Seen
$$a, b \in \mathbb{R}$$
 is $0 \times b \times a$. Considerentos la elipse E dada por $\{(x,y) \in \mathbb{R}^2 \mid \frac{x^2}{a_L} + \frac{q^2}{b_L^2} = 1\}$; (con semiejes a, b)

Sean C la circunterenta dada por $x^2 + y^2 = a^2$, $R = \{(x,y) \mid x \neq 0\}$. Por similar tenemos Area $(C) = 4$ Area $(C \cap R)$ y similar to A rea $(E) = 4$ drea $(E \cap R)$. Sean $A_1 = A$ rea $(C \cap R)$ y similar to A rea $(E) = 4$ drea $(E \cap R)$. Sean $A_1 = A$ rea $(C \cap R)$ y similar to A rea $(E) = 4$ drea $(E \cap R)$. Sean $A_1 = A$ rea $(C \cap R)$ y similar to A rea $(E) = 4$ drea $(E \cap R)$ and $A_1 = A$ rea $(E \cap R)$ y similar to A rea $(E \cap R)$ y similar

à lin L(g, Pn) = b (Ta²) à n→∞ L(g, Pn) = a (Ta²)... Area (E) = 4 à (Ta²) = Trab.

In the second del Jesimo cilindro es

$$V = \int_{-\infty}^{\infty} \frac{1}{n} = \int_{-\infty}^{\infty} \left(\frac{1}{n} \right) \frac{1}{n} = \int_{-\infty}^{\infty} \left(\frac{1}{n}$$