Tarea 2 fecha de entrega 21 de septiembre 2018

1.-Sea (X,\mathcal{A}) un espacio de medida. Si μ, v son dos medidas en (X,\mathcal{A}) . Mostrar que para toda $a,b\geq 0$ la función

$$\rho(A) = a\mu(A) + b\nu(A)$$

para $A \in \mathcal{A}$ es una medida.

2.-Sea (X, \mathcal{A}, μ) un espacio de medida y sea $F \in \mathcal{A}$. Mostar que si $A \in \mathcal{A}$ entonces $\mu(A \cap F)$. Define una medida.

3.-Pruebe que si A y B son conjuntos Lebesgue medibles entonces

$$\mu^*(A) + \mu^*(B) = \mu^*(A \cap B) + \mu^*(A \cup B)$$

4.-Si $\{E_n\}$ una sucesión arbitraria de conjuntos medibles y disjuntos, pruebe que

$$\mu^* \left(\bigcup_{i=1}^{\infty} E_i \right) = \sum_{i=1}^{\infty} \mu^*(E_i)$$

5.-Sea $\{E_n\}$ una sucesión de conjuntos medibles. Pruebe que

a) Si
$$E_n \subseteq E_{n+1}$$
 para todo n y $E = \bigcup_{n=1}^{\infty} E_n$, entonces

$$\mu^*(E) = \lim_{n \to \infty} \mu^*(E_n)$$

b) Supongamos que
$$\mu^*(E_1)$$
 es finita. Si $E_{n+1}\subseteq E_n$ para toda n y $E=\bigcap_{n=1}^\infty E_n$ entonces

$$\mu^*(E) = \lim_{n \to \infty} \mu^*(E_n)$$