Propiedad de Completez (Parte 2)

Definición 1. (1) Si A es un subconjunto de un campo ordenado F y $u \in F$, se dice que es una cota superior de A si,

$$\forall x \in A \text{ se cumple } x \leq u$$

(2) Análogamente, Si A es un subconjunto de un campo ordenado F y $u \in F$, se dice que es una cota inferior de A si,

$$\forall x \in A \text{ se cumple } x \geq u$$

(3) Si A es un subconjunto de un campo ordenado F y $u \in F$, se dice que u es un máximo de A si,

$$u \in A$$
, $y \ \forall \ x \in A$ se cumple $x \leq u$

(4) Si A es un subconjunto de un campo ordenado F y $u \in F$, se dice que u es un mínimo de A si,

$$u \in A$$
, $y \ \forall \ x \in A$ se cumple $x \ge u$

Proposición 1. Todo subconjunto no vacio y finito de un campo ordenado F, tiene un elemento máximo

Demostración. Sea $S \subset F$, $S \neq \emptyset$ y S finito. Esto es existe $n \in \mathbb{N}$ tal que

$$S = \{x_1, x_2, ..., x_n\}$$

Para demostrar que S tiene un elemento máximo procedemos por induccion sobre el número de elementos de S.

Para un conjunto con un solo elemento se tiene $S = \{x_1\}$, en este conjunto S se tiene $x_1 \le x_1$ por tanto $\forall x \in S, x \le x_1$ por lo tanto $x_1 = \max S$

Supongamos que un conjunto

$$S = \{x_1, x_2, ..., x_k\}$$

tiene un elemento máximo y lo llamamos $u = \max S$

Vamos a comprobar que el conjunto

$$S = \{x_1, x_2, ..., x_k\} \bigcup \{x_{k+1}\}$$

tiene un elemento máximo.

Considemos el $v = \max\{u, x_{k+1}\}$ en este caso $v \in S$ y ademas $\forall x \in S, x \leq v$

Por lo tanto

$$S = \{x_1, x_2, ..., x_n, x_{n+1}\}$$

tiene un elemento máximo.

Definición 2. Sea F un campo ordenado.

(a) $\forall a, b \in F$ definimos un intervalo como el conjunto

$$[a,b] = \{x \in F \mid a \le x \le b\}$$

(b)
$$(a,b) = \{x \in F \mid a < x < b\}$$

(c)
$$(a,b] = \{x \in F \mid a < x \le b\}$$

(d)
$$[a,b) = \{x \in F \mid a \le x < b\}$$

(e)
$$(-\infty, b) = \{x \in F \mid x < b\}$$

$$(f) (-\infty, b] = \{x \in F \mid x \le b\}$$

$$(g) (a, +\infty) = \{x \in F \mid a < x\}$$

$$(h) \quad [a,+\infty) = \{x \in F \ | \ a \leq x\}$$

$$(i) (-\infty, +\infty) = F$$

Axioma del Supremo

Definición 3. Suponga que F es un campo ordenado $y \in A$. Decimos que un elemento $u \in F$ es (1) Mínima cota superior (supremo) de A, si u es una cota superior de A y para toda cota superior v de v se tiene v v v Lo denotamos

$$\sup A$$

(2) Máxima cota inferior (infimo) de A, si u es una cota inferior de A y para toda cota inferior v de A se tiene $v \le u$. Lo denotamo

$$\inf A$$

Axioma del Supremo Si F es un campo ordenado y $A \subset F$ es no vacío y acotado superiormente, entonces existe $\sup A$.

Ejemplo Sean $a, b \in F$ donde F es un campo ordenado entonces $\inf(a, b) = a$

Demostración. En este caso tenemos que a es cota inferior de (a, b).

Suponemos que v es cota inferior de (a, b), entonces debe ocurrir que $v \leq a$.

Para demostrar que esto sucede, vamos a suponer que ocurre lo contrario, es decir v > a.

Por un lado se tiene que $\frac{a+b}{2} \in (a,b)$ y además

$$a < v \le \frac{a+b}{2} < b$$

Por otro lado consideramos $c = \frac{a+v}{2}$ y se tiene que

$$a < c < v \le \frac{a+b}{2} < b$$

por lo que $c \in (a,b)$ y c < v lo cual es falso pues v es cota inferior de (a,b), por lo tanto $v \le a$

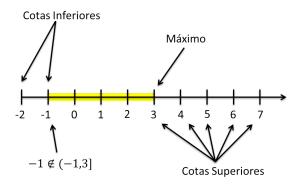
Ejemplo Hallar el máximo, mínimo, supremo e ínfimo de A para A = (-1, 3]

Solución En este caso

-1 es una cota inferior, pues $-1 \le x$, $\forall x \in A$

 $3 \text{ es cota superior, pues } 3 \geq x, \ \ \forall \ x \in A$

No tiene un valor mínimo, pues si $x = \min A$ entonces $x \le a$, $\forall a \in A$ pero $y = \frac{-1+x}{2}$ es tal que -1 < y < x < 3 por lo tanto $y \in A$ y y < x (Falso pues x=mín A). Por lo tanto A no tiene 'mínimo. 3 es máximo, pues $3 \ge x$, $\forall x \in A$



Ejemplo Hallar el máximo, mínimo, supremo e ínfimo de A para A = [-1, 3)

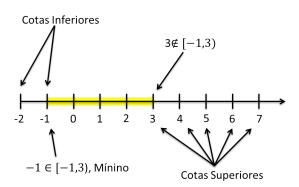
Solución En este caso

-1 es una cota inferior, pues $-1 \le x, \ \ \forall \ x \in A$

3 es cota superior, pues $3 \ge x$, $\forall x \in A$

No tiene un valor máximo, pues si $x = \max A$ entonces $x \ge a$, $\forall a \in A$ pero $y = \frac{3+x}{2}$ es tal que -1 < x < y < 3 por lo tanto $y \in A$ y x < y (Falso pues x=máx A). Por lo tanto A no tiene

-1 es mínimo, pues $-1 \le x, \ \ \forall \ x \in A$



Ejemplo Hallar el máximo, mínimo, supremo e ínfimo de A para $displaystyleA = \left\{ \frac{1}{x} \mid x > 0 \right\}$

Solución En este caso Si
$$x = \frac{1}{2} \Rightarrow \frac{1}{\frac{1}{2}} = 2$$

Si
$$x = \frac{1}{3} \Rightarrow \frac{1}{\frac{1}{3}} = 3$$

Si $x = \frac{1}{4} \Rightarrow \frac{1}{\frac{1}{2}} = 4$

Por lo tanto al tomar valores positivos cercanos a cero se tiene que A no esta acotado superiormente 0 es cota inferior, pues $0 \le x$, $\forall x \in A$

No tiene un valor mínimo, pues si $\frac{1}{x} = \min A$ entonces $\frac{1}{x} \le a$, $\forall a \in A$ pero $y = \frac{1}{x+1}$ es tal que $0 < y = \frac{1}{x+1} < \frac{1}{x}$ por lo tanto $y \in A$ y $y < \frac{1}{x}$ (Falso pues $\frac{1}{x} = \min A$). Por lo tanto A no tiene

No tiene máximo.

Teorema 1. Suponga que F es un campo ordenado y $A \subset F$. Si A es no vacío y acotado inferiormente entonces existe inf A.

Demostración. Sea m una cota inferior de A y H el conjunto de las cotas inferiores. H es no vacío pues $m \in H$. H esta acotado superiormente por cualquier elemento de A. Por tanto según el axioma del supremo, existe sup H.

Sea μ el supremo de H. Entonces $\mu = inf A$ pues

- 1) $\forall x \in A$ se verifica $\mu \leq x$ (μ es cota inferior)
- 2) $\forall y \in H \ y \leq \mu$. Pues $\mu = \sup H$ Por tanto μ es el ínfimo de A.

Teorema 2. Suponga que F es un campo ordenado y $A \subset F$. Si A es tal que sup A existe, entonces sup A es único

Demostraci'on. Supongamos que sup A=S y sup A=B entonces $S\leq B$ por ser $B=\sup A$ $B\leq S$ por ser $S=\sup A$.: S=B

Teorema 3. Suponga que F es un campo ordenado y $A \subset F$. Si A es no vacío y acotado superiormente, entonces

$$M = \sup A \Leftrightarrow \begin{cases} 1 & x \leq M, \ \forall x \in A \\ 2 & \forall \varepsilon > 0 \end{cases}$$
 existe $x \in A$ tal que $M < x + \varepsilon$

 $Demostración. \Rightarrow Sea M = \sup A$ entonces

- 1) se cumple por definición de supremo
- para 2) supongamos que existe $\varepsilon > 0$ tal que $\forall x \in A, M \ge x + \varepsilon$, es decir $x \le M \varepsilon$, $\forall x \in A$. $M \varepsilon$ es una cota superior de A y se tiene que $M \varepsilon < M$ por tanto M no puede ser entonces supremo de A CONTRADICCIÓN.

 \Leftarrow Supongamos que se cumple 1) y 2) Por reducción al absurdo supongamos que M no es el supremo de A

por 1), M es cota superior de A. Sea M' < M una cota superior y tomamos $\varepsilon = M - M'$ entonces si M cumple 2) $M < x + \varepsilon \implies M < x + M - M' \implies M' < x$ para algún x CONTRADICCIÓN. Pues M' es cota superior de A. $\therefore M = \sup A$.

Teorema 4. Suponga que F es un campo ordenado y $S \subset F$ es tal que $S \neq \emptyset$, S acotado superiormente y $a \in F$. Si

$$a + S = \{a + x \mid x \in S\}$$

probar que sup $(a+S) = a + \sup S$

Demostración. Por el axioma del supremo existe sup S sea $\mu = \sup S$ por lo que tenemos que

$$x \leq \mu \quad \forall x \in S \Rightarrow a + x \leq \mu + a \quad \forall x \in S$$

por lo que $\mu + a$ es cota superior de a + S lo que implica que sup $(a + S) \le a + \mu$ Sea V una cota superior de a + S por lo que

$$a + x \le V \quad \forall x \in S \Rightarrow x \le V - a \quad \forall x \in S \Rightarrow \mu \le V - a \Rightarrow a + \mu \le V$$

por lo que $a + \mu$ es la menor de las cotas superiores de a + S: sup $(a + S) = a + \mu = a + \sup S$

Definición 4. Un campo ordenado F es completo si satisface:

Propiedad de Completez Todo subconjunto A no vacio de F que este acotado superiormente, tiene una mínima cota superior (sup A) en F.

Definición 5. El conjunto de números reales es un campo ordenado completo y arquimediano. Denotado por \mathbb{R}