Conjuntos finitos

En primer lugar, dos conjuntos entre los cuales se pueda establecer una aplicación biyectiva deberían tener el mismo tamaño. Además, si $n \in \mathbb{N}$, el conjunto $\{k \in \mathbb{N} \mid k \leq n\}$ debería ser "finito" y tener exactamente n elementos.

Decimos que un conjunto A es equipotente a un conjunto B cuando existe una aplicación biyectiva de A sobre B, en cuyo caso escribimos $A \sim B$. Es evidente que cualquier conjunto A verifica que $A \sim A$, puesto que la identidad en A es una aplicación biyectiva de A sobre sí mismo, luego la equipotencia entre conjuntos es un relación reflexiva. También es simétrica, es decir, $A \sim B \Rightarrow B \sim A$, pues si $f: A \to B$ es una aplicación biyectiva, su inversa $f^{-1}: B \to A$ también es biyectiva. Finalmente, también es una relación transitiva, es decir, de $A \sim B$ y $B \sim C$ se deduce que $A \sim C$, puesto que si $f: A \to B$ y $g: B \to C$ son aplicaciones biyectivas, la composición $g \circ f: A \to C$ también es biyectiva.

Se dice que un conjunto A es finito cuando existe un número natural n tal que

$$A \sim \{1, 2, \dots, n\}$$

En este caso, se dice que A tiene n elementos.

Para cada número natural n consideramos el conjunto

$$I_n = \{k \in \mathbb{N} \mid k \le n\}$$

Proposición 1. Si $m, n \in N$, entonces

$$I_m \sim I_n \Rightarrow m = n$$

Teorema 1. Sean $m, n \in N$. Si $m \neq n$, entonces no existe una biyección entre I_m e I_n .

Demostración. Sean $m, n \in N$ tales que $m \neq n$. Como $m \neq n$ por la tricotomía del orden < tenemos que m < n o n < m.

Se demostrará por iducción sobre m que $\forall n \in \mathbb{N}$, si m < n, entonces no existe una biyección $g: I_m \to I_n$.

Base Supongamos que m=0 y sea n tal que 0 < n. Sabemos que $I_0 = \emptyset$. Como $I_n \neq \emptyset$, pues $n \in I_n$ dado 0 < n, no hay una función $g: I_0 \to I_n$ que pueda ser sobre. Así, no existe una biyección entre $I_0 \in I_n$.

Hipótesis de inducción Supongamos que para toda $n \in \mathbb{N}$, si m < n, entonces no existe una biyección entre I_m e I_n .

Supongamos ahora que si existe una biyección $f:I_{m+1}\to I_n$ para algún n tal que m+1< n. Tenemos que $f(m+1)\in I_n$, sin perdida de generalidad, digamos que f(m+1)=n. Esto lo podemos suponer, pues en el caso que f(m+1)=k con $k\neq n$, definimos $g:I_n\to I_n$ como la función que intercambia k con n y deja fijos a los otros elementos de I_n , es decir

$$g(j) = \begin{cases} k & si \quad j = n \\ n & si \quad j = n \\ j & si \quad j \neq k \quad y \quad j \neq n \end{cases}$$

y trabajamos con la biyección $g \circ f$ en vez de trabajar con f.

Ahora como n > m+1, n > 0. Entonces, restringiendo el dominio de f a I_m y el codominio de f a

 I_{n-1} , obtenemos la función $h:I_m \to I_{n-1}$ definida como h(i)=f(i). Como h es la restricción de la función inyectiva, esta función es a su vez inyectiva. Además, dado que f es sobre en I_n , f(m+1)=n y el codominio de h es $I_{n-1}=I_n-\{n\}$, concluimos que h es sobre. Asi, $h:I_m \to I_{n-1}$ es biyectiva. Pero como m< n-1, pues m+1< n, esto contradice la hipótesis de inducción que asegura que para todo natural mayor que m dicha biyección no puede existir.

Por lo tanto, no puede existir una biyección $f:I_{m+1}\to I_n$ para todo n>m+1

Corolario 1. Si A es un conjunto finito, entonces existe un único $n \in \mathbb{N}$ tal que hay una biyección entre I_n y A.

Demostración. Sea A un conjunto finito, entonces por definición de finito existe $n \in \mathbb{N}$ y una función biyectiva $f: I_n \to A$. Supongamos que para alguna $m \in \mathbb{N}$ existe una biyección $g: I_m \to A$. Tenemos que $f^{-1}A \to I_n$ también es una función biyectiva. Por lo tanto, $f^{-1} \circ g: I_m \to I_n$ sería una biyección, pues la composición de funciones biyectivas es biyectiva. Así por la contrapuesta del teorema anterior, m = n. Concluimos que para todo conjunto finito A, existe un único $n \in \mathbb{N}$ tal que hay una biyección entre I_n y A.

Los conjuntos que no son finitos se llaman infinitos

Conjuntos numerables

Definición 1. Sea A un conjunto y n un número natural positivo. Diremos que A tiene n elementos si existe una función biyectiva

$$f: \{1, 2, \dots, n\} \to A$$

En este caso escribiremos

$$|A| = n$$

El símbolo |A| se lee el número de elementos de A, también se dice la cardinalidad de |A|.

Definición 2. Sean A, B conjuntos. Decimos que A y B tienen el mismo cardinal si existe una función biyectiva $f: A \to B$. En este caso denotamos

$$|A| = |B|$$

Definición 3. Sea A un conjunto. Decimos que

- (a) A es finito, si tiene el mismo cardinal que $\{1, 2, \ldots, n\}$, para algún $n \in \mathbb{N}$.
- (b) A es numerable, si tiene el mismo cardinal que \mathbb{N} .
- (c) A es contable, si es finito o numerable.
- (d) A es no-numerable, si no es contable.
- (e) A es infinito, si no es finito

Lema 1. Un conjunto A no vacío es numerable si, y sólo si, existe $g: \mathbb{N} \to A$ sobreyectiva.

Demostración. Supongamos que A es numerables y sea $f:A\to\mathbb{N}$ inyectiva. Sea $b\in A$ fijo. La función $g:\mathbb{N}\to A$ definida por

$$g(f(a)) = a \quad \forall \ a \in A$$
$$g(n) = b \quad \forall \ n \in \mathbb{N} \setminus f(A) \quad (si \ f(A) \neq \mathbb{N})$$

es claramente sobreyectiva.

Supongamos ahora que existe $g: \mathbb{N} \to A$ sobreyectiva. La función $f: A \to \mathbb{N}$ definida por

$$f(a) = \min\{n \in \mathbb{N} \mid g(n) = a\}$$

es invectiva

Teorema 2. Todo subconjunto infinito E, de un conjunto numerable A, es numerable

Demostración. Como A es numerable, existe una biyección

$$f: \mathbb{N} \to A$$

Ahora se define la función $g: \mathbb{N} \to E$ recursivamente de la siguiente manera

$$\begin{split} g(1) &= f\left(\min\left(f^{-1}(E)\right)\right) \\ g(2) &= f\left(\min\left(f^{-1}(E)\right) \setminus \{g(1)\}\right) \\ &\vdots \\ g(n) &= f\left(\min\left(f^{-1}(E)\right) \setminus \{g(1), g(2), \dots, g(n-1)\}\right) \end{split}$$

Para ver que g es inyectiva, supongamos que $m \neq n$ (digamos m < n). Debe ocurrir que $g(m) \neq g(n)$. Tenemos que

$$g(n) \in f\left(\min\left(f^{-1}(E)\right) \setminus \{g(1), g(2), \dots, g(n-1)\}\right)$$

$$= E \setminus \{g(1), g(2), \dots, g(n-1)\}$$

$$\subset E \setminus \{g(m)\}$$

Entonces $g(m) \neq g(n)$.

Para ver que g es sobre, supongamos $e \in E$. Entonces e = f(N), para algún $N \in \mathbb{N}$ (f es sobre). Tenemos que

$$f^{-1}(f(\{1,2,...,-N\})\cap E)\subset f^{-1}(f(\{1,2,...,-N\})=\{1,2,...,N\}$$

por lo que podemos ordenar los elementos de $f^{-1}(f(\{1,2,...,-N\})\cap E)$ de la siguiente manera

$$f^{-1}(f(\{1,2,...,-N\}) \cap E) = \{n_1,n_2,...,n_k\}$$

Como e = f(N), tenemos que $n_k = N$. Además por construcción

$$g(1) = f(n_1)$$

$$g(2) = f(n_2)$$

$$\vdots$$

$$g(k) = f(n_k) = f(N) = e$$

entonces g(k) = e, por lo que g es inyectiva

Proposición 2. La unión numerable de conjuntos numerables es numerable. Es decir que si I es un conjunto numerable y A_i es un conjunto numerable para cada $i \in I$, entonces el conjunto

$$A = \bigcup_{i \in I} A_i$$

es un conjunto numerable.

Demostración. Podemos suponer que $I \neq \emptyset \neq A_I$. Existen funciones

$$q: \mathbb{N} \to I, \quad f_i: \mathbb{N} \to A_i, \ \forall \ i \in I$$

sobreyectivas.

Definimos $h: \mathbb{N} \times \mathbb{N} \to A$ dada por

$$h(m,n) = f_{g(n)}(m)$$

Veamos que h es sobreyectiva. Dado $a \in A$, elegimos $i \in I$ tal que $a \in A_i$, entonces elegimos $m, n \in \mathbb{N}$ tales que

$$g(n) = i$$
 y $f_i(m) = a$

Al ser $\mathbb{N} \times \mathbb{N}$ numerable se puede construir una función de \mathbb{N} en $\mathbb{N} \times \mathbb{N}$, y en consecuencia existe también una función de \mathbb{N} sobre A. Por tanto A es numerable

Teorema 3. (Teorema de Banach). Si M y N son conjuntos, y $f: M \to N$ y $g: N \to M$ functiones, entonces existen $A \subset M$ y $B \subset N$ tales que f(A) = B y g(N - B) = M - A

Demostración. Consideremos la función $\varphi:P(M)\to P(M)$ dada por

$$\varphi(C) = M - (q(N - f(C)))$$

Si probamos que φ tiene un punto fijo, es decir que existe $A \in P(M)$ tal que $\varphi(A) = A$, entonces A y B = f(A) satisfacen la tesis. En efecto

$$A = \varphi(A)$$

$$= M - (g(N - f(A)))$$

$$= M - (g(N - B))$$

De lo anterior obtenemos que

$$g(N-B) = M-A$$

Basta entonces probar que φ tiene un punto fijo.

Veamos primero φ es monótona creciente en $(P(M), \subset)$.

Sean $A_1,A_2\in P(M)$ tales que $A_1\subset A_2,$ entonces tenemos la siguiente situación

$$f(A_1) \subset f(A_2) \Rightarrow N - f(A_1) \supset N - f(A_2)$$

$$\Rightarrow g(N - f(A_1)) \supset g(N - f(A_2))$$

$$\Rightarrow M - g(N - f(A_1)) \subset M - g(N - f(A_2))$$

$$\Rightarrow \varphi(A_1) \subset \varphi(A_2).$$

Notemos ahora que

$$\Gamma = \{ G \in P(M) \mid \varphi(G) \subset G \} \neq \emptyset$$

Esto es cierto pues $M \in \Gamma$. Sea $A = \bigcap_{G \in \Gamma} G$. Queremos ver que $A \in \Gamma$ con lo que $\varphi(A) \subset A$.

Sabemos que $A \subset G$, $\forall G \in \Gamma$. De aquí que $\varphi(A) \subset \varphi(G)$, $\forall G \in \Gamma$ por ser φ monótona creciente. Además, por la definición de Γ , obtenemos que $\varphi(A) \subset G$, $\forall G \in \Gamma$. Por lo tanto $\varphi(A) \subset A$. Resta ver que $A \subset \varphi(A)$. Como $\varphi(A) \subset A$ y φ es monótona creciente, tenemos que $\varphi(\varphi(A)) \subset \varphi(A)$.

Luego $\varphi(A) \in \Gamma$. Es decir, $\varphi(A)$ es uno de los G que participan de la definición de A y entonces $A \subset \varphi(A)$. Luego, existe $A \in P(M)$ tal que $A = \varphi(A)$

Teorema 4. (Teorema de Cantor-Bernstein). Dados dos conjuntos M y N. Si existen funciones f: $M \to N$ y $g: N \to M$ tales que f y g son inyectivas, entonces existe una biyección de M a N.

Demostración. Vamos a construir una función biyectiva $h: M \to N$. Por el teorema de Banach, existen $A \subset M$ y $B \subset N$ tales que f(A) = B y g(N - B) = M - A. Sea $\psi: (M - A) \to (N - B)$ la función inversa de g restringida a N - B, y sea $h: M \to N$ definida por

$$h(x) = \begin{cases} f(x) & si & x \in A \\ \psi(x) & si & x \in M - A \end{cases}$$

Veamos que h es inyectiva. Sean $x_1, x_2 \in M$, con $x_1 \neq x_2$. Si $x_1, x_2 \in A$, tenemos que $f(x_1) \neq f(x_2)$ por ser f inyectiva y entonces $h(x_1) \neq h(x_2)$. Si $x_1, x_2 \in M - A$, tenemos que $\psi(x_1) \neq \psi(x_2)$ por ser ψ biyectiva y entonces $h(x_1) \neq h(x_2)$. Por último, si $x_1 \in A$ y $x_2 \in M - A$, sucede que $f(x_1) \in B$ y $\psi(x_2) \in N - B$, por lo que resulta

$$f(x_1) = h(x_1) \neq h(x_2) = \psi(x_2)$$

luego h es inyectiva.

Probemos ahora que h es sobre. Sea $y \in N$. Si $y \in B$, existe $x \in A$ tal que f(x) = y. Es decir, existe $x \in M$ tal que h(x) = y. Si $y \in N - B$, entonces $g(y) \in M - A$, luego $\psi(g(y)) = y$. Es decir, h(g(y)) = y, por lo que h resulta ser sobre.

Hemos probado entonces que existe $h: M \to N$ biyectiva

Como consecuencia del teorema anterior se tiene

Corolario 2.

 $\mathbb{N} \times \mathbb{N}$ es numerable

Demostración. Consideremos la función $g: \mathbb{N} \times \mathbb{N} \to \mathbb{N}$ dada por

$$q(m,n) = 2^m 3^n$$

Esta función es inyectiva pues al ser 2 y 3 números primos, la igualdad $2^m 3^n = 2^p 3^q$ con $m, n, p, q \in \mathbb{N}$ implica que m = p y n = q.

Corolario 3. Si A y B son conjuntos numerables, entonces $A \times B$ es numerable

Demostraci'on. Como A y B son numerables, existen funciones inyectivas $\varphi:A\to\mathbb{N}$ y $\psi:B\to\mathbb{N}$. Definiendo

$$f(a,b) = (\varphi(a), \psi(b))$$

para todo $(a,b) \in A \times B$, obtenemos una función inyectiva $f: A \times B \to \mathbb{N} \times \mathbb{N}$, luego $A \times B$ es numerable, por serlo $\mathbb{N} \times \mathbb{N}$