega-
tive. The slope of the line is an estimate of �1(t), the excess mortality
due to being immunoperoxidase negative.

EXAMPLE 10.2 Next, we consider the use of an additive model to compare the four
stages of laryngeal cancer, adjusting for age in the study of 90 male
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Figure 10.1 Estimate of B0(t) and 95% pointwise confidence intervals for
breast cancer patients.

laryngeal cancer patients. The data is described in section 1.8, and this
data was examined by using the Cox proportional hazards model in
Example 8.3. We define four fixed time covariates:

Z1 �

{
1 if Stage II disease
0 if Stage I, III or IV disease;

Z2 �

{
1 if Stage III disease
0 if Stage I, II or IV disease

Z3 �

{
1 if Stage IV disease
0 if Stage I, II or III disease;

Z4 � Age at diagnosis � 64.11.
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Figure 10.2 Estimate of the cumulative effect of being Immunoperoxidase
negative (B1(t)) and a 95% pointwise confidence interval for breast cancer
patients.

Here, we have centered the age covariate at its mean. In this example,
� � 4.4 which is the largest Tj when, at least, one patient is still at risk
in each of the four disease stages.

Figures 10.3–10.7 show the estimates of Bk (t), k � 0, . . . , 4 and 95%
pointwise confidence intervals constructed by using (10.2.10). Here, the
estimated cumulative baseline hazard B̂0(t) (Figure 10.3) is an estimate
of the cumulative hazard rate of a stage I patient aged 64.11. B̂1(t),
B̂2(t), and B̂3(t) (Figures 10.4–10.6) show the cumulative excess risk
due to stage II, III or IV patients of a given age compared to stage I
patients with a similar age. Here, it appears there is little excess risk due
to being a stage II patient, whereas stage III and stage IV patients have
an elevated risk in the first two years following diagnosis where the
slopes of the two cumulative hazards are nonzero. Figure 10.7 shows
the excess risk due to age.
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Figure 10.3 Estimate of the cumulative baseline hazard rate (B0) and a 95%
pointwise confidence interval for laryngeal cancer patients.

To better understand the differences in survival due to the various
stages of disease, Figure 10.8 is a plot of the kernel-smoothed estimate
of �k (t), k � 1, 2, 3. Here, a biweight kernel (6.2.3, 6.2.8) was used
with a bandwidth of one year. Equation (6.2.4) was used to obtain the
estimate, with �B̂k (t) substituted for �H̃ (t). This figure suggests that
there is little excess risk associated with stage II disease, that the excess
risk associated with stage III disease is negated after about two and a
half years and that stage IV disease is the worst case with an excess risk
of about 0.4 deaths per year over the first two years after transplant.

We now consider the problem of testing the hypothesis of no regres-
sion effect for one or more the covariates. That is, we wish to test the
hypothesis H0 : �k (t) � 0 for all t � � and all k in some set K . The
test, described in Aalen (1993), is an analog of tests discussed in Chap-
ter 7 that are based on a weighted stochastic integral of the estimated
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Figure 10.4 Estimate of the cumulative excess risk of Stage II cancer as com-
pared to Stage I cancer (B1) and a 95% pointwise confidence interval for
laryngeal cancer patients.

value of �k (t) as compared to its expected value, zero, under the null
hypothesis.

To perform the test we need a matrix of weights to use in constructing
the test. This weight matrix is a diagonal matrix W(t) with diagonal
elements, W j(t), j � 1, . . . , p �1. Using these weights we can construct
the test statistic vector U as

U �
∑

Ti

W(Ti)[X
t(Ti)X(Ti)]

�1Xt(Ti)I(Ti). (10.2.11)

The ( j � 1)st element of U is the test statistic we use for testing the
hypothesis Hj : � j (t) � 0. The covariance matrix U is given by
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Figure 10.5 Estimate of the cumulative excess risk of Stage III cancer as com-
pared to Stage I cancer (B2) and a 95% pointwise confidence interval for
laryngeal cancer patients.

V �
∑

Ti

W(Ti)[X
t (Ti)X(Ti)]

�1Xt(Ti)I
D(Ti)X(Ti)�[Xt (Ti)X(Ti)]

�1�tW(Ti)

(10.2.12)

Note that elements of U are weighted sums of the increments of B̂k (t)
and elements of V are also obtained from elements of V̂ar(B̂(t)). Using
these statistics a simultaneous test of the hypothesis that � j (t) � 0 for
all j � J where J is a subset of �0, 1, . . . , p � 1� is

X � Ut
J V

�1
J UJ (10.2.13)

Here UJ is the subvector of U corresponding to elements in J and VJ the
corresponding subcovariance matrix.
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Figure 10.6 Estimate of the cumulative excess risk of Stage IV cancer as com-
pared to Stage I cancer (B3) and a 95% pointwise confidence interval for
laryngeal cancer patients.

Any weight function can be used in the calculation of the test statis-
tics. Aalen suggests one use W(t) � �diag[[Xt (t)X(t)]�1]��1. This weight
function, as shown below, is useful in the two-sample problem where
we are interested in testing the equality of two treatments, but in other
cases may lead to inconsistent results. The problem is that this weight
function is not the same for all subhypotheses. We prefer a weight
function which is common to all subhypotheses as was the case for the
weighted log rank tests. Possible candidates are Wj (t) � number at risk
at time t or Wj (t) � constant. We will use the former in the numerical
examples.

To show how these calculations are carried out we again consider
the two-sample problem in Example 10.1. Here the U vector is
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Figure 10.7 Estimate of the cumulative effect of age (B4) and a 95% pointwise
confidence interval for laryngeal cancer patients.

U �

⎛

⎜
⎜
⎜
⎝

∑
Ti �� �iW11(Ti)

{
1

N2(Ti)
�

Zi1

N2(Ti)

}

∑
Ti �� W22(Ti) �i

{
�1

N2(Ti)
� Zi1

[
1

N1(Ti)
�

1
N2(Ti)

]}

⎞

⎟
⎟
⎟
⎠

.

If we use Aalen’s suggestion of W(t) � �diag[[Xt (Ti)X(Ti)]�1]��1, we
have

W22(t) �

(
1

N1(Ti)
�

1
N2(Ti)

)�1

�

(
N1(Ti)N2(Ti)

N1(Ti) � N2(Ti)

)

,

which yields a test statistic for testing the hypothesis the �1(t) � 0 of

U1 �
n∑

i�1

�i

(

Zi1 �
N1(Ti)

N1(Ti) � N2(Ti)

)

� D1 �
n∑

i�1

�iN1(Ti)
N1(Ti) � N2(Ti)
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Figure 10.8 Kernel smoothed estimates of the excess risk of death for Stage II,
III, or IV cancer as compared to Stage I cancer. Stage II (———) Stage III (------)
Stage IV (— — —).

Note that U1 is the difference between the observed and expected
number of events in the first sample and is exactly the numerator of the
log rank statistic (see 7.3.3). We find after some simplification

V11 �
∑

sample 2

�i
N1(Ti)2

(N1(Ti) � N2(Ti))2
�

∑

sample 1

�i
N2(Ti)2

(N1(Ti) � N2(Ti))2
,

which is distinct from the log rank variance. The test statistic is given
by U1 �

√
V11, which has a standard normal distribution when H0 is true.

When the weight function Wii(t) � N1(Ti) � N2(Ti) � N (Ti) is used,
we have

U1 �
n∑

i�1

[N1(Ti) � N2(t)]
{

�i1

N1(Ti)
�

�i2

N2(Ti)

}

,
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where �ik , k � 1, 2, i � 1, . . . , n is 1 if the i th patient died at time
Ti and was in the k th treatment group. Note that this is the weighted
difference of the Nelson–Aalen estimators for the two samples. Here
the variance is

V11 �
∑

sample 2

(N1(Ti) � N2(Ti))2

N1(Ti)2
�

∑

sample 1

(N1(Ti) � N2(Ti))2

N2(Ti)2

EXAMPLE 10.1 (continued) We shall apply the two-sample test based on the additive
hazard model to the comparison of immunoperoxidase-negative and
-positive breast cancer patients. Here, using Aalen’s weight function,
[N1(t)�1 � N2(t)�1]�1, we have U1 � �4.187 and 	11 � 6.04. The test
statistic is Z � �4.187�

√
6.040 � �1.704 and the p-value is 0.088,

which suggests no evidence of a difference in survival between the
two types of patients. Using the weight N1(t) � N2(t), we have Z �

�33.62� √396.26 � �1.69 and a p-value of 0.0912. When the log rank
test is used, we have a test statistic of �4.187� √3.1912 � �2.344,
which has a p-value of 0.019. The difference between the log rank test
and the test based on Aalen’s weights is due to different estimators of
the variability of U1.

EXAMPLE 10.2 (continued) We now apply these methods to test the hypothesis of no
difference in survival between the four stages of larynx cancer, adjusting
for age at diagnosis in the study of 90 male larynx cancer patients. We
have using the weight function Wj (t) � number at risk at time t ,

U � (4.93 26.17 106.83 0.38)t

and

V �

⎛

⎜
⎜
⎝

177.69 55.20 92.14 4.27
55.20 216.41 61.35 2.16
92.14 61.35 1727.30 5.73
4.27 2.13 5.78 0.51

⎞

⎟
⎟
⎠

A test of the hypothesis that �1 � �2 � �3 is based on the first three
elements of U, Uq , and the upper 3 � 3 submatrix of V, Vq . That is,

�2 � Ut
qV�1

q Uq � 9.18,

which has a p-value of 0.027 when compared to a chi-squared random
variable with 3 degrees of freedom.

To examine further the relationship between stage of disease and
patient survival, we construct an ANOVA table by using the one degree
of freedom tests for �k (t).
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Effect Chi-Square df p-Value

Z1: Stage II disease 0.14 1 0.7111
Z2: Stage III disease 3.16 1 0.0753
Z3: Stage IV disease 6.61 1 0.0102
Z4: Age 0.28 1 0.5913

This table suggests that, adjusted for age, there is little difference be-
tween the survival rates of Stage I and Stage II patients, but that Stage IV
patients have a significantly different survival rate than Stage I patients.

Practical Notes

1. The additive model measures additional risk due to the effect of a
covariate in absolute terms whereas the proportional hazards model,
discussed in Chapters 8–9, measures this excess risk in relative terms.
It is quite possible that the relative risk is constant over time (as
assumed in a Cox model), but that the additive risk varies with time.
In fact, changes in absolute risk with time give no information on
changes in relative risk with time.

2. The baseline hazard rate provides an estimate of the hazard rate for
an individual with a zero value for all covariates. For a continuous
covariate, the most easily interpretable baseline hazard is obtained
when the covariate is centered at its mean. In this case, �0(t) is the
baseline hazard rate for an individual with an average value of the
covariate.

3. The estimates of the baseline hazard rate are not constrained to
be nonnegative by this least-squares estimation procedure. In fact,
if continuous covariates are not centered at their mean values, the
estimator of �0(t) may be negative.

4. Aalen (1989) shows that if a covariate is independent of all the
other covariates in the model, then, the regression model with this
covariate eliminated is the same as the regression model with this
variable included. Only the baseline function B0(t) is changed. Note
that this is not true for the Cox proportional hazard model.

5. If a covariate in the linear model is measured with an additive, nor-
mally distributed, random error, then, the linear model is preserved
with the regression functions reduced by a constant factor. This is
not true for the Cox proportional hazard model.

6. When all covariates are fixed at time zero, an estimate of the
cumulative hazard function for t � �, for an individual with
a covariate vector Z � (Z1, . . . , Zp) is given by Ĥ (t | Z) �
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B̂0(t) �
∑p

k�1 B̂k (t)Zk with an estimated variance of V̂ar[Ĥ (t | Z)] �
∑p

g�0

∑p
k�0 ZgZk Ĉov[B̂g(t), B̂k (t)]. Two asymptotically equivalent es-

timators of the survival function for this individual are given by
Ŝ (t | Z) � exp[�Ĥ (t | Z)], and Ŝ �(t | Z) �

∏
t j �t [1 � �Ĥ (t j | Z)]. The

estimated variances of these estimators are V̂ar[Ĥ (t | Z)]Ŝ (t | Z)2 and
V̂ar[Ĥ (t | Z)]Ŝ �(t | Z)2, respectively. These two estimators correspond
to the survival function constructed from the Nelson–Aalen estimator
and the product-limit estimator, discussed in Chapter 4. Some care
is needed in interpreting either estimate because Ĥ (t | Z) need not
be monotone over the time interval. Also, note that these estimates
are defined only over the range where the matrix A(t) is full rank.

7. The model for excess mortality, discussed in section 6.3, is a special
case of the additive model discussed in this section. If we let Zj (t) �
� j (t), the value of the reference hazard rate at time t for the j th
individual, then, B̂1(t) � Â(t), where Â(t) is given by Eq. (6.3.6). To
adjust for other prognostic factors in an excess mortality model, this
coding of the known risk covariate can be used.

8. A SAS macro to fit the additive model is available at our worldwide
Web site. Details of its use are found in Howell (1996).

Theoretical Notes

1. The derivation of the least-squares estimators and their variances
follows by using the theory of counting processes, discussed in sec-
tion 3.6. We shall sketch that development in this note. We start by
defining a counting process Nj (t) for each individual which has the
value 1, if Tj � t , �i � 1, 0, otherwise. As above, let Yj(t) denote
a stochastic process which indicates whether individual j is at risk
at time t . Let N(t) � [N1(t), . . . , Nn(t)]t be the column vector of the
n individual counting processes. Let X(t) be the n � (p � 1) matrix
whose j th row is given by

[Yj (t), Yj(t)Zj1(t), . . . , Yj (t)Zjp ], j � 1, . . . , n.

The intensity function for Nj(t), given Z j (t) under the assumed
additive hazard model, is [Yj (t), Yj(t)Zj1(t), . . . , Yj (t)Zjp ]�(t), where
�(t) is the (p � 1) � 1 vector [�0(t), �1(t), . . . , �p(t)]t . This implies
that

M(t) � N(t) �

∫ t

0
X(u)�(u)du

is an n � 1 vector of martingales. Thus

dN(t) � X(t)�(t) � dM(t), (10.2.14)



10.2 Aalen’s Nonparametric, Additive Hazard Model 345

analogous to the relationship used in section 3.6 to derive the
Nelson–Aalen estimator. The martingale can be regarded as statis-
tical noise, so set dM(t) to zero in (10.2.14) and solve for the vector
B(t) �

∫ t
0 �(u)du. A solution is possible only when X(t) has full

rank (p � 1). We let X�(t) be a generalized inverse of X(t). That is,
X�(t) is a (p � 1) � n matrix with the property that X�(t)X(t) � I,
the (p � 1) � (p � 1) identity matrix. The solution to (10.2.14) is

B̂(t) �

∫ t

0
X�(u)dN(u) (10.2.15)

B̂(t) �
∑

Tj �t

� jX
�(Tj), for t � �.

Any generalized inverse can be used. In deriving the estimator in this
section, the generalized inverse X�(t) � [Xt (t)X(t)]�1Xt(t) is used.

To derive the variance estimator of B̂(t), for t � �, note that, in
this range, we can write (B̂ � B)(t) �

∫ t
0 X�(u)dM(u), the stochastic

integral of a predictable process X�(t) with respect to a martingale.
The predictable variation process �B̂ � B�(t) provides the mean-
squared error of the process (B̂�B)(t), which, using a matrix version
of (3.6.4), is given by

�B̂ � B�(t) �

∫ t

0
X�(u) 
 dM(u) � X�(u)t

�

∫ t

0
X�(u)[diag h(u)]X�(u)t ,

where diag h(u) is the n � n diagonal matrix with ( j, j)th ele-
ment h[t | Z j(u)]Yj(u). The variance is estimated by the matrix

�̂ �
∫ t

0 X�(u)[diag dN(u)]X�(u)t , where diag dN(u) is the n � n
diagonal matrix with ( j, j)th element dNj (u). When the generalized
inverse X�(t) � [Xt (t)X(t)]�1Xt(t) is used, this reduces to the esti-
mated covariances given by (10.2.4).

A more rigorous derivation of these results is found in Aalen
(1980), McKeague(1988) or Huffer and McKeague (1991).

2. As seen in the previous theoretical note, the estimators discussed
in this section are based on the generalized inverse of X(t) defined
by X�(t) � [Xt (t)X(t)]�1Xt (t). This choice of an inverse does not
account for the possibility that the individual martingales Mj (t) may
have distinct variances. Because any generalized inverse can be used
in developing these estimators, there is no guarantee that this choice
of generalized inverse is optimal. Huffer and McKeague (1991) and
MacKeague (1988) suggest using a weighted, least-squares, general-
ized inverse

X�(t) � [Xt (t)W(t)X(t)]�1Xt (t)W(t). (10.2.16)
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Here W(t) is an n � n diagonal matrix taken to have the ( j, j)th
element proportional to the inverse of the variance of dMj (t). Be-
cause the variance of dMj (t) is given by h[t | Z j(t)] � �o(t) �∑p

k�1 �k (t)Zjk (t), a two-stage estimation procedure is suggested.
In the first stage of the weighted, least-squares procedure, the

unweighted, least-squares estimator of Bk (t), k � 0, . . . , p is com-
puted via (10.2.3). Using this estimator, a kernel-smoothed estimator
of �k (t), �̂k (t), is obtained. These estimators are used to estimate
the weight function as Wjj � [�̂o(t) �

∑p
k�1 �̂k (t)Zjk (t)]�1. These

estimated weights are used in (10.2.16) to compute the general-
ized inverse which is used in (10.2.15) to obtain the second-stage,
weighted, least-squares estimator.

3. Aalen (1993) discusses a method to check for the goodness of fit of
this model.

4. The difference between the two-sample test presented in this section
and the log rank test presented in section 7.3 is the estimated variance
of U . For the log rank test the variance of U is estimated under the
null hypothesis of no difference between the two survival curves,
while for the test presented here the variance is estimated in the
general mode, which does not assume equal survival.

5. Other test statistics for the additive hazard model have been sug-
gested by Huffer and McKeague (1991). They consider Renyi tests
that are in the same spirit of those presented in Chapter 7.

6. Andersen et al. (1993) present a detailed outline of the large sample
theory needed to prove the asymptotic chi-squared distribution of
the test statistics presented here.

10.3 Lin and Ying’s Additive Hazards Model

In the previous section we studied an additive model for the conditional
hazard rate of an individual given a set of covariates. In that model
we allowed the regression coefficients to be functions of time. Lin and
Ying (1994, 1995, 1997) propose an alternate additive hazards regression
model. For their model the possibly time-varying regression coefficients
in the Aalen model are replaced by constants. That is, the Lin and Ying
additive model for the conditional hazard rate for individual j with
covariate vector Z j (t) is

h(t | Z j (t)) � �0(t) �
p∑

k�1

�k Z jk (t) (10.3.1)

where �k , k � 1, . . . , p are unknown parameters and �0(t) is an arbi-
trary baseline function. When all the covariate values are fixed at time
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0 it is easy to estimate the regression coefficient, �k , k � 1, . . . , p . In
fact, as opposed to the estimates in the Cox model an explicit formula
is available for the estimates and their variances, and as opposed to the
Aalen model we can directly estimate the regression coefficients. In this
section we will focus on the case where all the covariates are fixed at
time 0 and refer readers to the papers by Lin and Ying (1994, 1997) for
details of the calculations when time-varying covariates are present.

As usual our data consists of a sample (Tj , � j , Z j ), j � 1, . . . , n where
Tj is the on study time, � j the event indicator, and Z j � �Zj1, . . . , Z jp� is
a p-vector of possibly fixed time-dependent covariates. We assume that
the Tj are ordered from smallest to largest with 0 � T0 � T1 � T2 �
	 	 	 � Tn . For the j th individual we define

Yj(t) �

⎧
⎪⎪⎨

⎪⎪⎩

1 if individual j is under observation
(at risk) at time t

0 if individual j is not under observation
(not at risk) at time t .

Note that if the data is left truncated then Yj (t) is 1 only between an
individual’s entry time into the study and their exit time from the study.
For right-censored data Yj(t) is 1 if t � Tj .

To construct the estimates of �k , k � 1, . . . , p , we need to construct
the vector ¯̄Z(t), which is the average value of the covariates at time t .
That is,

¯̄Z(t) �

∑n
i�1 ZiYi(t)
∑n

i�1 Yi(t)
. (10.3.2)

Note the numerator is the sum of the covariates for all individuals at
risk at time t and the denominator is the number at risk at time t . We
next construct the p � p matrix A given by

A �
n∑

i�1

i∑

j�1

(Tj � Tj�1)[Zi � ¯̄Z(Tj)]
t [Zi � ¯̄Z(Tj)]; (10.3.3)

the p-vector B given by

Bt �
n∑

i�1

�i [Zi � ¯̄Z(Ti)]; (10.3.4)

and the p � p matrix C by

C �
n∑

i�1

�i [Zi � ¯̄Z(Tj)]
t [Zi � ¯̄Z(Tj)]. (10.3.5)

The estimate of � � (�1, . . . , �p) is

�̂ � A�1Bt (10.3.6)
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and the estimated variance of �̂ is given by

V̂ � V̂ar(�̂) � A�1CA�1. (10.3.7)

To test the hypothesis Hj : � j � 0, we can use the statistic

�̂ j√
V̂ j j

, (10.3.8)

which has a standard normal distribution for large n under the null
hypothesis. The test of the hypothesis that � j � 0 for all j � J is based
on the quadratic form

�2 � [�̂J � 0]t V̂�1
J [�̂J � 0], (10.3.9)

where �̂J is the subvector of estimates with subscripts in the set J and
V̂J is the corresponding part of the covariance matrix. Under the null
hypothesis the statistic has a chi squared distribution with degrees of
freedom equal to the dimension of J.

EXAMPLE 10.1 (continued) We shall apply this technique to the data comparing
immunoperoxidase-negative and -positive breast cancer patients dis-
cussed in the previous section. Here we have a single covariate, Z ,
with value of 1 if the patient was in the immunoperoxidase-negative
arm. The model is h(t | Z) � �0(t) � �Z . For the two-sample problem
we have

¯̄Z(t) �
N1(t)

N1(t) � N2(t)
,

where Nk (t) is the number at risk at time t in group k, 2 � 1, 2. Note
that this is an estimate of the chance a subject alive at time t will be
in group 1. Applying (10.3.3) to (10.3.7), we find �̂ � 0.00803 with a
standard error of 0.00471. The test of the hypotheses that � � 0 from
(10.3.8) has a value of 1.704 with a p-value of 0.0880 in close agreement
with the more complicated Aalen model.

EXAMPLE 10.2 (continued) We now apply these methods to the larynx cancer data.
We have four covariates, Z1, the indicator of Stage II disease; Z2, the
indicator of Stage III disease; Z3, the indicator of Stage IV disease; and
Z4, the patient’s age at diagnosis. The model is h(t | Z1, . . . , Z4) �
�0(t) �

∑4
j�1 Zj� j . Applying (10.3.3)–(10.3.7), we have

�̂ � (0.01325 0.07654 0.37529 0.00256)t
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and

V̂ �

⎛

⎜
⎜
⎝

1.90 � 10�3 5.38 � 10�4 4.51 � 10�4 3.80 � 10�5

5.38 � 10�4 1.95 � 10�3 3.07 � 10�4 1.17 � 10�5

4.51 � 10�4 3.07 � 10�4 1.97 � 10�2 9.88 � 10�6

3.80 � 10�5 1.17 � 10�5 9.88 � 10�6 4.74 � 10�6

⎞

⎟
⎟
⎠ .

To examine the relationship between stage of disease and patient sur-
vival we construct an ANOVA table by using the one degree of freedom
test for �k (t).

Standard
Effect � Error Chi-Square df p-value

Z1: Stage II disease 0.01325 0.0435 0.09 1 0.7609
Z2: Stage III disease 0.07654 0.0442 3.00 1 0.0833
Z3: Stage IV disease 0.37529 0.1403 7.16 1 0.0075
Z4: Age 0.00256 0.0022 1.38 1 0.2399

This table suggests that, adjusted for age, there is little difference be-
tween the survival rates of Stage I and Stage II patients, but that Stage IV
patients have a significantly different survival rate than Stage I patients.
Results are quite similar to the result for Aalen’s model in the previous
section.

The test statistic of the hypothesis of no effect of stage is

�2 � (0.01325 0.07654 0.37529)

�

⎛

⎝
1.90 � 10�3 5.38 � 10�4 4.51 � 10�4

5.38 � 10�4 1.95 � 10�3 3.07 � 10�4

4.51 � 10�4 3.07 � 10�4 1.97 � 10�2

⎞

⎠

⎛

⎝
0.01325
0.07654
0.37529

⎞

⎠

which is equal to 9.84 and gives a p-value based on the chi-square
distribution with three degrees of freedom of 0.0200.

Theoretical Notes
1. This estimator is derived based on counting process theory. As usual

we start with a counting process Nj (t) for each individual which
has the value 0 if Tj � t and 1 if Tj � t, �i � 1. We let Yj (t)
denote stochastic process which indicates whether individual j is at
risk at time t . For this model we have that h(t | Zi(t)) � �0(t) �
� tZi(t), where Zi(t) � (Zi1(t), . . . , Zip(t))t is a vector of possible
time-dependent covariates and � � (�1, . . . , �p)t are the regression
coefficients. The basic counting process, Ni(t), can be decomposed
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into

Ni(t) � Mi(t) �

t∫

0

Yi(u)[�0(t) � � tZi(t)] dt, (10.3.10)

where Mi(t) is a martingale. If � were known then as in the con-
struction of the Nelson–Aalen estimator (see section 3.6), we have
an estimator of A0(t) �

∫ t
0 �0(u) du of

Â0(t) �

t∫

0

∑n
i�1�dNi(u) � Yi(u)� tZi(u) du�

∑n
i�1 Yi(u)

. (10.3.11)

Recall the partial likelihood function for the Cox regression model
was based on a profile likelihood construction where we substituted
our estimate of the baseline hazard rate, as a function of the re-
gression coefficients, into the likelihood (see Theoretical Note 2 in
section 8.2). This leads to a partial score equation for the Cox model
of

U(�) �
n∑

i�1

�∫

0

Zi(t)[dNi(t) � Yi(t) exp��tZi(t)�d�̂0(t, �)

where �̂0(t, �) is Breslow’s estimator of the baseline hazard in the
Cox model. Lin and Ying mimic this score equation for the additive
model as

U(�) �
n∑

i�1

�∫

0

Zi(t)[dNi(t)�Yi(t) dÂ0(t)�Yi(t)�
tZi(t) dt ], (10.3.12)

which upon substitution of (10.3.11) for Â0(t) gives a score equation
of

U(�) �
n∑

i�1

�∫

0

[Zi(t) � ¯̄Z(t)][dNi(t) � Yi(t)�
tZi(t) dt ]. (10.3.13)

The value of � which maximizes (10.3.13) is

�̂ �

⎡

⎣
n∑

i�1

�∫

0

Yi(t)[Zi(t) � ¯̄Z(Tj)]
t [Zi(t) � ¯̄Z(Tj)] dt

⎤

⎦

�1

�

⎡

⎣
n∑

i�1

�∫

0

[Zi(t) � ¯̄Z(Ti)] dNi (t)

⎤

⎦ , (10.3.14)

which reduces to (10.3.6) when all the covariates are fixed at time
zero.
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Practical Note
1. The estimate of the cumulative baseline hazard rate �0(t) is given by

(10.3.11). When all the covariates are fixed this reduces to

Â0(t) �
k∑

i�1

�i

Y.(Ti)
�

k∑

j�1

n∑

i� j

� tZi
T j � Tj�1

Y.(Tj)
�

n∑

i�k�1

� tZi
t � Tk

Y.(Tk )
,

for Tk � t � Tk�1. Here Y.(t) is the total number at risk at time t . Note
that the first term here is the usual Nelson–Aalen estimator of the
hazard rate as presented in Chapter 4. This function is a piecewise
linear function with jumps at the observed deaths.

10.4 Exercises

10.1 In section 1.10 we presented a study comparing two types of trans-
plants for two types of lymphoma. In the study patients were given
either an allogenic (Allo) or autologous (Auto) transplant for Hodgkin’s
lymphoma or non-Hodgkin’s lymphoma (NHL). Using Aalen’s additive
model and this data set, answer the following questions:

(a) Ignoring disease status, estimate the effect of type of transplant.
Provide an estimate of the cumulative regression coefficient and its
standard error.

(b) Test the hypothesis that there is no difference between Allo and
Auto transplants based on the model in part a using the number at
risk as weights.

(c) Consider fitting the model with a term for disease (Z1 � 1 if NHL,
0 otherwise), a term for type of transplant (Z2 � 1 if Allo, 0 if
Auto), and an interaction term, Z3 � Z1 � Z2. Find the estimates of
the cumulative regression coefficients for this model. Provide a test
of the hypothesis that there is no interaction between disease and
type of transplant.

10.2 In section 1.6 a study which evaluated disinfectant practices at a large
midwestern medical center was presented. The effect of two methods
of burn cleansing (routine and chlorhexidine) on the distribution of the
times to staphylococcus infections is of primary interest. A covariate to
be adjusted for in the analysis is the total surface area burned.

(a) Fit an additive hazard model for the times to staphylococcus in-
fections using an indicator variable for the type of cleansing used
and a continuous covariate, centered at its mean, for the total sur-
face area burned. Plot your estimates of the cumulative regression
coefficients.
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(b) Provide a plot of the estimated survival function of time to staphy-
lococcus infection for both types of cleansing for an individual with
burns over 50% of their total surface area.

(c) Test the hypothesis of no difference in the rates of staphylococcus
infection in the two bathing groups.

(d) Using a kernel-smoothed estimator with a bandwidth of 10 days
and a biweight kernel, estimate the regression function for the type
of cleansing. Interpret this estimate.

10.3 Using the data in section 1.10 on transplants for patients with lym-
phoma—
(a) Estimate the effect of type of transplant, ignoring the disease using

the Lin–Ying model.
(b) Consider fitting a model with an indicator of disease type and type

of transplant. Estimate the regression coefficients in the Lin and
Ying model and test the hypothesis that there is no interaction
between disease and type of transplant.



11
Regression Diagnostics

11.1 Introduction

In Chapters 8 and 9, methods for analyzing semiparametric proportional
hazards models were presented. In these chapters, the focus was on
estimating and testing covariate effects assuming that the model was
correctly chosen. Only limited checks of the assumptions were made.
A check of the proportional hazards assumption in the Cox model with
a constructed time-dependent covariate was used. In this chapter, we
shall look at a series of regression diagnostics for the Cox models, based
on residual plots.

We are interested in examining four aspects of the proportional haz-
ards model. First, for a given covariate, we would like to see the
best functional form to explain the influence of the covariate on sur-
vival, adjusting for other covariates. For example, for a given covari-
ate Z , is its influence on survival best modeled by ho(t) exp(�Z), by
ho(t) exp(� log Z), or, perhaps, by a binary covariate defined by 1 if
Z � Zo; 0 if Z 
 Zo ? In the last case, the choice of Zo was discussed in
section 8.4.

The second aspect of the model to be checked is the adequacy of the
proportional hazards assumption. If this assumption is not valid, then,

353
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one may be appreciably misled by the results of the analyses. While
we have looked at the use of a time-dependent covariate to check this
assumption, a graphical check may provide some additional insight into
any departure from proportionality.

The third aspect of the model to be checked is its accuracy for pre-
dicting the survival of a given subject. Here, we are interested in pa-
tients who died either too early or too late compared to what the fitted
model predicts. This will tell us which patients are potential outliers
and, perhaps, should be excluded from the analysis.

The final aspect of the model to be examined is the influence or
leverage each subject has on the model fit. This will also give us some
information on possible outliers.

In the usual linear regression setup, it is quite easy to define a residual
for the fitted regression model. In the regression model presented in
Chapters 8 and 9, the definition of the residual is not as clear-cut. A
number of residuals have been proposed for the Cox model. Different
residuals are useful for examining different aspects of the model. In
section 11.2, we present the first residual proposed for the Cox model,
the so-called Cox–Snell (1968) residuals. These residuals are useful for
checking the overall fit of the final model.

In section 11.3, the notion of a martingale residual is presented.
These residuals are useful for determining the functional form of a
covariate to be included in a proportional hazards regression model.

In section 11.4, graphical checks of the proportional hazards assump-
tion in the Cox model are presented. These checks include the use of
score residuals, Arjas plots, and plots based on estimates of the cumu-
lative hazard from a stratified model.

In section 11.5, the problem of examining model accuracy for each
individual is addressed. Here, the use of the deviance residual for this
purpose is illustrated.

In section 11.6, the problem of determining leverage points is ad-
dressed. Here, we wish to estimate, efficiently, the difference between
an estimate of � based on a full sample and one based on a sample
with the i th observation omitted. Approaches to this problem are based
on the partial residual or score residual.

11.2 Cox–Snell Residuals for Assessing the Fit of
a Cox Model

The Cox and Snell (1968) residuals can be used to assess the fit of a
model based on the Cox proportional hazards model. Suppose a Cox
model was fitted to the data (Tj , � j , Z j), j � 1, . . . , n . For simplicity we
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assume that Z j � (Zj1, . . . , Z jp)t are all fixed-time covariates. Suppose
that the proportional hazards model h(t | Z j ) � ho(t) exp(��k Z jk ) has
been fitted to the model. If the model is correct, then, it is well known
that, if we make the probability integral transformation on the true
death time X , the resulting random variable has a uniform distribution
on the unit interval or that the random variable U � H (Xj | Z j ) has an
exponential distribution with hazard rate 1. Here, H (x | Z j ) is the true
cumulative hazard rate for an individual with covariate vector Z j .

If the estimates of the �’s from the postulated model are b �
(b1, . . . , bp)t , then, the Cox–Snell residuals are defined as

rj � Ĥ o(Tj) exp

(
p∑

k�1

Zjk bk

)

, j � 1, . . . , n. (11.2.1)

Here, Ĥ o(t) is Breslow’s estimator of the baseline hazard rate defined
by Eq. (8.8.2) in section 8.8. If the model is correct and the b’s are close
to the true values of � then, the rj ’s should look like a censored sample
from a unit exponential distribution.

To check whether the rj ’s behave as a sample from a unit exponen-
tial, we compute the Nelson–Aalen estimator of the cumulative hazard
rate of the rj ’s, discussed in section 4.2 (see Eq. (4.2.3)). If the unit
exponential distribution fits the data, then, this estimator should be ap-
proximately equal to the cumulative hazard rate of the unit exponential
HE(t) � t . Thus, a plot of the estimated cumulative hazard rate of the
rj ’s, Ĥ r (rj), versus rj should be a straight line through the origin with
a slope of 1.

The Cox–Snell residual can be defined for more complex propor-
tional hazards models. For example, for a model with time-dependent
covariates and/or a model where the baseline hazard is stratified on
some risk factor, if we let Ĥ o j (t) be the appropriate baseline cumulative
hazard estimator for the j th individual, then, the residual is given by

rj � Ĥ o j (Tj) exp

[
p∑

k�1

Zjk (Tj)bk

]

, j � 1, . . . , n. (11.2.2)

EXAMPLE 11.1 We shall use the Cox–Snell residual plots to check the fit of a model
for disease-free survival following a bone marrow transplantation. The
data is presented in section 1.3, and this study was previously analyzed
using the proportional hazards model in Examples 8.5 and 9.1. Here
shall focus on the effects of the following covariates on disease-free
survival:

Z1 � Patient age at transplant (centered at 28 years)

Z2 � Donor age at transplant (centered at 28 years)
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Z3 � Z1 � Z2 (Patient–Donor age interaction)

Z4 � “Low-Risk” acute leukemia

Z5 � “High-Risk” acute leukemia

Z6 � FAB score of 4 or 5 and acute leukemia

Z7 � Waiting time to transplant in months (centered at 9 months)

Z8 � MTX used as an aGVHD prophylactic

A Cox regression model is fit to the data with these eight covariates,
and the residuals rj are computed using (11.2.1). The data (rj , � j), j �
1, . . . , 137 is, then, used to obtain the Nelson–Aalen estimate of the
cumulative hazard rate of rj . Figure 11.1 is a plot of the residuals versus
the estimated cumulative hazard of the residuals. If the Cox model fits
the data, the plot should follow the 45◦ line. The plot suggests that this
model does not fit too badly.
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Figure 11.1 Cox–Snell residual plot treating MTX as a fixed time covariate
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Figure 11.2 Cox–Snell residual plots for MTX and no MTX patients separately
treating MTX as a fixed covariate in the model. MTX patients (------) No MTX
patients (———)

To further examine the model, we construct the Nelson–Aalen estima-
tor of the cumulative hazard rate of the residuals, based on the complete
data set, separately, for patients given MTX and not given MTX. Fig-
ure 11.2 shows the resulting hazard plot for each of the groups. The
estimated cumulative hazard rate for the MTX group (dotted line) lies
above the 45◦ line, except in the tail where the variability in the esti-
mate of the cumulative hazard rate is large. This suggests that a model
stratified on the use of MTX may be more appropriate. A formal test of
the hypothesis of proportional hazards for MTX, with a time-dependent
covariate Z9(t) � Z8 ln t , yields a p-value of 0.0320 from the Wald test.
Figure 11.3 plots the estimates of the cumulative hazard rates of the
residuals from a Cox model stratified on the use of MTX (see (11.2.2)).
Here, both estimates seem to be close to the 45◦ line, except in the
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Figure 11.3 Cox–Snell residual plots for MTX and no MTX patients based on
a model stratified on MTX usage. MTX patients (------) No MTX patients (———)

tail where the estimates are quite variable. This analysis suggests that
the stratified model fits better than the unstratified model. In section
11.4, we shall look at other methods for checking the proportionality
assumption.

Practical Notes

1. The Cox–Snell residuals are most useful for examining the overall fit
of a model. A drawback of their use is they do not indicate the type
of departure from the model detected when the estimated cumulative
hazard plot is not linear (see Crowley and Storer 1983).

2. Cox–Snell residuals are available in SAS Proc PHREG and S-Plus
routine coxph.
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3. The closeness of the distribution of the rj ’s to the unit exponential
depends heavily on the assumption that, when � and Ho(t) are re-
placed by their estimates, the probability integral transform still yields
uniform [0, 1] distributed variates. This approximation is somewhat
suspect for small samples (see Lagakos, 1981).

4. Kay (1984) surveys other plots one may make based on these resid-
uals. For example, one may plot the residual from a model with
a covariate omitted versus the omitted covariate to assess how the
omitted covariate should be modeled. For this purpose, we prefer
the use of the related martingale residual discussed in the following
section.

5. The Cox–Snell residuals should be used with some caution. The ex-
ponential distribution for the residuals holds only when the actual
parameter values are used in (11.2.1). When the estimates of these
quantities are used to compute the residuals, as we do here, de-
partures from the exponential distribution may be partly due to the
uncertainty in estimating � and H . This uncertainty is the largest in
the right-hand tail of the distribution and for small samples.

11.3 Determining the Functional Form of a
Covariate: Martingale Residuals

In this section, we shall examine the problem of determining the func-
tional form to be used for a given covariate to best explain its effect on
survival through a Cox proportional hazards model. The best functional
form may be a transform of the covariates, such as log Z , Z 2, or Z log Z ,
or it may be a discretized version of the covariate. As discussed in sec-
tion 8.4, it is common practice in many medical studies to discretize
continuous covariates, and the residuals presented here are useful for
determining cut points for the covariates.

The residual we shall use here, called a martingale residual, is a
slight modification of the Cox–Snell residual discussed in the previous
section. To define the martingale residual in the most general sense,
suppose that, for the j th individual in the sample, we have a vector
Z j (t) of possible time-dependent covariates. Let Nj (t) have a value 1
at time t if this individual has experienced the event of interest and 0
if the individual has yet to experience the event of interest. Let Yj (t)
be the indicator that individual j is under study at a time just prior
to time t . Finally, let b be the vector of regression coefficients and
Ĥ o(t) the Breslow estimator of the cumulative baseline hazard rate.
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The martingale residual is defined as

M̂j � Nj(�) �

∫ �

0
Yj(t) exp[btZ j (t)]dĤ o(t), j � 1, . . . , n. (11.3.1)

When the data is right-censored and all the covariates are fixed at the
start of the study, then, the martingale residual reduces to

M̂j � � j � Ĥ o(Tj) exp

(
p∑

k�1

Zjk bk

)

� � j � rj , j � 1, . . . , n. (11.3.2)

The residuals have the property
∑n

j�1 M̂j � 0. Also, for large samples
the M̂j ’s are an uncorrelated sample from a population with a zero
mean.

The martingale residuals are motivated by the property that, if the
true value of � and Ho( ), rather than the sample values, were used
in (11.3.1), then, the functions Mj would be martingales (see section
3.6 and the theoretical notes in this section). The residuals can be
interpreted as the difference over time of the observed number of events
minus the expected number of events under the assumed Cox model,
that is, the martingale residuals are an estimate of the excess number
of events seen in the data but not predicted by the model. In this
section, we shall use these residuals to examine the best functional form
for a given covariate using an assumed Cox model for the remaining
covariates. For computational simplicity, we will focus on fixed-time
covariates. Suppose that the covariate vector Z is partitioned into a
vector Z�, for which we know the proper functional form of the Cox
model, and a single covariate Z1 for which we are unsure of what
functional form of Z1 to use. We assume that Z1 is independent of Z�.
Let f (Z1) be the best function of Z1 to explain its effect on survival.
Our optimal Cox model is, then,

H (t | Z�, Z1) � Ho(t) exp(��Z�) exp[ f (Z1)]. (11.3.3)

To find f , we fit a Cox model to the data based on Z� and compute
the martingale residuals, M̂j , j � 1, . . . , n . These residuals are plotted
against the value of Z1 for the j th observation. A smoothed fit of the
scatter diagram is, typically, used. The smoothed-fitted curve gives an
indication of the function f . If the plot is linear, then, no transformation
of Z1 is needed. If there appears to be a threshold, then, a discretized
version of the covariate is indicated. This process is illustrated in the
following example.

EXAMPLE 11.2 To illustrate the use of martingale residuals in model selection, consider
the data comparing allogeneic (allo) bone marrow transplants from an
HLA-matched sibling or an autogeneic (auto) bone marrow transplant
for patients with either Hodgkin’s disease (HL) or non-Hodgkin’s lym-
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phoma (NHL) (see section 1.10) first analyzed in Example 7.6. Two
additional covariates to be adjusted for in the analysis are the patient’s
initial Karnofsky score, a measure of the patient’s condition at trans-
plant, and Z1 the waiting time from diagnosis to transplant in months.
We shall examine the best function of the variable Z1 to be used in an
analysis. Covariates included in the Cox Model are the type of trans-
plant (1-allo, 0-auto), Disease (1-HL, 0-NHL), a disease-transplant type
interaction (1 if allo and HL, 0 otherwise), and the initial Karnofsky
score. A Cox model is fitted with these four covariates and the mar-
tingale residuals are plotted along with a LOWESS smooth (Cleveland
(1979)). The LOWESS smoothing function is available in both SAS and
S-plus. Figure 11.4 shows the results. The smoothed curve is roughly
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zero up to about 50 months, decreases linearly up to about 100 months,
and, then, levels off. This suggests that waiting time from diagnosis to
transplant can be coded in the Cox model as a indicator variable.

To find the best break point for the variable Z1, we apply the tech-
niques in section 8.4. Here we find the best cut point is at 84 months.
The value of the scaled score statistic is 0.697, which is not significant.

Practical Notes

1. Martingale residuals are available in SAS PROC PHREG and in S-plus.
2. Some authors have suggested plots of the martingale residuals

against survival times or against the ranks of the survival times as an
indication of model fit. We prefer to use other residuals for assessing
the general lack of fit of models because the martingale residuals
are skewed.

Theoretical Notes

1. The martingale residual is based on the fact that the process

Mj (t) � Nj (t) �

∫ t

0
Yj (u) exp[�tZ j(u)]dHo(u) (11.3.4)

is a martingale when the proportional hazards model is correctly
specified. The martingale residual, defined in (11.3.1), is obtained
by substituting the estimates of � and Ho( ) in this expression and
evaluating the estimated martingale at time t � �. To see why the
martingale residuals can be used for model identification, suppose
that the model (11.3.3) holds. Let g(Z1) � exp[ f (Z1)]. Then, the
expected value of Mj (t), given Z1 j , is approximately equal to [1 �
g� � g(Z1 j)]E [Nj (t) | Z1 j ], where g� is the average value of g(Z1) over
both time and the expected distribution of the risk set at a given
time. If one expands this expectation in a Taylor series, we see that

E (Mj | Z1 j) � [ f (Z1 j) � log(g�)]w,

where w is the total number of events divided by the total sample
size. Thus, a smoothed plot of M̂j versus a covariate should reveal the
correct functional form for including Z1 in a Cox model. A detailed
derivation of these results is found in Fleming and Harrington (1991)
or Therneau et al. (1990).
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11.4 Graphical Checks of the Proportional
Hazards Assumption

The validity of Cox’s regression analysis relies heavily on the assumption
of proportionality of the hazard rates of individuals with distinct values
of a covariate. In Chapter 9, we examined techniques for testing this
assumption using time-dependent covariates. In this section, we shall
look at several graphical techniques for checking this assumption. We
are interested in checking for proportional hazards for a given covariate
Z1 after adjusting for all other relevant covariates in the model, that is,
we write the full covariate vector as Z � (Z1, Zt

2)
t where Z2 is the vector

of the remaining p � 1 covariates in the model. We assume that there
is no term in the model for interaction between Z1 and any of the
remaining covariates.

The first series of plots requires that the covariate Z1 has only K
possible values. For a continuous covariate, we stratify the covariate
into K disjoint strata, G1, G2, . . . , GK , whereas, for a discrete covariate,
we assume that Z1 takes only the values 1, 2, . . . , K . We, then, fit a
Cox model stratified on the discrete values of Z1, and we let Ĥ go(t) be
the estimated cumulative baseline hazard rate in the gth stratum. If the
proportional hazards model holds, then, the baseline cumulative hazard
rates in each of the strata should be a constant multiple of each other.
This serves as the basis of the first graphical check of the proportional
hazards assumption.

To check the proportionality assumption one could plot ln[Ĥ 1o(t)],
. . . , ln[Ĥ Ko(t)] versus t . If the assumption holds, then, these should be
approximately parallel and the constant vertical separation between
ln[Ĥ go(t)] and ln[Ĥ ho(t)] should give a crude estimate of the factor
needed to obtain Ĥ ho(t) from Ĥ go(t). An alternative approach is to
plot ln[Ĥ go(t)] � ln[Ĥ 1o(t)] versus t for g � 2, . . . , K . If the propor-
tional hazards model holds, each curve should be roughly constant.
This method has the advantage that we are seeking horizontal lines for
each curve rather than comparing parallel curves. Note that both plots
give us only the information that the baseline hazards for each stratum
are not proportional. The plots do not give detailed information about
the type of departure from proportionality we are seeing.

Another graphical method based on Ĥ go(t) is the so-called Andersen
(1982) plots. Here, we plot, for all t (or for a selected subset of t), Ĥ go(t)
versus Ĥ 10(t) for g � 2, . . . , K . If the proportional hazards model holds,
these curves should be straight lines through the origin. If Hgo(t) �
exp(�g)H10(t), then, the slope of these lines is a crude estimate of
exp(�g). Gill and Schumacher (1987) have shown that, if the plot of
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Ĥ go(t) versus Ĥ 10(t) is a convex (concave) function, then, the ratio
hgo(t) � h10(t) is an increasing (decreasing) function of t . If the plot is
piecewise linear, then, this ratio is piecewise constant. All three plots
should be interpreted with some care because the variances of the
curves are not constant over time.

EXAMPLE 11.3 Here, we shall check the proportional hazards assumption graphically
for the data set comparing the difference in disease-free survival be-
tween patients given an autologous (auto) and allogeneic (allo) bone
marrow transplant for acute leukemia (see Section 1.9).

Because there is a single covariate Z taking a value 1 if the patient
has an auto transplant and 0 if the patient had an allo transplant for this
data set, the estimated baseline hazard rates in each group reduce to the
Nelson–Aalen estimators. Figure 11.5 shows a plot of the logarithm of
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Figure 11.5 Plot of log cumulative baseline hazard rates versus time on study
for the allo transplant (———) and the auto transplant (------) groups.
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Figure 11.6 Plot of the difference in log cumulative baseline hazard rates
(Auto-Allo) versus time on study

the two Nelson–Aalen estimators. We see that the two baseline hazard
rates are not proportional and, in fact, the baseline hazard rates cross,
clearly suggesting nonproportional hazards. Figure 11.6 shows the dif-
ference in log baseline cumulative hazard rates (auto-allo) for the two
samples. Again, the proportional hazards assumption is rejected be-
cause the plotted curve is not roughly constant over time. This figure
shows an early advantage for autologous transplants due, in part, to
less early transplant-related mortality. After this early period, we see an
advantage for the allogeneic transplants, primarily, due to a decreased
relapse rate in these patients.

Figure 11.7 gives the Andersen plot for these data. If the model held,
we would have expected a linear plot through the origin, but this is not
the case in this plot. The plot appears to be roughly concave, suggesting
that the ratio h(t | allo) � h(t | auto) is a function decreasing with time.
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Figure 11.7 Andersen plot to check the assumption of proportional hazards of
the type of transplant covariate

EXAMPLE 11.1 (continued): We shall use these techniques to examine the propor-
tional hazards assumption for the binary covariate Z8, the use of MTX
as a GVHD prophylactic, and, separately, for the covariate Z7, the wait-
ing time from diagnosis to transplant, for the bone marrow transplant
data. To examine the proportionality of Z8, we first fit a Cox model with
the covariates Z1, Z2, Z3, Z4, Z5, Z6, and Z7 stratified on the use of MTX.
The baseline cumulative hazards are estimated using Breslow’s estima-
tor (8.8.2) for each stratum. Figures 11.8–11.10 show the log cumulative
baseline hazards, difference in log cumulative baseline hazards, and
the Andersen plot, based on these estimates. These figures are sug-
gestive of nonproportional hazards. In particular, Figure 11.9 suggests
that the proportional hazards model is questionable about 80 days after
transplant.
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Figure 11.8 Plot of log cumulative baseline hazard rates versus time on study
for the no MTX (———) and the MTX (------) groups.

To examine the proportionality assumption for Z7, we stratify this
continuous covariate as

Z �
7 �

⎧
⎪⎪⎨

⎪⎪⎩

1 if Z7 � �5
2 if �5 
 Z7 � �3.06
3 if �3.06 
 Z7 � 0
4 if Z7 � 0

.

These categories were chosen to give about 25% of the data in
each of the strata. We, then, fit a Cox model with the covariates
Z1, Z2, Z3, Z4, Z5, Z6, and Z8 stratified on Z �

7 , and the four baseline
cumulative hazard rates were estimated. Figure 11.11 shows a plot
of the log cumulative baseline rates, Figure 11.12 shows a plot of
ln[Ĥ go(t)] � ln[Ĥ 1o(t)] versus t for g � 2, 3, 4, and Figure 11.13 shows
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Figure 11.9 Plot of the difference in log cumulative baseline hazard rates
(MTX – No MTX) versus time on study

the Andersen plot of Ĥ go(t) versus Ĥ 1o(t), for g � 2, 3, 4. In Figure
11.11, we see no gross departure from the hypothesis of parallel curves,
and, in Figure 11.12, although there is some early random variation
from a constant curve, we see no gross departure from the proportional
hazards assumption. The Andersen curves also appear to be approx-
imately linear. All the figures suggest that there is little difference in
hazard rates for individuals who are in strata 1–3 whereas individuals
in stratum 4 are at higher risk of death or relapse. This suggests that,
although the proportional hazards model may be reasonable for the
waiting time to transplant, the assumption that waiting time has a linear
effect on the event may be suspect.

A second method of checking the proportional hazards assumption is
the use of Arjas (1988) plots. These plots can also be used to check the
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Figure 11.10 Andersen plot to check the assumption of proportional hazards
of the MTX risk factor

overall fit of the proportional hazards regression model. Suppose that
a Cox model has been fitted with a covariate vector Z� of p variables
and we wish to check if an additional covariate Z should be included
in the model or if the new covariate has proportional hazards after
adjustment for covariates Z�. We fit the proportional hazards model
with the covariates Z� and let Ĥ (t | Z�

j ) be the estimated cumulative
hazard rate for the j th individual in the sample at time t . Note that,
in this approach, the fitted model ignores Z1 and does not stratify on
Z1 as in the Andersen plots. As before, we group values of Z1 into K
classes if the covariate is continuous. At each event time for each level
of Z1, we compute the “total time on test” of the estimated cumulative
hazard rates up to this time and the observed number of events that
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Figure 11.11 Plot of log cumulative baseline hazard rates versus time on study
for the four waiting time to transplant groups. Z7 � �5 (———) �5 
 Z7 �

�3.06 (------) �3.06 
 Z7 � 0 (— - —) Z7 � 0 (— — —)

have occurred up to this time. That is, at each event time ti , we compute

TOTg(ti) �
∑

Z1 j�g

Ĥ (min(ti , Tj ) | Z�
j ), (11.4.1)

and

Ng(ti) �
∑

Z1 j�g

� j I (Tj � ti). (11.4.2)

If the covariate Z1 does not need to be in the model, then, for each
level of Z1, the quantity Ng(ti) � TOTg(ti) is a martingale and a plot
of Ng(ti) versus TOTg(ti) should roughly be a 45◦ line through the
origin. Departures from this pattern provide evidence of a lack of fit
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Figure 11.12 Difference in log cumulative baseline hazard rates of the waiting
time to transplant strata. Strata 2-strata 1 (———) Strata 3-strata 1 (------)
Strata 4 -strata 1 (— - —)

of the model. If covariate Z1 should be included in the model, so that
the correct model is h(t | Z1 � g, Z�) � ho(t) exp��g� exp(�tZ�), then,
plots will gives curves which are approximately linear but with slopes
differing from 1. If the omitted covariate Z1 has a nonproportional
hazards effect on the hazard rate, then, the curves will differ nonlinearly
from the 45◦ line. Particular departures from linearity give some clue to
the relationship between hazards for individuals with different levels of
Z1. For example, if the true model is h(t | Z1 � g, Z�) � hog(t) exp(�tZ�),
then, if the ratio hgo(t) � hg ′o(t) is increasing in t for g 
 g ′, the curve for
Z1 � 1 should be concave whereas the curve with Z1 � K should be
convex.
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Estimated Cumulative Hazard Rate for Strata 
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Figure 11.13 Andersen plot to check the assumption of proportional hazards
of the waiting time to transplant risk factor. Strata 2 (———) Strata 3 (------)
Strata 4 (— - —)

EXAMPLE 11.3 (continued): Using an Arjas plot, we shall examine the proportionality
assumption for comparing the disease-free survival rates of allo and auto
transplant patients. In this case, no Cox model is fitted, but, rather, the
residuals are the Nelson–Aalen estimates of the cumulative hazard rate,
ignoring the covariate Z . These estimates are stratified on the binary
covariate Z and the statistics Ng and TOTg, g � 1, 2 are computed.
Figure 11.14 shows the diagnostic plot. Because neither curve closely
follows the 45◦ line, the type of transplant should be adjusted for in the
model. The nonlinear appearance of the two curves strongly suggests
a nonproportional hazards correction.
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Figure 11.14 Arjas plot of the estimated cumulative hazard rates for auto
transplant (———) and allo transplant (------) patients versus the number of
events

EXAMPLE 11.1 (continued): Now, we will use the Arjas plots to examine the effect of
MTX, as a prophylatic treatment, and, separately, the role of time from
diagnosis to transplant in disease-free survival. Figure 11.15 shows the
Arjas plot for the MTX and no MTX groups. Here, the fitted Cox model
included the factors Z1, Z2, Z3, Z4, Z5, Z6, and Z7. The two curves vary
appreciably from the 45◦ line, the MTX curve appears to be concave,
and the no MTX curve convex. This suggests that the ratio of the MTX
baseline hazard to the no MTX baseline hazard is increasing with time,
and a stratified model is appropriate.

Figure 11.16 shows the Arjas plot for the covariate Z �
7 , the grouped

values of the waiting time to transplant. Here, all of the curves seem to
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Figure 11.15 Arjas plot of the estimated cumulative hazard rates for no MTX
patients (———) and MTX patients (------) versus the number of events

fit closely to the 45◦ line, suggesting that this covariate has little effect
on disease-free survival and can be dropped from the model.

A third approach to examining a model for departures from propor-
tional hazards for a given covariate is the use of plots based on the
score residuals. To construct these plots, we first fit the Cox model with
all p covariates. Here, no transformation is made to discretize the con-
tinuous covariates. Let b be the estimate of the risk coefficient � and
Ĥ o(t) be the estimated baseline hazard rate. As in the definition of the
martingale residual, let Nj (t) indicate whether the j th individual has
experienced the event of interest and let Yj (t) indicate that individual
j is under study at a time just prior to time t . For the k th covariate,
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Figure 11.16 Arjas plot of the estimated cumulative hazard rates to assess the
proportionality of the waiting time to transplant risk factor. Z7 � �5 (———)
�5 
 Z7 � �3.06 (------) �3.06 
 Z7 � 0 (— - —) Z7 � 0 (— — —)

k � 1, . . . , p , let

¯̄Zk (t) �

n∑

j�1

Yj (t)Zjk (t) exp[btZ j (t)]

n∑

j�1

Yj (t) exp[btZ j (t)]

(11.4.3)

Note that, in (11.4.3), only individuals at risk at time t contribute to the
sums. Finally let M̂j (t) be the martingale residual at time t for individual
j defined by

M̂j (t) � Nj(t) �

∫ t

0
Yj(u) exp[btZ j (u)]dĤ o(u), j � 1, . . . , n. (11.4.4)
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The score residual for the k th covariate and the j th individual at time t
is defined by

S jk (t) �

∫ t

0
�Zjk (u) � ¯̄Zk (u)�dM̂j (u). (11.4.5)

Using the scores for each of the n individuals, we define a score
process for the k th covariate as

Uk (t) �
n∑

j�1

S jk (t). (11.4.6)

When all the covariates are fixed at time 0 the score process for the
k th covariate is

Uk (t) �
∑

deaths�t

(Zjk � ¯̄Zk (Tj)). (11.4.7)

The terms [Zjk � ¯̄Zk (Tj)] at death times are the Schoenfeld residuals
available in SAS or S-plus. The scores process is the first partial deriva-
tive of the partial likelihood function for the fitted Cox model, using
only the information accumulated up to time t . Clearly Uk (0) � 0 and
Uk (�) � 0 because the value of �, used in constructing the score resid-
uals, is the solution to the vector equation Uk (�) � 0, k � 1, . . . , p . If
the model fits properly, then, the process, Wk (t) � Uk (t) � Standard
Error of bk , converges to a tied down Brownian bridge (provided
Cov(bk , b ′

k ) � 0, for k � k ′). Thus, a plot of Wk (t) versus time should
look like a tied down random walk. If the hazard rates for different
levels of a covariate are nonproportional, then, the plots will have a
maximum value that is too large in absolute value at some time.

The use of score residuals to check for nonproportional hazards has
several advantages over the other two approaches. First, continuous
covariates are treated naturally and need not be discretized. Second,
only a single Cox model needs to be fit to check for proportional
hazards for all covariates in the model. However, because the power
of the score process to detect nonproportional hazards has not been
compared to the Andersen or Arjas plots, we recommend that all three
approaches be used to check for proportional hazards.

EXAMPLE 11.3 (continued): We shall use the score residuals to check the assump-
tion of proportional hazards for type of transplant on the disease-free
survival time of patients given a bone marrow transplant. The score
residuals are computed by, first, fitting a Cox model with the single
covariate Z and, then, computing the score process U (t) in (11.4.7).
This process is standardized by multiplying by the estimated standard
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Figure 11.17 Standardized score residuals to check the proportionality of the
type of transplant factor on disease-free survival

deviation of b. Figure 11.17 shows the score process. The dotted lines
at 1.3581 are chosen so that the probability that the supremum of a
Brownian bridge is beyond these values is 0.05 at most. Should the plot
exceed these boundaries at any point, the assumption of proportional
hazards can be rejected at a 5% level of significance. Here again, we
find evidence of nonproportionality of the hazards for patients given
different types of transplants.

These findings suggest that the tests discussed in section 7.3, which
are based on a weighted difference between the hazard rates in the
two groups, should be used with caution and the tests based on the
Renyi statistic in section 7.6 will have higher power to detect differences
between the two groups.
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EXAMPLE 11.1 (continued): Now, we will use the score process plots to examine
the effect of MTX as a prophylactic treatment and the role of time
from diagnosis to transplant on disease-free survival. To compute the
score residuals, we now fit a Cox model with all eight covariates. Note
that, here, the waiting time from diagnosis to transplant is treated as a
continuous covariate rather then a categorical variable, as used in the
Andersen and Arjas plots. Figures 11.18 and 11.19 show the standard-
ized score process for the two covariates. As in the previous example,
the dotted lines are at 1.3581 for reference to a 5% level test of the
hypothesis of proportional hazards. In Figure 11.18, we see some evi-
dence of nonproportional hazards based on the use of MTX whereas,
in Figure 11.19, we see no evidence of nonproportional hazards for the
covariate, waiting time to diagnosis.
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Figure 11.18 Standardized score residual plot to check the proportionality of
the MTX risk factor
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Figure 11.19 Standardized score residual plot to check the proportionality of
the waiting time to transplant risk factor

Practical Notes
1. The advantage of checking proportionality with the score process

is that the covariate need not be discretized to make the plot. A
different stratification of a continuous covariate in the other plots
described here may lead to conflicting results.

2. We prefer either the Andersen plots or plots based on the difference
in baseline hazard rates over simple plots of the baseline hazard
rates. In many cases, it is quite difficult to judge proportionality
between curves whereas the Andersen and difference in baseline
rate curves ask the eye to distinguish the estimated curves from a
line.

3. The Arjas plots have an advantage over the other plots based on the
baseline hazard rate because they allow the investigator to change
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the way the covariate under study is stratified without refitting the
basic Cox model.

4. Departures from the assumed model discovered in the right-hand tail
of the plots, based on the estimated baseline hazard rates, should
be interpreted with caution because these baseline rates are most
variable for large time values.

5. Formal tests of the proportionality assumption are available. A good
survey of these tests is found in Andersen et al. (1993). We prefer
graphical checks to formal goodness-of-fit tests because we believe
that the proportional hazards assumption only approximates the cor-
rect model for a covariate and any formal test, based on a large
enough sample, will reject the null hypothesis of proportionality.

Theoretical Notes
1. The Arjas plots were introduced by Arjas (1988) and are based on

the following development. If the proportional hazards model fits the
data without inclusion of the covariate Z1, then, the martingale resid-
uals from the fitted Cox model, based on the remaining covariates
Z� � (Z2, . . . , Zp)t ,

Mj (t) � Nj (t) �

∫ t

0
Yj (u) exp[� ′Z�

j (u)]dHo(u)

are martingales. This fact that E [Mj (t)] � 0 implies that E [Nj (t)] �

E
∫ t

0 Yj(u) exp[� ′Z j (u)]dHo(u). This suggests that, if the model fits,∑
Z1 j �g E [Nj (t)] should be equal to

∑

Z1 j �g

E
∫ t

0
Yj (u) exp[� ′Z j (u)]dHo(u)

for each stratum. The Arjas plot is a plot of the estimated values of
these quantities.

The Arjas plot can be motivated by an alternative formulation.
Recall that if the model with Z1 omitted fits, the Cox–Snell residual
defined by (11.2.2) should be a censored sample from a unit expo-
nential distribution. The Arjas plot is a Total Time on Test plot of
these residuals for each stratum (see Barlow and Campo, 1975 for a
discussion of Total Time on Test Plots).

Formal hypothesis tests for the assumption of proportional haz-
ards, based on these plots, are found in Arjas and Haara (1988).

2. The Andersen plots are based on an estimate of the “relative trend
function” y � H �1

g [H1(t)], where Hg(t) are the estimated cumulative
hazard rates, adjusted for other covariates, for different levels of a
covariate Z . If Hg(t) � e�H1(t), then the plots should be linear with
slope e�.
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Dabrowska et al. (1989) study these plots, based on a relative
change model (Hg � H1) � H1 and give formal tests of proportionality
in the two-sample problem.

3. The score residual S jk (t) is a martingale because it is the integral
of a predictable process with respect to a martingale, when the
model holds true. This residual is the first partial derivative with
respect to �k of the contribution to the log likelihood of the j th
individual using only the information on this person accumulated
up to time t . The score process Uk (t) is the first partial derivative
with respect to �k of the log likelihood if the study were stopped at
time t . Because the partial likelihood estimator maximizes the final
log likelihood it follows that Uk (�) is 0. Therneau et al. (1990) show
that the normalized Uk (t) process converges weakly to a tied down
Brownian bridge process, as long as the asymptotic covariance of bk

and bh is 0 for k � h.

11.5 Deviance Residuals

In this section, we shall consider the problem of examining a model
for outliers, after a final proportional hazards model has been fit to
the data. As in the usual regression formulation, we would like a plot
which shows us which, if any, of the observations has a response not
well predicted by the fitted model.

In section 11.3, we saw that the martingale residual M̂j is a candidate
for the desired residual. This quantity give us a measure of the differ-
ence between the indicator of whether a given individual experiences
the event of interest and the expected number of events the individ-
ual would experience, based on the model. The problem with basing
a search for outliers on the martingale residual is that the residuals
are highly skewed. The maximum value of the residual is �1 but the
minimum possible value is ��.

The deviance residual is used to obtain a residual which has a dis-
tribution more normally shaped than the martingale residual. The de-
viance residual is defined by

Dj � sign[M̂j ]��2[M̂j � � j log(� j � M̂j )]�1 � 2. (11.5.1)

This residual has a value of 0 when M̂j is zero. The logarithm tends to
inflate the value of the residual when M̂j is close to 1 and to shrink
large negative values of M̂j .

To assess the effect of a given individual on the model, we suggest
constructing a plot of the deviance residuals Dj versus the risk scores
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∑p
k�1 bk Z jk . When there is light to moderate censoring, the Dj should

look like a sample of normally distributed noise. When there is heavy
censoring, a large collection of points near zero will distort the nor-
mal approximation. In either case, potential outliers will have deviance
residuals whose absolute values are too large.

EXAMPLE 11.2 (continued): We shall examine the use of deviance residuals to check
for outliers in the model constructed to compare allogeneic (allo) bone
marrow transplants from an HLA-matched sibling with an autogeneic
(auto) bone marrow transplant for patients with either Hodgkin’s lym-
phoma (HL) or non-Hodgkin’s lymphoma (NHL). The covariates used
in the final model and the estimates of their risk coefficients are as
follows:

Risk Factor: Z b se(b)

Z1: Type of Transplant (1-allo, 0-auto) �1.3339 0.6512
Z2: Disease (1-HL, 0-NHL) �2.3087 0.7306
Z3: Interaction between disease

and type of transplant (Z1 � Z2) 2.1096 0.9062
Z4: Karnofsky score �0.0564 0.0122
Z5: Waiting time to transplant

(1 if time� 84, 0 otherwise) �2.1001 1.0501

Figures 11.20 and 11.21 show a plot of the martingale residuals and
deviance residuals, respectively, against the risk score �1.3339Zj1 �
2.3087Zj2 � 2.1096Zj3 � 0.0564Zj4 � 2.1001Zj5. An examination of Fig-
ure 11.20 does not suggest any potential outliers with the possible
exception of the individual with a risk score of about �3.22 who had
a martingale residual of �1.88. Upon examining the deviance residual
plot, we see that this individual has a deviance residual of �1.28, well
within the acceptable range for the deviance residual. Figure 11.21 does
suggest two outliers with risk scores of �6.40 (Di � 2.26) and �7.384
(Di � 2.78). The first patient had a covariate vector of (1, 0, 0, 90, 0) and
died at 1 month whereas the second patient had a covariate vector of
(0, 1, 0, 90, 0) and died at 0.9333 months. Based on their risk profiles,
these patients should have had relatively long survival times but they
were in fact, two of the shortest lived patients.

Practical Notes

1. Both martingale and deviance residuals are available in SAS and
S-plus.



11.5 Deviance Residuals 383

•

•

•

••

• •

••
••
•

••
•

•• ••

•

• • •

•
•

•
•••

• •

•
•

• • ••
••

Risk Score

M
ar

tin
ga

le
 R

es
id

ua
l

-8 -6 -4 -2

-2.0

-1.5

-1.0

-0.5

0.0

0.5

1.0

Figure 11.20 Plot of the martingale residuals versus risk scores for the bone
marrow transplant example

2. Therneau et al. (1990) report that Monte Carlo studies have shown
that both types of residuals detect outliers who lived longer than
expected by the model. Outliers, who die sooner than expected, are
detected only by the deviance residual.

Theoretical Notes

1. The deviance residual is motivated by an examination of the
deviance as used in the theory of general linear models (see
McCullagh and Nelder, 1989). The deviance of a model is de-
fined as d � 2 [Log likelihood (saturated model) � log likelihood
(fitted model)] the saturated model is one in which each observation
is allowed to have its own coefficient vector � j . In computing the
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Figure 11.21 Plot of the deviance residuals versus risk scores for the bone
marrow transplant example

deviance, nuisance parameters (here Ho(t)) are held fixed between
the saturated and fitted model. For the Cox model, the deviance is

d � 2 sup
n∑

j�1

∫ �

0
[� t

jZ j � btZ j ]dNj (s) �

∫ �

0
Yj (s)[exp(� t

jZ j)

� exp(btZ j)]dHo(s).

where the supremum is over the vector � � (�1, . . . , �n). Using a
Lagrange multiplier argument, one can show that, at the maximum,∫ �

0 Yj (s)[exp(� t
jZ j )]dHo(s) �

∫ �
0 dNj (s). If we let M̂j (t) � Nj(t) �

∫ t
0 exp(btZ j )dHo(s), the martingale residual (11.3.4) with � replaced

by b, then, after some factorization which is valid if all the covariates
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are fixed at time 0,

d � �2
n∑

j�1

{

M̂j (t j) � Nj(�) log

[
Nj(�) � M̂j(t j )

Nj (�)

]}

.

The deviance residual is the signed square root of the summands
with M̂j (t j) replaced by the martingale residual. These residuals are
similar to the deviance residuals for a Poisson model suggested by
McCullagh and Nelder (1989).

11.6 Checking the Influence of Individual
Observations

In section 11.5, the deviance residual was introduced as a means of
checking for outliers following a Cox regression analysis. In this sec-
tion, we shall examine graphical techniques to check the influence of
each observation on the estimate of �. The optimal means of check-
ing the influence of a given observation on the estimation process is
to compare the estimate b one obtains by estimating � from all the
data, to the estimate b( j) obtained from the data with the given ob-
servation deleted from the sample. If b � b( j) is close to zero, the j th
observation has little influence on the estimate, whereas large devia-
tions suggest a large influence. To compute b � b( j) directly requires
fitting n � 1 Cox regression models, one with the complete data and n
with a single observation eliminated. Although this may be feasible in
some small-sample-size problems, it is not feasible in larger problems.
An approximation based on the Cox model fitted from the complete
data can be used to circumvent this computational problem.

The approximation is based on the score residuals defined in section
11.4. Let S jk � S jk (�), where S jk (t) is defined by (11.4.5), that is, when
all of the covariates are fixed at time 0,

S jk � � j [Zjk � ¯̄Zk (Tj )] �
∑

th�Tj

[Zjk � ¯̄Zk (th)] exp(b ′Z j )[Ĥ o(th) � Ĥ o(th�1)],

(11.6.1)

for j � 1, . . . , n and k � 1, . . . , p . The first term � j �Zjk � ¯̄Zk (Tj )�,
Schoenfeld’s (1982) partial residual , is the difference between the co-
variate Zjk at the failure time and the expected value of the covari-
ate at this time. It can be shown that b � b( j) is approximated by
� � I(b)�1(S j1, . . . , S jp)t , where I(b) is the observed Fisher information
(see Theoretical Note 1). Plots of these quantities against the case num-
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ber or against the covariate Zjk for each covariate are used to gage the
influence of the j th observation on the k th covariate.

EXAMPLE 11.2 (continued): We shall examine the influence of each observation on
the risk coefficients for type of transplant Z1, disease type Z2, disease
by type of transplant interaction Z3, and Karnofsky score Z4. A model is
fit with the five covariates Z1, . . . , Z5, where Z5 is the indicator that the
waiting time to transplant is at least 84 months, and the score residuals
(11.6.1) are computed. To compute I(b)�1, we use the fact that this
is the covariance matrix of b. To assess how well standardized scores
work, we directly estimate b � b( j) by fitting the n Cox models with
the j th observation omitted. These values are represented by “�” in
the following figures and the estimated values from the score residual
by a “o”. Figures 11.22–11.24 show the results. Here, we have plotted
bk � b( j)k versus the observation number j . In all figures, we note re-
markably good agreement between the exact and approximate estimate
of b � b( j). In all cases, the signs are the same and the influence is well
approximated when bk � b( j)k is close to zero. The approximations will
improve as the sample size increases. Table 11.1 shows the risk vector
Z j , the on study times Tj , the event indicators � j , and the values of
�1, . . . , �4, for each observation.

Examining Figures 11.22–11.24, we see that observation 17 has the
largest effect on the estimates of Z1, Z2, and Z3. This is an individual
with the risk vector Z17 � (0, 0, 0, 70, 0) who dies at 2.633 months and
has �1 � 0.326, �2 � 0.334 and �3 � �0.322. This is the longest lived
patient with non-Hodgkin’s lymphoma who had an auto transplant,
all unfavorable risk factors. Based on the full sample analysis, he/she
should have died earlier.

Turning now to the estimate of the Karnofsky score coefficient, we
see that observation 12 has the most influence on the estimate. This is
a patient with a relatively low Karnofsky score, who lives a relatively
long time. Other influential observations are patient 3 who has a good
Karnofsky score, but dies quite early, and patient 11 who also has a
good Karnofsky score, but dies quite early.

We note that, in this example, the sample size is relatively small
and, in small samples, each observation will have a relatively strong
influence on the estimated value of �. When an influential observation
is found, it must be a cooperative decision between the statistician and
the clinician whether this observation should be deleted from the data
set. At the least, detection of an outlier calls for reexamining the original
data for possible recording errors.
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TABLE 11.1
Standardized Score Residuals for Transplant Data

j T � Z1 Z2 Z3 Z4 Z5 �1 �2 �3 �4

1 0.1 1 0 0 0 20 0 �0.037 �0.051 0.037 �0.001
2 0.1 1 0 0 0 50 0 �0.139 �0.166 0.146 �0.001
3 0.9 1 0 1 0 90 0 0.039 0.290 �0.244 0.005
4 1.0 1 1 0 0 90 0 0.167 0.048 �0.163 0.004
5 1.1 1 0 1 0 30 0 0.009 0.108 �0.149 �0.002
6 1.2 1 1 0 0 80 0 0.161 0.052 �0.186 0.002
7 1.4 1 1 0 0 70 0 0.145 0.035 �0.173 0.001
8 1.4 1 1 1 1 80 0 0.021 0.057 0.070 0.004
9 1.6 1 0 1 0 40 0 0.022 0.123 �0.158 �0.001

10 1.7 1 1 0 0 60 0 0.096 0.031 �0.136 �0.001
11 1.8 1 1 1 1 90 0 0.039 0.093 0.038 0.005
12 1.9 1 1 1 1 30 0 �0.029 0.023 �0.136 0.005
13 2.1 1 1 0 0 90 0 0.191 0.091 �0.206 0.002
14 2.1 1 1 1 1 60 0 0.032 0.031 0.002 �0.001
15 2.4 1 0 0 0 80 0 0.049 0.043 �0.040 �0.001
16 2.6 1 0 0 0 60 1 �0.091 �0.061 0.085 �0.001
17 2.6 1 0 0 0 70 0 0.326 0.334 �0.322 �0.001
18 2.7 1 1 1 1 50 0 �0.108 �0.107 0.029 0.000
19 2.8 1 0 1 0 60 0 �0.086 0.003 0.028 �0.002
20 3.6 1 1 0 0 70 0 �0.095 �0.075 0.112 �0.001
21 4.4 1 1 0 0 60 0 �0.222 �0.057 0.255 0.001
22 4.7 1 1 1 1 100 0 �0.051 �0.066 0.168 0.001
23 5.9 1 1 1 1 80 0 �0.036 �0.082 0.079 �0.002
24 6.0 0 1 0 0 100 0 �0.041 �0.005 0.039 �0.001
25 7.0 0 1 1 1 90 0 0.013 �0.001 �0.073 �0.001
26 8.4 1 1 1 1 90 0 �0.049 �0.094 0.156 0.000
27 10.2 0 1 0 0 100 0 �0.047 0.001 0.041 �0.001
28 11.9 1 0 1 0 70 0 �0.029 �0.070 0.063 �0.001
29 13.5 0 1 0 0 100 0 �0.054 0.008 0.042 �0.001
30 14.9 0 1 0 0 100 0 �0.054 0.008 0.042 �0.001
31 15.9 0 1 1 1 90 0 0.026 0.019 �0.122 �0.002
32 16.1 0 1 0 0 90 1 �0.017 �0.011 0.018 0.000
33 17.5 1 1 1 1 90 0 �0.027 �0.096 0.119 �0.001
34 24.9 0 1 0 0 90 1 �0.021 �0.011 0.020 0.000
35 31.1 0 0 1 0 90 0 0.007 �0.069 0.058 �0.001
36 34.6 0 1 1 1 90 1 �0.002 �0.009 �0.012 0.000
37 35.9 0 0 1 0 100 0 0.003 �0.043 0.032 �0.001
38 39.4 0 0 1 0 90 0 0.007 �0.069 0.058 �0.001
39 43.0 0 1 0 0 90 0 �0.113 0.054 0.077 0.000
40 44.8 0 1 0 0 80 1 �0.037 �0.016 0.037 0.000
41 52.0 0 0 1 0 80 0 0.013 �0.112 0.104 0.000
42 70.5 0 0 1 0 80 0 0.013 �0.112 0.104 0.000
43 71.5 0 0 1 0 90 0 0.007 �0.069 0.058 �0.001
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Figure 11.22 Score residuals estimate b � b( j) for the type of transplant co-
variate. Exact values (O) Estimated values (�)

Practical Note

1. Score residuals are available in the packages S-Plus and SAS.
2. Schoenfeld residuals are available in S-Plus and SAS.

Theoretical Note

1. To see that the normalized score residual approximates b � b( j), let
U (�) be the score vector based on the complete data evaluated at
the point �. If we expand U (�) about the point �o,

Uk (�) � Uk (�o) � Ik (�
�
k )(� � �o), k � 1, . . . , p. (11.6.2)
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Figure 11.23 Score residuals estimate b � b( j) for the type of disease covariate.
Exact values (O) Estimated values (�)

Here, Ik (��) is the row vector with elements

�
�Uk (�)

��h

, h � 1, . . . , p,

and, for each k , ��
k is on the line segment between � and �o. When

� � b, then, U(b) is zero so that solving equation (11.6.2) yields the
fact that

(b � �o) � I�1(�o)U(�o). (11.6.3)

We can write (11.6.3) as

I�1(�o)U(�o) � I�1(�o)

⎧
⎨

⎩

n∑

j�1

� j [Z j � ¯̄Z(Tj )]

⎫
⎬

⎭
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Figure 11.24 Score residuals estimate b � b( j) for the interaction between
disease and transplant covariate. Exact values (O) Estimated values (�)

where ¯̄Z(t) is the vector (¯̄Zk (t), k � 1, . . . , p). For b( j), we have a
similar expression with the j th observation deleted. If we assume that
deletion of the j th observation does not change the value of I�1(�o),
we have a similar expression for � � b( j) with the j th observation
deleted. Subtracting these two approximations gives an estimate of
(b � b( j)), that is,

(b � b( j)) � I�1(�o)

{
n∑

h�1

�h[Zh � ¯̄Z(Th)]

}

� I�1(�o)

⎧
⎪⎨

⎪⎩

n∑

h�1
h� j

�h[Zh � ¯̄Z( j)(Th)]

⎫
⎪⎬

⎪⎭
,
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where ¯̄Z( j)(Tj ) is the vector ¯̄Z(t) defined by (11.4.3), with the j th
observation omitted. Simplifying this expression yields

(b � b( j)) � I�1(�o)�� j [Zj � ¯̄Z(Tj)]�

� �[Zj � ¯̄Z( j)(Th)] exp[btZ j (t)][Ĥ o(Th) � Ĥ o(Th�1)],

which is approximately equal to the standardized score residual � .
The approximation is based on an assumption that deletion of the

j th observation does not change the value of I�1(�o) and that ¯̄Z( j)

is close to ¯̄Z. Storer and Crowley (1985) give an alternate approx-
imation based on the one-step application of the Newton-Raphson
approximation to the estimate of � which attempts to remedy the
first problem. In most cases, these approximations are very close to
the score residuals suggested here.

11.7 Exercises

11.1 In Example 8.2, a proportional hazards model was fit to the data on
the death times of 90 males diagnosed with cancer of the larynx (see
section 1.8). A model with three covariates for stage of disease was
considered.

(a) Determine if adding the patient’s age into the model is appropriate
using a martingale residual plot based on a Cox model adjusted for
disease stage. If age should not enter the model as a linear term
suggest a functional form for age.

(b) Repeat part a for the covariate year of transplant.

(c) Fit a model with the factor stage of disease and a linear term for
age. Perform a general examination of this model using a Cox–Snell
residual.

11.2 In section 1.14 a study of the times to weaning of breast-fed new-
borns was presented. This data is available on our web site. Categorical
variables which could explain the difference in weaning times are the
mother’s race (white, black, other), smoking status, and an indicator of
whether the mother was in poverty. Continuous variables which could
explain outcome are the mother’s age at the child’s birth, mother’s years
of education, and the child’s year of birth. Using a Cox model with
appropriate terms for the mother’s race, smoking status, and poverty
indicator, determine if each of the three continuous covariates would
enter the model as a linear function.

11.3 In section 1.8 data on the death times of patients diagnosed with cancer
of the larynx was presented (see Example 8.2 and Exercise 11.1). Using
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this data in a model which adjusts for age, examine the proportional
hazards assumption for the stage of disease by the following graphical
methods.
(a) A plot of the logarithms of the cumulative baseline hazard rates for

each disease stage.
(b) A plot of the difference in the log cumulative hazard rates for the

disease stages.
(c) An Andersen plot.
(d) A score residual plot.

11.4 In Exercise 1 of Chapter 8 a Cox model was fit to data on the survival
times of patients with an aneuploid or diploid DNA tumor profile.
(a) Check the proportional hazards assumption for this data by plotting

the logarithms of the cumulative baseline hazard rates for each
ploidy group.

(b) Check for proportional hazards by plotting the difference in the log
cumulative hazard rates for the two groups.

(c) Check for proportional hazards by using an Andersen plot.
(d) Check for proportional hazards by using a score residual plot.

11.5 In Example 8.3 and its continuation in section 8.4 a proportional hazards
model was fit to the data on the time to death of 863 kidney transplant
patients. (The data is presented on our web site.) Covariates in the
model were gender, race, and a gender by race interaction.
(a) Check this data for possible outliers by making an appropriate plot

of the deviance residuals.
(b) For each of the three covariates in this model find the four most

influential observations on the estimates of the regression coeffi-
cients. Explain why these observations are so influential.

11.6 (a) For the data on survival times of patients with an aneuploid or
diploid DNA tumor profile in Exercise 4 determine which, if any,
observations are outliers by making an appropriate deviance resid-
ual plot.

(b) Find the three points that have the greatest influence on the estimate
of the regression effect by constructing a plot of the adjusted score
residuals. Explain why these three points are so influential in light
of your fitted regression model.



12
Inference for Parametric

Regression Models

12.1 Introduction

In previous chapters, we focused on nonparametric methods for de-
scribing the survival experience of a population and regression models
for survival data which do not require any specific distributional as-
sumptions about the shape of the survival function. In this chapter,
we shall discuss the use of parametric models for estimating univari-
ate survival and for the censored-data regression problem. When these
parametric models provide a good fit to data, they tend to give more
precise estimates of the quantities of interest because these estimates
are based on fewer parameters. Of course, if the parametric model is
chosen incorrectly, it may lead to consistent estimators of the wrong
quantity.

All of the models we shall consider in this chapter have an accelerated
failure-time model representation and a linear model representation in
log time. Let X denote the time to the event and Z a vector of fixed-
time explanatory covariates. The accelerated failure-time model states
that the survival function of an individual with covariate Z at time
x is the same as the survival function of an individual with a baseline
survival function at a time x exp(� tZ), where � t � (�1, . . . , �p) is a vector
of regression coefficients. In other words, the accelerated failure-time

393
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model is defined by the relationship

S (x | Z) � S0[exp(� tZ)x ], for all x . (12.1.1)

The factor exp(� tZ) is called an acceleration factor telling the investi-
gator how a change in covariate values changes the time scale from the
baseline time scale. One implication of this model is that the hazard
rate for an individual with covariate Z is related to a baseline hazard
rate by

h(x | Z) � exp(� tZ)h0[exp(� tZ)x ], for all x . (12.1.2)

A second implication is that the median time to the event with a covari-
ate Z is the baseline median time to event divided by the acceleration
factor.

The second representation of the relationship between covariate val-
ues and survival is the linear relationship between log time and the
covariate values. Here, we assume the usual linear model for log time,
namely,

Y � ln X � � � �tZ � 	W, (12.1.3)

where �t � (�1, . . . , �p) is a vector of regression coefficients and W is
the error distribution. The regression coefficients have an interpretation
similar to those in standard normal theory regression.

The two representations are closely related. If we let S0(x) be the
survival function of the random variable exp(� � 	W ), then, the linear
log-time model is equivalent to the accelerated failure-time model with
� � ��.

A variety of models can be used for W or, equivalently, for S0 (see
Table 2.2). In section 12.2, we focus on estimation for the Weibull dis-
tribution for which W has a standard extreme value distribution. This
model is very flexible because it has a hazard rate that can be either in-
creasing, decreasing, or constant. It has the unique property that, along
with the accelerated failure-time representation, it is the only parametric
distribution that also has a proportional hazards representation.

In section 12.3, we focus on the log logistic distribution for which W
has a standard logistic distribution. This model has a hazard rate that
is hump-shaped (see Chapter 2). This model is the only accelerated
failure-time model that also has a representation as a proportional odds
model, that is, for the log logistic distribution, the odds of survival
beyond time t are given by

S (x | Z)
1 � S (x | Z)

� exp(�tZ)
S0(x)

1 � S0(x)
, (12.1.4)

where � � �� � 	 .
In section 12.4, we will examine several other models popular for

survival data. These include the log normal distribution and the gener-
alized gamma distribution which can be used to discriminate between
models.
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In these sections, maximum likelihood estimation of the parameters
is presented for each of these parametric models. The parameters of the
log-time, linear model are estimated first and their variance-covariance
matrix, readily available in most major software packages, is reported.
From these values, the maximum likelihood estimates of functions of the
parameters, along with their approximate variance-covariance matrix,
may be obtained using the method of statistical differentials, also called
the delta method.

In section 12.5, graphical methods for assessing the fit of these mod-
els are presented. For univariate problems, we use the hazard rates
displayed in Table 2.2 and the Nelson–Aalen estimator of the cumu-
lative hazard rate, to make hazard plots for each parametric model.
A hazard plot is a plot of the appropriate function of the cumulative
hazard function as the ordinate versus the appropriate function of time
as the abscissa. Each distribution will have its own functions of the
cumulative hazard and time. Such plots should be straight lines if the
model is correct.

To assess the fit of regression models, we present analogs of the
Cox–Snell, martingale and deviance residuals presented in Chapter 11. A
quantile-quantile plot is also presented for checking that the accelerated
failure-time model fits a set of data.

12.2 Weibull Distribution
The Weibull distribution, discussed in Chapter 2, is a very flexible model
for lifetime data. It has a hazard rate which is either monotone increas-
ing, decreasing, or constant. It is the only parametric regression model
which has both a proportional hazards representation and an acceler-
ated failure-time representation. In this section, we shall first examine
estimating the parameters of the Weibull distribution in the univariate
setting and, then, examine the regression problem for this model.

The survival function for the Weibull distribution is given by

SX (x) � exp(��x�),

and the hazard rate is expressed by

hX (x) � ��x��1.

Taking the log transform of time, the univariate survival function for
Y � ln X is given by

SY (y) � exp(��e�y).

If we redefine the parameters as � � exp(��� 	) and 	 � 1� � , then,
Y follows the form of a log linear model with

Y � ln X � � � 	W, (12.2.1)
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where W is the extreme value distribution with probability density
function,

fW (w) � exp(w � ew) (12.2.2)

and survival function,

SW (w) � exp(�ew). (12.2.3)

Thus, the underlying probability density function and survival function,
respectively, for Y , are

fY (y) � (1� 	) exp[(y � �) � 	 � e [(y��)� 	 ]] (12.2.4)

and

SY (y) � exp(�e [(y��)� 	 ]). (12.2.5)

When � � 1, or, equivalently, 	 � 1, then, the Weibull distribution
reduces to an exponential distribution.

The likelihood function for right-censored data, following the con-
struction in Chapter 3, is given by

L �
n∏

j�1

[ fY (yj )]
� j [SY (yj )]

(1�� j )

�
n∏

j�1

[
1
	

fW

(
yj � �

	

)]� j
[

Sw

(
yj � �

	

)](1�� j )

where fY (y) and SY (y) are given in (12.2.4) and (12.2.5). Once maxi-
mum likelihood estimates of the parameters � and 	 , or equivalently,
� and � are computed (see Practical Note 1), estimates of the survival
function and the cumulative hazard rate are available for the distribution
of X or Y .

Estimates of � and 	 are found numerically, and routines to do so
are available in most statistical packages. The variance-covariance ma-
trix of the log linear parameters � and 	 , obtained from the observed
information matrix, are also available in these packages. The invari-
ance property of the maximum likelihood estimator provides that the
maximum likelihood estimators of � and � are given by

�̂ � exp(��̂ � 	̂) and �̂ � 1� 	̂ . (12.2.6)

Applying the delta method (see Theoretical Notes),

Var(�̂) � exp(�2�̂ � 	̂)[Var(�̂) � 	̂2 � �̂2 Var(	̂) � 	̂4 (12.2.7)

� 2�̂ Cov(�̂, 	̂) � 	̂3],

Var(�̂) � Var(	̂) � 	̂4, (12.2.8)

and

Cov(�̂, �̂) � exp(��̂ � 	̂)[Cov(�̂, 	̂) � 	̂3 � �̂ Var(	̂) � 	̂4]. (12.2.9)
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EXAMPLE 12.1 Consider the data set described in section 1.9 and studied in Chapters 7
and 11. It compares the efficacy of autologous (auto) versus allogeneic
(allo) transplants for acute myelogenous leukemia. The outcome for the
101 patients was leukemia-free survival. All patients in the sample were
in their first complete remission at least one year.

The Weibull maximum likelihood estimates of the log linear parame-
ters � and 	 are �̂auto � 3.45, 	̂auto � 1.11, �̂allo � 4.25, and 	̂allo � 1.94.
The corresponding maximum likelihood estimates of the parameters
� � exp(��� 	) and � � 1� 	 are �̂auto � 0.045, �̂auto � 0.900,
�̂allo � 0.112, and �̂allo � 0.514, respectively. The variance-covariance
matrix for �̂auto and 	̂auto is

(
0.048 0.010
0.010 0.031

)

,

and the variance-covariance matrix for �̂allo and 	̂allo is
(

0.229 0.088
0.088 0.135

)

.

Applying (12.2.7)–(12.2.9), the variance-covariance matrix for �̂auto and
�̂auto is

(
0.0004 �0.00202

�0.00202 0.0202

)

and the variance-covariance matrix for �̂allo and �̂allo is
(

0.0016 �0.0032
�0.0032 0.0095

)

.

To test the hypothesis that the exponential model provides as good
a fit to the data as the Weibull model, we shall test the hypothesis that
	 � 1 (or equivalently that � � 1). Although any of the three types of
likelihood-based tests can be performed, only the likelihood ratio and
score tests are invariant under the different parameterizations. We shall
perform the likelihood ratio tests. For the allo transplant data, the log
likelihood for the Weibull model is �72.879 whereas for the exponential
model it is �81.203. For the auto transplant data, the log likelihood for
the Weibull model is �68.420 whereas, for the exponential model, it
is �68.653. The likelihood ratio chi square for the allo transplant data
is 2[72.879 � (�81.203)] � 16.648 which is highly significant when
compared to a chi-square percentile with one degree of freedom. For
auto transplants, the likelihood ratio chi square is 0.467, which is not
significant. This suggests that an exponential distribution may provide
as good a fit as the Weibull distribution for auto transplants, but it is
not a viable model for allo transplants.
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To incorporate covariates into the Weibull model, we use a linear
model (12.1.3) for log time,

Y � � � �tz � 	W, (12.2.10)

where W has the standard extreme value distribution (12.2.2). This
model leads to a proportional hazards model for X with a Weibull
baseline hazard, that is,

h(x | Z) � (��x��1) exp(�tZ), (12.2.11)

with � � 1� 	 , � � exp(��� 	) and � j � �� j � 	 , j � 1, . . . , p .
Using the accelerated failure-time representation of the Weibull re-

gression model, the hazard rate for an individual with covariate vector
Z is given by

h(x | z) � exp(� tZ)ho[x exp(� tZ)] (12.2.12)

where the baseline hazard, ho(x) is ��x��1. The factor exp(� tZ) is
called an acceleration factor. If the covariate vector is a scalar which is
the indicator of treatment group (Z � 1 if group 1; Z � 0 if group 2], the
acceleration factor can be interpreted naturally. Under the accelerated
failure model, the survival functions between the two groups will have
the following relationship:

S (x | Z � 1) � S (xe� | Z � 0), for all t .

For an accelerated failure time distribution with covariate Z

S (x | Z) � S0(x exp[� tZ]) for all x

by (12.1.1). Let X 0
m be the median of the baseline distribution.

Then S0(X 0
m) � 1� 2. Now let X z

m be the median, with Z � z , which
has S0(X z

m | z) � S0(X z
m exp[�z ]) � 1� 2 by (12.1.1). This implies that

X z
m exp[�z ] � X 0

m or X z
m � X 0

m � exp[�z ]. So the median of a group with
Z � z is the baseline median divided by exp[�z ]. This implies that the
median time in the Z � 1 group is equal to the median time in the
Z � 0 group divided by e� . Comparing 12.2.11 and 12.2.12, we see that
� � � � � or � � ��. The Weibull is the only continuous distribution
that yields both a proportional hazards and an accelerated failure-time
model.

For the Weibull regression model, estimates must be found numer-
ically. Routines for estimation, based on (12.2.10), are found in most
statistical packages. As before, the invariance property of the maxi-
mum likelihood estimators in the log linear model provides estimates
of parameters in the alternative formulation (12.2.11). Using the delta
method, the following is the approximate covariance matrix for these
estimates based on the estimates and their covariances in the log linear
model:
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Cov(�̂ j , �̂k ) �
Cov(�̂ j , �̂k )

	̂2
�

�̂ j Cov(�̂ j , 	̂)
	̂3

�
�̂k Cov(�̂k , 	̂)

	̂3
(12.2.13)

�
�̂ j �̂k Var(	̂)

	̂4
, j, k � 1, . . . , p ;

Var(�̂) � exp
(

�2
�̂

	̂

)[
Var(�̂)

	̂2
� 2

�̂ Cov(�̂, 	̂)
	̂3

�
�̂2 Var(	̂)

	̂4

]

(12.2.14)

Var(�̂) �
Var(	̂)

	̂4
(12.2.15)

Cov(�̂ j , �̂) � exp
(

�
�̂

	̂

)[
Cov(�̂ j , �̂)

	̂2
�

�̂ j Cov(�̂ j , 	̂)
	̂3

(12.2.16)

�
�̂ Cov(�̂, 	̂)

	̂3
�

�̂ j �̂ Var(	̂)
	̂4

]

, j � 1; , . . . , p ;

Cov(�̂ j , �̂) �
Cov[�̂ j , 	̂ ]

	̂3
�

�̂ j Var[	̂ ]
	̂4

j � 1, . . . , p ; (12.2.17)

Cov(�̂, �̂) � exp
(

�
�̂

	̂

)[
Cov(�̂, 	̂)

	̂3
�

�̂ Var(	̂)
	̂4

]

. (12.2.18)

We shall illustrate this model on the data for times to death from laryn-
geal cancer.

EXAMPLE 12.2 A study of 90 males diagnosed with cancer of the larynx is described
in section 1.8 and analyzed in Chapters 7 and 8. Here, we shall employ
the accelerated failure-time model using the main effects of age and
stage for this data. The model is given by

Y � ln X � � � �1Z1 � �2Z2 � �3Z3 � �4Z4 � 	W

where Zi , i � 1, . . . , 3 are the indicators of stage II, III and IV disease,
respectively, and Z4 is the age of the patient. The parameter estimates,
standard errors, Wald chi squares, and p-values for testing that �i � 0
are given in Table 12.1. Here, we see that patients with stage IV disease
do significantly worse than patients with stage I disease. Note that, as
opposed to the Cox model where a positive value of the risk coeffi-
cient reflects poor survival, here, a negative value of the coefficient is
indicative of decreased survival.

We apply the transformation in (12.2.11)–(12.2.18) on the original
time scale and obtain the parameter estimates in Table 12.2. Using
these estimates and the proportional hazards property of the Weibull
regression model, we find that the relative risk of death for a Stage
IV patient compared to a Stage I patient is exp(1.745) � 5.73. The
acceleration factor for Stage IV disease compared to Stage I disease is
exp(1.54) � 4.68, so that the median lifetime for a Stage I patient is
estimated to be 4.68 times that of a Stage IV patient.
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TABLE 12.1
Analysis of Variance Table for Stage and Age for Laryngeal Cancer Patients,
Utilizing the Log Linear Model, Assuming the Weibull Distribution

Parameter Standard Wald
Variable Estimate Error Chi Square p-Value

Intercept �̂ 3.53 0.90
Scale 	̂ 0.88 0.11
Z1: Stage II (�̂1) �0.15 0.41 0.13 0.717
Z2: Stage III (�̂2) �0.59 0.32 3.36 0.067
Z3: Stage IV (�̂3) �1.54 0.36 18.07 
0.0001
Z4: Age (�̂4) �0.02 0.01 1.87 0.172

TABLE 12.2
Parameter Estimates for the Effects of Stage and Age on Survival for Laryngeal
Cancer Patients, Modeling Time Directly Assuming the Weibull Distribution

Variable Parameter Estimate Standard Error

Intercept �̂ 0.002 0.002
Scale �̂ 1.13 0.14
Z1: Stage II (�̂1) 0.17 0.46
Z2: Stage III (�̂2) 0.66 0.36
Z3: Stage IV (�̂3) 1.75 0.42
Z4: Age (�̂4) 0.02 0.01

Practical Notes

1. SAS PROC LIFEREG and the S-Plus routine survreg provide maxi-
mum likelihood estimates of an intercept � and scale parameter 	
associated with the extreme value distribution, the error distribution
for the Weibull model. Our parameters of the underlying Weibull
distribution are the following functions of these extreme value pa-
rameters, � � exp(��� 	) and � � 1� 	 . SAS allows for right-, left-
and interval-censored data.

2. When performing an accelerated failure time regression employing
the Weibull distribution, SAS and S-Plus provide maximum likeli-
hood estimates of an intercept �, scale parameter 	 , and regression
coefficients �i . The parameters of the underlying Weibull distribu-
tion, when modeling time directly, are the following functions of
those parameters: � � exp(��� 	), � � 1� 	 , and �i � ��i � 	 . SAS
allows for right-, left- and interval-censored data.
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Theoretical Notes
1. The method of statistical differentials or the delta method (Elandt–

Johnson and Johnson, 1980, pp. 69–72) is based on a Taylor series
expansion of a continuous function g(.) of the maximum likelihood
estimators of a vector of parameters. We shall illustrate how this
works in the two-parameter case. Let �1 and �2 be the two param-
eters of interest, and let �̂1 and �̂2 be the maximum likelihood esti-
mators of the parameters. Recall that, for large samples, (�̂1, �̂2) has
a bivariate normal distribution with mean (�1, �2) and a covariance
matrix estimated by the inverse of the observed Fisher information
observed. Let �1 � g1(�1, �2) and �2 � g2(�1, �2) be a reparametriza-
tion of �1 and �2. The invariance principle of the maximum likeli-
hood estimator insures that the maximum likelihood estimators of �1

and �2 are gk (�̂1, �̂2), k � 1, 2.
To apply the delta method, for k � 1, 2, we expand gk (�̂1, �̂2) in

a first-order Taylor series about the true values of �1 and �2, that is,

gk (�̂1, �̂2) � gk (�1, �2) � (�̂1 � �1)
�gk (�̂1, �̂2)

��̂1

� (�̂2 � �2)
�gk (�̂1, �̂2)

��̂2

where the partial derivatives are evaluated at the true values of the
parameters. Thus,

gk (�̂1, �̂2) � gk (�1, �2) � (�̂1 � �1)
�gk (�̂1, �̂2)

��̂1

� (�̂2 � �2)
�gk (�̂1, �̂2)

��̂2

If we let gh
k � �gk (�̂1,�̂2)

��̂h
, then, for large samples,

Cov[gk (�̂1, �̂2), gm(�̂1, �̂2)] � E �g1
k g1

m(�̂1 � �1)
2 � [g1

k g2
m � g2

k g1
m]

	 (�̂1 � �1)(�̂2 � �2) � g2
k g2

m(�̂2 � �2)
2�

� g1
k g1

m Var[�̂1] � [g1
k g2

m � g2
k g1

m] Cov[�̂1, �̂2]

� g2
k g2

m Var[�̂2], k, m � 1, 2.

12.3 Log Logistic Distribution

An alternative model to the Weibull distribution is the log logistic distri-
bution. This distribution has a hazard rate which is hump-shaped, that
is, it increases initially and, then, decreases. It has a survival function
and hazard rate that has a closed form expression, as contrasted with
the log normal distribution which also has a hump-shaped hazard rate.



402 Chapter 12 Inference for Parametric Regression Models

Utilizing the notation which models time directly, as in Chapter 2, the
univariate survival function and the cumulative hazard rate for X , when
X follows the log logistic distribution, are given by

SX (x) �
1

1 � �x�
(12.3.1)

and

HX (x) � ln(1 � �x�). (12.3.2)

Taking the log transform of time, the univariate survival function for
Y � ln X is

SY (y) �
1

1 � �e�y
(12.3.3)

This log linear model with no covariates is, from (12.1.1),

Y � ln X � � � 	W, (12.3.4)

where W is the standard logistic distribution with probability density
function,

fW (w) � ew � (1 � ew)2 (12.3.5)

and survival function,

SW (w) � 1� (1 � ew) (12.3.6)

Thus, the underlying probability density function and survival function,
respectively, for Y , are given by

fY (y) � (1� 	) exp[(y � �) � 	 ]� [1 � exp[(y � �) � 	 ]2 (12.3.7)

and

SY (y) � 1� [1 � e [(y��)� 	)]. (12.3.8)

Thus, one can see that the parameters of the underlying log logistic
distribution for the random variable X in (12.3.1) and for the distribution
of the log transformed variable Y in (12.3.3) are the following functions
of the log linear parameters in (12.3.8):

� � 1� 	 and � � exp(��� 	), (12.3.9)

the same functions as for the Weibull model (see (12.2.6)). Thus, given
estimates of � and � , estimates of � and � and their covariance matrix
are given by (12.2.6)–(12.2.9). Estimates of � and 	 are available in
most statistical packages.

EXAMPLE 12.1 (continued): We shall continue the example on univariate estimation
for the autologous (auto) versus allogeneic (allo) transplants for acute
myelogenous leukemia.
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The log logistic maximum likelihood estimates of the log linear pa-
rameters � and 	 are �̂auto � 2.944, 	̂auto � 0.854, �̂allo � 3.443,
and 	̂allo � 1.584, and the corresponding maximum likelihood esti-
mates of the parameters � � exp(��� 	) and � � 1� 	 are �̂auto �
0.032, �̂auto � 1.171, �̂allo � 0.114, and �̂allo � 0.631, respectively. The
variance-covariance matrix for �̂auto and 	̂auto is

(
0.0531 0.0085
0.0085 0.019

)

,

and the variance-covariance matrix for �̂allo and 	̂allo is
(

0.2266 0.0581
0.0581 0.0855

)

.

Inserting the maximum likelihood estimates (�̂, 	̂) and their estimated
variances into (12.2.7)–(12.2.9), the variance-covariance matrix for �̂auto

and �̂auto is
(

3.010 � 10�4 �2.861 � 10�3

�2.681 � 10�3 3.518 � 10�3

)

and the variance-covariance matrix for �̂allo and �̂allo is
(

1.951 � 10�3 �3.661 � 10�3

�3.661 � 10�3 1.360 � 10�2

)

.

One of three equivalent models can be used to model the effects of
covariates on survival with the log logistic distribution. The first is the
linear model for log time with

Y � ln X � � � �tZ � 	W, (12.3.10)

where W has the standard logistic distribution (12.3.5). The second
representation is obtained by replacing � in (12.3.3) by exp(�tZ). Here,
the conditional survival function for the time to the event is given by

SX (x | Z) �
1

1 � � exp(�tZ)x�
. (12.3.11)

As for the Weibull distribution, the parameters are related by

� � �� � 	, (12.3.12)

� � exp[��� 	 ],

and

� � 1� 	.

Based on maximum likelihood estimates for �, �, 	 , and their covari-
ance matrix, estimates for �, �, � , and their covariance are obtained
from Eqs. (12.2.13)–(12.2.18). To interpret the factor exp(�tZ) for the
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log logistic model, note that the odds of survival beyond time t for the
logistic model is given by

SX (x | Z)
1 � SX (x | Z)

�
1

� exp[�tZ]x�
� exp(��tZ)

SX (x | Z � 0)
1 � SX (x | Z � 0)

.

So, the factor exp(��tZ) is an estimate of how much the baseline odds
of survival at any time changes when an individual has covariate Z.
Note that exp(�tZ) is the relative odds of dying for an individual with
covariate Z compared to an individual with the baseline characteristics.

The third representation of a log logistic regression is as an accel-
erated failure-time model (12.1.1) with a log logistic baseline survival
function. The log logistic model is the only parametric model with both
a proportional odds and an accelerated failure-time representation.

EXAMPLE 12.2 (continued): Continuing the study of laryngeal cancer, we shall em-
ploy the log logistic model using the main effects of age and stage. The
parameter estimates, standard errors, Wald chi squares and p-values for
testing �i � 0, are given in Table 12.3. Here we see that Stage II is
not significantly different from Stage I, Stages III and IV are significantly
different from Stage I, adjusted for age, and, as in earlier analyses, age is
not a significant predictor of death in these patients, adjusted for stage.

The estimates obtained by converting the parameters in the log linear
model to those in the proportional odds model and calculating their
standard errors using (12.2.13)–(12.2.18), are listed in Table 12.4. From
Table 12.4, we see that the relative odds of survival for a Stage III patient
compared to a Stage I patient are exp(�1.127) � 0.32 and for a Stage
IV patient are exp(�2.469) � 0.085, that is, Stage IV patients have 0.085
times lesser odds of surviving than Stage I patients (or 1 � 0.085 � 11.81
times greater odds of dying). Using the accelerated failure-time model
for the log logistic model, we see that the acceleration factor for Stage III

TABLE 12.3
Analysis of Variance Table for Stage and Age for Laryngeal Cancer Patients,
Utilizing the Log Linear Model, Assuming the Log Logistic Distribution

Parameter Standard Wald
Parameter Estimate Errors Chi Square p-Value

Intercept �̂ 3.10 0.95
Scale 	̂ 0.72 0.09
Z1: Stage II (�̂1) �0.13 0.42 0.09 0.762
Z2: Stage III (�̂2) �0.81 0.35 5.18 0.023
Z3: Stage IV (�̂3) �1.77 0.43 17.22 
0.0001
Z4: Age (�̂4) �0.015 0.014 1.20 0.273
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TABLE 12.4
Analysis of Variance Table for Stage And Age For Laryngeal Cancer Patients,
Utilizing the Proportional Odds Model and the Log Logistic Distribution

Parameter Standard
Parameter Estimate Errors

Intercept �̂ 0.013 0.018
Scale �̂ 1.398 0.168
Z1: Stage II (�̂1) 0.176 0.581
Z2: Stage III (�̂2) 1.127 0.498
Z3: Stage IV (�̂3) 2.469 0.632
Z4: Age (�̂4) 0.021 0.019

disease compared to Stage I disease is exp[�(�.81)] � 2.25 and for
Stage IV disease is exp[�(�1.77)] � 5.87. This suggests that the median
life for Stage I patients is about 5.87 times that of Stage IV patients.

Practical Notes

1. SAS PROC LIFEREG and S-Plus routine survreg provide maximum
likelihood estimates of intercept �, and scale parameter 	 , associ-
ated with the logistic distribution. The parameters of the underlying
log logistic distribution are the following functions of these extreme
value parameters: � � exp(��� 	) and � � 1� 	 . SAS allows for
right-, left- and interval-censored data.

2. When performing an accelerated failure time regression employing
the log logistic distribution, SAS and S-Plus provide maximum like-
lihood estimates of intercept �, scale parameter 	 , and regression
coefficients �i . The parameters of the underlying log logistic distri-
bution, when modeling time directly, are the following functions of
those parameters: � � exp(��� 	), � � 1� 	 , and �i � ��i � 	 . SAS
allows for right-, left- and interval-censored data.

12.4 Other Parametric Models

In section 12.2, we examined the use of the Weibull distribution as a
model for survival data, and, in section 12.3, we examined the use of the
log logistic model. In this section, we shall look at alternative parametric
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models for the survival function, focusing on the regression problem
with obvious extensions to the problem of univariate estimation.

The first model to be considered is the log normal distribution. Here,
given a set of covariates Z � (Z1, . . . , Zp)t , the logarithm of the time to
the event follows the usual normal regression model, that is,

Y � log X � � � �tZ � 	W, (12.4.1)

where W has a standard normal distribution. The general shape of the
hazard rate for this model is quite similar to that of the log logistic
distribution, and, in most instances, regression models based on the log
normal distribution are very close to regression models based on the
log logistic model.

For the log normal distribution the survival function of the time to
event T is given by

S (x) � 1 � ��[log(x) � (� � �tZ)]� 	�,

where �� � is the standard normal cumulative distribution function.
A second model of interest is the generalized gamma distribution.

This model is very useful in selecting between alternative parametric
models because it includes the Weibull, exponential, and the log nor-
mal models as limiting cases. For this model, Y � log X follows the
linear model (12.4.1) with W having the following probability density
function:

f (w) �
|�|[exp(�w) � �2](1 � �2) exp[� exp(�w) � �2]

�(1� �2)
, �� 
 w 
 �.

(12.4.2)
When � equals 1, this model reduces to the Weibull regression model,
and, when � is 0, the model reduces to the log normal distribution.
When � � 1 and 	 � 1 in (12.4.1), then, (12.4.1) reduces to the
exponential regression model.

The generalized gamma model is most commonly used as a tool for
picking an appropriate parametric model for survival data but, rarely,
as the final parametric model. Wald or likelihood ratio tests of the
hypotheses that � � 1 or � � 0 provide a means of checking the
assumption of a Weibull or log normal regression model, respectively.

With the exception of the Weibull and log normal distribution, it is
difficult to use a formal statistical test to discriminate between parametric
models because the models are not nested in a larger model which
includes all the regression models discussed in this chapter. One way
of selecting an appropriate parametric model is to base the decision
on minimum Akaikie information criterion (AIC). For the parametric
models discussed, the AIC is given by

AIC � �2 � log (Likelihood) � 2(p � k ), (12.4.3)

where k � 1 for the exponential model, k � 2 for the Weibull, log
logistic, and log normal models and k � 3 for the generalized gamma
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model. We shall illustrate this on two examples considered in this chap-
ter.

EXAMPLE 12.1 (continued): We shall reexamine the parametric models for the auto
and allo transplant survival data. We will fit the exponential, Weibull, log
logistic, log normal models, and generalized gamma models separately
to the data on allo and auto transplants. The log likelihood and the
AIC for each model are reported in Table 12.5. (Note that here p � 0.)
Also included in this table are the estimates of � from the generalized
gamma model, their standard errors and the p-values of the Wald tests
of Ho : � � 0 and Ho : � � 1. These are tests of the appropriateness of
the log normal and Weibull models, respectively.

TABLE 12.5
Results of Fitting Parametric Models to the Transplant Data

Allo Auto
Transplants Transplants

Exponential Log likelihood �81.203 �68.653
AIC 164.406 139.306

Weibull Log likelihood �72.879 �68.420
AIC 149.758 140.840

Log logistic Log likelihood �71.722 �67.146
AIC 147.444 138.292

Log normal Log likelihood �71.187 �66.847
AIC 146.374 137.694

Generalized gamma Log likelihood �70.892 �66.781
AIC 147.784 139.562
�̂ �0.633 �0.261
SE[�̂] 0.826 0.725
p-value for Ho : � � 0 0.443 0.719
p-value for Ho : � � 1 0.048 0.082

From this table, we see that the log normal distribution provides the
best fit to this data, and the log logistic distribution is a close second.
The generalized gamma model, which has the smallest log likelihood,
does not have a smaller AIC than these two models and the simpler
models are preferred. The exponential distribution for Allo transplants
has a much poorer fit than the Weibull model, and there is no evidence
of an improved fit for auto transplants, using the Weibull rather than
the exponential. A likelihood ratio chi-square test, with one degree of
freedom, for testing the hypothesis that the Weibull shape parameter is
equal to one has a value of 16.648 (p 
 0.0001) for allo transplants and
a value of 0.468 for auto transplants.
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Using a log normal regression model with a single covariate Z1 equal
to 1 if the patient received an auto transplant, we have the following
regression model:

Standard Wald
Parameter Estimate Error Chi Square p-Value

Intercept: � 3.177 0.355 80.036 
0.0001
Type of Transplant: �1 0.054 0.463 0.0133 0.9080
Scale: 	 2.084 0.230 — —

Here, we see that there is no evidence of any difference in survival
between the two types of transplants.

EXAMPLE 12.2 (continued): We shall now compare the fit of the exponential, Weibull,
log normal, log logistic and generalized gamma models for the data on
laryngeal cancer. Recall that, here, we have four covariates:

Z1: 1 if Stage II cancer, 0 otherwise,

Z2: 1 if Stage III cancer, 0 otherwise,

Z3: 1 if Stage IV cancer; 0 otherwise, and

Z4: Patient’s age at diagnosis.

We fit the log linear model

Y � ln X � � �
4∑

k�1

�k Zk � 	W,

TABLE 12.6
Parametric Models for the Laryngeal Cancer Study

Generalized
Exponential Weibull Log Logistic Log Normal Gamma

Estimate SE Estimate SE Estimate SE Estimate SE Estimate SE

� 3.755 0.990 3.539 0.904 3.102 0.953 3.383 0.936 3.453 0.944
�1 �0.146 0.460 �0.148 0.408 �0.126 0.415 �0.199 0.442 �0.158 0.431
�2 �0.648 0.355 �0.587 0.320 �0.806 0.354 �0.900 0.363 �0.758 0.394
�3 �1.635 0.399 �1.544 0.363 �1.766 0.426 �1.857 0.443 �1.729 0.449
�4 �0.020 0.014 �0.017 0.013 �0.015 0.014 �0.018 0.014 �0.018 0.014
	 1.000 0.000 0.885 0.108 0.715 0.086 1.264 0.135 1.104 0.257
� 0.458 0.584
Log L �108.50 �108.03 �108.19 �108.00 �107.68
AIC 227.00 228.05 228.38 227.99 229.36
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where W has the appropriate distribution for each of the models. Note
that the value of 	 is fixed at 1 for the exponential distribution. Table
12.6 provides the estimates of the model parameters and their standard
errors, the maximized likelihoods, and the AIC criterion for all five
models.

In this table, we see that all three models fit equally well. The expo-
nential model has the smallest AIC and, in that sense, is the best fitting
model. For this model,

Y � 3.755 � 0.146Z1 � 0.648Z2 � 1.635Z3 � 0.020Z4 � W.

The negative values of the coefficients of Z1, Z2, and Z3 in the log linear
model suggest that individuals with stages II, III, and IV cancer have
shorter lifetimes than individuals with Stage I disease.

Practical Note
1. SAS PROC LIFEREG has routines for fitting the generalized gamma

and log normal distributions to right-, left- and interval-censored
data. The S-Plus routine survreg fits the log normal model.

12.5 Diagnostic Methods for Parametric Models

In the last three sections, we have presented a variety of models for
univariate survival data and several parametric models that can be used
to study the effects of covariates on survival. In this section, we shall
focus on graphical checks of the appropriateness of these models. As
discussed in Chapter 11, we favor graphical checks of the appropriate-
ness rather then formal statistical tests of lack of fit because these tests
tend either to have low power for small-sample sizes or they always
reject a given model for large samples. The graphical checks discussed
here serve as a means of rejecting clearly inappropriate models, not to
“prove” that a particular parametric model is correct. In fact, in many
applications, several parametric models may provide reasonable fits to
the data and provide quite similar estimates of key quantities.

We shall first examine the problem of checking for the adequacy of a
given model in the univariate setting. The key tool is to find a function
of the cumulative hazard rate which is linear in some function of time.
The basic plot is made by estimating the cumulative hazard rate by the
Nelson–Aalen estimator (see section 4.2). To illustrate this technique,
consider a check of the appropriateness of the log logistic distribution.
Here, the cumulative hazard rate is H (x) � ln(1 � �x�). This implies
that, for the log logistic model,
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ln�exp[H (x)] � 1� � ln � � � ln x, (12.5.1)

so, a plot of ln�exp[Ĥ (x)] � 1� versus ln x should be approximately lin-
ear. The slope of the line gives a crude estimate of � and the y intercept
gives a crude estimate of ln �. Here, Ĥ is the Nelson–Aalen estimator.
Note that, for the log logistic distribution, the quantity ln�exp[H (x)]�1�
is precisely the log odds favoring survival.

For the other models discussed in this chapter, the following plots
are made to check the fit of the models:

Model Cumulative Hazard Rate Plot

Exponential: �x Ĥ versus x (12.5.2)
Weibull: �x� ln Ĥ versus ln x (12.5.3)
Log normal: � ln�1 � �[ln(x) � �)]� 	� ��1[1– exp(�Ĥ )] versus ln x (12.5.4)
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Figure 12.1 Exponential hazard plot for the allo (solid line) and auto (dashed
line) transplant groups.
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Note that the slope of the line for the Weibull hazard plot gives a
crude estimate of � and, if the slope of the line is 1, then, the expo-
nential is a reasonable model.

EXAMPLE 12.1 (continued): To check the adequacy of the exponential, Weibull, log
logistic, and log normal models for the data on auto and allo transplants,
four hazard plots are presented in Figures 12.1–12.4. If the curves do
not appear linear for each figure, this is evidence that the parametric
model does not provide an adequate fit to the data. From Figure 12.1,
the exponential plot, we see that the curves for the allo transplant group
appear to be nonlinear, suggesting that the exponential is not a good
model for this set of data. The curve is roughly linear for the auto
transplant data, except in the tail where the estimate of H is highly
variable, suggesting that the exponential may be a reasonable model.
The curves for the other three models (Figures 12.2–12.4) are roughly
linear, suggesting these may be appropriate models for either groups.
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Figure 12.2 Weibull hazard plot for the allo (solid line) and auto (dashed
line) transplant groups.
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Figure 12.3 Log logistic hazard plot for the allo (solid line) and auto (dashed
line) transplant groups.

When comparing two groups, an alternative to the proportional haz-
ards model is the accelerated failure-time model. A quantile-quantile
or q-q plot is made to check if this provides an adequate fit to the data.
The plot is based on the fact that, for the accelerated failure-time model,

S1(t) � So(�t), (12.5.2)

where So and S1 are the survival functions in the two groups and � is
the acceleration factor. Let top and t1p be the pth percentiles of groups
0 and 1, respectively, that is

tkp � S �1
k (1 � p), k � 0, 1.

Using the relationship (12.5.2), we must have So(top) � 1�p � S1(t1p) �
So(�t1p) for all t . If the accelerated failure time model holds, top � �t1p .
To check this assumption we compute the Kaplan–Meier estimators of
the two groups and estimate the percentiles t1p , t0p , for various values
of p . If we plot the estimated percentile in group 0 versus the estimated
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Figure 12.4 Log normal hazard plot for the allo (solid line) and auto (dashed
line) transplant groups.

percentile in group 1 (i.e., plot the points t1p , t0p for various values of p),
the graph should be a straight line through the origin, if the accelerated
failure time model holds. If the curve is linear, a crude estimate of the
acceleration factor q is given by the slope of the line.

EXAMPLE 12.1 (continued): We shall graphically check the adequacy of the acceler-
ated failure-time model for comparing allo and auto transplants. Here,
we fit the Kaplan-Meier estimator separately to each group and com-
pute the percentiles for each group for p � 0.05, 0.10, . . . , 0.35. These
percentiles are in the range where the percentile could be estimated
for both groups. Figure 12.5 shows the q-q plot for auto transplants
(Group 1) versus allo transplants (Group 0). The figure appears to be
approximately linear with a slope of about 0.6, which is a crude estimate
of the acceleration factor �.
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Figure 12.5 q-q plot to check the adequacy of the accelerated failure time
model for comparing Allo and Auto transplants.

For the parametric regression problem, analogs of the residual plots
described in Chapter 11 can be made with a redefinition of the various
residuals to incorporate the parametric form of the baseline hazard rates.
The first such residual is the Cox–Snell residual that provides a check
of the overall fit of the model. The Cox–Snell residual, rj , is defined by
rj � Ĥ (Tj | Z j ), where Ĥ is the fitted model. If the model fits the data
then the rj ’s should have a standard (� � 1) exponential distribution,
so that a hazard plot of rj versus the Nelson–Aalen estimator of the
cumulative hazard of the rj ’s should be a straight line with slope 1. For
the four models considered in this chapter, the Cox–Snell residuals are

Exponential ri � �̂ti exp��̂tZi �,

Weibull �̂ exp(�̂tZi)t �̂
1 ,

Log logistic ln

[
1

1 � �̂ exp(�̂tZi)t �̂
j

]

,
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and

Log normal ln
[

1 � �
(

ln Tj � �̂ � �̂tZ j

	̂

)]

.

Examination of model fit with the Cox–Snell residuals is equivalent
to that done using the so-called standardized residuals based on the log
linear model representation. Here, we define the standardized residuals
by analogy to those used in normal theory regression as

s j �
ln Tj � �̂ � �̂tZ j

	̂
.

If the Weibull model holds, then, these residuals should be a censored
sample from the standard extreme value distribution (12.2.2); if the log
logistic distribution holds, these are a censored sample from a standard
logistic distribution (12.3.1); and if the log normal distribution holds,
these are a censored sample from a standard normal distribution. The
hazard plot techniques discussed earlier can be used to check if the
standardized residuals have the desired distribution. However, the haz-
ard plots obtained are exactly those obtained by the exponential hazard
plot for the Cox–Snell residuals.

EXAMPLE 12.2 (continued): In Figures 12.6–12.9, the cumulative hazard plots for the
Cox–Snell residuals are shown for the exponential, Weibull, log logistic
and log normal regression models for the laryngeal cancer data. We see
from these plots that all four models give reasonable fits to the data,
the best being the log normal and log logistic models.

In Chapter 11, the martingale and deviance residuals were defined for
Cox regression models. For a parametric model, the martingale residual
is defined by Mj � � j � rj and the deviance residual by

Dj � sign[Mj ]��2[Mj � � j ln(� j � Mj )]�1 � 2.

As for the Cox model, the martingale residual is an estimate of the ex-
cess number of deaths seen in the data, but not predicted by the model.
In the parametric case, note that the derivation of Mj as a martingale
does not hold but, because the residuals are similar in form to those for
the Cox model, the name carries through. The deviance residuals are
an attempt to make the martingale residuals more symmetric about 0. If
the model is correct, then, the deviance residuals should look like ran-
dom noise. Plots of either the martingale or deviance residuals against
time, observation number, or acceleration factor provides a check of
the model’s adequacy. The discussion of how to use these residuals
in Chapter 11 carries over to the parametric case. We shall illustrate
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Figure 12.6 Cox–Snell residuals to assess the fit of the exponential regression
model for the laryngeal cancer data set

the use of the deviance residuals in the following continuation of Ex-
ample 12.2.

EXAMPLE 12.2 (continued): We shall examine the fit of the log logistic regression
model to the laryngeal cancer data using the deviance residuals. Fig-
ure 12.10 is a plot of the deviance residuals versus time on study. Here,
we see that the deviance residuals are quite large for small times and
that they decrease with time. This suggests that the model underesti-
mates the chance of dying for small t and overestimates this chance for
large t . However, there are only a few outliers early, which may cause
concern about the model. The deviance residual plots for the other
three models are quite similar.
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Figure 12.7 Cox–Snell residuals to assess the fit of the Weibull regression model
for the laryngeal cancer data set

Practical Note

1. Martingale and deviance residuals for these parametric models are
available in S-Plus.

Theoretical Notes

1. Further work on graphical checks for the parametric regression mod-
els can be found in Weissfeld and Schneider (1990) and Escobar and
Meeker (1992).

2. It is possible to define a score residual for the various parametric
models similar to that presented in section 12.6. To illustrate how
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Figure 12.8 Cox–Snell residuals to assess the fit of the log logistic regression
model for the laryngeal cancer data set

this is done, consider the Weibull regression problem with a single
covariate Z . The contribution of an individual with covariate Zj to
the likelihood is given by

Lj � [exp(�Zj )��t��1
j ]� j exp[�� exp(�Zj )T

�
j ].

The score residual for � is given by

� ln Lj

��
�

� j

�
� exp(�Zj )T

�
j ,

for � ,

� ln Lj

��
� �

� j

�
� � j ln Tj � � exp(�Zj)T

�
j ln Tj ,
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Figure 12.9 Cox–Snell residuals to assess the fit of the log normal regression
model for the laryngeal cancer data set

and for �,

� ln Lj

��
� � jZ j � �Zj exp(�Zj)T

�
j .

These residuals can be used, as in section 11.6, to examine the
influence of a given observation on the estimates. See Collett (1994)
for additional detail. These residuals are available in S-Plus.

12.6 Exercises
12.1 In section 1.11, a study of the effects of ploidy on survival for patients

with cancer of the tongue was described. In the study patients were
classified as having either an aneuploid or diploid DNA profile. The
data is presented in Table 1.6.
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Figure 12.10 Deviance residuals from the log logistic regression model for
laryngeal cancer patients

(a) For both the aneuploid and diploid groups fit a Weibull model to
the data. Find the maximum likelihood estimates of � and � , and
their standard errors.

(b) For both groups, test the hypothesis that the shape parameter, � , is
equal to 1 by both the Wald and likelihood ratio tests.

(c) Find the maximum likelihood estimates of the median survival for
both groups. Use the delta method to find an estimate of the stan-
dard error of your estimates.

(d) Fit a Weibull regression model to this data with a single covariate,
Z , that is equal to 1 if the patient had an aneuploid DNA profile
and 0 otherwise. Test the hypothesis of no effect of ploidy on
survival using the likelihood ratio test and the Wald test. Find a
point estimate and 95% confidence interval for the relative risk of
death for an aneuploid tumor as compared to a diploid tumor. Also
find a point estimate and a 95% confidence for the acceleration
factor. Provide an interpretation of this factor.
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12.2 In section 1.4 the times to first exit-site infection (in months) of patients
with renal insufficiency were reported. In the study 43 patients had a
surgically placed catheter (Group 1) and 76 patients had a percutaneous
placement of their catheter (Group 0).
(a) For both groups fit a Weibull model to the data. Find the maximum

likelihood estimates of � and � , and their standard errors.
(b) For both groups test the hypothesis that the shape parameter, � , is

equal to 1 using the likelihood ratio test and the Wald test.

(c) Find the maximum likelihood estimates and 95% confidence inter-
vals for the two survival functions at 5 months after placement of
the catheter. Compare these estimates to those obtained using the
product-limit estimator.

(d) Fit a Weibull regression model to this data with a single covariate, Z ,
that indicates group membership. Test the hypothesis of no effect
of catheter placement on the time to exit site infection. Find point
estimates and 95% confidence intervals for the relative risk and the
acceleration factor for exit site infections. Provide an interpretation
of these quantities.

12.3 In section 1.10, times to death or relapse (in days) are given for 23 non-
Hodgkin’s lymphoma (NHL) patients, 11 receiving an allogeneic (Allo)
transplant from an HLA-matched sibling donor and 12 patients receiv-
ing an autologous (Auto) transplant. Also, data is given in Table 1.5
on 20 Hodgkin’s lymphoma (HOD) patients, 5 receiving an allogeneic
(Allo) transplant from an HLA-matched sibling donor and 15 patients
receiving an autologous (Auto) transplant. Because there is a potential
for different efficacy of the two types of transplants for the two types
of lymphoma, a model with a main effect for type of transplant, a main
effect for disease type and an interactive term is of interest (coding
similar to 8.1b).

(a) Using a Weibull regression model, analyze this data by performing
a likelihood ratio global test of no effect of transplant type and
disease state on survival. Construct an ANOVA table to summarize
estimates of the risk coefficients and the results of the one degree
of freedom tests for each covariate in the model.

(b) Test the hypothesis of no disease–transplant type interaction using
a likelihood ratio test.

(c) Find point estimates and 95% confidence intervals for the relative
risk of death for an NHL Auto transplant patient as compared to an
NHL Allo transplant patient.

(d) Test the hypothesis that the death rates are the same for HOD Allo
transplants and NHL Allo patients. Repeat this test for Auto patients.

(e) Test the hypothesis that the death rates for Auto transplant and
Allo transplant patients are the same against the alternative they are
different for at least one disease group by a 2 degree of freedom test
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of Ho : h(t | NHL Allo) � h(t | NHL Auto) and h(t | HOD Allo) �
h(t | HOD Auto).

(f) Compare your results to those found in Exercise 3 of Chapter 8 by
using the semiparametric proportional hazards model.

12.4 Repeat Exercise 2 using the log logistic model. In part b use the Wald
test and in part d provide point and interval estimates of the acceleration
factor and the relative odds. Compare your results to those found in
Exercise 2.

12.5 Repeat Exercise 1 using the log logistic model. In part b use the Wald
test and in part d provide point and interval estimates of the acceleration
factor and the relative odds. Compare your results to those found in
that exercise.

12.6 Repeat Exercise 3 using the log logistic model. Compare your results to
those found in that exercise. Estimate relative odds rather than relative
risks in part c.

12.7 Using the ploidy data in Exercise 1, estimate the parameters and the
variance-covariance matrix for the following models for each of the two
groups.

(a) A log normal model.

(b) A normal model.

(c) A generalized gamma model.

(d) Using the results of part c, test the hypothesis that � � 0. Interpret
your result in terms of model selection.

(e) Using the results of part c, test the hypothesis that � � 1. Interpret
your result in terms of model selection.

(f) Based on your results in this exercise and in Exercises 1 and 5,
which parametric model best fits the data for each of the two ploidy
groups?

12.8 Using the information in Exercise 2, determine the best fitting parametric
regression model to determine the effects of catheter placement on the
time to first exit site infection by fitting the exponential, log normal,
and generalized gamma models.

12.9 For both the aneuploid and diploid groups in Exercise 1, make an
appropriate hazard plot to determine if the following models fit the
data:

(a) exponential,

(b) Weibull,

(c) log normal, and

(d) log logistic.
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12.10 For both catheter placement groups in Exercise 2, make an appropriate
hazard plot to determine if the following models fit the data:
(a) exponential,
(b) Weibull,
(c) log normal, and
(d) log logistic.

12.11 Check the adequacy of the accelerated failure time model for describing
the effects of ploidy on survival in Exercise 1 by making a quantile-
quantile plot. Provide a crude estimate of the acceleration factor and
compare it to the estimate you found in Exercise 1.

12.12 Check the adequacy of the accelerated failure time model for describing
the effects of catheter placement on the time to first exit site infection in
Exercise 2 by making a quantile-quantile plot. Provide a crude estimate
of the acceleration factor and compare it to the estimate you found in
Exercise 2.

12.13 In Exercise 1, you fit a Weibull regression model to explain the effect
of ploidy on survival.
(a) Examine the fit of this model by making the appropriate plot of the

Cox–Snell residuals.
(b) Examine the fit of this model by making the appropriate plot of the

deviance residuals residuals.
(c) Repeat a and b for the log logistic regression model.

12.14 In Exercise 3 a Weibull regression model was fit to the survival times
of patients given a bone marrow transplant. The model included a
covariate for type of transplant, type of disease as well as an interaction
term.
(a) Examine the fit of this model by making the appropriate plot of the

Cox–Snell residuals.
(b) Examine the fit of this model by making the appropriate plot of the

deviance residuals residuals.
(c) Repeat a and b for the log logistic regression model.



13
Multivariate Survival

Analysis

13.1 Introduction

In the previous chapters of this book, we have examined a variety of
techniques for analyzing survival data. With few exceptions, these tech-
niques are based on the assumption that the survival times of distinct
individuals are independent of each other. Although this assumption
may be valid in many experimental settings, it may be suspect in others.
For example, we may be making inferences about survival in a sample
of siblings or litter mates who share a common genetic makeup, or we
may be studying survival in a sample of married couples who share a
common, unmeasured, environment. A third example is where we are
studying the times to occurrence of different nonlethal diseases within
the same individual. In each of these situations, it is quite probable that
there is some association within groups of survival times in the sample.

A model that is becoming increasingly popular for modeling associ-
ation between individual survival times within subgroups is the use of
a frailty model. A frailty is an unobservable random effect shared by
subjects within a subgroup. This most common model for the frailty is a
common random effect that acts multiplicatively on the hazard rates of
all subgroup members. In this model, families with a large value of the
frailty will experience the event at earlier times then families with small

425



426 Chapter 13 Multivariate Survival Analysis

values of the random effect. Thus the most “frail” individuals will die
early and late survivors will tend to come from more robust families.

Frailty models are also used in making adjustments for overdispersion
in univariate survival studies. Here, the frailty represents the total effect
on survival of the covariates not measured when collecting information
on individual subjects. If these effects are ignored, the resulting survival
estimates may be misleading. Corrections for this overdispersion allow
for adjustments for other unmeasured important effects.

The most common model for a frailty is the so-called shared frailty
model extension of the proportional hazards regression model. Here,
we assume that the hazard rate for the j th subject in the i th subgroup,
given the frailty, is of the form

hi j (t) � ho(t) exp(	wi � �tZij), i � 1, . . . , G, j � 1, . . . , ni , (13.1.1)

where ho(t) is an arbitrary baseline hazard rate, Zi j is the vector of
covariates, � the vector of regression coefficients, and w1, . . . , wG the
frailties. Here, we assume that the w’s are an independent sample from
some distribution with mean 0 and variance 1. Note that, when 	
is zero, the model (13.1.1) reduces to the basic proportional hazards
model discussed in Chapter 8. The model allows for the sizes ni of the
individual groups to differ from group to group and for the group sizes
to be 1. In some applications, it is more convenient to write the model
(13.1.1) as

hi j (t) � ho(t)ui exp(�tZij), i � 1, . . . , G, j � 1, . . . , ni , (13.1.2)

where the ui ’s are an independent and identically distributed sample
from a distribution with mean 1 and some unknown variance. We see
clearly that, when nature picks a value of ui greater than 1, individuals
within a given family tend to fail at a rate faster than under an inde-
pendence model where ui is equal to 1 with probability 1. Conversely,
when ui is less than 1, individuals in a family tend to have survival
longer than predicted under an independence model.

When we collect data, the wi ’s are not observable, so the joint dis-
tribution of the survival times of individuals within a group, found by
taking the expectation of exp[�

∑ni
j�1 Hij (t)] with respect to ui is given

by

S (xi1, . . . , xini ) � P [Xi1 � xi1, . . . , Xini � xini ] (13.1.3)

� LP

⎡

⎣
ni∑

j�1

Ho(xi j) exp(�tZij)

⎤

⎦ .

Here, LP(v) � EU [exp(�Uv)] is the Laplace transform of the frailty U .
Common models proposed in the literature for the random effect are the
one-parameter gamma distribution (Clayton, 1978), the positive stable
distribution (Hougaard, 1986a), and the inverse Gaussian distribution
(Hougaard, 1986b). Other models for the frailty are the log normal
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distribution (McGilchrist and Aisbett, 1991), a power variance model
(Aalen, 1988; 1992), a uniform distribution (Lee and Klein, 1988) and a
threshold model (Lindley and Singpurwalla, 1986).

In this chapter, we shall examine estimation and inference procedures
for random effect models. In section 13.2, we will present a score test
of the hypothesis of no frailty effect (	 � 0) suggested by Commenges
and Andersen (1995). This test is valid for any frailty distribution and
provides an easy means of testing for a random effect in either the
multivariate or univariate problem.

In sections 13.3, we present both a semiparametric and a parametric
approach to estimating the risk coefficients and the frailty parameter
for the most commonly used gamma frailty model. Here, estimating in
the semiparametric model involves implementing an EM (Expectation-
Maximization) algorithm. We give a series of references in the notes
showing where these techniques have been extended to other frailty
models.

In section 13.4, we present an alternative model for multivariate sur-
vival data suggested by Lee et al. (1992). For this approach, we assume
that the proportional hazards model holds marginally for each individ-
ual, but individuals within groups are associated. (Note that, for the
frailty approach, we assumed that the proportional hazards model is
true for each individual, conditional on the frailty.) Estimators of �
are the usual regression estimates, as discussed in Chapter 8. These
estimators are based on an “independence working model” and are
consistent for �. The usual variance estimator, based on the observed
information matrix, however, is not correct when individuals are corre-
lated. An adjusted covariance matrix is used which is found by adjusting
the information matrix for the association between individuals.

13.2 Score Test for Association

To test for association between subgroups of individuals, a score test
has been developed by Commenges and Andersen (1995). The test
can be used to test for association, after an adjustment for covariate
effects has been made using Cox’s proportional hazards model, or can
be applied when there are no covariates present. It can be used to test
for overdispersion in the univariate Cox proportional hazards model.
Although the test can be applied following a stratified Cox regression
model, for simplicity, we shall focus on the nonstratified model.

The test is based on the model (13.1.1). Here we have G subgroups
of subjects, and within the i th subgroup, we have ni individuals. Note
that, for the univariate model, where we are testing for overdispersion,
G is the total sample size and each ni is 1. We are interested in testing
the null hypothesis that 	 is equal to zero against the alternative that 	 is
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not zero. No distributional assumptions are made about the distribution
of the random effects wi .

The data we need to construct the test statistics consists of the on
study time Ti j , the event indicator �i j , and the covariate vector Zi j for
the j th observation in the i th group. Using this data, we can construct
the “at risk” indicator Yij(t) at time t for an observation. Recall that Yij(t)
is 1 when the i j th individual is at risk. Then, we fit the Cox proportional
hazards model, h(t | Zi j) � ho(t) exp(�tZi j), and we obtain the partial
maximum likelihood estimates b of � and the Breslow estimate Ĥ o(t)
of the cumulative baseline hazard rate (see Chapter 8). Let

S (0)(t) �
G∑

i�1

ni∑

j�1

Yij(t) exp(btZi j ). (13.2.1)

Note that S (0)(t) is simply the sum of exp(btZi j) over all individuals at
risk at time t . Finally, we need to compute Mij � �i j �Ĥ o(Ti j) exp(btZi j),
the martingale residual for the i j th individual (see section 11.3).

The score statistic is given by

T �
G∑

i�1

⎧
⎨

⎩

ni∑

j�1

Mij

⎫
⎬

⎭

2

� D � C, (13.2.2)

where D is the total number of deaths and

C �
G∑

i�1

ni∑

j�1

�i j

S (0)(Ti j)2

G∑

h�1

[
ni∑

k�1

Yhk (Ti j) exp(btZhk )

]2

. (13.2.3)

The test statistic can also be written as

T �
G∑

i�1

ni∑

j�1

n j∑

k�1
k� j

Mi jMik �

⎛

⎝
G∑

i�1

ni∑

j�1

M 2
i j � N

⎞

⎠� C, (13.2.4)

where N is the total sample size.
Here, we see that the score statistic is the sum of three terms. The

first is the sum of the pairwise correlations between individuals in the
subgroups, the second a measure of overdispersion, and the third a
correction term C which tends to zero as N increases.

To estimate the variance of T let �̂ be the estimated variance-
covariance matrix of b with elements 	̂hk , h � 1, . . . , p, k � 1, . . . , p .
Let

pi j (t) �
Yij (t) exp(btZi j)

S (0)(t)

and

¯̄pi(t) �
ni∑

j�1

pi j (t), i � 1, . . . , G. (13.2.5)
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For each distinct death time, 0 � to 
 t1 
 . . . 
 td , let dk be the
observed number of deaths at time tk . Recall that the martingale residual
for the j th observation in the i th group at time tk is given by

Mij (tk ) �

{
�i j � Ho(Ti j), exp(btZi j) if Ti j � tk ,
�Ho(tk ) exp(btZi j) if Ti j � tk .

(13.2.6)

Let ¯̄Mi(tk ) �
∑ni

j�1 Mij (tk ) and ¯̄Mi(to) � 0. For each group, compute

Qi(tk ) � 2

⎡

⎣ ¯̄Mi(tk�1) �
G∑

g�1

¯̄Mg(tk�1)¯̄pg(tk ) � ¯̄pi(tk ) �
G∑

g�1

¯̄pi(tk )
2

⎤

⎦ ,

k � 1, . . . , d. (13.2.7)

Finally, for each of the p-covariates, compute

�h �
G∑

i�1

d∑

k�1

Qi(tk )dk

⎧
⎨

⎩

ni∑

j�1

pi j (tk )Zijh

⎫
⎬

⎭
, h � 1, . . . , p. (13.2.8)

The estimated variance of the score statistic is given by

V �
G∑

i�1

d∑

k�1

Qi(tk )
2¯̄pi(tk )dk �

p∑

h�1

p∑

k�1

�h�k 	̂hk . (13.2.9)

The test statistic for the test of no association is given by T� V 1 � 2 which
has an asymptotic normal distribution.

EXAMPLE 13.1 Mantel et al. (1977) reports the results of a litter-matched study of the
tumorigenesis of a drug. In the experiment, rats were taken from fifty
distinct litters, and one rat of the litter was randomly selected and given
the drug. For each litter, two rats were selected as controls and were
given a placebo. All mice were females. Possible associations between
litter mates in their times to development of tumors may be due to
common genetic backgrounds shared by siblings. We shall test this
hypothesis using the score test for association. The data is given in
Table 13.1.

To perform the test, we first fit a Cox proportional hazards regression
model to the data ignoring possible dependence between litter mates.
A single covariate was used, which has the value 1 if the rat was in the
treated group and 0 if the rat was in the placebo group. The estimate of
� is b � 0.8975 with an estimated variance of 0.1007 using Breslow’s
likelihood for ties. The value of T computed from (13.2.4) is 8.91, and
V � 45.03. The standardized test statistic is 8.91� √45.03 � 1.33 which
has a p-value of 0.184 from the standard normal table. This suggests
that there is no evidence of a litter effect in this experiment.
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Practical Note
1. An SAS macro to compute this test is available on our web site.

TABLE 13.1
Data On 50 Litters of Rats

Group Treated Rat Control Rats Group Treated Rat Control Rats

1 101� 104�, 49 26 89� 104�, 104�

2 104� 104�, 102� 27 78� 104�, 104�

3 104� 104�, 104� 28 104� 81, 64
4 77� 97�, 79� 29 86 94�, 55
5 89� 104�, 104� 30 34 104�, 54
6 88 104�, 96 31 76� 87�, 74�

7 104 94�, 77 32 103 84, 73
8 96 104�, 104� 33 102 104�, 80�

9 82� 104�, 77� 34 80 104�, 73�

10 70 104�, 77� 35 45 104�, 79�

11 89 91�, 90� 36 94 104�, 104�

12 91� 92�, 70� 37 104� 104�, 104�

13 39 50, 45� 38 104� 101, 94�

14 103 91�, 69� 39 76� 84, 78
15 93� 104�, 103� 40 80 80, 76�

16 85� 104�, 72� 41 72 104�, 95�

17 104� 104�, 63� 42 73 104�, 66
18 104� 104�, 74� 43 92 104�, 102
19 81� 104�, 69� 44 104� 98�, 78�

20 67 104�, 68 45 55� 104�, 104�

21 104� 104�, 104� 46 49� 83�, 77�

22 104� 104�, 104� 47 89 104�, 104�

23 104� 83�, 40 48 88� 99�, 79�

24 87� 104�, 104� 49 103 104�, 91�

25 104� 104�, 104� 50 104� 104�, 79

� Censored observation

13.3 Estimation for the Gamma Frailty Model

In this section we present a scheme for estimating the risk coefficients,
baseline hazard rate, and frailty parameter for a frailty model based on
a gamma distributed frailty. For this model, we assume that, for the
j th individual in the i th group, the hazard rate given the unobserv-
able frailty ui is of the form (13.1.2) with the ui ’s an independent and
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identically distributed sample of gamma random variables with density
function,

g(u) �
u(1 � ��1) exp(�u� �)

�[1� �]�1 � �
. (13.3.1)

With this frailty distribution, the mean of U is 1 and the variance is �, so
that large values of � reflect a greater degree of heterogeneity among
groups and a stronger association within groups. The joint survival
function for the ni individuals within the i th group is given by

S �xi1, . . . , xini � � P [Xi1 � xi1, . . . , Xini � xini ]

�

⎡

⎣1 � �
ni∑

j�1

Ho(xi j) exp(�tZi j)

⎤

⎦

�1 � �

.

The association between group members as measured by Kendall’s � is
�� (� � 2), and � � 0 corresponds to the case of independence.

Estimation for this model is based on the log likelihood function. Our
data consists of the usual triple (Ti j , �i j , Zi j ), i � 1, . . . , G , j � 1, . . . , ni .
Let Di �

∑ni
j�1 �i j be the number of events in the i th group. Then, the

observable log likelihood is given by

L(�, �) �
G∑

i�1

Di ln � � ln[�(1� �)] � ln[�(1� � � Di)]

� (1� � � Di) ln

⎡

⎣1 � �
ni∑

j�1

Ho(Ti j) exp(�tZi j)

⎤

⎦

�
ni∑

j�1

�i j ��tZi j � ln[ho(Ti j)]�. (13.3.2)

If one assumes a parametric form for ho( ), then, maximum likelihood
estimates are available by directly maximizing (13.3.2). Estimates of
the variability of the parameter estimates are obtained by inverting the
information matrix.

If a parametric form is not assumed for ho( ), the semiparametric
estimates are obtained by using an EM algorithm. Here, we consider
the full likelihood we would have if the frailties were observed. This
log likelihood is given by

LFULL � L1(�) � L2(�, Ho),

where

L1(�) � �G [(1� �) ln � � ln �[1� �]] �
G∑

i�1

[1� � � Di � 1] ln ui � ui � �

(13.3.3)
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and

L2(�, Ho) �
G∑

i�1

ni∑

j�1

�i j [�
tZi j � ln ho(Ti j)]�uiHo(Ti j) exp(�tZi j ). (13.3.4)

The EM algorithm provides a means of maximizing complex likeli-
hoods. In the E (or Estimation) step of the algorithm the expected value
of LFULL is computed, given the current estimates of the parameters and
the observable data. In the M (or maximization) step of the algorithm,
estimates of the parameters which maximize the expected value of LFULL

from the E step are obtained. The algorithm iterates between these two
steps until convergence.

To apply the E-step to our problem, we use the fact that, given the
data and the current estimates of the parameters, the ui ’s are indepen-
dent gamma random variables with shape parameters Ai � [1� � � Di ]
and scale parameters Ci � [1� � �

∑G
i�1 Ho(Ti j) exp(�tZi j)]. Thus,

E [ui | Data] �
Ai

Ci
and E [ln ui ] � [�(Ai) � ln Ci ], (13.3.5)

where �(.) is the digamma function. Substituting these values in (13.3.3)
and (13.3.4) completes the E-step of the algorithm.

For the M-step, note that E [L2(�, Ho) | Data] is expressed as

E [L2(�, Ho) | Data] �
G∑

i�1

ni∑

j�1

�i j [�
tZi j � ln ho(Ti j)] �

Ai

Ci
Ho(Ti j) exp(�tZi j )

(13.3.6)
which depends on the nuisance parameter ho( ). This likelihood is of
the form of the complete likelihood from which the partial likelihood
is constructed for the Cox model with the addition of a group specific
covariate, ln(Ai � Ci ), with a known risk coefficient of 1. If we let t(k )

be the k th smallest death time, regardless of subgroup, and m(k ) the
number of deaths at time t(k ), for k � 1, . . . , D and if we denote by ûh

and Zh the expected value of the frailty and the covariate vector for the
hth individual, then, the partial likelihood to be maximized in the M
step is

L3(�) �
D∑

k�1

⎧
⎨

⎩
S(k ) � m(k ) ln

⎡

⎣
∑

h�R(T(k ))

ûh exp(�tZh)

⎤

⎦

⎫
⎬

⎭
, (13.3.7)

where S(k ) is the sum of the covariates of individuals who died at time
t(k ). Note the similarity of this partial likelihood to the Breslow likelihood
for the usual Cox regression model. An estimate of the Ho(t) from this
step is given by

Ĥ o(t) �
∑

t(k )�t

hko (13.3.8)
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where

hko �
m(k )∑

h�R(t(k ))

ûh exp(�tZh)
.

A full implementation of the EM algorithm is, then,

Step 0. Provide initial estimates of �, � and thus hko, k � 1, .., d .
Step 1. (E step). Compute Ai , Ci , i � 1, . . . , G and ûh, h � 1, . . . , n

based on the current values of the parameters.
Step 2. (M step). Update the estimate of � (and the hko) using the partial

likelihood in (13.3.7). Update the estimate of � based on the
likelihood L4 � E [L1(�) | Data] given by

L4 � �G [(1� �) ln ��ln �(1� �)]�
G∑

i�1

[1� ��Di �1][�(Ai)�ln Ci ]�
Ai

�Ci

Step 3. Iterate between Steps 1 and 2 until convergence.

Although this algorithm eventually converges to the maximum likeli-
hood estimates of �, �, and Ho, the rate of convergence is quite slow.
A quicker algorithm, suggested by Nielsen et al.(1992), is a modified
profile likelihood EM algorithm. Here we use a grid of possible values
for the frailty parameter �. For each fixed value of �, the following EM
algorithm is used to obtain an estimate of �� .

Step 0. Provide an initial estimate of � (and hence hko)
Step 1. (E step). Compute ûh, h � 1, . . . , n based on the current values

of the parameters.
Step 2. (M step). Update the estimate of �� (and the hko) using the

partial likelihood in (13.3.7).
Step 3. Iterate between steps 1 and 2 until convergence.

The value of the profile likelihood for this value of � is, then, given by
L(�, ��) using (13.3.2). The value of � which maximizes this quantity is,
then, the maximum likelihood estimate. Both approaches will converge
to the same estimates.

The standard errors of the estimates of �, � and hko are based on the
inverse of the observed information matrix constructed by taking partial
derivatives of minus the observable likelihood (13.3.2). The information
matrix is a square matrix of size D � p � 1. The elements of this matrix
are as follows:

��2L

�hko�hjo
�

G∑

i�1

�(Di � 1� �)
Q (0)

i (�, t(k ))Q (0)
i (�, t( j))

⎡

⎣1� � �
ni∑

j�1

Ho(Ti j) exp(�tZi j )

⎤

⎦

2

� I (k � j)
mj

(hjo)2
, j, k � 1, . . . , D,
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��2L

�hko��v
�

G∑

i�1

Di � 1� �
⎡

⎣1� � �
ni∑

j�1

Ho(Ti j) exp(�tZi j )

⎤

⎦

2

�

⎧
⎨

⎩

⎡

⎣1� � �
ni∑

j�1

Ho(Ti j) exp(�tZi j)

⎤

⎦Q (1)
iv (�, t(k ))

� Q (0)
i (�, t(k ))

ni∑

j�1

ZijvHo(Ti j) exp(�tZi j )

⎫
⎬

⎭
,

k � 1, . . . , D, v � 1, . . . , p,

��2L

�hko��
�

G∑

i�1

Q (0)
i (�, t(k ))

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Di �
ni∑

j�1

Ho(Ti j ) exp(�tZi j)

1 � �
∑ni

j�1 Ho(Ti j) exp(�tZi j)

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

, k � 1, . . . , D,

��2L

��v��w
�

G∑

i�1

Di � 1� �

1� � �
ni∑

j�1

Ho(Ti j) exp(�tZi j )

�

⎧
⎨

⎩

⎡

⎣1� � �
ni∑

j�1

Ho(Ti j) exp(�tZi j)

⎤

⎦
ni∑

j�1

Ho(Ti j)ZijvZi jw exp(�tZi j)

�
ni∑

j�1

Ho(Ti j)Zijv exp(�tZi j)
ni∑

j�1

Ho(Ti j)Zijw exp(�tZi j )

⎫
⎬

⎭
,

v, w � 1, . . . , p

��2L

��v��
�

G∑

i�1

⎡

⎣Di �
ni∑

j�1

Ho(Ti j) exp(�tZi j )

⎤

⎦∑ni
j�1 Ho(Ti j)Zijv exp(�tZi j)

⎡

⎣1 � �
ni∑

j�1

Ho(Ti j ) exp(�tZi j)

⎤

⎦

2 ,

v � 1, . . . , p,
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and

��2L

��2
�

G∑

i�1

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

Di �1∑

r �0

�
1 � 2r�

(r�2 � �)2
�

2 ln � � 3
�3

�
2
�3

ln

⎡

⎣1� � �
ni∑

j�1

Ho(Ti j) exp(�tZi j )

⎤

⎦

�

3� � � Di � 2

⎡

⎣
ni∑

j�1

Ho(Ti j ) exp(�tZi j)

⎤

⎦ [2 � � � Di ]

⎡

⎣� � �2
ni∑

j�1

Ho(Ti j) exp��tZi j �

⎤

⎦

2

⎫
⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎭

,

where

Q (0)
i (�, t) �

ni∑

j�1

� exp(�tZi j), Q (1)
iv (�, t) �

ni∑

j�1

�Zijv exp(�tZi j) and

Q (2)
ivw(�, t) �

ni∑

j�1

�ZijvZi jw exp��tZi j �,

with each of these starred sums only over those at risk at time t .

EXAMPLE 13.1 (continued): We shall fit the gamma frailty model to the litter data
presented in Example 13.1. Here, we have a single covariate Z denoting
whether the rat was fed the drug or placebo. Each litter defines a group.
Applying the EM algorithm and after computing the information matrix,
we find the following results:

Model Treatment Frailty

Cox Model (Frailty) b � 0.904, SE (b) � 0.323 �̂ � 0.472, SE (�̂) � 0.462
Cox Model (Independence) b � 0.897, SE (b) � 0.317 —

Note that, when the frailty is ignored, the estimate of � is closer to
zero and the estimated standard error is reduced. This is a consequence
of the frailty model. In this example, we also see that there is no
significant random effect because the Wald statistic �̂ � SE (�̂) � 1.02
which gives a p-value of 0.31. The estimated value of Kendall’s � is
�̂ � (2 � �̂) � 0.19 with a standard error of 2SE (�̂) � (2 � �̂)2 � 0.43.
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Practical Notes

1. A SAS macro is available at our website for implementing these
techniques. They are quite computer intensive.

2. Similar estimating schemes have been developed for the positive
stable frailty (Wang et al. 1995) and for the inverse gaussian frailty
(Klein et al. 1992).

3. The estimating scheme can be simplified if a parametric model is
assumed for the baseline hazard rate. See Costigan and Klein (1993)
for a survey of this approach.

4. Additional models and examples are found in Hougaard (2001).

Theoretical Notes
1. Estimation for the semiparametric gamma frailty model was first con-

sidered by Clayton (1978) and Clayton and Cuzick (1985). Based on
a suggestion of Gill (1985), the EM algorithm was developed inde-
pendently by Klein (1992) and Nielsen et al. (1992).

2. Neilsen et al. (1992) give a counting process derivation of this ap-
proach to estimation.

3. The calculation of the variance-covariance matrix given here was
introduced in Andersen et al. (1997). This is a nonstandard ap-
proach but there is good empirical data and some Monte Carlo work
(Morsing 1994) which suggests that it is valid. It is of interest to note
that, if one uses the same approach to derive a variance estimate
for the usual Cox model, then, the inverse of the information matrix
gives precisely the common formula for the variance.

13.4 Marginal Model for Multivariate Survival

In the previous section, we modeled multivariate survival data by a
conditional proportional hazards model given the unobserved frailty.
With this model, the marginal distributions no longer followed a
simple Cox model. In fact, except for the positive stable frailty
model, the marginal distributions do not follow a proportional haz-
ards model.

An alternative model for multivariate survival data has been suggested
by Lee et al. (1992). In this approach, a proportional hazards model is
assumed marginally for each individual, that is, for the j th individual in
the i th group, the marginal hazard rate given an individual’s covariates
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Zi j is expressed by

hi j (t | Zi j ) � ho(t) exp(�tZi j), j � 1, . . . , ni , i � 1, . . . , G. (13.4.1)

As in previous sections of this chapter, we allow the individual obser-
vations within each of the G groups to be associated.

To estimate �, we proceed with an “independence working model”
for the data. We pretend that all observations are independent of
each other and construct the partial likelihood function for a sample
of
∑G

i�1 ni observations, as in Chapter 8. Using this partial likelihood
function, b, the estimator of � is found. Lee et al. (1992) show that this
estimator is consistent for �, provided the marginal model (13.4.1) is
correctly specified. However, the information matrix obtained from this
likelihood does not provide a valid estimator of the variance-covariance
matrix of b.

To estimate the variance of b, a “sandwich” estimator is used. This
estimator adjusts the usual covariance matrix for the possible association
between the event times within groups. To construct the covariance
matrix, let V̂ be the usual p � p covariance matrix for b, based on the
independence working model. We let Si j be the score residual for Zijk

for the j th member of the i th group, i � 1, . . . , G, j � 1, . . . , ni , k �
1, . . . p . Recall, as defined in (11.6.1), the score residual for the k th
covariate is

Si jk � �i j [Zijk � ¯̄Zk (Ti j)] �
∑

th�Ti j

[Zijk � ¯̄Zk (th)] d ¯̄H0(th), (13.4.2)

where ¯̄Zk (t) is the average value of the k th covariate, t1, . . . tD are the
observed death times, and d ¯̄H0(th) is the jump in the estimate of the
baseline rate at time th. Summing these values, we compute the p � p
matrix C defined by

Ch,k �
g∑

i�1

ni∑

j�1

ni∑

m�1

Si jhSimk (13.4.3)

The adjusted estimator of the variance of b is given by

Ṽ � V̂CV̂.

The estimator b has a large sample p-variate normal distribution with
a mean of � and a variance estimated by Ṽ, so the global and local
Wald tests discussed in Chapter 8 can be constructed. Note that, in this
model, we have no estimate of the strength of association between
individuals within groups. We simply have an estimator of � and an
adjusted estimator of its standard error.

EXAMPLE 13.1 (continued): We shall fit the marginal model to the litter data pre-
sented in Example 13.1. Here, we have a single covariate Z denoting
whether the rat was fed the drug or placebo. Each litter defines a group.
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Fitting a Cox regression model, we obtain b � 0.897 and V̂ � 0.1007.
Computing (13.4.3), we find C � 8.893 so Ṽ � 0.10072(8.893) � 0.0902
and the standard error of b is

√
0.0902 � 0.3000. A 95% confidence in-

terval for the relative risk of death for a rat given the drug compared to
a placebo-fed rat is exp[0.897  1.96(0.3000)] � (1.36, 4.42). Note that,
if the naive estimate of the standard error

√
0.1007 � 0.3173 were used,

the 95% confidence interval for the relative risk would be (1.32, 4.57),
which is slightly wider than that obtained using the adjusted variance.

Practical Notes

1. A FORTRAN program to compute the adjusted variance estimator
can be found in Lin (1993). This variance estimator is also available
in S-Plus.

2. When the event times within groups are independent, the adjusted
variance estimator reduces to a robust variance estimator for the Cox
regression model proposed by Lin and Wei (1989).

3. If the baseline hazard rate is assumed to be different for each group,
but a common � acts on these rates, then, Wei et al. (1989) provide a
similar approach based on an independence working model with a
sandwich estimator for the variance. Details and examples are found
in Lin (1993).

4. Score residuals are available in SAS.

13.5 Exercises

13.1 Batchelor and Hackett (1970) have reported the results of a study of 16
acutely burned patients treated with skin allografts. Patients received
from one to four grafts. For each graft, the time in days to rejection of
the graft was recorded as well as an indicator variable Z which had a
value of 1 if the graft was a good match of HLA skin type and 0 if it
was a poor match. The survival times of some grafts were censored by
the death of the patient. The data is recorded below.

The survival time of an allograft is thought to depend on the degree of
HLA matching between the patient and the donor and on the strength of
the patient’s immune response. Test the hypothesis of a random patient
effect due to differing immune responses by applying the score test for
association.
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Patient (T, Z )

1 (29, 0), (37, 1)
2 (3, 0), (19, 1)
3 (15, 0), (57�, 1),(57�, 1)
4 (26, 0), (93, 1)
5 (11, 0), (16, 1)
6 (15, 0), (21, 1)
7 (20, 1), (26, 0)
8 (18, 1), (19, 0)
9 (29, 0), (43, 0), (63, 1), (77, 1)

10 (15, 0), (18, 0), (29, 1)
11 (38, 0), (60�, 1)
12 (19, 0)
13 (24, 1)
14 (18, 0), (18, 0)
15 (19, 0), (19, 0)
16 (28�, 0), (28�, 0)

� Censored observation

13.2 McGilchrist and Aisbett (1991) report data on the recurrence times of
infections of 38 kidney patients using a portable dialysis machine. For
each patient, two times to recurrence of an infection at the site of
insertion of the catheter placement (in days), (T1, T2), are recorded as
well the event indicators (�1, �2) for each time . Also recorded for each
patient are five covariates: Z1, the patient’s age; Z2, patient’s gender (0-
male, 1-female); Z3, indicator of whether the patient had disease type
GN; Z4, indicator of whether the patient had disease type AN; and Z5,
indicator of whether the patient had disease type PKD. The data is
recorded below.

Using the score test, test the hypothesis of no association between
the recurrence times.

Patient T1 �1 T2 �2 Z1 Z2 Z3 Z4 Z5

1 16 1 8 1 28 0 0 0 0
2 13 0 23 1 48 1 1 0 0
3 22 1 28 1 32 0 0 0 0
4 318 1 447 1 31.5 1 0 0 0
5 30 1 12 1 10 0 0 0 0
6 24 1 245 1 16.5 1 0 0 0
7 9 1 7 1 51 0 1 0 0
8 30 1 511 1 55.5 1 1 0 0
9 53 1 196 1 69 1 0 1 0

10 154 1 15 1 51.5 0 1 0 0
11 7 1 33 1 44 1 0 1 0
12 141 1 8 0 34 1 0 0 0
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Patient T1 �1 T2 �2 Z1 Z2 Z3 Z4 Z5

13 38 1 96 1 35 1 0 1 0
14 70 0 149 0 42 1 0 1 0
15 536 1 25 0 17 1 0 0 0
16 4 0 17 1 60 0 0 1 0
17 185 1 177 1 60 1 0 0 0
18 114 1 292 1 43.5 1 0 0 0
19 159 0 22 0 53 1 1 0 0
20 108 0 15 1 44 1 0 0 0
21 562 1 152 1 46.5 0 0 0 1
22 24 0 402 1 30 1 0 0 0
23 66 1 13 1 62.5 1 0 1 0
24 39 1 46 0 42.5 1 0 1 0
25 40 1 12 1 43 0 0 1 0
26 113 0 201 1 57.5 1 0 1 0
27 132 1 156 1 10 1 1 0 0
28 34 1 30 1 52 1 0 1 0
29 2 1 25 1 53 0 1 0 0
30 26 1 130 1 54 1 1 0 0
31 27 1 58 1 56 1 0 1 0
32 5 0 43 1 50.5 1 0 1 0
33 152 1 30 1 57 1 0 0 1
34 190 1 5 0 44.5 1 1 0 0
35 119 1 8 1 22 1 0 0 0
36 54 0 16 0 42 1 0 0 0
37 6 0 78 1 52 1 0 0 1
38 8 0 63 1 60 0 0 0 1

13.3 (a) Using the data on skin grafts in Exercise 1, fit a standard propor-
tional hazards model with a single covariate reflecting the degree
of matching, ignoring the information on which patient the graft
was applied.

(b) Fit the semiparametric gamma frailty model to this data. As an initial
guess of the frailty parameter, use a value of 0.55. Find the estimate
of the regression coefficient and its standard error. Compare this
value to that found in part a. Test the hypothesis of no association
in this model.

13.4 (a) Using the data in Exercise 2 and ignoring any patient effect, fit a
proportional hazards model to the times to infection using the five
covariates Z1, . . . , Z5. Construct an ANOVA table for your estimates.

(b) Using the marginal model with the corrected variance estimators,
repeat part a. Compare the variance estimates in the two models.

13.5 (a) Using the data in Exercise 1, fit a Cox model, ignoring any patient
effect.
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(b) Fit the marginal model to this data and compute the corrected
variance estimate. Using the corrected variance estimate, perform
the Wald test of the hypothesis of no effect of degree of matching
on graft survival. Compare the results of this test to a similar test
based on the results of part a.



A
Numerical Techniques

for Maximization

Many of the procedures discussed in this volume require maximizing
the log likelihood or partial log likelihood function. For many models,
it is impossible to perform this maximization analytically, so, numerical
methods must be employed. In this appendix, we shall summarize some
techniques which can be used in both univariate and multivariate cases.
The reader is referred to a text on statistical computing, such as Thisted
(1988), for a more detailed discussion of these techniques.

A.1 Univariate Methods

Suppose we wish to find the value x which maximizes a function f ( ) of
a single variable. Under some mild regularity conditions, x maximizes
f if the score equation f ′(x) equals 0 and f ′′(x) 
 0. We present
three numerical methods which attempt to find the maximum of f ( )
by solving the score equation. Some care must be taken when using
these routines because they do not ensure that the second derivative of
f is negative at the solution we find.

The first technique is the bisection method. Here, the algorithm starts
with two initial values, x L and xU, which bracket the root of f ′(x) � 0,
that is, f ′(x L) 	 f ′(xU) 
 0. A new guess at the root is taken to be the
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midpoint of the interval (x L, xU), namely, xN � (x L � xU) � 2. If f ′(x L)
and f ′(xN) have the same sign, x L is replaced by xN, otherwise xU is
replaced by xN. In either case, the algorithm continues with the new
values of x L and xU until the desired accuracy is achieved. At each step,
the length of the interval (xU � x L) is a measure of the largest possible
difference between our updated guess at the root of f ′( ) and the actual
value of the root.

A second method, of use when one has good initial starting values
and a complicated second derivative of f ( ), is the secant method or
regula falsi. Again, we start with two initial guesses at the root, xo

and x1. These guesses need not bracket the root. After i steps of the
algorithm, the new guess at the root of f ′(x) is given by

xi�1 � xi � f ′(xi)(xi � xi�1) � [ f ′(xi) � f ′(xi�1)]. (A.1)

Iterations continue until convergence. Typical stopping criteria are

|xi�1 � xi | 
 �, |f ′(xi�1)| 
 �

or

|(xi�1 � xi) � xi | 
 �,

where � is some small number.
The third method is the Newton–Raphson technique. Here, a single

initial guess, xo, of the root is made. After i steps of the algorithm, the
updated guess is given by

xi�1 � xi � f ′(xi) � f ′′(xi). (A.2)

Again, the iterative procedure continues until the desired level of ac-
curacy is met. Compared to the secant method, this technique has
the advantage of requiring a single starting value, and convergence is
quicker than the secant method when the starting values are good. Both
the secant and Newton–Raphson techniques may fail to converge when
the starting values are not close to the maximum.

EXAMPLE A.1 Suppose we have the following 10 uncensored observations from a
Weibull model with scale parameter � � 1 and shape parameter � , that
is, h(t) � �t��1e�t�

.

Data: 2.57, 0.58, 0.82, 1.02, 0.78, 0.46, 1.04, 0.43, 0.69, 1.37

To find the maximum likelihood estimator of � , we need to maximize
the log likelihood f (�) � ln L(�) � n ln(�) � (� � 1)

∑
ln(t j) �

∑
t�

j .
Here, f ′(�) � n � � �

∑
ln(t j ) �

∑
t�

j ln(t j ), and f ′′(�) � �n � �2 �
∑

t�
j [ln(t j)]2.

Applying the bisection method with � L � 1.5 and �U � 2 and
stopping the algorithm when |f ′(�)| 
 0.01, we have the following
values:
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Step � L �U �N f ′(� L) f ′(�U) f ′(�N)

1 1.5 2 1.75 1.798 �2.589 �0.387
2 1.5 1.75 1.625 1.798 �0.387 0.697
3 1.625 1.75 1.6875 0.697 �0.387 0.154
4 1.6875 1.75 1.71875 0.154 �0.387 �0.116
5 1.6875 1.71875 1.70313 0.154 �0.116 0.019
6 1.70313 1.71875 1.71094 0.019 �0.116 �0.049
7 1.70313 1.71094 1.70704 0.019 �0.049 �0.015
8 1.70313 1.70704 1.70509 0.019 �0.015 0.002

So, after eight steps the algorithm stops with �̂ � 1.705.
For the secant method, we shall start the algorithm with �o � 1 and

�1 � 1.5. The results are in the following table:

Step �i�1 �i f ′(�i�1) f ′(�i ) �i�1 f ′(�i�1)

1 1 1.5 7.065 1.798 1.671 0.300
2 1.5 1.671 1.798 0.300 1.705 0.004

Here, using the same stopping rule |f ′(�)| 
 0.01, the algorithm stops
after two steps with �̂ � 1.705.

For the Newton–Raphson procedure, we use an initial value of �o �
1.5. The results of the algorithm are in the following table.

i �i�1 f ′(�i�1) f ′′(�i�1) �i f ′(�i )

1 1.5 1.798 �8.947 1.701 0.038
2 1.701 0.038 �8.655 1.705 2 � 10�6

Again, using the same stopping rule |f ′(�)| 
 0.01, the algorithm stops
after two steps with �̂ � 1.705. Notice the first step of the Newton–
Raphson algorithm moves closer to the root than the secant method.

A.2 Multivariate Methods

We present three methods to maximize a function of more than one
variable. The first is the method of steepest ascent which requires only
the vector of first derivatives of the function. This method is robust
to the starting values used in the iterative scheme, but may require a
large number of steps to converge to the maximum. The second is the
multivariate extension of the Newton–Raphson method. This method,
which requires both the first and second derivatives of the function,



446 Appendix A Numerical Techniques for Maximization

converges quite rapidly when the starting values are close to the root,
but may not converge when the starting values are poorly chosen. The
third, called Marquardt’s (1963) method, is a compromise between these
two methods. It uses a blending constant which controls how closely
the algorithm resembles either the method of steepest ascent or the
Newton–Raphson method.

Some notation is needed before presenting the three methods. Let
f (x) be a function of the p-dimensional vector x � (x1, . . . , xp)t . Let
u(x) be the p-vector of first order partial derivatives of f (x), that is,

u(x) � [u1(x), . . . , up(x)]t , (A.3)

where

uj(x) �
� f (x)

�xj
, j � 1, . . . , p.

Let H(x) be the p �p Hessian matrix of mixed second partial derivatives
of f (x), defined by

H(x) � (Hij (x)), i, j � 1, . . . , p where Hij (x) �
�2 f (x)
�xi�xj

. (A.4)

The method of steepest ascent starts with an initial guess, xo, of
the point which maximizes f (x). At any point, the gradient vector
u(x) points the direction of steepest ascent of the function f (x). The
algorithm moves along this direction by an amount d to a new estimate
of the maximum from the current estimate. The step size d is chosen to
maximize the function in this direction, that is, we pick d to maximize
f [xk �du(xk )]. This requires maximizing a function of a single variable,
so that any of the techniques discussed earlier can be employed.

The updated guess at the point which maximizes f (x) is given by

xk�1 � xk � du(xk ). (A.5)

The second method is the Newton–Raphson method which, like the
method of steepest ascent, starts with an initial guess at the point which
maximizes f (x). After k steps of the algorithm, the updated estimate
of the point which maximizes f (x) is given by

xk�1 � xk � H(xk )
�1u(xk ). (A.6)

The Newton–Raphson algorithm converges quite rapidly when the ini-
tial guess is not too far from the maximum. When the initial guess is
poor, the algorithm may move in the wrong direction or may take a step
in the correct direction, but overshoot the root. The value of the function
should be computed at each step to ensure that the algorithm is moving
in the correct direction. If f (xk ) is smaller than f (xk�1), one option is
to cut the step size in half and try xk�1 � xk � H(xk )�1u(xk ) � 2. This
procedure is used in SAS and BMDP in the Cox regression procedure.

The third method is Marquardt’s (1963) compromise between the
method of steepest ascent and the Newton–Raphson method. This
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method uses a constant, �, which blends the two methods together.
When � is zero, the method reduces to the Newton–Raphson method,
and, as � → �, the method approaches the method of steepest as-
cent. Again, the method starts with an initial guess, xo. Let Sk be the
p �p diagonal scaling matrix with diagonal element (|Hii(xk )|�1 � 2). The
updated estimate of the maximum is given by

xk�1 � xk � Sk (Sk H(xk )Sk � �I)�1Sk u(xk ),

where I is the identity matrix. Typically, the algorithm is implemented
with a small value of � for the first iteration. If f (x1) 
 f (xo), then,
we are having difficulty approaching the maximum and the value of
� is increased until f (x1) � f (xo). This procedure is iterated until
convergence is attained. For the final step of the algorithm, a “Newton–
Raphson” step with � � 0 is taken to ensure convergence.

In the multivariate maximization problem, there are several sugges-
tions for declaring convergence of these algorithms. These include stop-
ping when f (xk�1) � f (xk ) 
 � (or |[ f (xk�1) � f (xk )]� f (xk )| 
 �);
when

∑
u j (xk�1)2 
 � (or max[|u1(xk�1)|, . . . , |up(xk�1)|] 
 �) or

when
∑

(xk�1, j �xk, j)2 
 � (or max[|xk�1,1�xk,1 |, . . . , |xk�1,p �xk,p | 
 �).

EXAMPLE A.2 We shall fit a two-parameter Weibull model with survival function
S (t) � exp(��t�) to the ten observations in Example A.2. Here the
log likelihood function is given by

L(�, �) � n ln � � n ln � � (� � 1)
∑

ln ti � �
∑

t�
i .

The score vector u(�, �) is expressed by

u�(�, �) �
�L(�, �)

��
�

n

�
�
∑

t�
i

u�(�, �) �
�L(�, �)

��
�

n

�
�
∑

ln ti � �
∑

t�
i ln ti

and the Hessian matrix is

H(�, �) �

⎛

⎜
⎝

�
n

�2
�
∑

t�
i ln ti

�
∑

t�
i ln ti �

n

�2
� �

∑
t�
i (ln t 2

i )

⎞

⎟
⎠

To apply the method of steepest ascent, we must find the value of dk

which maximizes L[(�k � dk u� [�k , �k ]), (�k � dk u� [�k , �k ])]. This needs
to be done numerically and this example uses a Newton–Raphson al-
gorithm. Convergence of the algorithm is declared when the maximum
of |u� | and |u� | is less than 0.1. Starting with an initial guess of � � 1
and � � 10� ∑ ti � 1.024, which leads to a log likelihood of �9.757,
we have the following results:
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Step k �k �k L(�, �) u� u� dk

0 1.024 1.000 �9.757 0.001 7.035 0.098
1 1.025 1.693 �7.491 0.001 �1.80 0.089
2 0.865 1.694 �7.339 0.661 0.001 0.126
3 0.865 1.777 �7.311 0.000 �0.363 0.073
4 0.839 1.777 �7.307 0.121 0.000 0.128
5 0.839 1.792 �7.306 0.000 �0.072 0.007

Thus the method of steepest ascent yields maximum likelihood esti-
mates of �̂ � 0.839 and �̂ � 1.792 after 5 iterations of the algorithm.

Applying the Newton–Raphson algorithm with the same starting val-
ues and convergence criterion yields

Step k �k �k u� u� H�� H�� H��

0 1.024 1.000 0.001 7.035 �9.537 �13.449 �1.270
1 0.954 1.530 �0.471 1.684 �10.987 �8.657 �3.34
2 0.838 1.769 0.035 0.181 �14.223 �7.783 �1.220
3 0.832 1.796 �0.001 0.001 �14.431 �7.750 �4.539

This method yields maximum likelihood estimates of �̂ � 0.832 and
�̂ � 1.796 after three iterations.

Using � � 0.5 in Marquardt’s method yields

Step k �k �k u� u� H�� H�� H��

0 1.024 1.000 0.001 7.035 �9.537 �13.449 �1.270
1 0.993 1.351 �0.357 3.189 �10.136 �9.534 �2.565
2 0.930 1.585 �0.394 1.295 �11.557 �8.424 �3.599
3 0.883 1.701 �0.275 0.523 �12.813 �8.049 �4.176
4 0.858 1.753 �0.162 0.218 �13.591 �7.891 �4.453
5 0.845 1.777 �0.087 0.094 �14.013 �7.817 �4.581

Here, the algorithm converges in five steps to estimates of �̂ � 0.845
and �̂ � 1.777.



B
Large-Sample

Tests Based on
Likelihood Theory

Many of the test procedures used in survival analysis are based on
the asymptotic properties of the likelihood or the partial likelihood.
These test procedures are based on either the maximized likelihood
itself (likelihood ratio tests), on the estimators standardized by use of
the information matrix (Wald tests), or on the first derivatives of the
log likelihood (score tests). In this appendix, we will review how these
tests are constructed. See Chapter 9 of Cox and Hinkley (1974) for a
more detailed reference.

Let Y denote the data and � � (�1, . . . , �p) be the parameter vector.
Let L(� : Y) denote either the likelihood or partial likelihood function.
The maximum likelihood estimator of � is the function of the data
which maximizes the likelihood, that is, �̂(Y) � �̂ is the value of �
which maximizes L(� : Y) or, equivalently, maximizes log L(� : Y).

Associated with the likelihood function is the efficient score vector
U(�) � [U1(�), . . . , Up(�)] defined by

Uj (�) �
�

�� j
ln L(� : Y). (B.1)

In most regular cases, the maximum likelihood estimator is the solution
to the equation U(�) � 0. The efficient score vector has the property

449



450 Appendix B Large-Sample Tests Based on Likelihood Theory

that its expected value is zero when the expectation is taken with
respect to the true value of �.

A second key quantity in large-sample likelihood theory is the Fisher
information matrix defined by

i(�) � E� [U(�)tU(�)] � E�

[

�
�

��
U(�)

]

�

{

�E�

[
�2

�� j��k
ln L(� : Y)

]}

, j � 1, . . . , p, k � 1, . . . , p. (B.2)

Computation of the expectation in (B.2) is very difficult in most appli-
cations of likelihood theory, so a consistent estimator of i is used. This
estimator is the observed information, I(�), whose ( j, k )th element is
given by

I j,k (�) � �
�2 ln L(� : Y)

�� j��k
, j, k � 1, . . . , p. (B.3)

The first set of tests based on the likelihood are for the simple null
hypothesis, Ho : � � �o. The first test is the likelihood ratio test based
on the statistic

�2
LR � �2[ln L(�o : Y) � ln L(�̂ : Y)] (B.4)

This statistic has an asymptotic chi-squared distribution with p degrees
of freedom under the null hypothesis.

A second test, called the Wald test, is based on the large-sample
distribution of the maximum likelihood estimator. For large samples,
�̂ has a multivariate normal distribution with mean � and covariance
matrix i�1(�) so the quadratic form (�̂ � �o)i(�̂)(�̂ � �o)t has a chi-
squared distribution with p degrees of freedom for large samples. Using
the observed information as an estimator of the Fisher information, the
Wald statistic is expressed as

�2
W � (�̂ � �o)I(�̂)(�̂ � �o)

t (B.5)

which has a chi-squared distribution with p degrees of freedom for
large samples when Ho is true.

The third test, called the score or Rao test, is based on the efficient
score statistics. When � � �o, the score vector U(�o) has a large-sample
multivariate normal distribution with mean 0 and covariance matrix
i(�). This leads to a test statistic given by

�2
S � U(�o)i

�1(�o)U
t(�o).

As for the Wald test, the Fisher information is replaced in most applica-
tions by the observed information, so the test statistic is given by

�2
S � U(�o)I

�1(�o)U
t(�o). (B.6)

Again, this statistic has an asymptotic chi-squared distribution with p
degrees of freedom when Ho is true. The score test has an advantage in
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many applications in that the maximum likelihood estimates need not
be calculated.

EXAMPLE B.1 Suppose we have a censored sample of size n from an exponential
population with hazard rate �. We wish to test the hypothesis that
� � 1. Let (Ti , �i), i � 1, . . . , n , so that the likelihood, L(�; (Ti , �i), i �
1, . . . , n), is given by

∏n
i�1 ��i e��Ti � �De��S where D �

∑n
i�1 �i is the

observed number of deaths and S �
∑n

i�1 Ti is the total time on test
(see Section 3.5). Thus,

ln L(�) � D ln � � �S, (B.7)

U (�) �
d

d�
ln L(�) �

D

�
� S, (B.8)

and

I (�) � �
d2

d�2
ln L(�) �

D

�2
. (B.9)

Solving B.8 for � gives us the maximum likelihood estimator, �̂ � D� S .
Using these statistics,

�2
S �

(
D

1
� S

)2

	

(
12

D

)

�
(D � S )2

D
,

�2
W �

(
D

S
� 1

)2

	
D

(D� S )2
�

(D � S )2

D

�2
LR � �2 �(D ln 1 � 1 	 S ) � [D ln(D� S ) � (D� S ) 	 S ]�

� 2[S � D � D ln(D� S )]

In this case, note that the Wald and Rao tests are identical. All three
of these statistics have asymptotic chi-squared distributions with one
degree of freedom.

All three test statistics can be used to test composite hypotheses.
Suppose the parameter vector � is divided into two vectors � and 	
of lengths p1, and p2, respectively. We would like to test the hypoth-
esis Ho : � � �o. Here 	 is a nuisance parameter. Let 	̂(�o) be the
maximum likelihood estimates of 	 obtained by maximizing the likeli-
hood with respect to 	, with � fixed at �o. That is, 	̂(�o) maximizes
ln L[(�o, 	) : Y] with respect to 	. We also partition the information
matrix I into

I �

(
I�� I�	

I	� I		

)

, (B.10)

where I�� is of dimension p1 � p1, I		 is of dimension p2 � p2, I�	

is p1 � p2, and It
	� � I�	 . Notice that a partitioned information matrix
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has an inverse which is also a partitioned matrix with

I�1 �

(
I�� I�	

I	� I		

)

, (B.11)

With these refinements, the three statistics for testing Ho : � � �o are
given by
Likelihood ratio test:

�2
LR � �2�ln L[(�o, 	̂(�o) : Y)] � ln L(�̂ : Y)�, (B.12)

Wald test:

�2
W � (�̂ � �o)[I

��(�̂, 	̂)]�1(�̂ � �o)
t , (B.13)

and score test:

�2
S � U� [�o, 	̂(�o)][I

��(�o, 	̂(�o))]U
t [�o, 	̂(�o)]. (B.14)

All three statistics have an asymptotic chi-squared distribution with p1

degrees of freedom when the null hypothesis is true.

EXAMPLE B.2 Consider the problem of comparing two treatments, where the time to
event in each group has an exponential distribution. For population
one, we assume that the hazard rate is � whereas for population two,
we assume that the hazard rate is ��. We shall test Ho : � � 1 treating
� as a nuisance parameter. The likelihood function is given by

L[(�, �) : D1, D2, S1, S2] � �D1�D2�D2 exp(��S1 � ��S2) (B.15)

where Di is the number of events and Si is the total time on test in the
i th sample, i � 1, 2. From (B.15),

ln L[(�, �)] � (D1 � D2) ln � � D2 ln � � �S1 � ��S2, (B.16)

U�(�, �) �
�

��
ln L(�, �) �

D2

�
� �S2, (B.17)

U�(�, �) �
�

��
ln L(�, �) �

D1 � D2

�
� S1 � �S2, (B.18)

I��(�, �) � �
�2 ln L(�, �)

��2
�

D2

�2
, (B.19)

I��(�, �) � �
�2 ln L(�, �)

��2
�

D1 � D2

�2
, (B.20)

and

I�� � �
�2 ln L(�, �)

����
� S2. (B.21)

Solving the system of equations U�(�, �) � 0, U�(�, �) � 0 yields the
global maximum likelihood estimators �̂ � S1D2 � (S2D1) and �̂ � D1 � S1.
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Solving U�(�, �) � 0, for � fixed at its value under Ho, yields �̂(� � 1),
denoted by �̂(1), � (D1 � D2) � (S1 � S2). Thus, we have from B.12 a
likelihood ratio test statistic of

�2
LR � �2�[(D1 � D2) ln[�̂(1)] � �̂(1)(S1 � S2)]

� [(D1 � D2) ln[�̂ ] � D2 ln[�̂] � �̂S1 � �̂�̂S2]�.

� 2D1 ln
[

D1(S1 � S2)
S1(D1 � D2)

]

� 2D2 ln
[

D2(S1 � S2)
S2(D1 � D2)

]

.

From B.19–B.21,

I ��(�, �) �
�2(D1 � D2)[

D2(D1 � D2) � (��S2)2
]

so, the Wald test is given by

�2
W � (�̂ � 1)2

{
�̂2(D1 � D2)

[D2(D1 � D2) � (�̂�̂S2)2]

}�1

�
D2

1 (S1D2 � S2D1)2

D2S 2
1 (D1 � D2)

The score test is given by

�2
S � (D2 � �̂(1)S2)

2 (D1 � D2)

[D2(D1 � D2) � (�̂(1)S2)2]

�
[D2(S1 � S2) � (D1 � D2)S2]2

D2(S1 � S2)2 � (D1 � D2)S 2
1

If, for example, D1 � 10, D2 � 12, S1 � 25, and S2 � 27, then
�2

LR � 0.0607, �2
W � 0.0545 and �2

S � 0.0448, all nonsignificant when
compared to a chi-square with one degree of freedom.
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TABLE C.1
Standard Normal Survival Function P [Z � z ]

z 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

0.0 0.5000 0.4960 0.4920 0.4880 0.4840 0.4801 0.4761 0.4721 0.4681 0.4641
0.1 0.4602 0.4562 0.4522 0.4483 0.4443 0.4404 0.4364 0.4325 0.4286 0.4247
0.2 0.4207 0.4168 0.4129 0.4090 0.4052 0.4013 0.3974 0.3936 0.3897 0.3859
0.3 0.3821 0.3783 0.3745 0.3707 0.3669 0.3632 0.3594 0.3557 0.3520 0.3483
0.4 0.3446 0.3409 0.3372 0.3336 0.3300 0.3264 0.3228 0.3192 0.3156 0.3121
0.5 0.3085 0.3050 0.3015 0.2981 0.2946 0.2912 0.2877 0.2843 0.2810 0.2776
0.6 0.2743 0.2709 0.2676 0.2643 0.2611 0.2578 0.2546 0.2514 0.2483 0.2451
0.7 0.2420 0.2389 0.2358 0.2327 0.2296 0.2266 0.2236 0.2206 0.2177 0.2148
0.8 0.2119 0.2090 0.2061 0.2033 0.2005 0.1977 0.1949 0.1922 0.1894 0.1867
0.9 0.1841 0.1814 0.1788 0.1762 0.1736 0.1711 0.1685 0.1660 0.1635 0.1611
1.0 0.1587 0.1562 0.1539 0.1515 0.1492 0.1469 0.1446 0.1423 0.1401 0.1379
1.1 0.1357 0.1335 0.1314 0.1292 0.1271 0.1251 0.1230 0.1210 0.1190 0.1170
1.2 0.1151 0.1131 0.1112 0.1093 0.1075 0.1056 0.1038 0.1020 0.1003 0.0985
1.3 0.0968 0.0951 0.0934 0.0918 0.0901 0.0885 0.0869 0.0853 0.0838 0.0823
1.4 0.0808 0.0793 0.0778 0.0764 0.0749 0.0735 0.0721 0.0708 0.0694 0.0681
1.5 0.0668 0.0655 0.0643 0.0630 0.0618 0.0606 0.0594 0.0582 0.0571 0.0559
1.6 0.0548 0.0537 0.0526 0.0516 0.0505 0.0495 0.0485 0.0475 0.0465 0.0455
1.7 0.0446 0.0436 0.0427 0.0418 0.0409 0.0401 0.0392 0.0384 0.0375 0.0367
1.8 0.0359 0.0351 0.0344 0.0336 0.0329 0.0322 0.0314 0.0307 0.0301 0.0294
1.9 0.0287 0.0281 0.0274 0.0268 0.0262 0.0256 0.0250 0.0244 0.0239 0.0233
2.0 0.0228 0.0222 0.0217 0.0212 0.0207 0.0202 0.0197 0.0192 0.0188 0.0183
2.1 0.0179 0.0174 0.0170 0.0166 0.0162 0.0158 0.0154 0.0150 0.0146 0.0143
2.2 0.0139 0.0136 0.0132 0.0129 0.0125 0.0122 0.0119 0.0116 0.0113 0.0110
2.3 0.0107 0.0104 0.0102 0.0099 0.0096 0.0094 0.0091 0.0089 0.0087 0.0084
2.4 0.0082 0.0080 0.0078 0.0075 0.0073 0.0071 0.0069 0.0068 0.0066 0.0064
2.5 0.0062 0.0060 0.0059 0.0057 0.0055 0.0054 0.0052 0.0051 0.0049 0.0048
2.6 0.0047 0.0045 0.0044 0.0043 0.0041 0.0040 0.0039 0.0038 0.0037 0.0036
2.7 0.0035 0.0034 0.0033 0.0032 0.0031 0.0030 0.0029 0.0028 0.0027 0.0026
2.8 0.0026 0.0025 0.0024 0.0023 0.0023 0.0022 0.0021 0.0021 0.0020 0.0019
2.9 0.0019 0.0018 0.0018 0.0017 0.0016 0.0016 0.0015 0.0015 0.0014 0.0014
3.0 0.0013 0.0013 0.0013 0.0012 0.0012 0.0011 0.0011 0.0011 0.0010 0.0010
3.1 0.0010 0.0009 0.0009 0.0009 0.0008 0.0008 0.0008 0.0008 0.0007 0.0007
3.2 0.0007 0.0007 0.0006 0.0006 0.0006 0.0006 0.0006 0.0005 0.0005 0.0005
3.3 0.0005 0.0005 0.0005 0.0004 0.0004 0.0004 0.0004 0.0004 0.0004 0.0003
3.4 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0002
3.5 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002
3.6 0.0002 0.0002 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001
3.7 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001
3.8 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001
3.9 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
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TABLE C.2
Upper Percentiles of a Chi-Square Distribution

Degrees of Upper Percentile
Freedom 0.1 0.05 0.01 0.005 0.001

1 2.70554 3.84146 6.63489 7.87940 10.82736
2 4.60518 5.99148 9.21035 10.59653 13.81500
3 6.25139 7.81472 11.34488 12.83807 16.26596
4 7.77943 9.48773 13.27670 14.86017 18.46623
5 9.23635 11.07048 15.08632 16.74965 20.51465
6 10.64464 12.59158 16.81187 18.54751 22.45748
7 12.01703 14.06713 18.47532 20.27774 24.32130
8 13.36156 15.50731 20.09016 21.95486 26.12393
9 14.68366 16.91896 21.66605 23.58927 27.87673

10 15.98717 18.30703 23.20929 25.18805 29.58789
11 17.27501 19.67515 24.72502 26.75686 31.26351
12 18.54934 21.02606 26.21696 28.29966 32.90923
13 19.81193 22.36203 27.68818 29.81932 34.52737
14 21.06414 23.68478 29.14116 31.31943 36.12387
15 22.30712 24.99580 30.57795 32.80149 37.69777
16 23.54182 26.29622 31.99986 34.26705 39.25178
17 24.76903 27.58710 33.40872 35.71838 40.79111
18 25.98942 28.86932 34.80524 37.15639 42.31195
19 27.20356 30.14351 36.19077 38.58212 43.81936
20 28.41197 31.41042 37.56627 39.99686 45.31422
21 29.61509 32.67056 38.93223 41.40094 46.79627
22 30.81329 33.92446 40.28945 42.79566 48.26762
23 32.00689 35.17246 41.63833 44.18139 49.72764
24 33.19624 36.41503 42.97978 45.55836 51.17897
25 34.38158 37.65249 44.31401 46.92797 52.61874
26 35.56316 38.88513 45.64164 48.28978 54.05114
27 36.74123 40.11327 46.96284 49.64504 55.47508
28 37.91591 41.33715 48.27817 50.99356 56.89176
29 39.08748 42.55695 49.58783 52.33550 58.30064
30 40.25602 43.77295 50.89218 53.67187 59.70221
31 41.42175 44.98534 52.19135 55.00248 61.09799
32 42.58473 46.19424 53.48566 56.32799 62.48728
33 43.74518 47.39990 54.77545 57.64831 63.86936
34 44.90316 48.60236 56.06085 58.96371 65.24710
35 46.05877 49.80183 57.34199 60.27459 66.61917
36 47.21217 50.99848 58.61915 61.58107 67.98495
37 48.36339 52.19229 59.89256 62.88317 69.34759
38 49.51258 53.38351 61.16202 64.18123 70.70393
39 50.65978 54.57224 62.42809 65.47532 72.05504

(continued)
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TABLE C.2
(continued)

Degrees of Upper Percentile
Freedom 0.1 0.05 0.01 0.005 0.001

40 51.80504 55.75849 63.69077 66.76605 73.40290
41 52.94850 56.94240 64.94998 68.05263 74.74412
42 54.09019 58.12403 66.20629 69.33604 76.08420
43 55.23018 59.30352 67.45929 70.61573 77.41841
44 56.36852 60.48090 68.70964 71.89234 78.74870
45 57.50529 61.65622 69.95690 73.16604 80.07755
46 58.64053 62.82961 71.20150 74.43671 81.39979
47 59.77429 64.00113 72.44317 75.70385 82.71984
48 60.90661 65.17076 73.68256 76.96892 84.03680
49 62.03753 66.33865 74.91939 78.23055 85.34987
50 63.16711 67.50481 76.15380 79.48984 86.66031
51 64.29539 68.66932 77.38601 80.74645 87.96700
52 65.42242 69.83216 78.61563 82.00062 89.27187
53 66.54818 70.99343 79.84336 83.25251 90.57257
54 67.67277 72.15321 81.06878 84.50176 91.87140
55 68.79621 73.31148 82.29198 85.74906 93.16708
56 69.91852 74.46829 83.51355 86.99398 94.46187
57 71.03970 75.62372 84.73265 88.23656 95.74998
58 72.15983 76.77778 85.95015 89.47699 97.03806
59 73.27891 77.93049 87.16583 90.71533 98.32425
60 74.39700 79.08195 88.37943 91.95181 99.60783
61 75.51409 80.23209 89.59122 93.18622 100.88685
62 76.63020 81.38098 90.80150 94.41853 102.16522
63 77.74539 82.52872 92.00989 95.64919 103.44210
64 78.85965 83.67524 93.21670 96.87794 104.71685
65 79.97299 84.82064 94.42200 98.10492 105.98766
66 81.08547 85.96494 95.62559 99.33027 107.25660
67 82.19711 87.10804 96.82768 100.55377 108.52505
68 83.30788 88.25017 98.02832 101.77574 109.79265
69 84.41787 89.39119 99.22741 102.99614 111.05540
70 85.52704 90.53126 100.42505 104.21477 112.31669
71 86.63543 91.67026 101.62144 105.43228 113.57693
72 87.74306 92.80827 102.81634 106.64732 114.83388
73 88.84994 93.94533 104.00977 107.86186 116.09165
74 89.95605 95.08146 105.20193 109.07417 117.34687
75 91.06145 96.21666 106.39285 110.28543 118.59895
76 92.16615 97.35097 107.58244 111.49537 119.85018
77 93.27017 98.48438 108.77089 112.70374 121.10075
78 94.37351 99.61696 109.95822 113.91069 122.34713
79 95.47617 100.74861 111.14403 115.11631 123.59471
80 96.57820 101.87947 112.32879 116.32093 124.83890
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TABLE C.3a
Confidence Coefficients c10(a L, aU) for 90% EP Confidence Bands

a L

aU 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16 0.18 0.20

0.10 2.4547 2.3049 2.1947 2.1054
0.12 2.4907 2.3521 2.2497 2.1654 2.0933
0.14 2.5198 2.3901 2.2942 2.2147 2.1458 2.0849
0.16 2.5441 2.4217 2.3313 2.2561 2.1905 2.1318 2.0788
0.18 2.5650 2.4486 2.3630 2.2917 2.2291 2.1728 2.1214 2.0742
0.20 2.5833 2.4721 2.3906 2.3227 2.2630 2.2090 2.1594 2.1134 2.0706
0.22 2.5997 2.4929 2.4150 2.3501 2.2930 2.2412 2.1934 2.1489 2.1071 2.0677
0.24 2.6144 2.5116 2.4368 2.3747 2.3200 2.2703 2.2242 2.1811 2.1405 2.1019
0.26 2.6278 2.5286 2.4567 2.3970 2.3445 2.2967 2.2523 2.2107 2.1712 2.1336
0.28 2.6402 2.5441 2.4748 2.4174 2.3668 2.3208 2.2781 2.2378 2.1996 2.1631
0.30 2.6517 2.5586 2.4915 2.4361 2.3874 2.3431 2.3019 2.2630 2.2260 2.1905
0.32 2.6625 2.5720 2.5071 2.4536 2.4065 2.3638 2.3240 2.2864 2.2506 2.2162
0.34 2.6727 2.5846 2.5217 2.4698 2.4244 2.3831 2.3446 2.3083 2.2736 2.2403
0.36 2.6823 2.5965 2.5354 2.4852 2.4412 2.4012 2.3640 2.3289 2.2953 2.2630
0.38 2.6915 2.6078 2.5484 2.4997 2.4570 2.4183 2.3824 2.3484 2.3159 2.2845
0.40 2.7003 2.6186 2.5608 2.5134 2.4721 2.4346 2.3997 2.3668 2.3353 2.3049
0.42 2.7088 2.6290 2.5726 2.5266 2.4865 2.4501 2.4163 2.3844 2.3539 2.3244
0.44 2.7170 2.6390 2.5840 2.5392 2.5002 2.4649 2.4321 2.4012 2.3716 2.3431
0.46 2.7249 2.6486 2.5950 2.5514 2.5134 2.4792 2.4474 2.4174 2.3887 2.3610
0.48 2.7326 2.6579 2.6056 2.5631 2.5262 2.4929 2.4620 2.4329 2.4051 2.3782
0.50 2.7402 2.6671 2.6160 2.5745 2.5386 2.5062 2.4762 2.4480 2.4210 2.3949
0.52 2.7476 2.6760 2.6261 2.5857 2.5507 2.5192 2.4900 2.4626 2.4364 2.4111
0.54 2.7548 2.6847 2.6359 2.5965 2.5625 2.5318 2.5035 2.4768 2.4514 2.4269
0.56 2.7620 2.6933 2.6456 2.6072 2.5740 2.5441 2.5166 2.4907 2.4660 2.4422
0.58 2.7691 2.7018 2.6552 2.6177 2.5853 2.5563 2.5295 2.5043 2.4804 2.4573
0.60 2.7762 2.7103 2.6647 2.6281 2.5965 2.5682 2.5422 2.5178 2.4945 2.4721
0.62 2.7833 2.7186 2.6741 2.6384 2.6076 2.5801 2.5548 2.5310 2.5084 2.4867
0.64 2.7904 2.7270 2.6835 2.6486 2.6186 2.5918 2.5672 2.5441 2.5222 2.5011
0.66 2.7975 2.7354 2.6929 2.6588 2.6296 2.6036 2.5796 2.5572 2.5359 2.5155
0.68 2.8046 2.7439 2.7023 2.6691 2.6407 2.6153 2.5920 2.5703 2.5496 2.5298
0.70 2.8119 2.7524 2.7118 2.6794 2.6517 2.6271 2.6045 2.5833 2.5633 2.5441
0.72 2.8193 2.7611 2.7214 2.6899 2.6629 2.6390 2.6170 2.5965 2.5771 2.5586
0.74 2.8269 2.7700 2.7313 2.7005 2.6743 2.6510 2.6297 2.6099 2.5911 2.5731
0.76 2.8347 2.7790 2.7413 2.7114 2.6859 2.6633 2.6427 2.6235 2.6053 2.5879
0.78 2.8428 2.7884 2.7517 2.7226 2.6979 2.6760 2.6560 2.6374 2.6198 2.6031
0.80 2.8512 2.7982 2.7624 2.7342 2.7103 2.6890 2.6697 2.6517 2.6348 2.6186
0.82 2.8601 2.8085 2.7737 2.7463 2.7232 2.7026 2.6840 2.6667 2.6504 2.6348
0.84 2.8695 2.8193 2.7856 2.7592 2.7367 2.7170 2.6990 2.6823 2.6667 2.6517
0.86 2.8797 2.8310 2.7984 2.7728 2.7513 2.7322 2.7150 2.6990 2.6840 2.6697
0.88 2.8908 2.8437 2.8123 2.7877 2.7670 2.7487 2.7322 2.7170 2.7026 2.6890
0.90 2.9032 2.8579 2.8277 2.8042 2.7844 2.7670 2.7513 2.7367 2.7232 2.7103
0.92 2.9176 2.8741 2.8454 2.8230 2.8042 2.7877 2.7728 2.7592 2.7463 2.7342
0.94 2.9348 2.8936 2.8664 2.8454 2.8277 2.8123 2.7984 2.7856 2.7737 2.7624
0.96 2.9573 2.9188 2.8936 2.8741 2.8579 2.8437 2.8310 2.8193 2.8085 2.7982
0.98 2.9919 2.9573 2.9348 2.9176 2.9032 2.8908 2.8797 2.8695 2.8601 2.8512

(continued)
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TABLE C.3a
(continued)

a L

aU 0.22 0.24 0.26 0.28 0.30 0.32 0.34 0.36 0.38 0.40

0.24 2.0654
0.26 2.0978 2.0634
0.28 2.1280 2.0943 2.0618
0.30 2.1563 2.1233 2.0914 2.0605
0.32 2.1829 2.1507 2.1194 2.0890 2.0594
0.34 2.2080 2.1766 2.1460 2.1162 2.0870 2.0585
0.36 2.2316 2.2011 2.1713 2.1421 2.1134 2.0853 2.0577
0.38 2.2541 2.2244 2.1953 2.1668 2.1387 2.1111 2.0839 2.0570
0.40 2.2754 2.2466 2.2183 2.1905 2.1631 2.1360 2.1092 2.0827 2.0565
0.42 2.2958 2.2678 2.2403 2.2132 2.1865 2.1600 2.1337 2.1076 2.0818 2.0561
0.44 2.3153 2.2881 2.2614 2.2351 2.2090 2.1831 2.1574 2.1318 2.1064 2.0810
0.46 2.3341 2.3077 2.2818 2.2561 2.2307 2.2055 2.1804 2.1554 2.1304 2.1054
0.48 2.3521 2.3265 2.3014 2.2765 2.2518 2.2272 2.2027 2.1783 2.1538 2.1293
0.50 2.3696 2.3448 2.3203 2.2962 2.2722 2.2483 2.2244 2.2006 2.1766 2.1526
0.52 2.3865 2.3625 2.3388 2.3153 2.2920 2.2688 2.2456 2.2223 2.1990 2.1755
0.54 2.4030 2.3797 2.3567 2.3339 2.3113 2.2888 2.2662 2.2436 2.2208 2.1979
0.56 2.4191 2.3965 2.3742 2.3521 2.3302 2.3083 2.2864 2.2644 2.2423 2.2200
0.58 2.4349 2.4129 2.3913 2.3699 2.3487 2.3275 2.3062 2.2848 2.2633 2.2416
0.60 2.4503 2.4291 2.4081 2.3874 2.3668 2.3463 2.3257 2.3049 2.2841 2.2630
0.62 2.4656 2.4450 2.4247 2.4046 2.3847 2.3648 2.3448 2.3248 2.3045 2.2841
0.64 2.4807 2.4607 2.4411 2.4217 2.4023 2.3831 2.3638 2.3443 2.3248 2.3049
0.66 2.4957 2.4763 2.4573 2.4385 2.4198 2.4012 2.3825 2.3638 2.3448 2.3257
0.68 2.5106 2.4919 2.4735 2.4553 2.4373 2.4192 2.4012 2.3831 2.3648 2.3463
0.70 2.5256 2.5075 2.4897 2.4721 2.4547 2.4373 2.4198 2.4023 2.3847 2.3668
0.72 2.5406 2.5231 2.5059 2.4889 2.4721 2.4553 2.4385 2.4217 2.4046 2.3874
0.74 2.5558 2.5388 2.5222 2.5059 2.4897 2.4735 2.4573 2.4411 2.4247 2.4081
0.76 2.5712 2.5548 2.5388 2.5231 2.5075 2.4919 2.4763 2.4607 2.4450 2.4291
0.78 2.5869 2.5712 2.5558 2.5406 2.5256 2.5106 2.4957 2.4807 2.4656 2.4503
0.80 2.6031 2.5879 2.5731 2.5586 2.5441 2.5298 2.5155 2.5011 2.4867 2.4721
0.82 2.6198 2.6053 2.5911 2.5771 2.5633 2.5496 2.5359 2.5222 2.5084 2.4945
0.84 2.6374 2.6235 2.6099 2.5965 2.5833 2.5703 2.5572 2.5441 2.5310 2.5178
0.86 2.6560 2.6427 2.6297 2.6170 2.6045 2.5920 2.5796 2.5672 2.5548 2.5422
0.88 2.6760 2.6633 2.6510 2.6390 2.6271 2.6153 2.6036 2.5918 2.5801 2.5682
0.90 2.6979 2.6859 2.6743 2.6629 2.6517 2.6407 2.6296 2.6186 2.6076 2.5965
0.92 2.7226 2.7114 2.7005 2.6899 2.6794 2.6691 2.6588 2.6486 2.6384 2.6281
0.94 2.7517 2.7413 2.7313 2.7214 2.7118 2.7023 2.6929 2.6835 2.6741 2.6647
0.96 2.7884 2.7790 2.7700 2.7611 2.7524 2.7439 2.7354 2.7270 2.7186 2.7103
0.98 2.8428 2.8347 2.8269 2.8193 2.8119 2.8046 2.7975 2.7904 2.7833 2.7762
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TABLE C.3a
(continued)

a L

aU 0.42 0.44 0.46 0.48 0.50 0.52 0.54 0.56 0.58 0.60

0.44 2.0557
0.46 2.0804 2.0555
0.48 2.1047 2.0800 2.0553
0.50 2.1285 2.1042 2.0798 2.0553
0.52 2.1518 2.1280 2.1040 2.0797 2.0553
0.54 2.1748 2.1515 2.1279 2.1040 2.0798 2.0553
0.56 2.1974 2.1746 2.1515 2.1280 2.1042 2.0800 2.0555
0.58 2.2197 2.1974 2.1748 2.1518 2.1285 2.1047 2.0804 2.0557
0.60 2.2416 2.2200 2.1979 2.1755 2.1526 2.1293 2.1054 2.0810 2.0561
0.62 2.2633 2.2423 2.2208 2.1990 2.1766 2.1538 2.1304 2.1064 2.0818 2.0565
0.64 2.2848 2.2644 2.2436 2.2223 2.2006 2.1783 2.1554 2.1318 2.1076 2.0827
0.66 2.3062 2.2864 2.2662 2.2456 2.2244 2.2027 2.1804 2.1574 2.1337 2.1092
0.68 2.3275 2.3083 2.2888 2.2688 2.2483 2.2272 2.2055 2.1831 2.1600 2.1360
0.70 2.3487 2.3302 2.3113 2.2920 2.2722 2.2518 2.2307 2.2090 2.1865 2.1631
0.72 2.3699 2.3521 2.3339 2.3153 2.2962 2.2765 2.2561 2.2351 2.2132 2.1905
0.74 2.3913 2.3742 2.3567 2.3388 2.3203 2.3014 2.2818 2.2614 2.2403 2.2183
0.76 2.4129 2.3965 2.3797 2.3625 2.3448 2.3265 2.3077 2.2881 2.2678 2.2466
0.78 2.4349 2.4191 2.4030 2.3865 2.3696 2.3521 2.3341 2.3153 2.2958 2.2754
0.80 2.4573 2.4422 2.4269 2.4111 2.3949 2.3782 2.3610 2.3431 2.3244 2.3049
0.82 2.4804 2.4660 2.4514 2.4364 2.4210 2.4051 2.3887 2.3716 2.3539 2.3353
0.84 2.5043 2.4907 2.4768 2.4626 2.4480 2.4329 2.4174 2.4012 2.3844 2.3668
0.86 2.5295 2.5166 2.5035 2.4900 2.4762 2.4620 2.4474 2.4321 2.4163 2.3997
0.88 2.5563 2.5441 2.5318 2.5192 2.5062 2.4929 2.4792 2.4649 2.4501 2.4346
0.90 2.5853 2.5740 2.5625 2.5507 2.5386 2.5262 2.5134 2.5002 2.4865 2.4721
0.92 2.6177 2.6072 2.5965 2.5857 2.5745 2.5631 2.5514 2.5392 2.5266 2.5134
0.94 2.6552 2.6456 2.6359 2.6261 2.6160 2.6056 2.5950 2.5840 2.5726 2.5608
0.96 2.7018 2.6933 2.6847 2.6760 2.6671 2.6579 2.6486 2.6390 2.6290 2.6186
0.98 2.7691 2.7620 2.7548 2.7476 2.7402 2.7326 2.7249 2.7170 2.7088 2.7003
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TABLE C.3b
Confidence Coefficients c05(a L, aU) for 95% EP Confidence Bands

a L

aU 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16 0.18 0.20

0.10 2.7500 2.6033 2.4874 2.3859
0.12 2.7841 2.6506 2.5463 2.4548 2.3715
0.14 2.8114 2.6879 2.5924 2.5090 2.4327 2.3615
0.16 2.8341 2.7184 2.6299 2.5530 2.4827 2.4167 2.3542
0.18 2.8535 2.7442 2.6614 2.5898 2.5245 2.4632 2.4047 2.3486
0.20 2.8704 2.7666 2.6884 2.6213 2.5602 2.5029 2.4481 2.3953 2.3442
0.22 2.8855 2.7862 2.7120 2.6487 2.5912 2.5374 2.4859 2.4362 2.3879 2.3407
0.24 2.8990 2.8037 2.7330 2.6729 2.6186 2.5678 2.5193 2.4724 2.4266 2.3818
0.26 2.9114 2.8196 2.7519 2.6946 2.6430 2.5949 2.5490 2.5047 2.4614 2.4188
0.28 2.9227 2.8341 2.7691 2.7143 2.6651 2.6194 2.5758 2.5338 2.4927 2.4523
0.30 2.9333 2.8475 2.7849 2.7323 2.6853 2.6417 2.6002 2.5602 2.5211 2.4827
0.32 2.9432 2.8599 2.7995 2.7490 2.7039 2.6621 2.6225 2.5844 2.5472 2.5106
0.34 2.9525 2.8716 2.8131 2.7644 2.7211 2.6811 2.6432 2.6068 2.5712 2.5363
0.36 2.9613 2.8826 2.8260 2.7789 2.7372 2.6987 2.6624 2.6275 2.5936 2.5602
0.38 2.9696 2.8930 2.8381 2.7925 2.7523 2.7153 2.6804 2.6469 2.6144 2.5825
0.40 2.9777 2.9029 2.8495 2.8055 2.7666 2.7309 2.6973 2.6651 2.6339 2.6033
0.42 2.9854 2.9124 2.8605 2.8178 2.7801 2.7456 2.7133 2.6824 2.6524 2.6230
0.44 2.9928 2.9216 2.8710 2.8295 2.7931 2.7597 2.7285 2.6987 2.6699 2.6417
0.46 3.0001 2.9304 2.8812 2.8408 2.8055 2.7732 2.7431 2.7143 2.6865 2.6594
0.48 3.0071 2.9390 2.8910 2.8517 2.8174 2.7862 2.7570 2.7293 2.7025 2.6764
0.50 3.0140 2.9473 2.9005 2.8623 2.8290 2.7987 2.7705 2.7436 2.7178 2.6926
0.52 3.0207 2.9554 2.9097 2.8726 2.8402 2.8108 2.7835 2.7575 2.7326 2.7083
0.54 3.0273 2.9634 2.9188 2.8826 2.8511 2.8226 2.7961 2.7710 2.7469 2.7234
0.56 3.0338 2.9713 2.9277 2.8924 2.8618 2.8341 2.8084 2.7841 2.7608 2.7382
0.58 3.0403 2.9790 2.9365 2.9021 2.8723 2.8454 2.8205 2.7969 2.7744 2.7525
0.60 3.0468 2.9867 2.9451 2.9116 2.8826 2.8565 2.8323 2.8095 2.7877 2.7666
0.62 3.0532 2.9944 2.9537 2.9210 2.8928 2.8674 2.8440 2.8219 2.8007 2.7803
0.64 3.0596 3.0020 2.9623 2.9304 2.9029 2.8783 2.8555 2.8341 2.8137 2.7939
0.66 3.0661 3.0096 2.9709 2.9398 2.9130 2.8891 2.8670 2.8462 2.8264 2.8074
0.68 3.0726 3.0173 2.9795 2.9492 2.9231 2.8998 2.8784 2.8583 2.8392 2.8207
0.70 3.0792 3.0251 2.9881 2.9586 2.9333 2.9107 2.8899 2.8704 2.8519 2.8341
0.72 3.0859 3.0330 2.9969 2.9682 2.9435 2.9216 2.9014 2.8826 2.8647 2.8475
0.74 3.0928 3.0411 3.0059 2.9779 2.9539 2.9326 2.9131 2.8949 2.8776 2.8610
0.76 3.0999 3.0493 3.0150 2.9878 2.9646 2.9439 2.9250 2.9074 2.8907 2.8746
0.78 3.1072 3.0579 3.0244 2.9980 2.9755 2.9554 2.9372 2.9201 2.9040 2.8886
0.80 3.1149 3.0667 3.0342 3.0086 2.9867 2.9674 2.9497 2.9333 2.9178 2.9029
0.82 3.1230 3.0761 3.0445 3.0196 2.9985 2.9798 2.9628 2.9469 2.9320 2.9178
0.84 3.1315 3.0859 3.0553 3.0312 3.0109 2.9928 2.9765 2.9613 2.9469 2.9333
0.86 3.1408 3.0965 3.0669 3.0437 3.0241 3.0067 2.9910 2.9765 2.9628 2.9497
0.88 3.1509 3.1081 3.0795 3.0572 3.0384 3.0218 3.0067 2.9928 2.9798 2.9674
0.90 3.1622 3.1209 3.0935 3.0722 3.0542 3.0384 3.0241 3.0109 2.9985 2.9867
0.92 3.1752 3.1357 3.1096 3.0892 3.0722 3.0572 3.0437 3.0312 3.0196 3.0086
0.94 3.1909 3.1534 3.1287 3.1096 3.0935 3.0795 3.0669 3.0553 3.0445 3.0342
0.96 3.2113 3.1763 3.1534 3.1357 3.1209 3.1081 3.0965 3.0859 3.0761 3.0667
0.98 3.2428 3.2113 3.1909 3.1752 3.1622 3.1509 3.1408 3.1315 3.1230 3.1149
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TABLE C.3b
(continued)

a L

aU 0.22 0.24 0.26 0.28 0.30 0.32 0.34 0.36 0.38 0.40

0.24 2.3378
0.26 2.3769 2.3355
0.28 2.4123 2.3727 2.3335
0.30 2.4447 2.4069 2.3693 2.3319
0.32 2.4744 2.4383 2.4024 2.3664 2.3305
0.34 2.5018 2.4673 2.4330 2.3985 2.3640 2.3293
0.36 2.5272 2.4943 2.4614 2.4285 2.3953 2.3620 2.3284
0.38 2.5509 2.5194 2.4880 2.4564 2.4247 2.3926 2.3603 2.3276
0.40 2.5731 2.5430 2.5129 2.4827 2.4523 2.4215 2.3904 2.3589 2.3269
0.42 2.5940 2.5652 2.5364 2.5074 2.4783 2.4488 2.4189 2.3885 2.3577 2.3264
0.44 2.6138 2.5862 2.5586 2.5308 2.5029 2.4746 2.4459 2.4167 2.3871 2.3568
0.46 2.6327 2.6061 2.5796 2.5530 2.5262 2.4991 2.4716 2.4436 2.4150 2.3859
0.48 2.6506 2.6251 2.5997 2.5742 2.5485 2.5225 2.4961 2.4692 2.4418 2.4138
0.50 2.6679 2.6433 2.6189 2.5944 2.5697 2.5448 2.5195 2.4937 2.4674 2.4405
0.52 2.6844 2.6609 2.6374 2.6138 2.5902 2.5662 2.5419 2.5172 2.4920 2.4661
0.54 2.7005 2.6777 2.6552 2.6325 2.6098 2.5868 2.5636 2.5398 2.5156 2.4908
0.56 2.7160 2.6941 2.6724 2.6506 2.6288 2.6068 2.5844 2.5617 2.5385 2.5147
0.58 2.7311 2.7100 2.6891 2.6682 2.6472 2.6260 2.6046 2.5828 2.5606 2.5378
0.60 2.7459 2.7256 2.7054 2.6853 2.6651 2.6448 2.6242 2.6033 2.5820 2.5602
0.62 2.7604 2.7408 2.7214 2.7020 2.6826 2.6631 2.6434 2.6233 2.6029 2.5820
0.64 2.7747 2.7558 2.7371 2.7184 2.6998 2.6811 2.6621 2.6429 2.6233 2.6033
0.66 2.7888 2.7706 2.7525 2.7346 2.7167 2.6987 2.6805 2.6621 2.6434 2.6242
0.68 2.8028 2.7852 2.7679 2.7506 2.7334 2.7161 2.6987 2.6811 2.6631 2.6448
0.70 2.8168 2.7998 2.7831 2.7666 2.7500 2.7334 2.7167 2.6998 2.6826 2.6651
0.72 2.8308 2.8145 2.7984 2.7824 2.7666 2.7506 2.7346 2.7184 2.7020 2.6853
0.74 2.8449 2.8292 2.8137 2.7984 2.7831 2.7679 2.7525 2.7371 2.7214 2.7054
0.76 2.8591 2.8440 2.8292 2.8145 2.7998 2.7852 2.7706 2.7558 2.7408 2.7256
0.78 2.8737 2.8591 2.8449 2.8308 2.8168 2.8028 2.7888 2.7747 2.7604 2.7459
0.80 2.8886 2.8746 2.8610 2.8475 2.8341 2.8207 2.8074 2.7939 2.7803 2.7666
0.82 2.9040 2.8907 2.8776 2.8647 2.8519 2.8392 2.8264 2.8137 2.8007 2.7877
0.84 2.9201 2.9074 2.8949 2.8826 2.8704 2.8583 2.8462 2.8341 2.8219 2.8095
0.86 2.9372 2.9250 2.9131 2.9014 2.8899 2.8784 2.8670 2.8555 2.8440 2.8323
0.88 2.9554 2.9439 2.9326 2.9216 2.9107 2.8998 2.8891 2.8783 2.8674 2.8565
0.90 2.9755 2.9646 2.9539 2.9435 2.9333 2.9231 2.9130 2.9029 2.8928 2.8826
0.92 2.9980 2.9878 2.9779 2.9682 2.9586 2.9492 2.9398 2.9304 2.9210 2.9116
0.94 3.0244 3.0150 3.0059 2.9969 2.9881 2.9795 2.9709 2.9623 2.9537 2.9451
0.96 3.0579 3.0493 3.0411 3.0330 3.0251 3.0173 3.0096 3.0020 2.9944 2.9867
0.98 3.1072 3.0999 3.0928 3.0859 3.0792 3.0726 3.0661 3.0596 3.0532 3.0468

(continued)
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TABLE C.3b
(continued)

a L

aU 0.42 0.44 0.46 0.48 0.50 0.52 0.54 0.56 0.58 0.60

0.44 2.3260
0.46 2.3561 2.3257
0.48 2.3851 2.3556 2.3255
0.50 2.4129 2.3845 2.3554 2.3254
0.52 2.4396 2.4123 2.3842 2.3553 2.3254
0.54 2.4654 2.4392 2.4121 2.3842 2.3554 2.3255
0.56 2.4903 2.4651 2.4392 2.4123 2.3845 2.3556 2.3257
0.58 2.5144 2.4903 2.4654 2.4396 2.4129 2.3851 2.3561 2.3260
0.60 2.5378 2.5147 2.4908 2.4661 2.4405 2.4138 2.3859 2.3568 2.3264
0.62 2.5606 2.5385 2.5156 2.4920 2.4674 2.4418 2.4150 2.3871 2.3577 2.3269
0.64 2.5828 2.5617 2.5398 2.5172 2.4937 2.4692 2.4436 2.4167 2.3885 2.3589
0.66 2.6046 2.5844 2.5636 2.5419 2.5195 2.4961 2.4716 2.4459 2.4189 2.3904
0.68 2.6260 2.6068 2.5868 2.5662 2.5448 2.5225 2.4991 2.4746 2.4488 2.4215
0.70 2.6472 2.6288 2.6098 2.5902 2.5697 2.5485 2.5262 2.5029 2.4783 2.4523
0.72 2.6682 2.6506 2.6325 2.6138 2.5944 2.5742 2.5530 2.5308 2.5074 2.4827
0.74 2.6891 2.6724 2.6552 2.6374 2.6189 2.5997 2.5796 2.5586 2.5364 2.5129
0.76 2.7100 2.6941 2.6777 2.6609 2.6433 2.6251 2.6061 2.5862 2.5652 2.5430
0.78 2.7311 2.7160 2.7005 2.6844 2.6679 2.6506 2.6327 2.6138 2.5940 2.5731
0.80 2.7525 2.7382 2.7234 2.7083 2.6926 2.6764 2.6594 2.6417 2.6230 2.6033
0.82 2.7744 2.7608 2.7469 2.7326 2.7178 2.7025 2.6865 2.6699 2.6524 2.6339
0.84 2.7969 2.7841 2.7710 2.7575 2.7436 2.7293 2.7143 2.6987 2.6824 2.6651
0.86 2.8205 2.8084 2.7961 2.7835 2.7705 2.7570 2.7431 2.7285 2.7133 2.6973
0.88 2.8454 2.8341 2.8226 2.8108 2.7987 2.7862 2.7732 2.7597 2.7456 2.7309
0.90 2.8723 2.8618 2.8511 2.8402 2.8290 2.8174 2.8055 2.7931 2.7801 2.7666
0.92 2.9021 2.8924 2.8826 2.8726 2.8623 2.8517 2.8408 2.8295 2.8178 2.8055
0.94 2.9365 2.9277 2.9188 2.9097 2.9005 2.8910 2.8812 2.8710 2.8605 2.8495
0.96 2.9790 2.9713 2.9634 2.9554 2.9473 2.9390 2.9304 2.9216 2.9124 2.9029
0.98 3.0403 3.0338 3.0273 3.0207 3.0140 3.0071 3.0001 2.9928 2.9854 2.9777
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TABLE C.3c
Confidence Coefficients c01(a L, aU) for 99% EP Confidence Bands

a L

aU 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16 0.18 0.20

0.10 3.3261 3.1910 3.0740 2.9586
0.12 3.3563 3.2358 3.1350 3.0386 2.9408
0.14 3.3802 3.2701 3.1805 3.0968 3.0137 2.9283
0.16 3.3999 3.2978 3.2163 3.1418 3.0690 2.9953 2.9189
0.18 3.4167 3.3210 3.2458 3.1780 3.1128 3.0478 2.9811 2.9117
0.20 3.4314 3.3408 3.2706 3.2082 3.1489 3.0904 3.0311 2.9700 2.9060
0.22 3.4443 3.3581 3.2921 3.2339 3.1793 3.1260 3.0725 3.0177 2.9610 2.9014
0.24 3.4559 3.3735 3.3109 3.2564 3.2056 3.1564 3.1075 3.0579 3.0068 2.9536
0.26 3.4665 3.3873 3.3278 3.2763 3.2287 3.1829 3.1378 3.0923 3.0458 2.9977
0.28 3.4763 3.3999 3.3430 3.2941 3.2492 3.2064 3.1643 3.1223 3.0796 3.0357
0.30 3.4853 3.4115 3.3569 3.3103 3.2678 3.2274 3.1880 3.1489 3.1094 3.0690
0.32 3.4937 3.4223 3.3698 3.3252 3.2847 3.2464 3.2094 3.1727 3.1359 3.0985
0.34 3.5017 3.4324 3.3817 3.3389 3.3002 3.2639 3.2288 3.1943 3.1598 3.1249
0.36 3.5092 3.4418 3.3929 3.3517 3.3146 3.2800 3.2467 3.2141 3.1816 3.1489
0.38 3.5163 3.4508 3.4034 3.3637 3.3281 3.2950 3.2633 3.2323 3.2016 3.1708
0.40 3.5231 3.4593 3.4133 3.3750 3.3408 3.3090 3.2787 3.2492 3.2201 3.1910
0.42 3.5297 3.4675 3.4228 3.3857 3.3527 3.3222 3.2932 3.2651 3.2374 3.2098
0.44 3.5360 3.4753 3.4319 3.3960 3.3641 3.3347 3.3069 3.2800 3.2536 3.2274
0.46 3.5422 3.4828 3.4406 3.4058 3.3750 3.3467 3.3199 3.2941 3.2689 3.2439
0.48 3.5481 3.4901 3.4490 3.4152 3.3854 3.3581 3.3323 3.3076 3.2834 3.2596
0.50 3.5540 3.4973 3.4572 3.4243 3.3955 3.3691 3.3442 3.3204 3.2973 3.2744
0.52 3.5597 3.5042 3.4651 3.4332 3.4052 3.3797 3.3557 3.3328 3.3105 3.2887
0.54 3.5653 3.5110 3.4729 3.4418 3.4147 3.3899 3.3668 3.3447 3.3233 3.3023
0.56 3.5709 3.5177 3.4805 3.4503 3.4239 3.3999 3.3776 3.3563 3.3357 3.3155
0.58 3.5763 3.5243 3.4880 3.4586 3.4329 3.4097 3.3881 3.3675 3.3477 3.3283
0.60 3.5818 3.5308 3.4954 3.4667 3.4418 3.4193 3.3984 3.3785 3.3594 3.3408
0.62 3.5873 3.5373 3.5027 3.4748 3.4506 3.4288 3.4085 3.3893 3.3709 3.3529
0.64 3.5927 3.5438 3.5100 3.4828 3.4593 3.4381 3.4185 3.3999 3.3821 3.3649
0.66 3.5982 3.5503 3.5173 3.4908 3.4680 3.4474 3.4284 3.4105 3.3933 3.3767
0.68 3.6037 3.5568 3.5247 3.4988 3.4766 3.4567 3.4382 3.4209 3.4043 3.3883
0.70 3.6093 3.5634 3.5320 3.5069 3.4853 3.4659 3.4481 3.4314 3.4154 3.3999
0.72 3.6150 3.5701 3.5395 3.5150 3.4940 3.4753 3.4580 3.4418 3.4264 3.4115
0.74 3.6208 3.5770 3.5471 3.5233 3.5029 3.4847 3.4680 3.4524 3.4375 3.4232
0.76 3.6269 3.5840 3.5549 3.5317 3.5120 3.4944 3.4782 3.4631 3.4488 3.4350
0.78 3.6331 3.5912 3.5629 3.5404 3.5212 3.5042 3.4886 3.4741 3.4602 3.4470
0.80 3.6396 3.5987 3.5712 3.5494 3.5308 3.5144 3.4993 3.4853 3.4720 3.4593
0.82 3.6464 3.6066 3.5799 3.5588 3.5408 3.5249 3.5104 3.4970 3.4842 3.4720
0.84 3.6537 3.6150 3.5891 3.5686 3.5513 3.5360 3.5221 3.5092 3.4970 3.4853
0.86 3.6615 3.6240 3.5989 3.5792 3.5626 3.5478 3.5345 3.5221 3.5104 3.4993
0.88 3.6701 3.6338 3.6096 3.5907 3.5747 3.5606 3.5478 3.5360 3.5249 3.5144
0.90 3.6796 3.6447 3.6215 3.6033 3.5881 3.5747 3.5626 3.5513 3.5408 3.5308
0.92 3.6907 3.6572 3.6350 3.6178 3.6033 3.5907 3.5792 3.5686 3.5588 3.5494
0.94 3.7040 3.6722 3.6513 3.6350 3.6215 3.6096 3.5989 3.5891 3.5799 3.5712
0.96 3.7214 3.6917 3.6722 3.6572 3.6447 3.6338 3.6240 3.6150 3.6066 3.5987
0.98 3.7481 3.7214 3.7040 3.6907 3.6796 3.6701 3.6615 3.6537 3.6464 3.6396

(continued)
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TABLE C.3c
(continued)

a L

aU 0.22 0.24 0.26 0.28 0.30 0.32 0.34 0.36 0.38 0.40

0.24 2.8977
0.26 2.9475 2.8946
0.28 2.9901 2.9424 2.8920
0.30 3.0273 2.9838 2.9381 2.8899
0.32 3.0600 3.0201 2.9784 2.9345 2.8880
0.34 3.0892 3.0524 3.0140 2.9738 2.9314 2.8865
0.36 3.1156 3.0814 3.0459 3.0089 2.9700 2.9289 2.8852
0.38 3.1396 3.1076 3.0747 3.0404 3.0045 2.9667 2.9267 2.8841
0.40 3.1616 3.1317 3.1009 3.0690 3.0357 3.0008 2.9640 2.9249 2.8833
0.42 3.1821 3.1539 3.1250 3.0952 3.0642 3.0319 2.9978 2.9618 2.9235 2.8826
0.44 3.2011 3.1745 3.1473 3.1193 3.0904 3.0602 3.0286 2.9953 2.9600 2.9223
0.46 3.2189 3.1937 3.1681 3.1418 3.1146 3.0864 3.0570 3.0260 2.9933 2.9586
0.48 3.2358 3.2118 3.1875 3.1627 3.1372 3.1108 3.0832 3.0544 3.0240 2.9918
0.50 3.2517 3.2290 3.2059 3.1824 3.1583 3.1335 3.1077 3.0807 3.0524 3.0225
0.52 3.2670 3.2453 3.2234 3.2011 3.1783 3.1549 3.1306 3.1053 3.0789 3.0510
0.54 3.2816 3.2608 3.2400 3.2188 3.1972 3.1751 3.1522 3.1285 3.1037 3.0777
0.56 3.2956 3.2758 3.2559 3.2358 3.2153 3.1943 3.1727 3.1504 3.1271 3.1027
0.58 3.3092 3.2903 3.2712 3.2521 3.2326 3.2127 3.1923 3.1712 3.1493 3.1264
0.60 3.3224 3.3043 3.2861 3.2678 3.2492 3.2303 3.2110 3.1910 3.1704 3.1489
0.62 3.3353 3.3179 3.3005 3.2830 3.2653 3.2474 3.2290 3.2101 3.1906 3.1704
0.64 3.3480 3.3312 3.3146 3.2978 3.2810 3.2639 3.2464 3.2286 3.2101 3.1910
0.66 3.3604 3.3443 3.3284 3.3124 3.2963 3.2800 3.2634 3.2464 3.2290 3.2110
0.68 3.3727 3.3573 3.3419 3.3267 3.3113 3.2958 3.2800 3.2639 3.2474 3.2303
0.70 3.3849 3.3701 3.3554 3.3408 3.3261 3.3113 3.2963 3.2810 3.2653 3.2492
0.72 3.3971 3.3828 3.3688 3.3548 3.3408 3.3267 3.3124 3.2978 3.2830 3.2678
0.74 3.4093 3.3956 3.3822 3.3688 3.3554 3.3419 3.3284 3.3146 3.3005 3.2861
0.76 3.4216 3.4085 3.3956 3.3828 3.3701 3.3573 3.3443 3.3312 3.3179 3.3043
0.78 3.4342 3.4216 3.4093 3.3971 3.3849 3.3727 3.3604 3.3480 3.3353 3.3224
0.80 3.4470 3.4350 3.4232 3.4115 3.3999 3.3883 3.3767 3.3649 3.3529 3.3408
0.82 3.4602 3.4488 3.4375 3.4264 3.4154 3.4043 3.3933 3.3821 3.3709 3.3594
0.84 3.4741 3.4631 3.4524 3.4418 3.4314 3.4209 3.4105 3.3999 3.3893 3.3785
0.86 3.4886 3.4782 3.4680 3.4580 3.4481 3.4382 3.4284 3.4185 3.4085 3.3984
0.88 3.5042 3.4944 3.4847 3.4753 3.4659 3.4567 3.4474 3.4381 3.4288 3.4193
0.90 3.5212 3.5120 3.5029 3.4940 3.4853 3.4766 3.4680 3.4593 3.4506 3.4418
0.92 3.5404 3.5317 3.5233 3.5150 3.5069 3.4988 3.4908 3.4828 3.4748 3.4667
0.94 3.5629 3.5549 3.5471 3.5395 3.5320 3.5247 3.5173 3.5100 3.5027 3.4954
0.96 3.5912 3.5840 3.5770 3.5701 3.5634 3.5568 3.5503 3.5438 3.5373 3.5308
0.98 3.6331 3.6269 3.6208 3.6150 3.6093 3.6037 3.5982 3.5927 3.5873 3.5818
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TABLE C.3c
(continued)

a L

aU 0.42 0.44 0.46 0.48 0.50 0.52 0.54 0.56 0.58 0.60

0.44 2.8820
0.46 2.9214 2.8816
0.48 2.9575 2.9208 2.8813
0.50 2.9908 2.9569 2.9205 2.8812
0.52 3.0215 2.9901 2.9565 2.9203 2.8812
0.54 3.0502 3.0211 2.9899 2.9565 2.9205 2.8813
0.56 3.0771 3.0499 3.0211 2.9901 2.9569 2.9208 2.8816
0.58 3.1024 3.0771 3.0502 3.0215 2.9908 2.9575 2.9214 2.8820
0.60 3.1264 3.1027 3.0777 3.0510 3.0225 2.9918 2.9586 2.9223 2.8826
0.62 3.1493 3.1271 3.1037 3.0789 3.0524 3.0240 2.9933 2.9600 2.9235 2.8833
0.64 3.1712 3.1504 3.1285 3.1053 3.0807 3.0544 3.0260 2.9953 2.9618 2.9249
0.66 3.1923 3.1727 3.1522 3.1306 3.1077 3.0832 3.0570 3.0286 2.9978 2.9640
0.68 3.2127 3.1943 3.1751 3.1549 3.1335 3.1108 3.0864 3.0602 3.0319 3.0008
0.70 3.2326 3.2153 3.1972 3.1783 3.1583 3.1372 3.1146 3.0904 3.0642 3.0357
0.72 3.2521 3.2358 3.2188 3.2011 3.1824 3.1627 3.1418 3.1193 3.0952 3.0690
0.74 3.2712 3.2559 3.2400 3.2234 3.2059 3.1875 3.1681 3.1473 3.1250 3.1009
0.76 3.2903 3.2758 3.2608 3.2453 3.2290 3.2118 3.1937 3.1745 3.1539 3.1317
0.78 3.3092 3.2956 3.2816 3.2670 3.2517 3.2358 3.2189 3.2011 3.1821 3.1616
0.80 3.3283 3.3155 3.3023 3.2887 3.2744 3.2596 3.2439 3.2274 3.2098 3.1910
0.82 3.3477 3.3357 3.3233 3.3105 3.2973 3.2834 3.2689 3.2536 3.2374 3.2201
0.84 3.3675 3.3563 3.3447 3.3328 3.3204 3.3076 3.2941 3.2800 3.2651 3.2492
0.86 3.3881 3.3776 3.3668 3.3557 3.3442 3.3323 3.3199 3.3069 3.2932 3.2787
0.88 3.4097 3.3999 3.3899 3.3797 3.3691 3.3581 3.3467 3.3347 3.3222 3.3090
0.90 3.4329 3.4239 3.4147 3.4052 3.3955 3.3854 3.3750 3.3641 3.3527 3.3408
0.92 3.4586 3.4503 3.4418 3.4332 3.4243 3.4152 3.4058 3.3960 3.3857 3.3750
0.94 3.4880 3.4805 3.4729 3.4651 3.4572 3.4490 3.4406 3.4319 3.4228 3.4133
0.96 3.5243 3.5177 3.5110 3.5042 3.4973 3.4901 3.4828 3.4753 3.4675 3.4593
0.98 3.5763 3.5709 3.5653 3.5597 3.5540 3.5481 3.5422 3.5360 3.5297 3.5231
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TABLE C.4a
Confidence Coefficients k10(a L, aU) for 90% Hall–Wellner Confidence Bands

a L

aU 0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16 0.18 0.20

0.10 0.5985 0.5985 0.5979 0.5930 0.5768
0.12 0.6509 0.6509 0.6507 0.6484 0.6405 0.6210
0.14 0.6979 0.6979 0.6978 0.6966 0.6923 0.6819 0.6598
0.16 0.7406 0.7406 0.7405 0.7399 0.7373 0.7310 0.7184 0.6942
0.18 0.7796 0.7796 0.7796 0.7792 0.7776 0.7735 0.7653 0.7509 0.7249
0.20 0.8155 0.8155 0.8155 0.8153 0.8142 0.8114 0.8058 0.7961 0.7801 0.7525
0.22 0.8487 0.8487 0.8487 0.8485 0.8479 0.8459 0.8419 0.8349 0.8237 0.8063 0.7773
0.24 0.8795 0.8794 0.8794 0.8794 0.8789 0.8775 0.8746 0.8693 0.8611 0.8486 0.8299
0.26 0.9081 0.9081 0.9081 0.9080 0.9077 0.9067 0.9045 0.9005 0.8941 0.8847 0.8711
0.28 0.9348 0.9348 0.9348 0.9347 0.9345 0.9338 0.9320 0.9289 0.9239 0.9165 0.9060
0.30 0.9597 0.9597 0.9597 0.9597 0.9595 0.9589 0.9576 0.9551 0.9510 0.9450 0.9366
0.32 0.9829 0.9829 0.9829 0.9829 0.9828 0.9824 0.9813 0.9793 0.9760 0.9710 0.9641
0.34 1.0047 1.0047 1.0047 1.0046 1.0046 1.0042 1.0034 1.0017 0.9990 0.9948 0.9890
0.36 1.0250 1.0250 1.0250 1.0250 1.0249 1.0246 1.0239 1.0226 1.0202 1.0167 1.0118
0.38 1.0439 1.0439 1.0439 1.0439 1.0439 1.0437 1.0431 1.0419 1.0400 1.0370 1.0327
0.40 1.0616 1.0616 1.0616 1.0616 1.0616 1.0614 1.0610 1.0600 1.0583 1.0557 1.0520
0.42 1.0782 1.0782 1.0782 1.0782 1.0781 1.0780 1.0776 1.0768 1.0753 1.0730 1.0697
0.44 1.0935 1.0935 1.0935 1.0935 1.0935 1.0934 1.0931 1.0923 1.0911 1.0890 1.0862
0.46 1.1078 1.1078 1.1078 1.1078 1.1078 1.1077 1.1074 1.1068 1.1057 1.1039 1.1013
0.48 1.1211 1.1211 1.1211 1.1211 1.1211 1.1210 1.1208 1.1202 1.1192 1.1176 1.1153
0.50 1.1334 1.1334 1.1334 1.1334 1.1334 1.1333 1.1331 1.1326 1.1317 1.1303 1.1281
0.52 1.1447 1.1447 1.1447 1.1447 1.1447 1.1447 1.1445 1.1440 1.1432 1.1419 1.1400
0.54 1.1552 1.1552 1.1552 1.1552 1.1551 1.1551 1.1549 1.1545 1.1538 1.1526 1.1508
0.56 1.1647 1.1647 1.1647 1.1647 1.1647 1.1646 1.1645 1.1641 1.1635 1.1623 1.1607
0.58 1.1734 1.1734 1.1734 1.1734 1.1734 1.1733 1.1732 1.1729 1.1723 1.1712 1.1697
0.60 1.1813 1.1813 1.1813 1.1813 1.1813 1.1812 1.1811 1.1808 1.1802 1.1793 1.1778
0.62 1.1884 1.1884 1.1884 1.1884 1.1883 1.1883 1.1882 1.1879 1.1874 1.1865 1.1851
0.64 1.1947 1.1947 1.1947 1.1947 1.1947 1.1946 1.1945 1.1943 1.1938 1.1929 1.1916
0.66 1.2003 1.2003 1.2003 1.2003 1.2003 1.2002 1.2001 1.1999 1.1994 1.1986 1.1974
0.68 1.2052 1.2052 1.2052 1.2052 1.2052 1.2051 1.2050 1.2048 1.2043 1.2036 1.2024
0.70 1.2094 1.2094 1.2094 1.2094 1.2094 1.2093 1.2093 1.2090 1.2086 1.2078 1.2067
0.72 1.2130 1.2129 1.2129 1.2129 1.2129 1.2129 1.2128 1.2126 1.2122 1.2115 1.2104
0.74 1.2159 1.2159 1.2159 1.2159 1.2159 1.2159 1.2158 1.2156 1.2152 1.2145 1.2134
0.76 1.2183 1.2183 1.2183 1.2183 1.2183 1.2183 1.2182 1.2180 1.2176 1.2169 1.2159
0.78 1.2202 1.2202 1.2202 1.2202 1.2202 1.2201 1.2201 1.2199 1.2195 1.2188 1.2178
0.80 1.2216 1.2216 1.2216 1.2216 1.2216 1.2215 1.2215 1.2213 1.2209 1.2202 1.2192
0.82 1.2226 1.2226 1.2226 1.2226 1.2226 1.2225 1.2225 1.2223 1.2219 1.2212 1.2202
0.84 1.2232 1.2232 1.2232 1.2232 1.2232 1.2232 1.2231 1.2229 1.2225 1.2219 1.2209
0.86 1.2236 1.2236 1.2236 1.2236 1.2236 1.2236 1.2235 1.2233 1.2229 1.2223 1.2213
0.88 1.2238 1.2238 1.2238 1.2238 1.2238 1.2237 1.2237 1.2235 1.2231 1.2225 1.2215
0.90 1.2239 1.2238 1.2238 1.2238 1.2238 1.2238 1.2237 1.2236 1.2232 1.2225 1.2215
0.92 1.2239 1.2238 1.2238 1.2238 1.2238 1.2238 1.2238 1.2236 1.2232 1.2226 1.2216
0.94 1.2239 1.2238 1.2238 1.2238 1.2238 1.2238 1.2238 1.2236 1.2232 1.2226 1.2216
0.96 1.2239 1.2238 1.2238 1.2238 1.2238 1.2238 1.2238 1.2236 1.2232 1.2226 1.2216
0.98 1.2239 1.2238 1.2238 1.2238 1.2238 1.2238 1.2238 1.2236 1.2232 1.2226 1.2216
1.00 1.2239 1.2239 1.2239 1.2239 1.2239 1.2239 1.2238 1.2236 1.2232 1.2226 1.2216
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TABLE C.4a
(continued)

a L

aU 0.22 0.24 0.26 0.28 0.30 0.32 0.34 0.36 0.38 0.40

0.24 0.7996
0.26 0.8512 0.8198
0.28 0.8913 0.8703 0.8379
0.30 0.9251 0.9094 0.8875 0.8540
0.32 0.9548 0.9423 0.9257 0.9028 0.8685
0.34 0.9813 0.9710 0.9577 0.9402 0.9165 0.8812
0.36 1.0052 0.9966 0.9855 0.9713 0.9530 0.9284 0.8924
0.38 1.0270 1.0196 1.0102 0.9983 0.9833 0.9642 0.9389 0.9020
0.40 1.0470 1.0406 1.0324 1.0222 1.0095 0.9938 0.9739 0.9478 0.9102
0.42 1.0654 1.0597 1.0525 1.0436 1.0326 1.0192 1.0027 0.9821 0.9552 0.9169
0.44 1.0822 1.0772 1.0708 1.0629 1.0532 1.0415 1.0274 1.0102 0.9888 0.9613
0.46 1.0978 1.0932 1.0875 1.0804 1.0717 1.0614 1.0490 1.0342 1.0163 0.9942
0.48 1.1121 1.1079 1.1027 1.0963 1.0885 1.0792 1.0682 1.0551 1.0396 1.0210
0.50 1.1252 1.1214 1.1167 1.1108 1.1037 1.0952 1.0853 1.0735 1.0598 1.0436
0.52 1.1373 1.1338 1.1294 1.1240 1.1175 1.1097 1.1006 1.0899 1.0775 1.0631
0.54 1.1483 1.1451 1.1410 1.1360 1.1299 1.1228 1.1143 1.1046 1.0933 1.0802
0.56 1.1584 1.1554 1.1516 1.1469 1.1412 1.1345 1.1267 1.1177 1.1072 1.0952
0.58 1.1675 1.1647 1.1611 1.1567 1.1514 1.1451 1.1378 1.1293 1.1196 1.1085
0.60 1.1758 1.1731 1.1697 1.1656 1.1606 1.1546 1.1477 1.1398 1.1307 1.1203
0.62 1.1832 1.1807 1.1775 1.1735 1.1688 1.1631 1.1566 1.1490 1.1404 1.1307
0.64 1.1898 1.1874 1.1843 1.1806 1.1760 1.1707 1.1644 1.1572 1.1490 1.1398
0.66 1.1956 1.1933 1.1904 1.1868 1.1824 1.1773 1.1713 1.1644 1.1566 1.1477
0.68 1.2007 1.1985 1.1957 1.1922 1.1880 1.1830 1.1773 1.1707 1.1631 1.1546
0.70 1.2051 1.2030 1.2002 1.1969 1.1928 1.1880 1.1824 1.1760 1.1688 1.1606
0.72 1.2088 1.2067 1.2041 1.2008 1.1969 1.1922 1.1868 1.1806 1.1735 1.1656
0.74 1.2119 1.2099 1.2073 1.2041 1.2002 1.1957 1.1904 1.1843 1.1775 1.1697
0.76 1.2144 1.2124 1.2099 1.2067 1.2030 1.1985 1.1933 1.1874 1.1807 1.1731
0.78 1.2163 1.2144 1.2119 1.2088 1.2051 1.2007 1.1956 1.1898 1.1832 1.1758
0.80 1.2178 1.2159 1.2134 1.2104 1.2067 1.2024 1.1974 1.1916 1.1851 1.1778
0.82 1.2188 1.2169 1.2145 1.2115 1.2078 1.2036 1.1986 1.1929 1.1865 1.1793
0.84 1.2195 1.2176 1.2152 1.2122 1.2086 1.2043 1.1994 1.1938 1.1874 1.1802
0.86 1.2199 1.2180 1.2156 1.2126 1.2090 1.2048 1.1999 1.1943 1.1879 1.1808
0.88 1.2201 1.2182 1.2158 1.2128 1.2093 1.2050 1.2001 1.1945 1.1882 1.1811
0.90 1.2201 1.2183 1.2159 1.2129 1.2093 1.2051 1.2002 1.1946 1.1883 1.1812
0.92 1.2202 1.2183 1.2159 1.2129 1.2094 1.2052 1.2003 1.1947 1.1883 1.1813
0.94 1.2202 1.2183 1.2159 1.2129 1.2094 1.2052 1.2003 1.1947 1.1884 1.1813
0.96 1.2202 1.2183 1.2159 1.2129 1.2094 1.2052 1.2003 1.1947 1.1884 1.1813
0.98 1.2202 1.2183 1.2159 1.2129 1.2094 1.2052 1.2003 1.1947 1.1884 1.1813
1.00 1.2202 1.2183 1.2159 1.2130 1.2094 1.2052 1.2003 1.1947 1.1884 1.1813

(continued)
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TABLE C.4a
(continued)

a L

aU 0.42 0.44 0.46 0.48 0.50 0.52 0.54 0.56 0.58 0.60

0.44 0.9223
0.46 0.9660 0.9263
0.48 0.9982 0.9693 0.9289
0.50 1.0243 1.0009 0.9713 0.9302
0.52 1.0462 1.0263 1.0022 0.9720 0.9302
0.54 1.0651 1.0476 1.0270 1.0022 0.9713 0.9289
0.56 1.0815 1.0658 1.0476 1.0263 1.0009 0.9693 0.9263
0.58 1.0959 1.0815 1.0651 1.0462 1.0243 0.9982 0.9660 0.9223
0.60 1.1085 1.0952 1.0802 1.0631 1.0436 1.0210 0.9942 0.9613 0.9169
0.62 1.1196 1.1072 1.0933 1.0775 1.0598 1.0396 1.0163 0.9888 0.9552 0.9102
0.64 1.1293 1.1177 1.1046 1.0899 1.0735 1.0551 1.0342 1.0102 0.9821 0.9478
0.66 1.1378 1.1267 1.1143 1.1006 1.0853 1.0682 1.0490 1.0274 1.0027 0.9739
0.68 1.1451 1.1345 1.1228 1.1097 1.0952 1.0792 1.0614 1.0415 1.0192 0.9938
0.70 1.1514 1.1412 1.1299 1.1175 1.1037 1.0885 1.0717 1.0532 1.0326 1.0095
0.72 1.1567 1.1469 1.1360 1.1240 1.1108 1.0963 1.0804 1.0629 1.0436 1.0222
0.74 1.1611 1.1516 1.1410 1.1294 1.1167 1.1027 1.0875 1.0708 1.0525 1.0324
0.76 1.1647 1.1554 1.1451 1.1338 1.1214 1.1079 1.0932 1.0772 1.0597 1.0406
0.78 1.1675 1.1584 1.1483 1.1373 1.1252 1.1121 1.0978 1.0822 1.0654 1.0470
0.80 1.1697 1.1607 1.1508 1.1400 1.1281 1.1153 1.1013 1.0862 1.0697 1.0520
0.82 1.1712 1.1623 1.1526 1.1419 1.1303 1.1176 1.1039 1.0890 1.0730 1.0557
0.84 1.1723 1.1635 1.1538 1.1432 1.1317 1.1192 1.1057 1.0911 1.0753 1.0583
0.86 1.1729 1.1641 1.1545 1.1440 1.1326 1.1202 1.1068 1.0923 1.0768 1.0600
0.88 1.1732 1.1645 1.1549 1.1445 1.1331 1.1208 1.1074 1.0931 1.0776 1.0610
0.90 1.1733 1.1646 1.1551 1.1447 1.1333 1.1210 1.1077 1.0934 1.0780 1.0614
0.92 1.1734 1.1647 1.1551 1.1447 1.1334 1.1211 1.1078 1.0935 1.0781 1.0616
0.94 1.1734 1.1647 1.1552 1.1447 1.1334 1.1211 1.1078 1.0935 1.0782 1.0616
0.96 1.1734 1.1647 1.1552 1.1447 1.1334 1.1211 1.1078 1.0935 1.0782 1.0616
0.98 1.1734 1.1647 1.1552 1.1447 1.1334 1.1211 1.1078 1.0935 1.0782 1.0616
1.00 1.1734 1.1647 1.1552 1.1447 1.1334 1.1211 1.1078 1.0935 1.0782 1.0616
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TABLE C.4b
Confidence Coefficients k05(a L, aU) for 95% Hall –Wellner Confidence Bands

a L

aU 0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16 0.18 0.20

0.10 0.6825 0.6825 0.6822 0.6793 0.6666
0.12 0.7418 0.7418 0.7417 0.7405 0.7351 0.7191
0.14 0.7948 0.7948 0.7948 0.7943 0.7916 0.7838 0.7651
0.16 0.8428 0.8428 0.8428 0.8426 0.8412 0.8369 0.8270 0.8060
0.18 0.8866 0.8866 0.8866 0.8865 0.8857 0.8832 0.8772 0.8655 0.8425
0.20 0.9269 0.9268 0.9268 0.9268 0.9263 0.9247 0.9209 0.9134 0.9001 0.8753
0.22 0.9639 0.9639 0.9639 0.9639 0.9636 0.9626 0.9600 0.9549 0.9460 0.9311 0.9049
0.24 0.9982 0.9982 0.9982 0.9982 0.9980 0.9973 0.9955 0.9919 0.9856 0.9754 0.9592
0.26 1.0299 1.0299 1.0299 1.0299 1.0298 1.0294 1.0281 1.0254 1.0208 1.0134 1.0019
0.28 1.0594 1.0594 1.0594 1.0594 1.0593 1.0590 1.0581 1.0561 1.0526 1.0470 1.0384
0.30 1.0868 1.0868 1.0868 1.0868 1.0868 1.0865 1.0859 1.0843 1.0816 1.0772 1.0706
0.32 1.1123 1.1123 1.1123 1.1123 1.1123 1.1121 1.1116 1.1104 1.1083 1.1047 1.0994
0.34 1.1360 1.1360 1.1360 1.1360 1.1360 1.1359 1.1355 1.1346 1.1328 1.1299 1.1256
0.36 1.1581 1.1581 1.1581 1.1581 1.1580 1.1580 1.1576 1.1569 1.1555 1.1531 1.1495
0.38 1.1785 1.1785 1.1785 1.1785 1.1785 1.1785 1.1782 1.1776 1.1764 1.1745 1.1714
0.40 1.1976 1.1976 1.1976 1.1976 1.1975 1.1975 1.1973 1.1968 1.1958 1.1941 1.1915
0.42 1.2152 1.2152 1.2152 1.2152 1.2152 1.2151 1.2150 1.2146 1.2137 1.2123 1.2100
0.44 1.2315 1.2315 1.2315 1.2315 1.2315 1.2314 1.2313 1.2310 1.2302 1.2290 1.2270
0.46 1.2465 1.2465 1.2465 1.2465 1.2465 1.2465 1.2464 1.2461 1.2455 1.2444 1.2426
0.48 1.2604 1.2604 1.2604 1.2604 1.2604 1.2603 1.2603 1.2600 1.2595 1.2585 1.2570
0.50 1.2731 1.2731 1.2731 1.2731 1.2731 1.2731 1.2730 1.2728 1.2723 1.2714 1.2700
0.52 1.2847 1.2847 1.2847 1.2847 1.2847 1.2847 1.2846 1.2844 1.2840 1.2832 1.2820
0.54 1.2953 1.2952 1.2952 1.2952 1.2952 1.2952 1.2952 1.2950 1.2946 1.2939 1.2928
0.56 1.3048 1.3048 1.3048 1.3048 1.3048 1.3048 1.3047 1.3046 1.3042 1.3036 1.3025
0.58 1.3134 1.3134 1.3134 1.3134 1.3134 1.3134 1.3133 1.3132 1.3129 1.3123 1.3113
0.60 1.3211 1.3211 1.3211 1.3211 1.3211 1.3211 1.3210 1.3209 1.3206 1.3201 1.3191
0.62 1.3279 1.3279 1.3279 1.3279 1.3279 1.3279 1.3278 1.3277 1.3274 1.3269 1.3261
0.64 1.3338 1.3338 1.3338 1.3338 1.3338 1.3338 1.3338 1.3337 1.3334 1.3329 1.3321
0.66 1.3390 1.3390 1.3390 1.3390 1.3390 1.3390 1.3389 1.3388 1.3386 1.3381 1.3374
0.68 1.3434 1.3434 1.3434 1.3434 1.3434 1.3434 1.3433 1.3432 1.3430 1.3426 1.3418
0.70 1.3471 1.3471 1.3471 1.3471 1.3471 1.3471 1.3470 1.3469 1.3467 1.3463 1.3456
0.72 1.3501 1.3501 1.3501 1.3501 1.3501 1.3501 1.3501 1.3500 1.3498 1.3494 1.3487
0.74 1.3525 1.3525 1.3525 1.3525 1.3525 1.3525 1.3525 1.3524 1.3522 1.3518 1.3511
0.76 1.3544 1.3544 1.3544 1.3544 1.3544 1.3544 1.3544 1.3543 1.3541 1.3537 1.3530
0.78 1.3558 1.3558 1.3558 1.3558 1.3558 1.3558 1.3558 1.3557 1.3555 1.3551 1.3544
0.80 1.3568 1.3568 1.3568 1.3568 1.3568 1.3568 1.3567 1.3567 1.3565 1.3561 1.3554
0.82 1.3574 1.3574 1.3574 1.3574 1.3574 1.3574 1.3574 1.3573 1.3571 1.3567 1.3561
0.84 1.3578 1.3578 1.3578 1.3578 1.3578 1.3578 1.3578 1.3577 1.3575 1.3571 1.3565
0.86 1.3580 1.3580 1.3580 1.3580 1.3580 1.3580 1.3580 1.3579 1.3577 1.3573 1.3567
0.88 1.3581 1.3581 1.3581 1.3581 1.3581 1.3581 1.3580 1.3580 1.3578 1.3574 1.3567
0.90 1.3581 1.3581 1.3581 1.3581 1.3581 1.3581 1.3581 1.3580 1.3578 1.3574 1.3568
0.92 1.3581 1.3581 1.3581 1.3581 1.3581 1.3581 1.3581 1.3580 1.3578 1.3574 1.3568
0.94 1.3581 1.3581 1.3581 1.3581 1.3581 1.3581 1.3581 1.3580 1.3578 1.3574 1.3568
0.96 1.3581 1.3581 1.3581 1.3581 1.3581 1.3581 1.3581 1.3580 1.3578 1.3574 1.3568
0.98 1.3581 1.3581 1.3581 1.3581 1.3581 1.3581 1.3581 1.3580 1.3578 1.3574 1.3568
1.00 1.3581 1.3581 1.3581 1.3581 1.3581 1.3581 1.3581 1.3580 1.3578 1.3574 1.3568

(continued)
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TABLE C.4b
(continued)

a L

aU 0.22 0.24 0.26 0.28 0.30 0.32 0.34 0.36 0.38 0.40

0.24 0.9315
0.26 0.9844 0.9554
0.28 1.0258 1.0071 0.9769
0.30 1.0610 1.0473 1.0275 0.9962
0.32 1.0918 1.0813 1.0666 1.0457 1.0134
0.34 1.1194 1.1109 1.0994 1.0838 1.0619 1.0286
0.36 1.1444 1.1374 1.1280 1.1155 1.0989 1.0761 1.0419
0.38 1.1671 1.1612 1.1533 1.1430 1.1297 1.1122 1.0885 1.0533
0.40 1.1878 1.1827 1.1760 1.1673 1.1562 1.1420 1.1237 1.0991 1.0631
0.42 1.2068 1.2024 1.1966 1.1891 1.1796 1.1676 1.1526 1.1334 1.1080 1.0711
0.44 1.2242 1.2203 1.2152 1.2086 1.2003 1.1900 1.1773 1.1615 1.1414 1.1152
0.46 1.2401 1.2367 1.2321 1.2263 1.2189 1.2099 1.1988 1.1853 1.1686 1.1478
0.48 1.2547 1.2516 1.2475 1.2422 1.2357 1.2276 1.2178 1.2060 1.1916 1.1742
0.50 1.2680 1.2652 1.2615 1.2567 1.2508 1.2435 1.2347 1.2241 1.2115 1.1964
0.52 1.2801 1.2775 1.2741 1.2698 1.2643 1.2577 1.2497 1.2401 1.2288 1.2154
0.54 1.2911 1.2887 1.2856 1.2815 1.2765 1.2704 1.2630 1.2543 1.2440 1.2319
0.56 1.3010 1.2988 1.2959 1.2921 1.2874 1.2817 1.2749 1.2668 1.2574 1.2463
0.58 1.3099 1.3078 1.3051 1.3016 1.2972 1.2919 1.2855 1.2779 1.2691 1.2589
0.60 1.3178 1.3158 1.3133 1.3100 1.3058 1.3008 1.2948 1.2877 1.2794 1.2699
0.62 1.3248 1.3229 1.3205 1.3174 1.3134 1.3087 1.3030 1.2963 1.2884 1.2794
0.64 1.3309 1.3291 1.3268 1.3238 1.3201 1.3155 1.3101 1.3037 1.2963 1.2877
0.66 1.3362 1.3345 1.3323 1.3294 1.3258 1.3215 1.3162 1.3101 1.3030 1.2948
0.68 1.3407 1.3391 1.3369 1.3342 1.3307 1.3265 1.3215 1.3155 1.3087 1.3008
0.70 1.3445 1.3429 1.3408 1.3382 1.3348 1.3307 1.3258 1.3201 1.3134 1.3058
0.72 1.3476 1.3461 1.3441 1.3414 1.3382 1.3342 1.3294 1.3238 1.3174 1.3100
0.74 1.3501 1.3486 1.3466 1.3441 1.3408 1.3369 1.3323 1.3268 1.3205 1.3133
0.76 1.3520 1.3506 1.3486 1.3461 1.3429 1.3391 1.3345 1.3291 1.3229 1.3158
0.78 1.3534 1.3520 1.3501 1.3476 1.3445 1.3407 1.3362 1.3309 1.3248 1.3178
0.80 1.3544 1.3530 1.3511 1.3487 1.3456 1.3418 1.3374 1.3321 1.3261 1.3191
0.82 1.3551 1.3537 1.3518 1.3494 1.3463 1.3426 1.3381 1.3329 1.3269 1.3201
0.84 1.3555 1.3541 1.3522 1.3498 1.3467 1.3430 1.3386 1.3334 1.3274 1.3206
0.86 1.3557 1.3543 1.3524 1.3500 1.3469 1.3432 1.3388 1.3337 1.3277 1.3209
0.88 1.3558 1.3544 1.3525 1.3501 1.3470 1.3433 1.3389 1.3338 1.3278 1.3210
0.90 1.3558 1.3544 1.3525 1.3501 1.3471 1.3434 1.3390 1.3338 1.3279 1.3211
0.92 1.3558 1.3544 1.3525 1.3501 1.3471 1.3434 1.3390 1.3338 1.3279 1.3211
0.94 1.3558 1.3544 1.3525 1.3501 1.3471 1.3434 1.3390 1.3338 1.3279 1.3211
0.96 1.3558 1.3544 1.3525 1.3501 1.3471 1.3434 1.3390 1.3338 1.3279 1.3211
0.98 1.3558 1.3544 1.3525 1.3501 1.3471 1.3434 1.3390 1.3338 1.3279 1.3211
1.00 1.3558 1.3544 1.3525 1.3501 1.3471 1.3434 1.3390 1.3338 1.3279 1.3211
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TABLE C.4b
(continued)

a L

aU 0.42 0.44 0.46 0.48 0.50 0.52 0.54 0.56 0.58 0.60

0.44 1.0775
0.46 1.1208 1.0822
0.48 1.1526 1.1247 1.0854
0.50 1.1781 1.1557 1.1271 1.0869
0.52 1.1995 1.1805 1.1573 1.1279 1.0869
0.54 1.2177 1.2011 1.1813 1.1573 1.1271 1.0854
0.56 1.2335 1.2185 1.2011 1.1805 1.1557 1.1247 1.0822
0.58 1.2471 1.2335 1.2177 1.1995 1.1781 1.1526 1.1208 1.0775
0.60 1.2589 1.2463 1.2319 1.2154 1.1964 1.1742 1.1478 1.1152 1.0711
0.62 1.2691 1.2574 1.2440 1.2288 1.2115 1.1916 1.1686 1.1414 1.1080 1.0631
0.64 1.2779 1.2668 1.2543 1.2401 1.2241 1.2060 1.1853 1.1615 1.1334 1.0991
0.66 1.2855 1.2749 1.2630 1.2497 1.2347 1.2178 1.1988 1.1773 1.1526 1.1237
0.68 1.2919 1.2817 1.2704 1.2577 1.2435 1.2276 1.2099 1.1900 1.1676 1.1420
0.70 1.2972 1.2874 1.2765 1.2643 1.2508 1.2357 1.2189 1.2003 1.1796 1.1562
0.72 1.3016 1.2921 1.2815 1.2698 1.2567 1.2422 1.2263 1.2086 1.1891 1.1673
0.74 1.3051 1.2959 1.2856 1.2741 1.2615 1.2475 1.2321 1.2152 1.1966 1.1760
0.76 1.3078 1.2988 1.2887 1.2775 1.2652 1.2516 1.2367 1.2203 1.2024 1.1827
0.78 1.3099 1.3010 1.2911 1.2801 1.2680 1.2547 1.2401 1.2242 1.2068 1.1878
0.80 1.3113 1.3025 1.2928 1.2820 1.2700 1.2570 1.2426 1.2270 1.2100 1.1915
0.82 1.3123 1.3036 1.2939 1.2832 1.2714 1.2585 1.2444 1.2290 1.2123 1.1941
0.84 1.3129 1.3042 1.2946 1.2840 1.2723 1.2595 1.2455 1.2302 1.2137 1.1958
0.86 1.3132 1.3046 1.2950 1.2844 1.2728 1.2600 1.2461 1.2310 1.2146 1.1968
0.88 1.3133 1.3047 1.2952 1.2846 1.2730 1.2603 1.2464 1.2313 1.2150 1.1973
0.90 1.3134 1.3048 1.2952 1.2847 1.2731 1.2603 1.2465 1.2314 1.2151 1.1975
0.92 1.3134 1.3048 1.2952 1.2847 1.2731 1.2604 1.2465 1.2315 1.2152 1.1975
0.94 1.3134 1.3048 1.2952 1.2847 1.2731 1.2604 1.2465 1.2315 1.2152 1.1976
0.96 1.3134 1.3048 1.2952 1.2847 1.2731 1.2604 1.2465 1.2315 1.2152 1.1976
0.98 1.3134 1.3048 1.2952 1.2847 1.2731 1.2604 1.2465 1.2315 1.2152 1.1976
1.00 1.3134 1.3048 1.2952 1.2847 1.2731 1.2604 1.2465 1.2315 1.2152 1.1976
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TABLE C.4c
Confidence Coefficients k01(a L, aU) for 99% Hall –Wellner Confidence Bands

a L

aU 0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16 0.18 0.20

0.10 0.8512 0.8512 0.8512 0.8502 0.8428
0.12 0.9243 0.9243 0.9243 0.9240 0.9217 0.9113
0.14 0.9895 0.9895 0.9895 0.9894 0.9886 0.9845 0.9715
0.16 1.0483 1.0483 1.0483 1.0483 1.0479 1.0461 1.0404 1.0249
0.18 1.1017 1.1017 1.1017 1.1017 1.1016 1.1007 1.0978 1.0903 1.0727
0.20 1.1505 1.1505 1.1505 1.1505 1.1505 1.1500 1.1484 1.1443 1.1352 1.1157
0.22 1.1953 1.1953 1.1953 1.1953 1.1953 1.1950 1.1941 1.1917 1.1863 1.1757 1.1544
0.24 1.2365 1.2365 1.2365 1.2365 1.2365 1.2364 1.2358 1.2343 1.2309 1.2243 1.2122
0.26 1.2745 1.2745 1.2745 1.2745 1.2745 1.2744 1.2740 1.2730 1.2708 1.2664 1.2586
0.28 1.3095 1.3095 1.3095 1.3095 1.3095 1.3095 1.3092 1.3086 1.3070 1.3039 1.2985
0.30 1.3419 1.3419 1.3419 1.3419 1.3419 1.3418 1.3417 1.3412 1.3401 1.3379 1.3340
0.32 1.3717 1.3717 1.3717 1.3717 1.3717 1.3717 1.3716 1.3713 1.3705 1.3688 1.3659
0.34 1.3993 1.3993 1.3993 1.3993 1.3993 1.3993 1.3992 1.3990 1.3984 1.3971 1.3949
0.36 1.4247 1.4247 1.4247 1.4247 1.4247 1.4247 1.4247 1.4245 1.4240 1.4231 1.4213
0.38 1.4481 1.4481 1.4481 1.4481 1.4481 1.4481 1.4481 1.4479 1.4476 1.4468 1.4454
0.40 1.4696 1.4696 1.4696 1.4696 1.4696 1.4696 1.4696 1.4695 1.4692 1.4686 1.4674
0.42 1.4893 1.4893 1.4893 1.4893 1.4893 1.4893 1.4893 1.4892 1.4890 1.4885 1.4875
0.44 1.5073 1.5073 1.5073 1.5073 1.5073 1.5073 1.5073 1.5072 1.5071 1.5066 1.5058
0.46 1.5237 1.5237 1.5237 1.5237 1.5237 1.5237 1.5237 1.5236 1.5235 1.5231 1.5225
0.48 1.5386 1.5386 1.5386 1.5386 1.5386 1.5386 1.5385 1.5385 1.5384 1.5381 1.5375
0.50 1.5520 1.5520 1.5520 1.5520 1.5520 1.5520 1.5519 1.5519 1.5518 1.5515 1.5510
0.52 1.5640 1.5640 1.5640 1.5640 1.5640 1.5640 1.5640 1.5639 1.5638 1.5636 1.5631
0.54 1.5747 1.5747 1.5747 1.5747 1.5747 1.5747 1.5747 1.5746 1.5746 1.5744 1.5739
0.56 1.5841 1.5841 1.5841 1.5841 1.5841 1.5841 1.5841 1.5841 1.5840 1.5838 1.5835
0.58 1.5924 1.5924 1.5924 1.5924 1.5924 1.5924 1.5924 1.5924 1.5923 1.5921 1.5918
0.60 1.5996 1.5996 1.5996 1.5996 1.5996 1.5996 1.5996 1.5996 1.5995 1.5993 1.5990
0.62 1.6057 1.6057 1.6057 1.6057 1.6057 1.6057 1.6057 1.6057 1.6056 1.6055 1.6052
0.64 1.6109 1.6109 1.6109 1.6109 1.6109 1.6109 1.6109 1.6109 1.6108 1.6107 1.6104
0.66 1.6152 1.6152 1.6152 1.6152 1.6152 1.6152 1.6152 1.6151 1.6151 1.6150 1.6147
0.68 1.6186 1.6186 1.6186 1.6186 1.6186 1.6186 1.6186 1.6186 1.6186 1.6184 1.6182
0.70 1.6214 1.6214 1.6214 1.6214 1.6214 1.6214 1.6214 1.6214 1.6213 1.6212 1.6209
0.72 1.6235 1.6235 1.6235 1.6235 1.6235 1.6235 1.6235 1.6235 1.6234 1.6233 1.6230
0.74 1.6250 1.6250 1.6250 1.6250 1.6250 1.6250 1.6250 1.6250 1.6249 1.6248 1.6246
0.76 1.6261 1.6261 1.6261 1.6261 1.6261 1.6261 1.6261 1.6261 1.6260 1.6259 1.6257
0.78 1.6268 1.6268 1.6268 1.6268 1.6268 1.6268 1.6268 1.6268 1.6267 1.6266 1.6264
0.80 1.6272 1.6272 1.6272 1.6272 1.6272 1.6272 1.6272 1.6272 1.6272 1.6271 1.6268
0.82 1.6275 1.6275 1.6275 1.6275 1.6275 1.6275 1.6275 1.6274 1.6274 1.6273 1.6271
0.84 1.6276 1.6276 1.6276 1.6276 1.6276 1.6276 1.6276 1.6276 1.6275 1.6274 1.6272
0.86 1.6276 1.6276 1.6276 1.6276 1.6276 1.6276 1.6276 1.6276 1.6276 1.6274 1.6272
0.88 1.6276 1.6276 1.6276 1.6276 1.6276 1.6276 1.6276 1.6276 1.6276 1.6275 1.6272
0.90 1.6276 1.6276 1.6276 1.6276 1.6276 1.6276 1.6276 1.6276 1.6276 1.6275 1.6272
0.92 1.6276 1.6276 1.6276 1.6276 1.6276 1.6276 1.6276 1.6276 1.6276 1.6275 1.6272
0.94 1.6276 1.6276 1.6276 1.6276 1.6276 1.6276 1.6276 1.6276 1.6276 1.6275 1.6272
0.96 1.6276 1.6276 1.6276 1.6276 1.6276 1.6276 1.6276 1.6276 1.6276 1.6275 1.6272
0.98 1.6276 1.6276 1.6276 1.6276 1.6276 1.6276 1.6276 1.6276 1.6276 1.6275 1.6272
1.00 1.6276 1.6276 1.6276 1.6276 1.6276 1.6276 1.6276 1.6276 1.6276 1.6275 1.6272
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TABLE C.4c
(continued)

a L

aU 0.22 0.24 0.26 0.28 0.30 0.32 0.34 0.36 0.38 0.40

0.24 1.1893
0.26 1.2452 1.2207
0.28 1.2896 1.2748 1.2489
0.30 1.3276 1.3175 1.3014 1.2742
0.32 1.3611 1.3537 1.3425 1.3253 1.2967
0.34 1.3912 1.3855 1.3771 1.3648 1.3464 1.3166
0.36 1.4184 1.4139 1.4073 1.3979 1.3845 1.3650 1.3341
0.38 1.4431 1.4395 1.4342 1.4267 1.4162 1.4018 1.3812 1.3491
0.40 1.4655 1.4625 1.4582 1.4520 1.4436 1.4322 1.4167 1.3950 1.3619
0.42 1.4859 1.4834 1.4797 1.4746 1.4676 1.4583 1.4459 1.4294 1.4067 1.3724
0.44 1.5045 1.5023 1.4992 1.4948 1.4888 1.4810 1.4707 1.4574 1.4399 1.4161
0.46 1.5213 1.5194 1.5167 1.5129 1.5077 1.5009 1.4922 1.4810 1.4667 1.4482
0.48 1.5365 1.5348 1.5324 1.5291 1.5245 1.5186 1.5109 1.5013 1.4892 1.4739
0.50 1.5501 1.5487 1.5465 1.5435 1.5395 1.5342 1.5274 1.5189 1.5083 1.4953
0.52 1.5623 1.5610 1.5591 1.5564 1.5527 1.5480 1.5419 1.5343 1.5249 1.5134
0.54 1.5732 1.5720 1.5703 1.5678 1.5644 1.5601 1.5545 1.5476 1.5391 1.5288
0.56 1.5828 1.5817 1.5801 1.5778 1.5747 1.5707 1.5656 1.5592 1.5514 1.5420
0.58 1.5912 1.5902 1.5887 1.5865 1.5837 1.5799 1.5751 1.5692 1.5620 1.5533
0.60 1.5984 1.5975 1.5961 1.5941 1.5914 1.5878 1.5834 1.5778 1.5710 1.5629
0.62 1.6047 1.6038 1.6024 1.6005 1.5980 1.5946 1.5904 1.5851 1.5787 1.5710
0.64 1.6099 1.6090 1.6078 1.6060 1.6035 1.6003 1.5962 1.5912 1.5851 1.5778
0.66 1.6142 1.6134 1.6122 1.6104 1.6081 1.6050 1.6011 1.5962 1.5904 1.5834
0.68 1.6177 1.6169 1.6157 1.6141 1.6118 1.6088 1.6050 1.6003 1.5946 1.5878
0.70 1.6205 1.6197 1.6186 1.6169 1.6147 1.6118 1.6081 1.6035 1.5980 1.5914
0.72 1.6226 1.6218 1.6207 1.6191 1.6169 1.6141 1.6104 1.6060 1.6005 1.5941
0.74 1.6241 1.6234 1.6223 1.6207 1.6186 1.6157 1.6122 1.6078 1.6024 1.5961
0.76 1.6252 1.6245 1.6234 1.6218 1.6197 1.6169 1.6134 1.6090 1.6038 1.5975
0.78 1.6260 1.6252 1.6241 1.6226 1.6205 1.6177 1.6142 1.6099 1.6047 1.5984
0.80 1.6264 1.6257 1.6246 1.6230 1.6209 1.6182 1.6147 1.6104 1.6052 1.5990
0.82 1.6266 1.6259 1.6248 1.6233 1.6212 1.6184 1.6150 1.6107 1.6055 1.5993
0.84 1.6267 1.6260 1.6249 1.6234 1.6213 1.6186 1.6151 1.6108 1.6056 1.5995
0.86 1.6268 1.6261 1.6250 1.6235 1.6214 1.6186 1.6151 1.6109 1.6057 1.5996
0.88 1.6268 1.6261 1.6250 1.6235 1.6214 1.6186 1.6152 1.6109 1.6057 1.5996
0.90 1.6268 1.6261 1.6250 1.6235 1.6214 1.6186 1.6152 1.6109 1.6057 1.5996
0.92 1.6268 1.6261 1.6250 1.6235 1.6214 1.6186 1.6152 1.6109 1.6057 1.5996
0.94 1.6268 1.6261 1.6250 1.6235 1.6214 1.6186 1.6152 1.6109 1.6057 1.5996
0.96 1.6268 1.6261 1.6250 1.6235 1.6214 1.6186 1.6152 1.6109 1.6057 1.5996
0.98 1.6268 1.6261 1.6250 1.6235 1.6214 1.6186 1.6152 1.6109 1.6057 1.5996
1.00 1.6268 1.6261 1.6250 1.6235 1.6214 1.6186 1.6152 1.6109 1.6057 1.5996

(continued)
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TABLE C.4c
(continued)

a L

aU 0.42 0.44 0.46 0.48 0.50 0.52 0.54 0.56 0.58 0.60

0.44 1.3808
0.46 1.4234 1.3870
0.48 1.4544 1.4286 1.3912
0.50 1.4790 1.4585 1.4316 1.3932
0.52 1.4993 1.4821 1.4605 1.4327 1.3932
0.54 1.5164 1.5013 1.4831 1.4605 1.4316 1.3912
0.56 1.5308 1.5174 1.5013 1.4821 1.4585 1.4286 1.3870
0.58 1.5430 1.5308 1.5164 1.4993 1.4790 1.4544 1.4234 1.3808
0.60 1.5533 1.5420 1.5288 1.5134 1.4953 1.4739 1.4482 1.4161 1.3724
0.62 1.5620 1.5514 1.5391 1.5249 1.5083 1.4892 1.4667 1.4399 1.4067 1.3619
0.64 1.5692 1.5592 1.5476 1.5343 1.5189 1.5013 1.4810 1.4574 1.4294 1.3950
0.66 1.5751 1.5656 1.5545 1.5419 1.5274 1.5109 1.4922 1.4707 1.4459 1.4167
0.68 1.5799 1.5707 1.5601 1.5480 1.5342 1.5186 1.5009 1.4810 1.4583 1.4322
0.70 1.5837 1.5747 1.5644 1.5527 1.5395 1.5245 1.5077 1.4888 1.4676 1.4436
0.72 1.5865 1.5778 1.5678 1.5564 1.5435 1.5291 1.5129 1.4948 1.4746 1.4520
0.74 1.5887 1.5801 1.5703 1.5591 1.5465 1.5324 1.5167 1.4992 1.4797 1.4582
0.76 1.5902 1.5817 1.5720 1.5610 1.5487 1.5348 1.5194 1.5023 1.4834 1.4625
0.78 1.5912 1.5828 1.5732 1.5623 1.5501 1.5365 1.5213 1.5045 1.4859 1.4655
0.80 1.5918 1.5835 1.5739 1.5631 1.5510 1.5375 1.5225 1.5058 1.4875 1.4674
0.82 1.5921 1.5838 1.5744 1.5636 1.5515 1.5381 1.5231 1.5066 1.4885 1.4686
0.84 1.5923 1.5840 1.5746 1.5638 1.5518 1.5384 1.5235 1.5071 1.4890 1.4692
0.86 1.5924 1.5841 1.5746 1.5639 1.5519 1.5385 1.5236 1.5072 1.4892 1.4695
0.88 1.5924 1.5841 1.5747 1.5640 1.5519 1.5385 1.5237 1.5073 1.4893 1.4696
0.90 1.5924 1.5841 1.5747 1.5640 1.5520 1.5386 1.5237 1.5073 1.4893 1.4696
0.92 1.5924 1.5841 1.5747 1.5640 1.5520 1.5386 1.5237 1.5073 1.4893 1.4696
0.94 1.5924 1.5841 1.5747 1.5640 1.5520 1.5386 1.5237 1.5073 1.4893 1.4696
0.96 1.5924 1.5841 1.5747 1.5640 1.5520 1.5386 1.5237 1.5073 1.4893 1.4696
0.98 1.5924 1.5841 1.5747 1.5640 1.5520 1.5386 1.5237 1.5073 1.4893 1.4696
1.00 1.5924 1.5841 1.5747 1.5640 1.5520 1.5386 1.5237 1.5073 1.4893 1.4696
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TABLE C.5
Survival Function of the Supremum of the Absolute Value of a Standard Brownian Motion Process
over the Range 0 to 1

Pr [sup |B(t)| � x ] x Pr [sup |B(t)| � x ] x Pr [sup |B(t)| � x ] x

0.01 2.8070 0.34 1.3721 0.67 0.9559
0.02 2.5758 0.35 1.3562 0.68 0.9452
0.03 2.4324 0.36 1.3406 0.69 0.9345
0.04 2.3263 0.37 1.3253 0.70 0.9238
0.05 2.2414 0.38 1.3103 0.71 0.9132
0.06 2.1701 0.39 1.2956 0.72 0.9025
0.07 2.1084 0.40 1.2812 0.73 0.8919
0.08 2.0537 0.41 1.2670 0.74 0.8812
0.09 2.0047 0.42 1.2531 0.75 0.8706
0.10 1.9600 0.43 1.2394 0.76 0.8598
0.11 1.9189 0.44 1.2259 0.77 0.8491
0.12 1.8808 0.45 1.2126 0.78 0.8383
0.13 1.8453 0.46 1.1995 0.79 0.8274
0.14 1.8119 0.47 1.1866 0.80 0.8164
0.15 1.7805 0.48 1.1739 0.81 0.8053
0.16 1.7507 0.49 1.1614 0.82 0.7941
0.17 1.7224 0.50 1.1490 0.83 0.7828
0.18 1.6954 0.51 1.1367 0.84 0.7712
0.19 1.6696 0.52 1.1246 0.85 0.7595
0.20 1.6448 0.53 1.1127 0.86 0.7475
0.21 1.6211 0.54 1.1009 0.87 0.7353
0.22 1.5982 0.55 1.0892 0.88 0.7227
0.23 1.5761 0.56 1.0776 0.89 0.7098
0.24 1.5548 0.57 1.0661 0.90 0.6964
0.25 1.5341 0.58 1.0547 0.91 0.6824
0.26 1.5141 0.59 1.0434 0.92 0.6677
0.27 1.4946 0.60 1.0322 0.93 0.6521
0.28 1.4758 0.61 1.0211 0.94 0.6355
0.29 1.4574 0.62 1.0101 0.95 0.6173
0.30 1.4395 0.63 0.9992 0.96 0.5971
0.31 1.4220 0.64 0.9883 0.97 0.5737
0.32 1.4050 0.65 0.9774 0.98 0.5450
0.33 1.3883 0.66 0.9666 0.99 0.5045
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TABLE C.6
Survival Function of W �

∫ 1
0 [B(t)]2dt, where B(t) is a Standard Brownian Motion

W 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

0.00 1.0000 1.0000 .9994 .9945 .9824 .9642 .9417 .9169 .8910 .8648
0.10 .8390 .8138 .7894 .7659 .7434 .7218 .7012 .6814 .6626 .6445
0.20 .6273 .6108 .5949 .5798 .5652 .5513 .5378 .5249 .5125 .5006
0.30 .4890 .4779 .4672 .4568 .4468 .4371 .4278 .4187 .4099 .4014
0.40 .3931 .3851 .3773 .3697 .3623 .3552 .3482 .3414 .3348 .3284
0.50 .3222 .3161 .3101 .3043 .2987 .2932 .2878 .2825 .2774 .2724
0.60 .2675 .2627 .2580 .2534 .2489 .2446 .2403 .2361 .2320 .2280
0.70 .2240 .2202 .2164 .2127 .2091 .2056 .2021 .1987 .1953 .1921
0.80 .1889 .1857 .1826 .1796 .1767 .1738 .1709 .1681 .1654 .1627
0.90 .1600 .1574 .1549 .1524 .1499 .1475 .1451 .1428 .1405 .1383
1.00 .1361 .1339 .1318 .1297 .1277 .1257 .1237 .1218 .1198 .1180
1.10 .1161 .1143 .1125 .1108 .1091 .1074 .1057 .1041 .1025 .1009
1.20 .0994 .0978 .0963 .0949 .0934 .0920 .0906 .0892 .0878 .0865
1.30 .0852 .0839 .0826 .0814 .0802 .0789 .0778 .0766 .0754 .0743
1.40 .0732 .0721 .0710 .0700 .0689 .0679 .0669 .0659 .0649 .0639
1.50 .0630 .0621 .0611 .0602 .0593 .0585 .0576 .0568 .0559 .0551
1.60 .0543 .0535 .0527 .0519 .0512 .0504 .0497 .0490 .0482 .0475
1.70 .0469 .0462 .0455 .0448 .0442 .0435 .0429 .0423 .0417 .0411
1.80 .0405 .0399 .0393 .0388 .0382 .0376 .0371 .0366 .0360 .0355
1.90 .0350 .0345 .0340 .0335 .0330 .0326 .0321 .0317 .0312 .0308
2.00 .0303 .0299 .0295 .0290 .0286 .0282 .0278 .0274 .0270 .0266
2.10 .0263 .0259 .0255 .0252 .0248 .0245 .0241 .0238 .0234 .0231
2.20 .0228 .0225 .0221 .0218 .0215 .0212 .0209 .0206 .0203 .0201
2.30 .0198 .0195 .0192 .0190 .0187 .0184 .0182 .0179 .0177 .0174
2.40 .0172 .0169 .0167 .0165 .0162 .0160 .0158 .0156 .0153 .0151
2.50 .0149 .0147 .0145 .0143 .0141 .0139 .0137 .0135 .0133 .0132
2.60 .0130 .0128 .0126 .0124 .0123 .0121 .0119 .0118 .0116 .0114
2.70 .0113 .0111 .0110 .0108 .0107 .0105 .0104 .0102 .0101 .0100
2.80 .0098 .0097 .0096 .0094 .0093 .0092 .0090 .0089 .0088 .0087
2.90 .0086 .0084 .0083 .0082 .0081 .0080 .0079 .0078 .0077 .0076
3.00 .0075 .0074 .0073 .0072 .0071 .0070 .0069 .0068 .0067 .0066
3.10 .0065 .0064 .0063 .0062 .0062 .0061 .0060 .0059 .0058 .0057
3.20 .0057 .0056 .0055 .0054 .0054 .0053 .0052 .0052 .0051 .0050
3.30 .0049 .0049 .0048 .0047 .0047 .0046 .0046 .0045 .0044 .0044
3.40 .0043 .0043 .0042 .0041 .0041 .0040 .0040 .0039 .0039 .0038
3.50 .0038 .0037 .0037 .0036 .0036 .0035 .0035 .0034 .0034 .0033
3.60 .0033 .0032 .0032 .0032 .0031 .0031 .0030 .0030 .0030 .0029
3.70 .0029 .0028 .0028 .0028 .0027 .0027 .0026 .0026 .0026 .0025
3.80 .0025 .0025 .0024 .0024 .0024 .0023 .0023 .0023 .0023 .0022
3.90 .0022 .0022 .0021 .0021 .0021 .0021 .0020 .0020 .0020 .0019

Selected upper percentage points: W0.01 � 2.787, W0.025 � 2.135, W0.05 � 1.656, W0.10 � 1.196.
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TABLE C.7
Upper Percentiles of R �

∫ k
0 |Bo(u)|du, where Bo(u) is a Brownian Bridge

P(R � r ) k � 0.1 k � 0.2 k � 0.3 k � 0.4 k � 0.5 k � 0.6 k � 0.7 k � 0.8 k � 0.9 k � 1.0

0.99 0.0003 0.0011 0.0026 0.0044 0.0068 0.0093 0.0124 0.0155 0.0184 0.0200
0.98 0.0004 0.0014 0.0032 0.0054 0.0083 0.0115 0.0151 0.0189 0.0220 0.0237
0.97 0.0004 0.0016 0.0036 0.0062 0.0094 0.0130 0.0172 0.0213 0.0249 0.0267
0.96 0.0005 0.0018 0.0040 0.0069 0.0105 0.0144 0.0189 0.0235 0.0274 0.0292
0.95 0.0005 0.0020 0.0044 0.0075 0.0114 0.0157 0.0205 0.0253 0.0295 0.0314
0.94 0.0005 0.0021 0.0047 0.0081 0.0123 0.0168 0.0220 0.0271 0.0315 0.0334
0.93 0.0006 0.0023 0.0051 0.0086 0.0131 0.0180 0.0234 0.0288 0.0334 0.0354
0.92 0.0006 0.0024 0.0054 0.0092 0.0138 0.0191 0.0248 0.0303 0.0352 0.0372
0.91 0.0007 0.0026 0.0057 0.0097 0.0147 0.0201 0.0261 0.0319 0.0369 0.0390
0.90 0.0007 0.0027 0.0060 0.0102 0.0154 0.0212 0.0273 0.0335 0.0388 0.0408
0.89 0.0007 0.0029 0.0063 0.0107 0.0162 0.0221 0.0286 0.0349 0.0404 0.0425
0.88 0.0008 0.0030 0.0066 0.0112 0.0169 0.0231 0.0299 0.0364 0.0420 0.0442
0.87 0.0008 0.0031 0.0068 0.0117 0.0176 0.0241 0.0311 0.0379 0.0437 0.0459
0.86 0.0008 0.0033 0.0071 0.0122 0.0184 0.0251 0.0322 0.0394 0.0452 0.0475
0.85 0.0009 0.0034 0.0074 0.0127 0.0191 0.0261 0.0334 0.0408 0.0468 0.0491
0.84 0.0009 0.0036 0.0077 0.0132 0.0198 0.0271 0.0346 0.0422 0.0484 0.0508
0.83 0.0010 0.0037 0.0080 0.0137 0.0205 0.0280 0.0358 0.0436 0.0500 0.0524
0.82 0.0010 0.0039 0.0083 0.0142 0.0213 0.0290 0.0370 0.0449 0.0515 0.0539
0.81 0.0010 0.0040 0.0086 0.0147 0.0220 0.0299 0.0382 0.0463 0.0532 0.0556
0.80 0.0011 0.0041 0.0089 0.0152 0.0228 0.0309 0.0394 0.0477 0.0546 0.0572
0.79 0.0011 0.0043 0.0092 0.0157 0.0236 0.0319 0.0407 0.0491 0.0562 0.0588
0.78 0.0011 0.0044 0.0096 0.0162 0.0243 0.0330 0.0419 0.0506 0.0578 0.0604
0.77 0.0012 0.0046 0.0099 0.0168 0.0250 0.0340 0.0431 0.0520 0.0594 0.0621
0.76 0.0012 0.0048 0.0102 0.0173 0.0258 0.0350 0.0443 0.0534 0.0610 0.0636
0.75 0.0013 0.0049 0.0105 0.0179 0.0266 0.0360 0.0456 0.0549 0.0626 0.0652
0.74 0.0013 0.0051 0.0109 0.0185 0.0274 0.0370 0.0468 0.0563 0.0642 0.0668
0.73 0.0014 0.0052 0.0112 0.0190 0.0283 0.0380 0.0481 0.0578 0.0657 0.0684
0.72 0.0014 0.0054 0.0116 0.0196 0.0291 0.0391 0.0494 0.0593 0.0673 0.0701
0.71 0.0014 0.0056 0.0119 0.0202 0.0299 0.0402 0.0508 0.0607 0.0690 0.0718
0.70 0.0015 0.0057 0.0123 0.0208 0.0307 0.0413 0.0521 0.0623 0.0707 0.0735
0.69 0.0015 0.0059 0.0127 0.0213 0.0316 0.0424 0.0535 0.0637 0.0723 0.0752
0.68 0.0016 0.0061 0.0131 0.0219 0.0324 0.0435 0.0549 0.0653 0.0740 0.0770
0.67 0.0016 0.0063 0.0135 0.0226 0.0333 0.0446 0.0562 0.0669 0.0757 0.0787
0.66 0.0017 0.0065 0.0138 0.0232 0.0342 0.0458 0.0576 0.0686 0.0775 0.0804
0.65 0.0017 0.0067 0.0143 0.0238 0.0351 0.0470 0.0591 0.0703 0.0793 0.0822
0.64 0.0018 0.0069 0.0147 0.0245 0.0360 0.0482 0.0605 0.0719 0.0812 0.0840
0.63 0.0018 0.0071 0.0151 0.0252 0.0370 0.0495 0.0620 0.0736 0.0831 0.0859
0.62 0.0019 0.0073 0.0155 0.0259 0.0380 0.0507 0.0636 0.0753 0.0850 0.0876
0.61 0.0019 0.0075 0.0159 0.0266 0.0390 0.0520 0.0651 0.0770 0.0869 0.0895
0.60 0.0020 0.0077 0.0164 0.0273 0.0401 0.0533 0.0668 0.0789 0.0889 0.0913
0.59 0.0021 0.0080 0.0168 0.0281 0.0412 0.0547 0.0684 0.0807 0.0909 0.0934

(continued)
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TABLE C.7
(continued)

P(R � r ) k � 0.1 k � 0.2 k � 0.3 k � 0.4 k � 0.5 k � 0.6 k � 0.7 k � 0.8 k � 0.9 k � 1.0

0.58 0.0021 0.0082 0.0173 0.0288 0.0423 0.0561 0.0700 0.0825 0.0929 0.0955
0.57 0.0022 0.0084 0.0178 0.0296 0.0434 0.0575 0.0718 0.0845 0.0950 0.0974
0.56 0.0023 0.0087 0.0182 0.0304 0.0445 0.0590 0.0735 0.0865 0.0973 0.0997
0.55 0.0023 0.0089 0.0188 0.0312 0.0456 0.0605 0.0752 0.0885 0.0994 0.1018
0.54 0.0024 0.0092 0.0193 0.0321 0.0468 0.0620 0.0771 0.0905 0.1016 0.1040
0.53 0.0025 0.0094 0.0198 0.0330 0.0480 0.0636 0.0789 0.0925 0.1038 0.1063
0.52 0.0025 0.0097 0.0204 0.0338 0.0493 0.0652 0.0808 0.0947 0.1061 0.1087
0.51 0.0026 0.0100 0.0209 0.0348 0.0506 0.0668 0.0828 0.0969 0.1086 0.1111
0.50 0.0027 0.0102 0.0215 0.0357 0.0519 0.0684 0.0847 0.0991 0.1110 0.1135
0.49 0.0028 0.0105 0.0221 0.0367 0.0533 0.0702 0.0868 0.1013 0.1134 0.1159
0.48 0.0028 0.0108 0.0228 0.0377 0.0547 0.0719 0.0888 0.1035 0.1159 0.1185
0.47 0.0029 0.0111 0.0234 0.0387 0.0561 0.0737 0.0911 0.1060 0.1185 0.1210
0.46 0.0030 0.0115 0.0241 0.0398 0.0575 0.0756 0.0934 0.1084 0.1213 0.1237
0.45 0.0031 0.0118 0.0247 0.0409 0.0590 0.0776 0.0957 0.1110 0.1239 0.1263
0.44 0.0032 0.0121 0.0254 0.0421 0.0605 0.0795 0.0980 0.1136 0.1265 0.1291
0.43 0.0033 0.0125 0.0262 0.0432 0.0621 0.0816 0.1004 0.1163 0.1292 0.1320
0.42 0.0034 0.0128 0.0269 0.0444 0.0639 0.0838 0.1031 0.1191 0.1321 0.1348
0.41 0.0035 0.0132 0.0277 0.0456 0.0656 0.0860 0.1055 0.1219 0.1350 0.1380
0.40 0.0036 0.0136 0.0285 0.0468 0.0674 0.0883 0.1081 0.1248 0.1383 0.1413
0.39 0.0037 0.0140 0.0293 0.0482 0.0692 0.0907 0.1108 0.1279 0.1416 0.1445
0.38 0.0038 0.0144 0.0301 0.0496 0.0710 0.0932 0.1138 0.1310 0.1449 0.1481
0.37 0.0039 0.0148 0.0310 0.0510 0.0731 0.0958 0.1166 0.1343 0.1484 0.1516
0.36 0.0041 0.0153 0.0320 0.0525 0.0752 0.0983 0.1196 0.1378 0.1519 0.1552
0.35 0.0042 0.0158 0.0330 0.0541 0.0772 0.1012 0.1228 0.1412 0.1555 0.1587
0.34 0.0043 0.0163 0.0340 0.0556 0.0795 0.1040 0.1259 0.1446 0.1593 0.1623
0.33 0.0045 0.0168 0.0351 0.0573 0.0817 0.1068 0.1291 0.1482 0.1632 0.1663
0.32 0.0046 0.0173 0.0362 0.0590 0.0841 0.1097 0.1327 0.1523 0.1671 0.1705
0.31 0.0048 0.0179 0.0373 0.0608 0.0867 0.1129 0.1364 0.1565 0.1713 0.1746
0.30 0.0049 0.0185 0.0384 0.0627 0.0892 0.1160 0.1404 0.1606 0.1759 0.1790
0.29 0.0051 0.0191 0.0396 0.0646 0.0918 0.1195 0.1444 0.1650 0.1803 0.1837
0.28 0.0052 0.0198 0.0409 0.0666 0.0947 0.1231 0.1487 0.1698 0.1849 0.1886
0.27 0.0054 0.0204 0.0423 0.0687 0.0977 0.1267 0.1527 0.1747 0.1900 0.1934
0.26 0.0056 0.0211 0.0437 0.0709 0.1008 0.1305 0.1572 0.1796 0.1949 0.1984
0.25 0.0058 0.0218 0.0451 0.0731 0.1042 0.1346 0.1620 0.1846 0.2006 0.2037
0.24 0.0060 0.0226 0.0467 0.0756 0.1076 0.1388 0.1672 0.1900 0.2066 0.2091
0.23 0.0063 0.0234 0.0482 0.0781 0.1112 0.1434 0.1726 0.1956 0.2127 0.2150
0.22 0.0065 0.0242 0.0500 0.0808 0.1152 0.1483 0.1779 0.2015 0.2192 0.2216
0.21 0.0067 0.0251 0.0518 0.0837 0.1193 0.1532 0.1839 0.2082 0.2260 0.2285
0.20 0.0070 0.0260 0.0539 0.0868 0.1235 0.1585 0.1901 0.2146 0.2332 0.2356
0.19 0.0073 0.0271 0.0560 0.0900 0.1278 0.1645 0.1967 0.2219 0.2408 0.2427
0.18 0.0076 0.0281 0.0582 0.0936 0.1326 0.1702 0.2039 0.2295 0.2488 0.2505
0.17 0.0079 0.0293 0.0605 0.0974 0.1379 0.1764 0.2113 0.2378 0.2572 0.2589
0.16 0.0082 0.0306 0.0629 0.1013 0.1433 0.1834 0.2194 0.2462 0.2660 0.2675
0.15 0.0086 0.0318 0.0655 0.1055 0.1489 0.1909 0.2280 0.2553 0.2756 0.2776
0.14 0.0090 0.0333 0.0685 0.1104 0.1547 0.1989 0.2372 0.2652 0.2861 0.2883
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TABLE C.7
(continued)

P(R � r ) k � 0.1 k � 0.2 k � 0.3 k � 0.4 k � 0.5 k � 0.6 k � 0.7 k � 0.8 k � 0.9 k � 1.0

0.13 0.0094 0.0348 0.0717 0.1155 0.1618 0.2073 0.2469 0.2759 0.2975 0.3002
0.12 0.0099 0.0365 0.0750 0.1209 0.1694 0.2169 0.2580 0.2881 0.3100 0.3122
0.11 0.0104 0.0383 0.0787 0.1272 0.1779 0.2282 0.2697 0.3015 0.3238 0.3253
0.10 0.0110 0.0404 0.0830 0.1339 0.1873 0.2403 0.2837 0.3158 0.3388 0.3406
0.09 0.0116 0.0427 0.0874 0.1414 0.1975 0.2531 0.2979 0.3323 0.3559 0.3573
0.08 0.0123 0.0454 0.0929 0.1497 0.2092 0.2679 0.3150 0.3514 0.3743 0.3774
0.07 0.0131 0.0485 0.0986 0.1589 0.2224 0.2840 0.3359 0.3723 0.3948 0.3994
0.06 0.0140 0.0520 0.1056 0.1699 0.2373 0.3038 0.3579 0.3963 0.4201 0.4239
0.05 0.0151 0.0561 0.1142 0.1823 0.2555 0.3273 0.3848 0.4259 0.4506 0.4543
0.04 0.0165 0.0612 0.1245 0.1990 0.2766 0.3567 0.4157 0.4609 0.4859 0.4941
0.03 0.0184 0.0676 0.1377 0.2206 0.3063 0.3917 0.4613 0.5074 0.5381 0.5419
0.02 0.0210 0.0768 0.1577 0.2517 0.3487 0.4473 0.5247 0.5753 0.6099 0.6106
0.01 0.0253 0.0935 0.1938 0.3098 0.4241 0.5390 0.6386 0.6848 0.7339 0.7379
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TABLE D.1
Data on 137 Bone Marrow Transplant Patients

g—Disease group
1-ALL
2-AML low-risk
3-AML high-risk

T1—Time (in days) to death or on study time
T2—Disease-Free survival time (time to relapse, death or end of study)
�1—Death indicator

1-Dead 0-Alive
�2—Relapse indicator

1-Relapsed 0-Disease-Free
�3—Disease-Free survival indicator

1-Dead or relapsed 0-Alive disease-free
TA—Time (in days) to acute graft-versus-host disease
�A—Acute graft-versus-host disease indicator

1-Developed acute graft-versus-host disease
0-Never developed acute graft-versus-host disease

TC —Time (in days) to chronic graft-versus-host disease
�C —Chronic graft-versus-host disease indicator

1-Developed chronic graft-versus-host disease
0-Never developed chronic graft-versus-host disease

TP—Time (in days) to return of platelets to normal levels
�P—Platelet recovery indicator

1-Platelets returned to normal levels
0-Platelets never returned to normal levels

Z1—Patient age in years
Z2—Donor age in years
Z3—Patient sex

1-Male 0-Female
Z4—Donor Sex

1-Male 0-Female
Z5—Patient CMV status

1-CMV positive 0-CMV negative
Z6—Donor CMV status

1-CMV positive 0-CMV negative
Z7—Waiting time to transplant in days
Z8—FAB

1-FAB Grade 4 Or 5 and AML 0-Otherwise
Z9—Hospital

1-The Ohio State University 2-Alfred
3-St. Vincent 4-Hahnemann

Z10—MTX used as a graft-versus-host-prophylactic
1-Yes 0-No
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TABLE D.1
(continued)

g T1 T2 �1 �2 �3 TA �A TC �C TP �P Z1 Z2 Z3 Z4 Z5 Z6 Z7 Z8 Z9 Z10

1 2081 2081 0 0 0 67 1 121 1 13 1 26 33 1 0 1 1 98 0 1 0
1 1602 1602 0 0 0 1602 0 139 1 18 1 21 37 1 1 0 0 1720 0 1 0
1 1496 1496 0 0 0 1496 0 307 1 12 1 26 35 1 1 1 0 127 0 1 0
1 1462 1462 0 0 0 70 1 95 1 13 1 17 21 0 1 0 0 168 0 1 0
1 1433 1433 0 0 0 1433 0 236 1 12 1 32 36 1 1 1 1 93 0 1 0
1 1377 1377 0 0 0 1377 0 123 1 12 1 22 31 1 1 1 1 2187 0 1 0
1 1330 1330 0 0 0 1330 0 96 1 17 1 20 17 1 0 1 1 1006 0 1 0
1 996 996 0 0 0 72 1 121 1 12 1 22 24 1 0 0 0 1319 0 1 0
1 226 226 0 0 0 226 0 226 0 10 1 18 21 0 1 0 0 208 0 1 0
1 1199 1199 0 0 0 1199 0 91 1 29 1 24 40 1 1 0 1 174 0 3 1
1 1111 1111 0 0 0 1111 0 1111 0 22 1 19 28 1 1 0 1 236 0 3 1
1 530 530 0 0 0 38 1 84 1 34 1 17 28 1 1 0 0 151 0 3 1
1 1182 1182 0 0 0 1182 0 112 1 22 1 24 23 0 0 0 1 203 0 2 1
1 1167 1167 0 0 0 39 1 487 1 1167 0 27 22 0 1 1 1 191 0 2 1
1 418 418 1 0 1 418 0 220 1 21 1 18 14 1 1 0 0 110 0 1 0
1 417 383 1 1 1 417 0 417 0 16 1 15 20 1 1 0 0 824 0 1 0
1 276 276 1 0 1 276 0 81 1 21 1 18 5 0 0 0 0 146 0 1 0
1 156 104 1 1 1 28 1 156 0 20 1 20 33 1 1 0 1 85 0 1 0
1 781 609 1 1 1 781 0 781 0 26 1 27 27 1 0 1 1 187 0 1 0
1 172 172 1 0 1 22 1 172 0 37 1 40 37 0 0 0 1 129 0 1 0
1 487 487 1 0 1 487 0 76 1 22 1 22 20 1 1 0 0 128 0 1 0
1 716 662 1 1 1 716 0 716 0 17 1 28 32 1 1 0 0 84 0 1 0
1 194 194 1 0 1 194 0 94 1 25 1 26 32 0 1 0 0 329 0 1 0
1 371 230 1 1 1 371 0 184 1 9 1 39 31 0 1 0 1 147 0 1 0
1 526 526 1 0 1 526 0 121 1 11 1 15 20 1 1 0 0 943 0 1 0
1 122 122 1 0 1 88 1 122 0 13 1 20 26 1 0 0 1 2616 0 1 0
1 1279 129 1 1 1 1279 0 1279 0 22 1 17 20 0 0 0 0 937 0 3 1
1 110 74 1 1 1 110 0 110 0 49 1 28 25 1 0 1 0 303 0 3 1
1 243 122 1 1 1 243 0 243 0 23 1 37 38 0 1 1 1 170 0 3 1
1 86 86 1 0 1 86 0 86 0 86 0 17 26 1 0 1 0 239 0 3 1
1 466 466 1 0 1 466 0 119 1 100 1 15 18 1 1 0 0 508 0 3 1
1 262 192 1 1 1 10 1 84 1 59 1 29 32 1 1 1 0 74 0 3 1
1 162 109 1 1 1 162 0 162 0 40 1 36 43 1 1 1 0 393 0 2 1
1 262 55 1 1 1 262 0 262 0 24 1 23 16 0 1 1 1 331 0 2 1
1 1 1 1 0 1 1 0 1 0 1 0 42 48 1 1 0 0 196 0 2 1
1 107 107 1 0 1 107 0 107 0 107 0 30 19 1 1 1 1 178 0 2 1
1 269 110 1 1 1 269 0 120 1 27 1 29 20 0 1 1 1 361 0 2 1
1 350 332 0 1 1 350 0 350 0 33 1 22 20 1 0 0 0 834 0 2 1
2 2569 2569 0 0 0 2569 0 2569 0 21 1 19 13 1 1 1 0 270 1 1 0
2 2506 2506 0 0 0 2506 0 2506 0 17 1 31 34 1 1 0 0 60 0 1 0
2 2409 2409 0 0 0 2409 0 2409 0 16 1 35 31 1 1 1 1 120 0 1 0
2 2218 2218 0 0 0 2218 0 2218 0 11 1 16 16 1 1 1 0 60 1 1 0
2 1857 1857 0 0 0 1857 0 260 1 15 1 29 35 0 0 1 0 90 0 1 0
2 1829 1829 0 0 0 1829 0 1829 0 19 1 19 18 1 1 1 0 210 0 1 0
2 1562 1562 0 0 0 1562 0 1562 0 18 1 26 30 1 1 1 1 90 0 1 0
2 1470 1470 0 0 0 1470 0 180 1 14 1 27 34 1 1 0 1 240 0 1 0

(continued)
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TABLE D.1
(continued)

g T1 T2 �1 �2 �3 TA �A TC �C TP �P Z1 Z2 Z3 Z4 Z5 Z6 Z7 Z8 Z9 Z10

2 1363 1363 0 0 0 1363 0 200 1 12 1 13 24 1 1 1 0 90 0 1 0
2 1030 1030 0 0 0 1030 0 210 1 14 1 25 29 0 0 0 0 210 0 1 0
2 860 860 0 0 0 860 0 860 0 15 1 25 31 0 1 0 1 180 0 1 0
2 1258 1258 0 0 0 1258 0 120 1 66 1 30 16 0 1 1 0 180 0 2 1
2 2246 2246 0 0 0 52 1 380 1 15 1 45 39 0 0 0 0 105 0 4 0
2 1870 1870 0 0 0 1870 0 230 1 16 1 33 30 0 0 1 1 225 0 4 0
2 1799 1799 0 0 0 1799 0 140 1 12 1 32 23 1 0 0 0 120 0 4 0
2 1709 1709 0 0 0 20 1 348 1 19 1 23 28 0 1 1 0 90 1 4 0
2 1674 1674 0 0 0 1674 0 1674 0 24 1 37 34 1 1 0 0 60 1 4 0
2 1568 1568 0 0 0 1568 0 1568 0 14 1 15 19 1 0 0 0 90 0 4 0
2 1527 1527 0 0 0 1527 0 1527 0 13 1 22 12 0 1 0 1 450 1 4 0
2 1324 1324 0 0 0 25 1 1324 0 15 1 46 31 1 1 1 1 75 0 4 0
2 957 957 0 0 0 957 0 957 0 69 1 18 17 1 1 0 0 90 0 4 0
2 932 932 0 0 0 29 1 932 0 7 1 27 30 0 0 0 0 60 1 4 0
2 847 847 0 0 0 847 0 847 0 16 1 28 29 1 1 0 0 75 0 4 0
2 848 848 0 0 0 848 0 155 1 16 1 23 26 1 1 0 0 180 0 4 0
2 1850 1850 0 0 0 1850 0 1850 0 9 1 37 36 0 0 0 1 180 0 3 1
2 1843 1843 0 0 0 1843 0 1843 0 19 1 34 32 0 0 1 1 270 0 3 1
2 1535 1535 0 0 0 1535 0 1535 0 21 1 35 32 0 1 0 0 180 1 3 1
2 1447 1447 0 0 0 1447 0 220 1 24 1 33 28 0 1 1 1 150 0 3 1
2 1384 1384 0 0 0 1384 0 200 1 19 1 21 18 0 0 0 0 120 0 3 1
2 414 414 1 0 1 414 0 414 0 27 1 21 15 1 1 0 1 120 1 1 0
2 2204 2204 1 0 1 2204 0 2204 0 12 1 25 19 0 0 0 1 60 0 1 0
2 1063 1063 1 0 1 1063 0 240 1 16 1 50 38 1 0 1 0 270 1 1 0
2 481 481 1 0 1 30 1 120 1 24 1 35 36 1 0 1 1 90 1 1 0
2 105 105 1 0 1 21 1 105 0 15 1 37 34 1 0 1 1 120 0 1 0
2 641 641 1 0 1 641 0 641 0 11 1 26 24 1 1 0 0 90 0 1 0
2 390 390 1 0 1 390 0 390 0 11 1 50 48 1 1 0 0 120 0 1 0
2 288 288 1 0 1 18 1 100 1 288 0 45 43 1 1 1 1 90 0 1 0
2 522 421 1 1 1 25 1 140 1 20 1 28 30 1 1 0 1 90 1 1 0
2 79 79 1 0 1 16 1 79 0 79 0 43 43 0 0 0 0 90 0 1 0
2 1156 748 1 1 1 1156 0 180 1 18 1 14 19 1 0 0 0 60 0 1 0
2 583 486 1 1 1 583 0 583 0 11 1 17 14 0 1 0 0 120 0 1 0
2 48 48 1 0 1 48 0 48 0 14 1 32 33 0 1 1 0 150 1 1 0
2 431 272 1 1 1 431 0 431 0 12 1 30 23 0 1 1 0 120 1 1 0
2 1074 1074 1 0 1 1074 0 120 1 19 1 30 32 1 1 1 0 150 1 1 0
2 393 381 1 1 1 393 0 100 1 16 1 33 28 0 0 0 0 120 1 1 0
2 10 10 1 0 1 10 0 10 0 10 0 34 54 1 0 1 1 240 0 2 1
2 53 53 1 0 1 53 0 53 0 53 0 33 41 0 1 1 1 180 0 2 1
2 80 80 1 0 1 10 1 80 0 80 0 30 35 0 0 0 1 150 0 2 1
2 35 35 1 0 1 35 0 35 0 35 0 23 25 0 1 1 1 150 0 2 1
2 1499 248 0 1 1 1499 0 1499 0 9 1 35 18 1 1 0 1 30 0 4 0
2 704 704 1 0 1 36 1 155 1 18 1 29 21 0 1 1 0 105 0 4 0
2 653 211 1 1 1 653 0 653 0 23 1 23 16 1 0 0 0 90 1 4 0
2 222 219 1 1 1 222 0 123 1 52 1 28 30 1 1 1 1 120 1 3 1
2 1356 606 0 1 1 1356 0 1356 0 14 1 33 22 1 1 1 0 210 1 3 1
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TABLE D.1
(continued)

g T1 T2 �1 �2 �3 TA �A TC �C TP �P Z1 Z2 Z3 Z4 Z5 Z6 Z7 Z8 Z9 Z10

3 2640 2640 0 0 0 2640 0 2640 0 22 1 18 23 1 1 0 0 750 0 1 0
3 2430 2430 0 0 0 2430 0 2430 0 14 1 29 26 1 1 0 1 24 0 1 0
3 2252 2252 0 0 0 2252 0 150 1 17 1 35 31 1 0 0 0 120 0 1 0
3 2140 2140 0 0 0 2140 0 220 1 18 1 27 17 1 1 1 1 210 0 1 0
3 2133 2133 0 0 0 2133 0 250 1 17 1 36 39 0 1 0 0 240 0 1 0
3 1238 1238 0 0 0 1238 0 250 1 18 1 24 28 1 0 1 1 240 0 1 0
3 1631 1631 0 0 0 1631 0 150 1 40 1 27 21 1 0 1 0 690 1 2 1
3 2024 2024 0 0 0 2024 0 180 1 16 1 35 41 0 1 0 0 105 1 4 0
3 1345 1345 0 0 0 32 1 360 1 14 1 50 36 1 1 1 1 120 0 4 0
3 1136 1136 0 0 0 1136 0 140 1 15 1 47 27 1 0 1 0 900 0 3 1
3 845 845 0 0 0 845 0 845 0 20 1 40 39 0 0 1 1 210 1 3 1
3 491 422 1 1 1 491 0 180 1 491 0 22 21 0 0 0 0 210 1 1 0
3 162 162 1 0 1 162 0 162 0 13 1 22 23 1 0 0 1 300 0 1 0
3 1298 84 1 1 1 1298 0 1298 0 1298 0 8 2 0 0 1 0 105 1 1 0
3 121 100 1 1 1 28 1 121 0 65 1 39 48 1 1 1 1 210 1 1 0
3 2 2 1 0 1 2 0 2 0 2 0 20 19 1 1 0 0 75 1 1 0
3 62 47 1 1 1 62 0 62 0 11 1 27 25 1 1 0 0 90 1 1 0
3 265 242 1 1 1 265 0 210 1 14 1 32 32 1 0 0 0 180 1 1 0
3 547 456 1 1 1 547 0 130 1 24 1 31 28 1 0 1 1 630 1 1 0
3 341 268 1 1 1 21 1 100 1 17 1 20 23 0 1 1 1 180 1 1 0
3 318 318 1 0 1 318 0 140 1 12 1 35 40 0 1 1 1 300 0 1 0
3 195 32 1 1 1 195 0 195 0 16 1 36 39 1 1 0 0 90 1 1 0
3 469 467 1 1 1 469 0 90 1 20 1 35 33 0 0 1 0 120 0 1 0
3 93 47 1 1 1 93 0 93 0 28 1 7 2 1 1 0 0 135 1 1 0
3 515 390 1 1 1 515 0 515 0 31 1 23 25 1 1 1 0 210 1 1 0
3 183 183 1 0 1 183 0 130 1 21 1 11 7 0 1 0 0 120 1 1 0
3 105 105 1 0 1 105 0 105 0 105 0 14 18 1 0 0 0 150 1 1 0
3 128 115 1 1 1 128 0 128 0 12 1 37 35 0 0 1 1 270 0 1 0
3 164 164 1 0 1 164 0 164 0 164 0 19 32 0 0 0 1 285 1 1 0
3 129 93 1 1 1 129 0 129 0 51 1 37 34 0 1 1 0 240 1 1 0
3 122 120 1 1 1 122 0 122 0 12 1 25 29 0 1 1 1 510 1 1 0
3 80 80 1 0 1 21 1 80 0 0 1 35 28 1 0 0 0 780 1 1 0
3 677 677 1 0 1 677 0 150 1 8 1 15 14 1 1 1 0 150 1 1 0
3 73 64 1 1 1 73 0 73 0 38 1 45 42 0 1 1 0 180 1 2 1
3 168 168 1 0 1 168 0 200 1 48 1 32 43 0 1 1 1 150 1 2 1
3 74 74 1 0 1 29 1 74 0 24 1 41 29 0 1 1 1 750 0 2 1
3 16 16 1 0 1 16 0 16 0 16 0 27 36 0 0 1 0 180 0 4 0
3 248 157 1 1 1 248 0 100 1 52 1 33 39 0 0 1 1 180 1 4 0
3 732 625 1 1 1 732 0 732 0 18 1 39 43 0 1 1 1 150 1 4 0
3 105 48 1 1 1 105 0 105 0 30 1 17 14 0 1 0 0 210 1 4 0
3 392 273 1 1 1 392 0 122 1 24 1 43 50 1 1 1 0 240 0 3 1
3 63 63 1 0 1 38 1 63 0 16 1 44 37 1 1 0 0 360 1 3 1
3 97 76 1 1 1 97 0 97 0 97 0 48 56 1 1 1 1 330 0 3 1
3 153 113 1 1 1 153 0 153 0 59 1 31 25 0 1 1 1 240 0 3 1
3 363 363 1 0 1 363 0 363 0 19 1 52 48 1 1 1 0 180 0 3 1



E
Selected Solutions

to Exercises

Solutions to Chapter 2

2.1 (a) 1000
(b) 693.15
(c) 0.1353

2.3 (a) 50 days: 0.2205
100 days: 0.0909
150 days: 0.0516

(b) 21.5 days
(c) The inflection point is at 13.572
(d) 52.1 days

2.5 (a) Mean � 210.2985 days
Median � 23.9747 days

(b) 100 days: 0.2466
200 days: 0.1544
300 days: 0.1127

2.7 (a) 0.3027
(b) 0.4303
(c) 15 months

489
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2.9 (a) Treatment A Treatment B
1 year 0.5030 0.4042
2 years 0.3673 0.2779
5 years 0.2127 0.1475

(b) Treatment A Treatment B
1 year 0.5019 0.4397
2 years 0.4161 0.3569
5 years 0.3106 0.2598

2.11 (a) f (x) � 0, x 
 �
��(x � �)(��1) exp���(x � �)��, x � �

h(x) � 0, x 
 �
��(x � �)(��1), x � �

(b) Mean lifetime � 233.3333
Median lifetime � 192.4196

2.13 (a) S (x) � 1, x 
 1
1 � p, 1 � x 
 2
...
(1 � p)i , i � x 
 i � 1, i � 1, 2, . . .

(b) h(x) � p, x � 1.2, . . .
0, elsewhere

For both the exponential and the geometric distributions the hazard
rate is constant and is equal to the reciprocal of the mean.

2.15 (a) S (x) � exp[�x(� � �x� 2)]
(b) f (x) � (� � �x) exp[�x(� � �x� 2)]

2.17 (a) E (X ) � 10
(b) h(x) � 2� (x � 10)
(c) S (x) � 100� (x � 10)2

2.19 (a) SX (x) � 1 � x, 0 
 x 
 1
(b) CI(x) � x � .75x2 � .5x3 � .25x4, 0 
 x 
 1

Solutions to Chapter 3

3.1 (a) Generalized Type I right censoring
(b) Generalized Type I right censoring

3.3 (a) Left censoring at 42 days
(b) Type I right censoring at 140 days
(c) Interval censoring in 84–91 days



Appendix E Selected Solutions to Exercises 491

(d) Random right censoring at 37 days
(e) L � [1 � S (42)]S (140)[S (84) � S (91)]S (37)

3.5 From (3.5.1) the likelihood has the form

L �

[
��(0.5)��1

(1 � �(0.5)�)2

] [
��(1)��1

(1 � �)2

] [
��(0.75)��1

(1 � �(0.75)�)2

]

[

1 �
1

1 � �(0.25)�

] [

1 �
1

1 � �(1.25)�

]

3.7 (a) First 4 observations are interval-censored
Last 4 observations are Type I right-censored

(b) L � [exp(��55�) � exp(��56�)][exp(��58�) � exp(��59�)]

[exp(��52�) � exp(��53�)][exp(��59�) � exp(��60�)]

[exp(��60�)]4

Solutions to Chapter 4

4.1 (a) Ŝ (12) � 0.9038, SE (Ŝ (12)) � 0.0409, Ŝ (60) � 0.6538,
SE (Ŝ (60)) � 0.0660

(b) Ĥ (60) � 0.4178 SE (Ĥ (60)) � 0.0992
exp��Ĥ (60)� � 0.6585

(c) (0.5245, 0.7832)
(d) (0.5083, 0.7659)
(e) (0.5205, 0.7759)

(f, g) Time EP Band (f) Hall–Wellner Band (g)

36–41 (0.5060–0.8200) (0.5014–0.8221)
41–51 (0.4866–0.8045) (0.4855–0.8050)
51–65 (0.4674–0.7887) (0.4692–0.7878)
65–67 (0.4281–0.7724) (0.4520–0.7699)
67–70 (0.4089–0.7558) (0.4345–0.7520)
70–72 (0.3900–0.7389) (0.4169–0.7340)

(h) �̂ � 146.6 Confidence interval: (92.4, 200.9)
(i) Median � 93 Confidence interval: (67–157)
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4.3 Solution to parts a and c

Part a Part b

Estimated Standard Estimated Standard
Time Survival Error Survival Error

0–22 1.0000 0.0000 1.0000 0.0000
22–27 0.9600 0.0392 0.9600 0.0392
27–50 0.9200 0.0543 0.9200 0.0543
50–68 0.8800 0.0650 0.8800 0.0650
68–99 0.8400 0.0733 0.8400 0.0733
99–101 0.8400 0.0733 0.8400 0.0733
101–108 0.8400 0.0733 0.8000 0.0800
108–121 0.8400 0.0733 0.8000 0.0800
121–131 0.8400 0.0733 0.8000 0.0800
131–134 0.8400 0.0840 0.8000 0.0800
134–136 0.7906 0.0922 0.7600 0.0854
136–139 0.7412 0.0984 0.7200 0.0898
139–144 0.6918 0.1030 0.6800 0.0933
144–186 0.6424 0.1030 0.6400 0.0960
186–191 0.6424 0.1030 0.6400 0.0960
191–198 0.6424 0.1030 0.6000 0.0980
198–203 0.6424 0.1030 0.6000 0.0980
203–210 0.5840 0.1090 0.5600 0.0993
210–217 0.5256 0.1126 0.5200 0.0999
217–224 0.5256 0.1126 0.5200 0.0999
224–231 0.5256 0.1126 0.4800 0.0999
231–248 0.5256 0.1126 0.4800 0.0999
248–256 0.4505 0.1190 0.4400 0.0993
256–290 0.4505 0.1190 0.4000 0.0980
290–306 0.4505 0.1190 0.4000 0.0980
306–308 0.4505 0.1190 0.4000 0.0980
308–320 0.4505 0.1190 0.3600 0.0960
320–363 0.4505 0.1190 0.3600 0.0960
363–410 0.2252 0.1700 0.3200 0.0933
410–441 0.2252 0.1700 0.3200 0.0933
441–482 0.2252 0.1700 0.2800 0.0898
482–511 0.2252 0.1700 0.2400 0.0854
511–559 0.2252 0.1700 0.2000 0.0800
559–561 0.2252 0.1700 0.1600 0.0733
561–580 0.2252 0.1700 0.1200 0.0650
580–683 0.2252 0.1700 0.0800 0.0543
683–724 0.2252 0.1700 0.0400 0.0392

724 infinity 0.2252 0.1700 0.0000 0.0000

(b) For t � 363, estimate S (t) by exp��0.004t�
(d) û � 312.3, SE � 70.9 days
(e) �̂ � 294.6, SE � 42.7
(f) ¯̄x � 294.6, s � 213.4, SE � 42.7
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4.5 (a) Time in Days Estimated Survival Standard Error

0–40 1.0000 0.0000
40–45 0.9828 0.0171
45–106 0.9655 0.0240
106–121 0.9480 0.0293
121–229 0.9297 0.0339
229–344 0.9115 0.0378
344–864 0.8912 0.0421
864–929 0.8672 0.0473
929–943 0.8383 0.0539
943–1016 0.8093 0.0592

1,016–1,196 0.7782 0.0646
1,196–2,171 0.7458 0.0696
2,171–2,276 0.6884 0.0846
2,276–2,650 0.6258 0.0974

�2,650 0.5364 0.1176

(b) (0.8087, 0.9737)
(c) (0.7731, 0.9497)
(d) (0.7960, 0.9497)

4.7 Left Truncated No Truncation

Time Y S (t | Alive at 60) S (t | Alive at 70) Y S (t | Alive at 60) S (t | Alive at 70)

58 2 1.0000 1.0000 30 1.0000 1.0000
59 3 1.0000 1.0000 30 1.0000 1.0000
60 5 0.8000 1.0000 30 0.9667 1.0000
61 6 0.8000 1.0000 30 0.9667 1.0000
62 9 0.7111 1.0000 29 0.9333 1.0000
63 10 0.6400 1.0000 28 0.9000 1.0000
64 10 0.6400 1.0000 28 0.9000 1.0000
65 10 0.5120 0.8000 27 0.8333 0.9259
66 10 0.4608 0.7200 25 0.8000 0.8889
67 12 0.4608 0.7200 25 0.8000 0.8889
68 13 0.3899 0.6092 24 0.7333 0.8148
69 14 0.3342 0.5222 22 0.6667 0.7407
70 13 0.2828 0.4419 18 0.5926 0.6584
71 12 0.2357 0.3682 16 0.5185 0.5761
72 12 0.1964 0.3068 14 0.4444 0.4938
73 11 0.1785 0.2790 11 0.4040 0.4489
74 9 0.1587 0.2480 9 0.3591 0.3991
76 7 0.1360 0.2125 7 0.3078 0.3420
77 5 0.1088 0.1700 5 0.2463 0.2736
78 4 0.1088 0.1700 4 0.2463 0.2736
79 3 0.1088 0.1700 3 0.2463 0.2736
80 1 0.1088 0.1700 1 0.2463 0.2736
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4.9 Parts a,b

Thymic Reticulum Cell
Lymphoma Sarcoma Other Causes Overall Survival:

Time CI KME CI KME CI KME KME

200 0.0633 0.0641 0.0000 0.0000 0.0127 0.0127 0.9241
300 0.2025 0.2061 0.0000 0.0000 0.0380 0.0433 0.7595
400 0.2278 0.2326 0.0000 0.0000 0.0506 0.0598 0.7215
500 0.2785 0.2880 0.0127 0.0182 0.0633 0.0766 0.6456
600 0.3038 0.3159 0.0253 0.0386 0.0759 0.0954 0.5949
700 0.3165 0.3314 0.1139 0.2082 0.1899 0.2827 0.3797
800 0.3418 0.3877 0.1646 0.3358 0.2658 0.4397 0.2278
900 0.3418 0.3877 0.1772 0.3773 0.4051 0.8008 0.0759

1,000 0.3418 0.3877 0.1899 0.5849 0.4430 0.9004 0.0253

(c) The Kaplan–Meier estimator (KME) for thymic lymphoma estimates
the probability of having died from this cause in a hypothetical
world where no other cause of death is possible.

(d) At 500 days we have 0.0759, at 800 days we have 0.6000. These
are estimates of the conditional probability of dying from thymic
lymphoma among survivors who have not died from one of the
other two causes of death.

Solutions to Chapter 5

5.1 Age in Years Estimated Survival Function

0–14 1.000
14–15 0.984
15–16 0.961
16–17 0.882
17–18 0.780
18–19 0.741
19–20 0.717
20–21 0.702
21–22 0.693
22–23 0.667
23–26 0.644
�26 0.515



Appendix E Selected Solutions to Exercises 495

5.3 Time Estimated Survival Function

0–9 1.000
9–24 0.889
24–36 0.694
36–42 0.580
42–60 0.435
�60 0.000

5.5 Ti Xi Ri di Yi P [X � xi | X � 42]

2 30 12 1 10 0.9000
4 27 15 1 13 0.8308
7 25 17 1 14 0.7714

14 19 23 1 17 0.7261
20 18 24 1 16 0.6807
18 17 25 1 16 0.6381
8 16 26 2 16 0.5584

13 16 26
17 15 27 3 14 0.4387
26 15 27
20 15 27
15 13 29 2 11 0.3589
23 13 29
5 12 30 1 9 0.3191

16 11 31 1 8 0.2792
15 9 33 1 8 0.2443
11 8 34 3 7 0.1396
6 8 34

33 8 34
4 7 35 1 5 0.1117
8 6 36 3 5 0.0447

35 6 36
10 6 36
36 4 38 2 2 0.0000
25 4 38

5.7 1 2 3 4 5 6 7 8 9 10 11
Time Y ′

j Wj Yj dj Ŝ (aj ) f̂ (amj ) ĥ(amj ) SE (Ŝ ) SE ( f̂ (amj )) SE (ĥ(amj ))

45–50 1571 29 1556.5 29 1.0000 0.0022 0.0022 0 0.0005 0.0005
50–55 1525 60 1495.0 60 0.9891 0.0048 0.0049 0.0026 0.0008 0.0008
55–60 1429 83 1387.5 83 0.9653 0.0085 0.0091 0.0047 0.0011 0.0012
60–65 1284 441 1063.5 441 0.9221 0.0132 0.0148 0.0070 0.0015 0.0017
65–70 767 439 547.5 439 0.8562 0.0156 0.0192 0.0098 0.0021 0.0027
70–75 278 262 147.0 262 0.7780 0.0031 0.0126 0.0138 0.0031 0.0042
75–80 7 7 3.5 7 0.7304 0 0 0.0201
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5.9 t Ŝ (t)

0–46 1.000
46–49 0.877
49–54 0.754
54–61 0.631
61–62 0.508
62–64 0.385
64–68 0.308
68–120 0.231
120–150 0.154
150–160 0.077
� 160 0.000

Solutions to Chapter 6

6.1 (a) ĥ � 0.0369, SE � 0.0144

(b) ĥ � 0.0261, SE � 0.0142

(c) ĥ � 0.0258, SE � 0.0154

(d) Uniform Kernel ĥ � 0.0223, SE � 0.0100

Epanechnikov Kernel ĥ � 0.0263, SE � 0.0122

Biweight Kernel ĥ � 0.0293, SE � 0.0142

6.3 (a) ĥ � 0.0161 for Surgical Placement, ĥ � 0.0229 for Percutaneous
Placement

(b) ĥ � 0.0326 for Surgical Placement, ĥ � 0.0014 for Percutaneous
Placement

6.5 (a, b) time B(t) Se[B(t)]

28 182 182
32 382 270
49 604 350
84 854 430

357 1140 516
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(c) time Nelson-Aalen �(t) A(t)

28 0.091 0.014 0.077
32 0.191 0.016 0.175
49 0.302 0.023 0.279
84 0.427 0.036 0.392

357 0.570 0.122 0.448
933 0.570 0.279 0.290

1078 0.570 0.312 0.257
1183 0.570 0.332 0.238
1560 0.570 0.383 0.187
2114 0.570 0.433 0.137
2144 0.570 0.435 0.135

6.7 Estimate Using Estimate Using Kaplan-Mejer
Time Dirichlet Prior Beta Prior Estimate Prior

20 0.868 0.852 1.000 0.670
40 0.580 0.634 0.667 0.449
60 0.454 0.448 0.556 0.301

Solutions to Chapter 7

7.1 Log rank �2 � 6.03, p-value � 0.03

7.3 (a) Log rank �2 � 3.793, p-value � 0.052
(b) Gehan �2 � 2.864, p-value � 0.09
(c) Tarone–Ware �2 � 3.150, p-value � 0.08

7.5 Log rank �2 � 22.763, p-value 
 0.0001

7.7 (a) Log rank �2 � 33.380, p-value �
 0.0001
(b) Untreated vs. Radiation

Log rank �2 � 11.412, p-value � 0.0007
Untreated vs. Radiation � BPA

Log rank �2 � 21.671, p-value 
 0.0001
Radiation vs. Radiation � BPA

Log rank �2 � 10.148, p-value � 0.0014

The Bonferroni multiple comparison procedure would test at the
0.05� 3 � 0.0167 level. All pairwise comparisons are significant.
(c) Log rank trend test �2 � 30.051, p-value 
 0.0001
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7.9 (a) Log rank �2 � 4.736, p-value � 0.19
Gehan �2 � 3.037, p-value � 0.39

(b) For males,
Log rank �2 � 0.097, p-value � 0.76
Gehan �2 � 0.366, p-value � 0.55
For females,
Log rank �2 � 4.847, p-value � 0.03
Gehan �2 � 2.518, p-value � 0.11

To test the hypothesis that blacks have a higher mortality rate than
whites, after adjusting by stratification for sex, we get

Z � 1.064, p-value � 0.30

7.11 Stratified �2 � 23.25, p-value 
 0.0001

Prior to 1975 log rank �2 � 12.00, p-value � 0.007

1975 or later log rank �2 � 11.59, p-value � 0.009

7.13 (a) Log rank �2 � 5.4943, p-value � 0.0195
(b) Q � 2.34, p-value � 0.04
(c) Q 1 � 1.10, p-value � 0.27
(d) WKM � 116.22, Z � 1.90, p-value � 0.06

7.15 Let treatment 1, 2, and 3 � ALL, AML-Low, and AML-High, respectively.
Then

Z12(365) � �0.83, two-sided p-value � 0.41,

Z13(365) � 0.94, two-sided p-value � 0.35,

Z23(365) � 1.88, two-sided p-value � 0.06.

Solutions to Chapter 8

8.1 (a) Z1 � 1 if HOD Allo patient, 0 otherwise
Z2 � 1 if NHL Auto patient, 0 otherwise
Z3 � 1 if HOD Auto patient, 0 otherwise

(b) Let
Z1 � 1 if Auto patient, 0 otherwise
Z2 � 1 if HOD patient, 0 otherwise
Z3 � Z1XZ2

(c) �1 � 1.5, �2 � 2, �3 � �3
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8.3 (a) Score test using Breslow method gives a p-value of 0.098.
(b) b � �0.461, se(b) � 0.281, RR � 0.63, 95% CI is (0.36, 1.09)
(c) p-value � 0.106
(d) p-value � 0.100

8.5 (a) Testing Global Null Hypothesis

Test Chi-Square DF p-value

Likelihood Ratio 7.89 3 0.048
Score 11.08 3 0.011
Wald 9.26 3 0.026

ANOVA Table

Parameter Standard
Variable DF Estimate Error Chi-Square p-value

HOD Allo 1 1.830 0.675 7.34 0.007
NHL Auto 1 0.664 0.564 1.38 0.24
HOD Auto 1 0.154 0.589 0.07 0.79

(b) The global tests are the same as in 8.5(a) above.

ANOVA Table

Parameter Standard
Variable DF Estimate Error Chi-Square p-value

Auto 1 0.664 0.564 1.38 0.24
HOD 1 1.830 0.675 7.34 0.007
Auto & HOD 1 �2.340 0.852 7.55 0.006

Likelihood ratio p-value � 0.007 and Wald p-value � 0.006. Thus
we conclude that there is a significant interaction between disease
type and transplant type.

(c) Either model gives a relative risk for an NHL Auto transplant patient
to an NHL Allo transplant patient of 1.94 with a 95% confidence
interval of (0.64, 5.87).

(d) Comparing Allo patients gives a p-value of 0.007. Comparing Auto
patients gives a p-value of 0.31.

(e) The test statistic is 8.50, which has a chi-square distribution with 2
degrees of freedom and the p-value is 0.014.

Note that the inferential conclusions in this entire problem do not de-
pend upon the coding scheme employed.
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8.7 (a) For the routine bathing care, the cut point is 25% of total surface
area burned. For the chlorhexidine gluconate method, the cut point
is 22% of total surface area burned.

(b) For routine bathing care method, Q � .8080, p-value � 0.30, RR �
1.59.
For chlorhexidine gluconate method, Q � 1.3404, p-value � 0.055,
RR � 2.31.

(c) For routine bathing care method, b � 0.007, SE � 0.009, p-value �
0.44, RR � 1.01.
For chlorhexidine gluconate method, b � 0.007, SE � 0.012,
p-value � 0.54, and RR � 1.01.

8.9 (a) Let Z1 � type of disinfectant, Z4 � % of surface area burned,
p-value � 0.056.

(b) p-value � 0.077.
(c) Tests of hypothesis that the times to staphylococcus infection are

the same for the two disinfectant groups adjusting for each of the
listed factors in a separate model are shown below.

Tests for Z1 adjusted for gender, p-value � 0.040; race, p-value �
0.045; area burned, p-value � 0.077; type of burn, p-value � 0.045.

(d) The final model along with the parameter estimates is given below.
Although we have used Wald tests in this exercise, similar conclu-
sions are obtained if the likelihood ratio statistic is used throughout.

Parameter Standard Hazard
Variable DF Estimate Error Chi-Square p-value Ratio

Disinfectant 1 �0.601 0.298 4.07 0.044 0.55
Type of Burn� 3 7.94 0.047

Scald 1 1.557 1.087 2.05 0.15 4.7
Electric 1 2.151 1.086 3.92 0.048 8.6
Flame 1 0.999 1.016 0.97 0.33 2.7

Race 1 2.269 1.025 4.90 0.027 9.7

�Chemical burn is referent group.

The local Wald test of the primary hypothesis of no difference
between the times to staphylococcus infection for the two disinfec-
tant groups has a p-value of 0.044, which suggests that the times
to staphylococcus infection are different for the two disinfectant
groups after adjustment for the type of the burn and race of the
patient. Note that the test was insignificant when no cofounders
were adjusted for in part a.
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8.11 (a) Test Chi-Square DF p-value

Likelihood Ratio 16.58 1 
.001
Score 15.04 1 
.001
Wald 13.62 1 
.001

Parameter Standard Hazard
Variable DF Estimate Error Chi-Square p-value Ratio

Z 1 �1.095 0.297 13.62 
.001 0.33

(b) Tests for Z adjusted for: mother’s age p-value 
 .001; urban
p-value 
 .001; alcohol p-value 
 .001; smoking status p-value 

.001; region p-value 
 .001; birthweight p-value 
 .001; poverty
p-value 
 .001; race p-value 
 .001; siblings p-value 
 .001.

(c) The final model along with the parameter estimates is given below.

Parameter Standard Hazard
Variable DF Estimate Error Chi-Square p-value Ratio

Z 1 �0.882 0.303 8.49 0.004 0.4
Smoking status� 2 9.39 0.009


 1 pack/day 1 0.751 0.256 8.60 0.003 2.1
� 1 pack/day 1 0.632 0.349 3.28 0.070 1.9

siblings 1 0.387 0.124 9.77 0.002 1.5
mother’s age 1 �0.121 0.050 5.88 0.015 0.9

�Referent group is nonsmokers.

8.13 At 20 days for a patient with 25% of the total body area burned, 95%
confidence intervals for the survival functions based on the log trans-
formation (4.3.2), for the two bathing solutions, are (0.52, 0.75) and
(0.67, 0.85), respectively.

Solutions to Chapter 9

9.1 Using g(t) � log(t) the Wald p-value is 0.47. No evidence of a departure
from proportional hazards.

9.3 (a) Relative Risk � 0.90, Confidence Interval � (0.58, 1.39)
(b) Using g(t) � log(t) the Wald p-value is 0.009.
(c) The best cut point is at 254 days.
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(d) Up to 254 days the relative risk of Chemo only to Chemo�Radiation
is 0.24 95% Confidence Interval (0.10, 0.56). Among 254-day sur-
vivors the relative risk is 1.89 (104, 3.44).

9.5 (a) Parameter Standard
Variable DF Estimate Error Chi Square Pr � Chi Square

Stage II 1 0.112 0.464 0.06 0.81
Stage III 1 0.619 0.356 3.03 0.082
Stage IV 1 1.697 0.443 14.86 
0.001
Age 1 0.017 0.015 1.30 0.25

(b) From a model with common covariate values in each strata
�2 LOG L � 323.869 is greater than a model with different covari-
ates values in each strata �2 LOG L � 320.806, Chi Square � 3.06,
p � .55.

(c) Chi Square � 2.82, p � 0.59

9.7 Step 1: Waiting time: df � 1, p � 0.075, FAB Class: df � 1, p � 0.883.

MTX: df � 1, p � 0.091. Sex: df � 3, p � 0.752. CMV: df � 3,
p � 0.049.

Age: df � 3, p � 0.17.

⇒ Add CMV.

Step 2: Waiting time: p � 0.26. FAB Class: p � 0.67.

MTX: p � 0.062. Sex: p � 0.46. Age: p � 0.29.

Final Model:

Parameter Standard Chi- Pr � Hazard
Variable DF Estimate Error Square Chi Square Ratio

AML low-risk (Z1) 1 0.343 0.658 0.27 0.60 1.41
AML high-risk (Z2) 1 2.136 0.884 5.84 0.016 8.47
Donor CMV positive (Z9) 1 1.764 0.778 5.14 0.023 5.83
Patient CMV positive (Z10) 1 0.401 0.955 0.18 0.67 1.49
Both CMV positive (Z11) 1 �2.530 1.346 3.53 0.060 0.08
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Solutions to Chapter 10

10.1 (a) Let Z � 1 if Allo, 0 if Auto, and model h(t | Z) � �0(t) � �1(t).
Estimation restricted to 1,345 days.

Time B1(t) Standard Error

0–2 0 0
2–4 0.0625 0.0625
4–28 0.1292 0.0914
28–30 0.2006 0.1160
30–32 0.1636 0.1218
32–36 0.2405 0.1440
36–41 0.2020 0.1491
41–42 0.1620 0.1543
42–49 0.1204 0.1599
49–52 0.2037 0.1803
52–53 0.1602 0.1855
53–57 0.1148 0.1909
57–62 0.0671 0.1968
62–63 0.0171 0.2030
63–72 �0.0355 0.2098
72–77 0.0554 0.2286
77–79 0.1554 0.2495
79–81 0.2665 0.2731
81–84 0.1554 0.2842
84–108 0.2804 0.3105
108–132 0.2179 0.3167
132–140 0.1512 0.3237
140–252 0.0798 0.3314
252–357 �0.0111 0.3437
357–524 0.1318 0.3722
524–1345 �0.0682 0.4225

(b) U � 3.37, V (U ) � 117.74, chi-square � 0.96, p � 0.7560.
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(c) Inference is restricted to 0–79 days.

Disease Type of Transplant Interaction

time B1(t) SE B2(t) SE B3(t) SE

0–2 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
2–4 0.0000 0.0000 0.2000 0.2000 �0.2000 0.2000
4–28 0.0000 0.0000 0.4500 0.3000 �0.4500 0.3202
28–30 0.0000 0.0000 0.4500 0.3202 �0.3591 0.3328
30–32 �0.0667 0.0667 0.3833 0.3202 �0.2924 0.3394
32–36 �0.0667 0.0067 0.3833 0.3270 �0.1924 0.3538
36–41 �0.1381 0.0977 0.3119 0.3270 �0.1210 0.3610
41–42 �0.2150 0.1244 0.2350 0.3347 �0.0441 0.3691
42–49 �0.1317 0.1497 0.2350 0.3435 �0.1274 0.3784
49–52 �0.1317 0.1497 0.2350 0.3435 �0.1063 0.3944
52–53 �0.2150 0.1713 0.1516 0.3435 0.0670 0.4031
53–57 �0.1241 0.1940 0.1516 0.3534 �0.0239 0.4132
57–62 �0.0241 0.1282 0.1516 0.3534 �0.1239 0.4251
62–63 �0.1150 0.2364 0.0607 0.3649 �0.0330 0.4347
63–72 �0.0039 0.2612 0.0607 0.3649 �0.1441 0.4487
72–77 �0.0039 0.2612 0.3941 0.4943 �0.4774 0.5590
77–79 �0.0039 0.2612 0.8941 0.7031 �0.9744 0.7500

79 �0.0039 0.2612 1.8941 1.2224 �1.9774 1.2500

Analysis of Variance (Using number at risk as weights)

Effect Chi-Square df p-value

Disease 0.6587 1 0.4170
Type of transplant 0.0113 1 0.9153
Interaction 6.6123 1 0.0101

10.3 (a) b � �0.00023, SE � 0.00064, �2 � 0.129, p � 0.7193.

(b) Effect � Standard Error Chi-Square df p-value

Type of Transplant 0.0012 0.0010 1.38 1 0.2390
Disease 0.0170 0.0097 3.09 1 0.0786
Interaction �0.0182 0.0098 3.45 1 0.0632

Solutions to Chapter 11

11.1 (a) From the Martingale residual plot a quadratic or a threshold model
(see section 8.6) is suggested.
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(b) The covariate year of transplant seems to enter the model as a linear
term. The plot suggests its regression coefficient is not significantly
different from zero.
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(c) The model seems to fit the data well.
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11.3 All four plots seem to suggest that proportional hazards is suspect for
Stage IV as compared to Stage I.
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11.5 (a) The deviance residual suggests that there are a number of data
points for which the model does not fit well. These are points
with a deviance residual greater than 2. The worst three points are
observations 529, 527, 526, which all have a risk score of �0.248.
These patients, who the model predicts are good-risk patients, die
very early at 2, 3, and 7 days after transplant. Most of the “outliers”
are of this nature, patients who died too soon after transplant. A
possible remedy is to add additional covariates which could help
to explain these early deaths.

(b) For race these are observations 444, 435, 434, and 433. All are the
four black males with the shortest survival time. For gender these
are observations 532, 529, 527, and 526, the four white females who
die the soonest after transplant. For the interaction term these are
observations 812, 809, 807, and 806, the four black females with
the shortest survival time.
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Solutions to Chapter 12

12.1 (a) For aneuploid group, �̂ � 0.016, �̂ � 0.832 with standard errors
0.010 and 0.128, respectively, and for diploid group, �̂ � 0.036,
�̂ � 0.775 with standard errors 0.023 and 0.136, respectively.
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(b) For aneuploid group, L.R. p-value is 0.21 and Wald p-value is 0.27;
for diploid group, L.R. p-value is 0.12 and Wald p-value is 0.19.

(c) MLE of median of aneuploid and diploid groups, respectively, are
91.8 and 45.8. SE of median of aneuploid and diploid groups, re-
spectively, are 19.8 and 17.6.

(d) LR and Wald p-values are 0.059 and 0.057, respectively. Estimate of
RR is 0.58 and the 95% confidence interval is (0.34, 1.01). Estimate
of the acceleration factor is 0.51 and the 95% confidence interval is
(0.26, 1.02). This means that the median lifetime for diploid patients
is between 0.26 and 1.02 times that of aneuploid patients with 95%
confidence.

12.3 (a) LR global test p-value � 0.004.

ANOVA Table for �̂, 	̂ , and �̂i

Parameter Standard
Variable df Estimate Error Chi-Square p-Value

Intercept (�̂) 1 7.831 0.753
Scale (	̂) 1 1.653 0.277
Auto (�̂i ) 1 �2.039 0.930 4.81 0.028
Hod (�̂2) 1 �4.198 1.067 15.48 
0.001
Auto by hod (�̂3) 1 5.358 1.377 15.14 
0.001

ANOVA Table for �̂, �̂, and �̂i

Parameter Standard
Variable df Estimate Error Chi-Square p-Value

Intercept (�̂) 1 0.009 0.007
Scale (�̂) 1 0.605 0.101
Auto (�̂1) 1 1.233 0.574 4.61 0.032
Hod (�̂2) 1 2.539 0.699 13.2 
0.001
Auto by hod (�̂3) 1 �3.241 0.878 13.6 
0.001

(b) p-value 
 0.001.
(c) RR � 3.4 and 95% confidence interval for RR is (1.1, 10.6).
(d) p-value 
 0.001 and 0.17, respectively.

(e) Using contrast matrix C �

(
1 0 0
1 0 1

)

, p-value 
 0.001.

12.5 (a) For aneuploid group, �̂ � 0.009, �̂ � 1.048 with standard errors
0.007 and 0.163, respectively, and for diploid group, �̂ � 0.022,
�̂ � 1.035 with standard errors 0.016 and 0.181, respectively.

(b) p-value � 0.6 for both aneuploid and diploid groups.
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(c) MLE of median of aneuploid and diploid groups, respectively, are
87.2 and 39.6. SE of median of aneuploid and diploid groups, re-
spectively, are 21.2 and 12.9.

(d) LR and Wald p-values are both 0.051. Estimate of relative odds is
0.44 and the 95% confidence interval is (0.19, 1.01). Estimate of
the acceleration factor is 0.45 and the 95% confidence interval is
(0.21, 1.002).

12.7 (a) For aneuploid group �̂ � 4.46, 	̂ � 1.72, and var-cov matrix for �̂
and 	̂ is

0.07 0.02
0.02 0.06

For diploid group �̂ � 3.64, 	̂ � 1.634 and var-cov matrix for �̂
and 	̂ is

0.10 0.01
0.01 0.07

(b) For aneuploid group �̂ � 112.21, 	̂ � 96.71 and var-cov matrix for
�̂ and 	̂ is

233.22 61.47
61.47 169.44

For diploid group �̂ � 71.32, 	̂ � 70.67 and var-cov matrix for �̂
and 	̂ is

194.27 19.89
19.89 121.03

(c) For aneuploid group �̂ � 4.75, 	̂ � 1.44, �̂ � 0.53 and var-cov
matrix for �̂, 	̂ , and �̂ is

0.15 �0.09 0.19
�0.09 0.15 �0.20

0.19 �0.20 0.38

For diploid group �̂ � 3.86, 	̂ � 1.55, �̂ � 0.32 and var-cov matrix
for �̂, 	̂ , and �̂ is

0.40 �0.14 0.45
�0.14 0.13 �0.20

0.45 �0.20 0.65

(d) For aneuploid and diploid group the Wald p-values for testing �̂ � 0
is 0.39 and 0.69, respectively. Cannot reject log normal fit for both
groups.
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(e) For aneuploid and diploid group the Wald p-values for testing �̂ � 1
are 0.75 and 0.70, respectively. Cannot reject Weibull fit for both
groups.

(f) Aneuploid Diploid

Exponential Log Likelihood �77.14 �48.59
AIC 156.28 99.18

Weibull Log Likelihood �76.36 �47.40
AIC 156.72 98.80

Log logistic Log likelihood �76.09 �47.51
AIC 156.18 99.02

Log normal Log Likelihood �76.42 �47.15
AIC 156.84 98.30

Generalized Log Likelihood �76.08 �47.08
gamma AIC 158.16 100.16

For aneuploid group log logistic is slightly better fit and for diploid
group lognormal is slightly better fit.

12.9 The hazard plots, all of which should be linear, suggest that any of the
models would be reasonable.
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Log Normal Hazard Plot
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12.11 The plot appears to be roughly linear with a slope of about 3.5. The
slope is a crude estimate of the acceleration function.
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12.13 The model seems to fit well to the Weibull but is suspect for the log
logistic model. Both Deviance residual plots suggest the models do not
fit well to early events.
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Solutions to Chapter 13

13.1 T � 14.8, V � 107.5, Z � 1.4, p � 0.1539. No evidence of random
effect.

13.3 (a) Standard Cox model b � �1.035, SE (b) � 0.44, p � 0.0187.
(b) Gamma Frailty Model b � �1.305, SE (b) � 0.528, p � 0.0133.

Estimate of � � 0.713, SE � 0.622, Wald p-value of test of � � 0 �
0.2517, likelihood ratio p-value � 0.1286.

13.5 (a) See 13.1.
(b) Adjusted SE � 0.3852, test statistic � �1.035� 0.3852, p � .0072.
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