Tarea 4

fecha de entrega 25 septiembre 2015

Imagenes Inversas

1.-Sea $f: \mathbb{R} \to \mathbb{R}$ definida por $f(x) = x^2 + 1$. Determinar las imagenes inversas de los siguientes subconjuntos del codominio

$$[-1,1), \quad \left(-\infty, \frac{1}{2}\right], \quad [0,3], \quad [0,3), \quad [1,10]$$

- 2.-Sea $f: X \to Y$. Demostrar la equivalencia de las siguientes proposiciones
- (a) f es inyectiva
- (b) $\forall A, A \subset X \Rightarrow f^{-1}[f(A)] = A$
- 3.-Sean $f:X\to Y$ una función, y los subconjuntos $A\subset X,\,B\subset Y$. Demostrar las siguientes afirmaciones:

(a)
$$A \subset f^{-1}[f(A)]$$

(b)
$$f[f^{-1}(B)] \subset B$$

(c)
$$f(X) - f(A) \subset f(X - A)$$

(d)
$$f^{-1}(Y - B) = X - f^{-1}(B)$$

(e)
$$f(A \cap f^{-1}(B)) = f(A) \cap B$$

Funciones Inversas

4.-Hallar f^{-1} para cada una de las siguientes funciones

(a)
$$f(x) = (x-1)^3$$

$$(b) \quad f(x) = x + [x]$$

(c)
$$f(x) = \frac{x}{1 - x^2}$$
, $-1 < x < 1$

- 5.-Descríbase la gráfica de f^{-1} cuando
- (a) f es creciente v siempre positiva
- (b) f es creciente y siempre negativa
- (c) f es decreciente y siempre positiva
- (d) f es decreciente y siempre negativa
- 6.-Demostrar que si f es creciente, entonces también lo es f^{-1} , y analogamente para funciones decrecientes 7.-Si f y g son funciones inyectivas. Hallar $(f \circ g)^{-1}$ en términos de f^{-1} y g^{-1}
- 8.-Hallar g^{-1} en términos de f^{-1} si g(x) = 1 + f(x)
- 9.-Demostrar que $f(x) = \frac{ax+b}{cx+d}$ es uno-uno si y solo si $ad-bc \neq 0$, y hallar f^{-1} en este caso.
- 10.-Trazar la gráfica de las funciones $f(x) = \sqrt[n]{x}$ para n = 2, 3, 4