Análisis Matemático I Tarea 4

Tarea 4 fecha de entrega 9 de marzo 2018

1.-En $\mathbb R$ definimos la distancia

$$d(a,b) = \frac{|a-b|}{1+|a-b|}$$

(a) Determinar las bolas abiertas.

2.-Probar que la cerradura $\overline{B(x_0,\epsilon)}$ de una bola abierta $B(x_0,\epsilon)$ en un espacio métrico puede ser distinta de la bola cerrada $\overline{B}(x_0,\epsilon)$

3.-Demostrar que si X es un espacio métrico, $A\subset X$ y $r\in\mathbb{R}^+,$ entonces

$$V_r = \{ x \in X \mid d(x, A) \le r \}$$

es cerrado.

Donde

$$d(x,A) = \inf_{y \in A} d(x,y)$$

4.-Para $a < b \in \mathbb{R}$ sea X = C[a,b] con la norma

$$||f||_{\infty} = \sup_{x \in [a,b]} |f(x)|$$

Se define el conjunto

$$O = \{ f \in X \mid \forall \ x \in [a, b] \ f(x) > 0 \}$$

pruebe que el conjunto O es abierto.

5.-Demuestre que para cada familia $\{A_{\alpha}\}_{{\alpha}\in\Lambda}$ de subconjuntos de un espacio métrico se cumple

$$\overline{\bigcup_{\alpha\in\Lambda}\overline{A_\alpha}}=\overline{\bigcup_{\alpha\in\Lambda}A_\alpha}$$

6.-Demuestre las siguientespropiedades del interior de un conjunto:

- 1. $Int(A \cap B) = Int(A) \cap Int(B)$
- 2. $\operatorname{Int}(A^c) = (\overline{A})^c$
- 3. $(Int(A))^c = \overline{A^c}$
- 4. Es cierto que $Int(A \cup B) = Int(A) \cup Int(B)$ para A, B arbitrarios

7.-Sean X, Y espacios métricos y sea $\phi: X \to Y$ una función. Demuestre que ϕ es continua si y solo si

$$\overline{\phi^{-1}(B)} \subset \phi^{-1}(\overline{B})$$

para cada $B \subset Y$