Razonamiento deductivo válido Todo desarrollo matemático exige razonar y argumentar en forma válida. Sin embargo, es importante decir aquí que no hay una definición exacta de lo que significa demostrar una afirmación en matemáticas.

Definición 1. Un razonamiento deductivo es una colección finita de proposiciones $\varphi_1, \varphi_2, \varphi_3, ..., \varphi_n$, llamadas premisas o hipótesis, junto con la una proposición ψ , llamada conclusión, respecto de la cual se afirma que se deriva de las premisas.

Definición 2. Decimos que un razonamiento deductivo es válido si y sólo si de la verdad de las premisas se sigue la verdad de la conclusióin. Es decir, un razonamiento es válido si y sólo si no es posible que las premisas sean verdaderas y la conclusión falsa.

Es importante notar que de un razonamiento no se dice que es verdadero o falso, más bien que es válido o no. Las que pueden ser verdaderas o falsas son las proposiciones que forman parte del razonamiento y no el razonamiento en sí.

Teorema 1. Un razonamiento cuyas premisas sean $\varphi_1, \varphi_2, \varphi_3, ..., \varphi_n$ y conclusión sea ψ es válido si y sólo si la proposición

$$(\varphi_1 \wedge \varphi_2 \wedge \varphi_3 \wedge ... \wedge \varphi_n) \Rightarrow \psi$$

es una tautología

 $Demostración. (\Rightarrow).$

Supongamos que el razonamiento $(\varphi_1 \wedge \varphi_2 \wedge \varphi_3 \wedge ... \wedge \varphi_n) \Rightarrow \psi$ es válido. Recordemos que en la lógica matemática sólo hay dos valores de verdad y cualquier proposición es verdadera o falsa (y nunca ambas cosas a la vez). En particular la proposición $\varphi_1 \wedge \varphi_2 \wedge \varphi_3 \wedge ... \wedge \varphi_n$) es verdadera o es falsa (más no ambas). Veamos que sucede en cada caso.

a) Si $\varphi_1 \wedge \varphi_2 \wedge \varphi_3 \wedge ... \wedge \varphi_n$ es falsa, entonces, por la tabla de verdad del condicional,

Р	Q	$P \Rightarrow Q$
V	V	V
V	F	F
F	V	V
F	F	V

obtenemos que $(\varphi_1 \wedge \varphi_2 \wedge \varphi_3 \wedge ... \wedge \varphi_n) \Rightarrow \psi$ es verdadera.

b) Si $\varphi_1 \wedge \varphi_2 \wedge \varphi_3 \wedge ... \wedge \varphi_n$ es verdadera, entonces, por la tabla de verdad de la conjunción,

Р	Q	$P \wedge Q$
V	V	V
V	F	F
F	V	F
F	F	F

cada φ_i es verdadera. De aquí que todas las premisas del razonamiento son verdaderas y, como el razonamiento válido, se tiene que ψ es verdadera, pues de la verdad de las premisas se debe seguir la verdad de la conclusión. Dado que tanto $\varphi_1 \wedge \varphi_2 \wedge \varphi_3 \wedge ... \wedge \varphi_n$ como ψ son verdaderas, obtenemos que $(\varphi_1 \wedge \varphi_2 \wedge \varphi_3 \wedge ... \wedge \varphi_n) \Rightarrow \psi$ es verdadera.

En cualquiera de los dos casos se llega a que $(\varphi_1 \wedge \varphi_2 \wedge \varphi_3 \wedge ... \wedge \varphi_n) \Rightarrow \psi$ es verdadera, por lo que

$$(\varphi_1 \wedge \varphi_2 \wedge \varphi_3 \wedge ... \wedge \varphi_n) \Rightarrow \psi$$

es una tautología.

Ahora supongamos que $(\varphi_1 \wedge \varphi_2 \wedge \varphi_3 \wedge ... \wedge \varphi_n) \Rightarrow \psi$ es una tautología. Para ver que el razonamiento es válido, supongamos que las premisas son verdaderas, es decir, que cada φ_i es verdadera. Entonces según la tabla de verdad de la conjunción

Р	Q	$P \wedge Q$
V	V	V
V	F	F
F	V	F
F	F	F

 $\varphi_1 \wedge \varphi_2 \wedge \varphi_3 \wedge ... \wedge \varphi_n$ es verdadera. Ahora como por suposición $(\varphi_1 \wedge \varphi_2 \wedge \varphi_3 \wedge ... \wedge \varphi_n) \Rightarrow \psi$ es verdadera en cualquier instancia. Dado que tanto $(\varphi_1 \wedge \varphi_2 \wedge \varphi_3 \wedge ... \wedge \varphi_n \text{ como } (\varphi_1 \wedge \varphi_2 \wedge \varphi_3 \wedge ... \wedge \varphi_n) \Rightarrow \psi$ son verdaderas, se tiene forzosamente que ψ es verdadera. Es decir de la verdad de las premisas del razonamiento se siguio la verdad de la conclusión. Por lo tanto, el razonamiento es válido.