Funciones medibles

Ejemplo Sea (X, S) un espacio medible. Para $A \subset X$ definimos la función característica de A denotada $\chi_A : X \to \{0, 1\}$, como sigue

$$\chi_A = \begin{cases} 1 & si & x \in A \\ 0 & si & x \notin A \end{cases}$$

Entonces χ_A es S-medible $\Leftrightarrow A \in S$

Demostraci'on. (\Rightarrow). Supongamos que χ_A es una función medible, entonces

$$A = \{x \in X \mid |\chi_A(x) > 0\}$$

pertence a S.

 (\Leftarrow) . Supongamos que $A \in S$ entonces el conjunto

$$\{x \in X \mid \chi_A(x) > c\} = \begin{cases} \emptyset & si & c \ge 1\\ A & si & 0 \le c < 1\\ X & si & c < 0 \end{cases}$$

En cualquier caso, se tiene $\{x \in X \mid \chi_A(x) > c\}$ pertenece a S.

Ejemplo Sea (X,S) un espacio medible. Una función $f:X\to\mathbb{R}$ se llama S-simple si s toma solamente un número finito finito de valores y es S-medible. A continuación describiremos a estas funciones. Sean $A_1,A_2,...,A_n\in S$ mutuamente disjuntos y $y_1,y_2,...,y_m\in\mathbb{R}$. Entonces la función

$$f(x) = \sum_{j=1}^{m} y_j \chi_{A_j}(x)$$

es medible.

Demostración. Sean

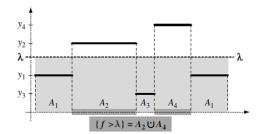
$$A_i = f^{-1}(y_i) = \{x \in X \mid f(x) = y_i\}$$

entonces $A_i \in S$, i = 1, ..., n, $A_i \cap A_j = \emptyset$ $((i \neq j))$

$$X = \bigcup_{i=1}^{n} A_i \quad y \quad f = \sum_{i=1}^{n} y_i \chi_{A_i}$$

Inversamente, si f es una combinación lineal de funciones características de conjuntos ajenos de S, entonces es S-medible. Cocretamente, si $f = \sum_{i=i}^n y_i \chi_{A_i}$ entonces para todo $\lambda \in \mathbb{R}$

$$\{x \in X \mid f(x) > \lambda\} = \begin{cases} \emptyset & si & y_i \leq \lambda \ \forall \ i = 1, ...n \\ \bigcup \{A_i \mid y_i > \lambda\} & en \ caso \ contrario \end{cases}$$



por lo tanto es S-medible.

Así pues: f es S-simple si y sólo si f es una combinación lineal de funciones características de conjuntos ajenos en S.

Ejemplo Toda función monótona $f: \mathbb{R} \to \mathbb{R}$ es $B(\mathbb{R})$ medible

Demostración. Si f es monótona creciente, entonces

$$\{x \in \mathbb{R} \mid f(x) > c\}$$

es necesariamente de alguna de las siguientes formas

$$(a, +\infty), [a, +\infty), (a \in \mathbb{R}), \emptyset, \mathbb{R}$$

los cuáles son borelianos.

Ejemplo Sean (X,S) un espacio medible, $f:X\to\mathbb{R}$ una función S-medible y $\varphi:\mathbb{R}\to\mathbb{R}$ una función $B(\mathbb{R})$ medible, entonces $\varphi\circ f:X\to\mathbb{R}$ es S-medible

Demostraci'on.

$$(\varphi \circ f)^{-1}(B(\mathbb{R})) = f^{-1}(\varphi^{-1}(B(\mathbb{R}))) \subset f^{-1}(B(\mathbb{R})) \subset S$$

Medidas sobre σ -álgebras

Definición 1. Sea (X, A) un espacio medible. Una medida en (X, A) es una función $\mu : X \to \mathbb{R}$ con las siguientes propiedades

- a) $\mu(\emptyset) = 0$
- b) $\mu(E) \geq 0, \ \forall \ E \in \mathcal{A}$
- c) μ es sigma aditiva, es decir, si (E_n) es una sucesión de elementos disjuntos entre si en A, entonces

$$\mu\left(\bigcup_{n=1}^{\infty} E_n\right) = \sum_{n=1}^{\infty} \mu(E_n)$$

$$\mu\left(\bigcup_{j\in\mathbb{N}} E_j\right) = \sum_{j\in\mathbb{N}} \mu(E_j)$$

La terna X, \mathcal{A}, μ se llama espacio de medida.

Proposición 1. Sea X, A, μ un espacio de medida y $A, B \in A$. Entonces

a)
$$A \cap B = \emptyset \implies \mu(A \cup B) = \mu(A) + \mu(B)$$

b)
$$A \subset B \Rightarrow \mu(A) \leq \mu(B)$$

c)
$$A \subset B$$
, $\mu(A) < \infty \Rightarrow \mu(B \setminus A) = \mu(B) - \mu(A)$

d)
$$\mu(A \cup B) + \mu(A \cap B) = \mu(A) + \mu(B)$$

$$e)$$
 $\mu(A \cup B) \le \mu(A) + \mu(B)$

Demostración. Tenemos que

a) Sean $A_1 = A$, $A_2 = B$, $A_3 = A_4 = \cdots = \emptyset$. Entonces

$$\mu(A \cup B) = \mu\left(\bigcup_{j \in \mathbb{N}} A_j\right) = \sum_{j \in \mathbb{N}} \mu(A_j) = \mu(A) + \mu(B) + \mu(\emptyset) \cdots = \mu(A) + \mu(B)$$

b) Si $A \subset B$ tenemos que $B = A \cup (B \setminus A)$ y por (a)

$$\mu(B) = \mu(A \cup (B \setminus A)) = \mu(A) + \mu(B \setminus A) \ge \mu(A)$$

c) Según (b) $A \subset B$ implica

$$\mu(B) = \mu(A) + \mu(B \setminus A)$$

por tanto

$$\mu(B \setminus A) = \mu(B) - \mu(A)$$

d) Para todo $A, B \in \mathcal{A}$ tenemos

$$A \cup B = (A \setminus (A \cap B)) \cup (A \cap B) \cup (B \setminus (A \cap B))$$

usando (1) se tiene

$$\mu(A \cup B) = \mu(A \setminus (A \cap B)) + \mu(A \cap B) + \mu(B \setminus (A \cap B))$$

por tanto

$$\mu(A \cup B) + \mu(A \cap B) = \mu(A \setminus (A \cap B)) + \mu(A \cap B) + \mu(B \setminus (A \cap B)) + \mu(A \cap B)$$

= \(\mu(A) - \mu(A \cap B) + \mu(A \cap B) + \mu(B) - \mu(A \cap B) + \mu(A \cap B) + \mu(A \cap B)
= \mu(A) + \mu(B)

e) por (d) se tiene

$$\mu(A) + \mu(B) = \mu(A \cup B) + \mu(A \cap B) \ge \mu(A \cup B)$$