Teorema 1. Principio del Buen Orden Si A es un subconjunto de números naturales, entonces A tiene un elemento mínimo.

Demostraci'on. Supongamos que A no tiene un elemento mínimo. Sea $B \subset \mathbb{N}$ tal que $1, 2, 3, ..., n \notin A$ entonces $1, 2, ..., n \in B$

- (1) Se tiene que $1 \in B$ pues si $1 \in A$, A tendría un elemento mínimo.
- (2) Si $1, 2, 3, ..., k \notin A$ entonces $k + 1 \notin A$ pues de otra forma k + 1 sería el elemento mínimo de A. Por lo tanto $k + 1 \in B$ y de esta manera B es inductivo y por tanto $\mathbb{N} \subset B$ y en consecuencia $A = \emptyset$

Propiedad Arquimediana

Definición 1. En un campo ordenado F, decimos que F es arquimediano si satisface

$$\forall x \in F, \exists n \in \mathbb{N} \ tal \ que \ n > x$$

Teorema 2. Sea F un campo ordenado. Las siguientes propiedades son equivalentes a la propiedad arquimediana

(a)
$$\forall x > 0 \ \exists n \in \mathbb{N} \ tal \ que \ n > x$$

(b) Si
$$a > 0$$
 entonces $\forall x \in F, \exists n \in \mathbb{N} \ tal \ que \ na > x$

(c)
$$\forall \epsilon > 0, \exists n \in \mathbb{N} \ tal \ que \ \frac{1}{n} < \epsilon$$

Demostraci'on. $a \Rightarrow propiedad arquimediana$

tenemos que

$$\forall x \in F$$
, $x \neq 0$, se cumple $x > 0$ ó $x < 0$

Caso x > 0

En este caso por hipotesis

$$\forall \ x>0 \ \exists \ n \in \mathbb{N} \ tal \ que \ n>x$$

Caso x < 0

En este caso se tiene -x > 0 y por hipotesis

$$\forall -x>0 \ \exists \ n \in \mathbb{N} \ tal \ que \ n>-x \ \Rightarrow \ n>-x>x \ \Rightarrow \ n>x$$

En el caso de x=0 sabemos que 1>0 por lo tanto $\exists \ n\in\mathbb{N} \ tal \ que \ n>x$ por lo tanto $\forall \ x\in F, \ \exists \ n\in\mathbb{N} \ tal \ que \ n>x$

 $propiedad \ arguimediana \Rightarrow b$

Supongamos que F satisface la propiedad arquimediana y a > 0. Entonces $\forall x \in F$ se tiene que $\frac{x}{a} \in F$ y por la propiedad arquimediana

$$\exists n \in \mathbb{N} \ tal \ que \ n > \frac{x}{a} \ y \ como \ a > 0 \ na > x$$

 $b \Rightarrow c$

Supongamos que se cumple

Si
$$a > 0$$
 entonces $\forall x \in F$, $\exists n \in \mathbb{N}$ tal que $na > x$

Sea $\epsilon > 0 \implies \frac{1}{\epsilon} > 0$ tomando $x = \frac{1}{\epsilon}$

$$\exists \ n \in \mathbb{N} \ tal \ que \ n > x = \frac{1}{\epsilon} \ \Rightarrow \ \epsilon > \frac{1}{n}$$

 $c \Rightarrow a$

Supongamos que se cumple

$$\forall \ \epsilon > 0, \ \exists \ n \in \mathbb{N} \ \ tal \ \ que \ \ \frac{1}{n} < \epsilon$$

si $\epsilon > 0$ entonces $\epsilon^{-1} > 0$ y podemos tomar $x = \epsilon^{-1}$ por lo tanto según (c)

$$\exists \ n \in \mathbb{N} \ tal \ que \ \frac{1}{n} < \epsilon \ \Rightarrow \ \frac{1}{\epsilon} < n \ \Rightarrow \ x < n$$

por lo tanto

$$\forall x > 0, \exists n \in \mathbb{N} \ tal \ que \ n > x$$