Teorema de Arzelá-Ascoli

Definición 1. Un subconjunto A de X es relativamente compacto en X si su cerradura \overline{A} en X es compacta.

Los subconjuntos relativamente compactos de \mathbb{R}^n son precisamente los conjuntos acotados.

Corolario 1. Un subconjunto A de un espacio métrico completo X es relativamente compacto en X si y sólo si es totalmente acotado.

Sean (K, d_k) un espacio métrico compacto y (X, d_X) un espacio métrico. Consideremos el espacio de funciones continuas

$$C(K,X) = \{f: K \to X \mid f \text{ es continua}\}$$

con la métrica uniforme

$$d_{\infty} = \max_{z \in K} d_X(f(z), g(z))$$

Definición 2. Un subconjunto \mathcal{H} de C(K,X) es equicontinuo en el punto $z_0 \in K$ si, para cada $\epsilon > 0$ existe $\delta > 0$ (que depende de ϵ y de z_0) tal que, para toda $f \in \mathcal{H}$,

$$d_X(f(z), f(z_0)) < \epsilon \text{ si } d_K(z, z_0) < \delta$$

H es equicontinuo si lo es en todo punto punto de K.

Denotaremos por

$$B_{\infty}(f_0, r) = \{ f \in C(K, X) \mid d_{\infty}(f, f_0) < r \}$$

a la bola abierta en C(K, X) con centro f_0 y radio r.

Teorema 1. Arzelá-Ascoli

Sea K un espacio métrico compacto y X un espacio métrico completo. Un subconjunto $\mathcal H$ de C(K,X) es relativemente compacto en C(K,X) si y solo si $\mathcal H$ es equicontinuo y los conjuntos

$$\mathcal{H}(z) = \{ f(z) \mid f \in \mathcal{H} \}$$

son relativamente compactos en X para cada $z \in K$

 $Demostración. (\Rightarrow)$

Supongamos que \mathcal{H} es relativamente compacto en C(K,X). Entonces \mathcal{H} es totalmente acotado. En consecuencia, dada $\epsilon > 0$, existen $g_1, ..., g_m \in \mathcal{H}$ tales que

$$\mathcal{H} \subset B_{\infty}\left(g_1, \frac{\epsilon}{3}\right) \cup \cdots \cup B_{\infty}\left(g_m, \frac{\epsilon}{3}\right)$$

Por tanto, $g_i(z) \in \mathcal{H}(z)$ para i = 1, ..., m, y

$$\mathcal{H}(z) \subset B_X\left(g_1(z), \frac{\epsilon}{3}\right) \cup \cdots \cup B_X\left(g_m(z), \frac{\epsilon}{3}\right) \ \forall \ z \in K$$

Esto prueba que $\mathcal{H}(z)$ es totalmente acotado.

Como X es completo, según resultados anteriores $\mathcal{H}(z)$ es relativamente compacto en X para todo $z \in K$.

Por otra parte como K es compacto, cada g_i es uniformemente continua. En consecuencia, existe $\delta_i > 0$ tal que, para cualesquiera $y, z \in K$,

$$d_X(g_i(y), g_i(z)) < \frac{\epsilon}{3}$$
 si $d_K(y, z) < \delta_i$

Definimos $\delta = \min\{\delta_1, ..., \delta_m\}$. Dada $f \in \mathcal{H}$ existe $i \in \{1, ..., m\}$ tal que

$$d_{\infty}(f,g_i) < \frac{\epsilon}{3}$$

tenemos

$$d_X(f(y), f(z)) \le d_X(f(y), g_i(y)) + d_X(g_i(y), g_i(z)) + d_X(g_i(z), f(z)) < \epsilon$$

Esto prueba que $\mathcal H$ es equicontinuo.

Supongamos ahora que \mathcal{H} es equicontinuo y que $\mathcal{H}(z)$ es relativamente compacto en X para todo $z \in K$. Queremos ver que \mathcal{H} es relativamente compacto en C(K,X). Como X es completo, C(K,X) también lo es, vamos a probar que \mathcal{H} es totalmente acotado.

Sea $\epsilon > 0$. Para cada $z \in K$ tomemos $\delta_z > 0$ tal que, $\forall f \in \mathcal{H}$,

$$d_X(f(y), f(z)) < \frac{\epsilon}{4} \quad si \ d_K(y, z) < \delta_z \tag{1}$$

Como K es compacto, existen $z_1, ..., z_m \in K$ tales que

$$K \subset B_K(z_1, \delta_{z_1}) \cup \dots \cup B_K(z_m, \delta_{z_m})$$
(2)

y, como cada $\mathcal{H}(z_i)$ es totalmente acotado, existen $x_1,...,x_k \in X$ tales que

$$\mathcal{H}(z_1) \cup \cdots \cup \mathcal{H}(z_m) \subset B_X\left(x_1, \frac{\epsilon}{4}\right) \cup \cdots \cup B_X\left(x_k, \frac{\epsilon}{4}\right)$$
 (3)

Denotemos por S al conjunto (finito) de todas las funciones

$$\sigma: \{1, ..., m\} \to \{1, ..., k\}$$

para cada $\sigma \in S$ definimos

$$\mathcal{H}_{\sigma} = \{ f \in \mathcal{H} \mid f(z_i) \in B_X \left(x_{\sigma_i}, \frac{\epsilon}{4} \right) \quad \forall \ i = 1, ..., m \}$$

Se sigue de (3) que, para cada $f \in \mathcal{H}$ y cada $i \in \{1, ..., m\}$, existe $\sigma_i \in \{1, ..., k\}$ tal que

$$f(z_i) \in B\left(x_{\sigma_i}, \frac{\epsilon}{4}\right)$$

En consecuencia

$$\mathcal{H} \subset \bigcup_{\sigma \in S} \mathcal{H}_{\sigma} \tag{4}$$

Probaremos ahora que cada \mathcal{H}_{σ} está contenida en una bola de radio ϵ con centro en \mathcal{H} . Sean $f, g \in \mathcal{H}_{\sigma}$ y sea $z \in K$. Se sigue de (2) que existe $i \in \{1, ..., m\}$ tal que

$$d_K(z,z_i) < \delta_{z_i}$$

y, en consecuencia, (1) implica que

$$d_X(h(z),h(z_i))<\frac{\epsilon}{4}$$

para toda $h \in \mathcal{H}$. Por tanto,

$$d_X(f(z), g(z)) \le d_X(f(z), f(z_i)) + d_X(f(z_i), x_{\sigma(i)}) + d_X(g(z_i), x_{\sigma(i)}) + d_X(g(z), g(z_i)) < \epsilon$$

Tomando el máximo sobre toda $z \in K$ concluimos que

$$d_{\infty}(f,g) < \epsilon$$

para toda $f,g\in\mathcal{H}_{\sigma}$. En consecuencia, para cualquier elección de $g_{\sigma}\in\mathcal{H}_{\sigma}$, se cumple que

$$\mathcal{H}_{\sigma} \subset B_{\infty}(g_{\sigma}, \epsilon)$$

de (3) y (4) se sigue que

$$\mathcal{H} \subset \bigcup_{\sigma \in S} B_{\infty}(g_{\sigma}, \epsilon)$$

Por tanto, \mathcal{H} es totalmente acotado