Funciones Sucesiones

Sucesiones parte 5

Lema 1. Sea a > 1. La función $f : \mathbb{Q} \to \mathbb{R}$ dada por $f(r) = a^r$ es estrictamente creciente en \mathbb{Q} y si 0 < a < 1. La función $f : \mathbb{Q} \to \mathbb{R}$ dada por $f(r) = a^r$ es estrictamente decreciente en \mathbb{Q}

Demostración. Supongamos que a>1. Sea $r< s\in \mathbb{Q}$. Entonces existen $m,n\in \mathbb{Z}$ y $p\in \mathbb{N}$ tal que $r=\frac{m}{p}$ y $s=\frac{n}{p}$ con m< n. Se tiene entonces que

$$a^{n-m} > a > 1 \implies a^n = a^m a^{n-m} > a^m$$

Como la función $f(x) = \sqrt{x}$ es estrictamente creciente en $[0, +\infty)$ se tiene que

$$(a^m)^{\frac{1}{p}} < (a^n)^{\frac{1}{p}} \implies a^r = a^{\frac{m}{p}} < a^{\frac{n}{p}} = a^s$$

por lo tanto f es esctrictamente creciente

Si 0 < a < 1, definimos $f(r) = a^r = \frac{1}{\left(\frac{1}{a}\right)^r}$ por lo que

$$a < 1 \implies 1 < \frac{1}{a} \implies \exists \ m, n \in \mathbb{Z} \ \ y \ \ p \in \mathbb{N}, \ \ tal \ \ que \ \ r = \frac{m}{p} \ \ y \ \ s = \frac{n}{p}$$

tal que

$$\left(\frac{1}{a}\right)^{n-m} \geq \left(\frac{1}{a}\right) > 1 \ \Rightarrow \ \left(\frac{1}{a}\right)^n = \left(\frac{1}{a}\right)^m \left(\frac{1}{a}\right)^{n-m} > \left(\frac{1}{a}\right)^m$$

Como la función $f(x) = \sqrt{x}$ es estrictamente creciente en $[0, +\infty)$ se tiene que

$$\left(\left(\frac{1}{a} \right)^m \right)^{\frac{1}{p}} < \left(\left(\frac{1}{a} \right)^n \right)^{\frac{1}{p}} \frac{1}{\left(\frac{1}{a} \right)^{\frac{n}{p}}} < \frac{1}{\left(\frac{1}{a} \right)^{\frac{m}{p}}} > a^s = \frac{1}{\left(\frac{1}{a} \right)^{\frac{n}{p}}} < \frac{1}{\left(\frac{1}{a} \right)^{\frac{m}{p}}} = a^r$$

por lo tanto f es esctrictamente decreciente

Lema 2. Dado un $x \in \mathbb{R}$, existe una sucesión monotona decreciente $(r_n)_{n \in \mathbb{N}}$ de números racionales tal que

$$\lim_{n \to \infty} r_n = a$$

Demostración. Sea $x \in \mathbb{R}$, por la densidad de \mathbb{Q} en \mathbb{R} , existe $r_1 \in \mathbb{Q}$ tal que $x - 1 < r_1 < x$. Existe también $r_2 \in \mathbb{Q}$ tal que

$$\max\{x - \frac{1}{2}, r_1\} < r_2 < x$$

. Existe también $r_3 \in \mathbb{Q}$ tal que

$$\max\{x - \frac{1}{3}, r_2\} < r_3 < x$$

. Continuando este proceso Existe también $r_{k+1} \in \mathbb{Q}$ tal que

$$\max\{x - \frac{1}{k+1}, r_k\} < r_{k+1} < x$$

. Se tiene que por construcción, $(r_n)_{n\in\mathbb{N}}$ es una sucesión de números racionales estrictamente creciente que converge a x.

Funciones Sucesiones

Lema 3. Sea $a \geq 1$ y $x \in \mathbb{R}$. Si $(r_n)_{n \in \mathbb{N}}$ es una sucesión monotona creciente de números racionales que convergen a x, entonces $(a^{r_n})_{n\in\mathbb{N}}$ converge

Demostración. Sea $a \ge 1$ y $x \in \mathbb{R}$. Supongamos que

$$\lim_{n \to \infty} r_n = x$$

Como $f:\mathbb{Q}\to\mathbb{R}$ dada por $f(r)=a^r$ es estrictamente creciente, entonces $(a^{r_n})_{n\in\mathbb{N}}$ es monotona estrictamente creciente.

Si $r \in \mathbb{Q}$ es un número racional tal que

$$r_n \le x < r$$

entonces

 $a^{r_n} < a^r \Rightarrow (a^{r_n})_{n \in \mathbb{N}}$ es acotada superiormente $\Rightarrow (a^{r_n})_{n \in \mathbb{N}}$ es convergente

Definición 1. Sea $a \geq 1$. Entonces $\forall x \in \mathbb{R}$ definimos

$$a^x = \lim_{n \to \infty} a^{r_n}$$

 $donde\ (r_n)_{n\in\mathbb{N}}$ es una sucesión monotona estrictamente creciente de números racionales que convergen a

Si 0 < a < 1, entonces $a^{-1} > 1$ y por tanto $\forall x \in \mathbb{R}$ definimos

$$a^x = \frac{1}{\left(a^{-1}\right)^x}$$

De manera que

$$\lim_{n \to \infty} a^{r_n} = \lim_{n \to \infty} \frac{1}{\left(a^{-1}\right)^{r_n}} = \frac{1}{\lim_{n \to \infty} \left(a^{-1}\right)^{r_n}} = \frac{1}{\left(a^{-1}\right)^x} = a^x$$

Por lo tanto $\forall a \geq 0 \ y \ \forall x \in \mathbb{R}$

$$a^x = \lim_{n \to \infty} a^{r_n}$$

Teorema 1. Sea a > 1. Entonces la función exponencial $f(x) = a^x$ es estrictamente creciente $\forall x \in \mathbb{R}$

Demostración. Sean $x, y \in \mathbb{R}$, tal que x < y, existen un racional q tal que x < q < y. Sean (r_n) y (s_n) sucesiones de números reales tales que

$$\lim_{n \to \infty} r_n = x \qquad y \qquad \lim_{n \to \infty} s_n = x$$

Por otro lado

$$r_n \le x < q < s_n \le y$$

como $f(x) = a^x$ es estrictamente creciente en \mathbb{Q} entonces

$$a^{r_n} < a^q < a^{s_n}$$

tomando limites

$$a^x = \lim_{n \to \infty} a^{r_n} < a^q < \lim_{n \to \infty} a^{s_n} = a^y$$

por lo tanto $a^x < a^y$ por lo tanto la función es estrictamente creciente

Funciones Sucesiones

Teorema 2. Sean a, b > 0. La función exponencial satisface:

(a)
$$a^0 = 1$$

$$(b) \ a^x a^y = a^{x+y}$$

(c)
$$\frac{a^x}{a^y} = a^{x-y}$$

$$(d) \stackrel{a^{\circ}}{(ab)^x} = a^x b^x$$

(b)
$$a^{x} = a^{x-y}$$

(c) $\frac{a^{x}}{a^{y}} = a^{x-y}$
(d) $(ab)^{x} = a^{x}b^{x}$
(e) $a^{-x} = (a^{x})^{-1} = (a^{-1})^{x}$
(f) $\left(\frac{a}{b}\right)^{x} = \frac{a^{x}}{b^{x}}$

$$(f) \left(\frac{a}{b}\right)^x = \frac{a^x}{b^x}$$

Demostración. Para el inciso (a) consideramos la sucesión de término general $r_n = 0, \forall \in \mathbb{N}$ y se tiene entonces que:

$$a^0 = \lim_{n \to \infty} a^{r_n} = 1$$

Para el inciso (b) consideramos sucesiones monotonas crecientes $(r_n)_{n\in\mathbb{N}}$ y $(s_n)_{n\in\mathbb{N}}$ tales que

$$\lim_{n \to \infty} r_n = x \quad y \quad \lim_{n \to \infty} s_n = y$$

se tiene entonces que

$$\lim_{n \to \infty} r_n + s_n = x + y$$

por lo tanto

$$a^x a^y = \lim_{n \to \infty} a^{r_n} \lim_{n \to \infty} a^{s_n} = \lim_{n \to \infty} a^{r_n} a^{s_n} = \lim_{n \to \infty} a^{r_n + s_n} = a^{x+y}$$

Para el inciso (c) tenemos que

$$a^{x-y}a^y = a^x \Rightarrow a^{x-y} = \frac{a^x}{a^y}, \quad a^y \neq 0$$

Para el inciso (d) consideremos $a,b\in\mathbb{R}$. Sea $(r_n)_{n\in\mathbb{N}}$ una sucesión monotona creciente de números racionales que convegren a x. Entonces

$$(ab)^x = \lim_{n \to \infty} (ab)^{r_n} = \lim_{n \to \infty} a^{r_n} \lim_{n \to \infty} b^{r_n} = a^x b^x$$

Para el inciso (e) consideremos $a,b\in\mathbb{R}$. Sea $(r_n)_{n\in\mathbb{N}}$ una sucesión monotona creciente de números racionales que convegren a x. Entonces

$$\left(a^{-1}\right)^{x} = \lim_{n \to \infty} \left(a^{-1}\right)^{r_n} = \lim_{n \to \infty} \left(a^{r_n}\right)^{-1} = \frac{1}{\lim_{n \to \infty} a^{r_n}} = \frac{a^0}{a^x} = a^{0-x} = a^{-x}$$

$$(a^x)^{-1} = \lim_{n \to \infty} (a^{r_n})^{-1} = \frac{1}{\lim_{n \to \infty} a^{r_n}} = \frac{a^0}{a^x} = a^{0-x} = a^{-x}$$

Para el inciso (f) consideremos $a,b \in \mathbb{R}$. Sea $(r_n)_{n \in \mathbb{N}}$ una sucesión monotona creciente de números racionales que convegren a x. Entonces

$$\left(\frac{a}{b}\right)^x = (ab^{-1})^x = a^x(b^{-1})^x = a^x(b^x)^{-1} = \frac{a^x}{b^x}$$

Funciones Sucesiones

Teorema 3. Sea $a \ge 1$ y $x \in \mathbb{R}$. Si $(t_n)_{n \in \mathbb{N}}$ es una sucesión monotona decreciente de números racionales que convergen a x, entonces

$$\lim_{n \to \infty} a^{tn} = a^x$$

Demostración. Definimos la sucesión

$$r_n = 2x - t_n$$

Se tiene entonces que $r_n \to x$ y r_n es monotona creciente, por lo tanto

$$\lim_{n\to\infty}a^{t_n}=\lim_{n\to\infty}a^{2x-r_n}=\lim_{n\to\infty}\frac{a^{2x}}{a^{r_n}}=\frac{a^{2x}}{\lim_{n\to\infty}a^{r_n}}=\frac{a^{2x}}{a^x}=a^x$$

Teorema 4. Sea $a \ge 1$ y $x \in \mathbb{R}$. Si $(x_n)_{n \in \mathbb{N}}$ es una sucesión de números reales que convergen a x, entonces

$$\lim_{n \to \infty} a^{x_n} = a^x$$

Demostraci'on. Tenemos que existen sucesiones $(r_n)_{n\in\mathbb{N}}$ y $(s_n)_{n\in\mathbb{N}}$ monotona creciente y decreciente de números racionales respectivamente tal que

$$\lim_{n \to \infty} a^{r_n} = a^x \quad y \quad \lim_{n \to \infty} b^{r_n} = a^x$$

Como la función $f(x) = a^x$ es estrictamente creciente, sea $\epsilon > 0$ entonces existe $n_1 \in \mathbb{N}$ tal que

$$a^{x} - \epsilon < a^{r_{n_1}} < a^{x} < a^{r_{s_1}} < a^{x} + \epsilon$$

Por otro lado

 $r_{n_1} < x < s_{n_1}, \quad y \quad como \quad x_n \rightarrow x \quad entonces \quad \exists \ n_0 \in \mathbb{N} \quad tal \quad que \quad n \geq n_0 \ \Rightarrow \ r_{n_1} < x_n < s_{n_1}$

Como la función $f(x) = a^x$ es estrictamente creciente

$$n \ge n_0 \to a^x - \epsilon < a^{r_{n_1}} < a^{x_n} < a^{r_{s_1}} < a^x + \epsilon \to |a^{x_n} - a^x| < \epsilon$$

por lo tanto

$$\lim_{n \to \infty} a^{x_n} = a^x$$

Si 0 < a < 1 se tiene que $a^{-1} > 1$ y aplicando lo anterior se tiene

$$\lim_{n \to \infty} a^{x_n} = \lim_{n \to \infty} \frac{1}{(a^{-1})^{x_n}} = \frac{1}{\lim_{n \to \infty} (a^{-1})^{x_n}} = \frac{1}{(a^{-1})^x} = a^x$$

Ejemplo Use lo anterior para mostrar que la sucesión

$$\sqrt{2}, \sqrt{2\sqrt{2}}, \sqrt{2\sqrt{2\sqrt{2}}}, \dots$$

tiene limite

Funciones Sucesiones

Demostración. Para esto se tiene que:

$$a_1 = 2^{\frac{1}{2}}, \ a_2 = \left(2 \cdot 2^{\frac{1}{2}}\right)^{\frac{1}{2}} = 2^{\frac{3}{4}}, \ a_3 = 2^{\frac{7}{8}}, \dots, \ a_n = 2^{\frac{2^n - 1}{2^n}} \text{ por tanto}$$

$$\lim_{n \to \infty} a_n = \lim_{n \to \infty} 2^{\frac{2^n - 1}{2^n}} = 2^{\lim_{n \to \infty} 2^{\frac{2^n - 1}{2^n}}} = 2^1 = 2$$