Números Enteros \mathbb{Z}

Definición 1. El conjunto de números enteros de un camp ordenado F es el conjunto

$$\mathbb{Z} = \{ x \in F \mid x \in \mathbb{N}, \ \ \acute{o} \ \ -x \in \mathbb{N} \ \ \acute{o} \ \ x = 0 \}$$

Este conjunto consta de los números naturales, e incluimos sus inversos aditivos y el cero.

Tenemos que \mathbb{Z} satisface las propiedades

 A_0 Sea $a,b\in\mathbb{Z}$ de la cerradura en \mathbb{N} se sigue que $a+b\in\mathbb{Z}$. Se sigue de las propiedades de números naturales

 M_0 Análogamente para la multiplicación sobre \mathbb{Z} si $a,b\in\mathbb{Z}$ entonces $a\cdot b\in\mathbb{Z}$ se sigue de las propiedades de números naturales

 A_1 Propiedad conmutativa Para la suma se tiene

$$\forall a, b, c \in \mathbb{Z} \quad a+b=b+a$$

se sigue de las propiedades de números naturales

 M_1 Para la multiplicación se tiene

$$\forall a, b, c \in \mathbb{Z} \quad a \cdot b = b \cdot a$$

se sigue de las propiedades de números naturales

 A_2 asociatividad para la suma

$$\forall a, b, c \in \mathbb{Z}$$
 $a + (b+c) = (a+b) + c$

se sigue de las propiedades de números naturales

 M_2 Asociatividad para la multiplicación

$$\forall a, b, c \in \mathbb{Z} \quad a \cdot (b \cdot c) = (a \cdot b) \cdot c$$

se sigue de las propiedades de números naturales

 A_3 Existencia del neutro aditivo se sigue de las propiedades de F

 M_3 Existencia del neutro multiplicativo se sigue de las propiedades de F

 A_4 Existencia de inversos aditivos, tenemos que $\forall n \in \mathbb{Z}$ existe $-n \in \mathbb{Z}$ tal que n + (-n) = 0

La propiedas
d m_4 no es válida en $\mathbb Z$ pues no hay inversos aditivos en $\mathbb Z$

D Propiedad distributiva

 $\forall a, b, c \in \mathbb{Z}$ se tiene que m(a+b) = ma + mb esta se sigue de las propiedades de los números naturales En conclusión se tiene que \mathbb{Z} no es campo