Supremos e Infimos

Definición 1. Si $A \subset \mathbb{R}$, $y \ x \in \mathbb{R}$ entonces

$$x + A = \{x + a \mid a \in A\}$$
$$xA = \{xa \mid a \in A\}$$
$$-A = \{-a \mid a \in A\}$$

Teorema 1. Supongamos que $A \subset B \subset \mathbb{R}$, donde B es acotado. Entonces

$$\begin{array}{ll} (a) & \sup \ A \leq \sup \ B \\ (b) & \inf \ A \geq \inf \ B \end{array}$$

(b) inf
$$A \ge \inf B$$

Demostración. Por hipótesis, $\forall a \in A, a \in B$ por lo que $a \leq \sup B$. De manera que $\sup B$ es una cota superior de A : $\sup A \leq \sup B$

Similarmente $\forall a \in A, a \in B$ por lo que $a \geq \inf B$. De manera que $\inf B$ es una cota inferior de A \therefore inf A >inf B

Teorema 2. Si $A \subset \mathbb{R}$ es acotado y $x \in \mathbb{R}$, entonces

- $\sup(x+A) = x + \sup A,$ $e \quad \inf(x+A) = x + \inf A$
- (b) $Si \ x > 0$, entonces $\sup(xA) = x \sup A$, e $\inf(xA) = x \inf A$
- $\sup(-A) = -\inf A$ $\inf(-A) = -\sup A$
- (d) Si x < 0, entonces $\sup(xA) = x \inf A$, e $\inf(xA) = x \sup A$

Demostración. Suponga que $A \subset \mathbb{R}$, $x \in \mathbb{R}$ y $u = \sup A \in \mathbb{R}$.

(a) Sea $y \in x + A$ entonces y = x + a p.a. $a \in A$. Pero $x + a \le x + u$ por lo que $y \le x + u$. Por tanto x + u es una cota superior para x + A.

Supongamos ahora que v es otra cota superior de x+A. Entonces $\forall a \in A, x+a \leq v$. Por lo que $\forall a \in A$, $a \le v - x$. De manera que v - x es una cota superior de A y por lo tanto $u \le v - x$ por lo que $x + u \le v$. De la definición se tiene

 $x + u = \sup(x + A)$. Por lo que $x + \sup A = \sup(x + A)$

Suponga que $A \subset \mathbb{R}$, $x \in \mathbb{R}$ y $u = \inf A \in \mathbb{R}$.

(a') Sea $y \in x + A$ entonces y = x + a p.a. $a \in A$. Pero $x + a \ge x + u$ por lo que $y \ge x + u$. Por tanto x + u es una cota inferior para x + A.

Supongamos ahora que v es otra cota inferior de x+A. Entonces $\forall a \in A, x+a \geq v$. Por lo que $\forall a \in A$, $a \ge v - x$. De manera que v - x es una cota inferior de A y por lo tanto $u \ge v - x$ por lo que $x + u \ge v$. De la definición se tiene

 $x+u=\inf(x+A)$. Por lo que $x+\inf A=\inf(x+A)$ Suponga que $A\subset\mathbb{R},\ x\in\mathbb{R},\ x>0$ y $u=\sup A\in\mathbb{R}$.

(b) Sea $y \in xA$ entonces y = xa p.a. $a \in A$. Pero $xa \le xu$ por lo que $y \le xu$. Por tanto xu es una cota superior para xA.

Supongamos ahora que v es otra cota superior de xA. Entonces $\forall a \in A, xa \leq v$. Por lo que $\forall a \in A$, $a \leq \frac{v}{x}$. De manera que $\frac{v}{x}$ es una cota superior de A y por lo tanto $u \leq \frac{v}{x}$ por lo que $xu \leq v$.

De la definición se tiene

 $xu = \sup(xA)$. Por lo que $x \sup A = \sup(xA)$

Suponga que $A \subset \mathbb{R}$, $x \in \mathbb{R}$ y $u = \inf A \in \mathbb{R}$.

(b') Sea $y \in xA$ entonces y = xa p.a. $a \in A$. Pero $xa \ge xu$ por lo que $y \ge xu$. Por tanto xu es una cota inferior para xA.

Supongamos ahora que v es otra cota inferior de xA. Entonces $\forall a \in A, xa \geq v$. Por lo que $\forall a \in A$, $a \geq \frac{v}{x}$. De manera que $\frac{v}{x}$ es una cota inferior de A y por lo tanto $u \geq \frac{v}{x}$ por lo que $xu \geq v$.

De la definición se tiene

 $xu = \inf(xA)$. Por lo que $x\inf A = \inf(xA)$

Suponga que $A \subset \mathbb{R}$ y $u = \inf A \in \mathbb{R}$.

(c) Se tiene entonces que $\forall a \in A, u \le a$ por lo tanto $\forall a \in A, -a \le -u \ y - u$ es una cota superior de -A.

Sea v otra cota superior de -A, esto quiere decir que $\forall -a \in -A, -a \leq v$ por lo que $\forall -a \in -A, -v \leq a$ y en ese caso -v es una cota inferior de A y debe ocurrir $-v \le u$ por lo que $-u \le v$ y concluimos que $-u = \sup(-A)$ es decir $-\inf A = \sup(-A)$ Suponga que $A \subset \mathbb{R}$ y $u = \sup A \in \mathbb{R}$.

(c') Se tiene entonces que $\forall a \in A, u \geq a$ por lo tanto $\forall a \in A, -a \geq -u$ y -u es una cota inferior de

Sea v otra cota inferior de -A, esto quiere decir que $\forall -a \in -A, -a \geq v$ por lo que $\forall -a \in -A, -v \geq a$ y en ese caso -v es una cota superior de A y debe ocurrir $-v \ge u$ por lo que $-u \ge v$ y concluimos que $-u = \inf(-A)$ es decir $-\sup A = \inf(-A)$

(d) Si x < 0 entonces -x > 0 y usando el inciso b se tiene

$$\inf(-xA) = -x\inf A$$

Por otro lado según el inciso c

$$\inf(-xA) = -\sup(xA)$$

por lo tanto

$$-x\inf A = -\sup(xA) \implies x\inf A = \sup(xA)$$

(d') Si x < 0 entonces -x > 0 y usando el inciso b se tiene

$$\sup(-xA) = -x\sup A$$

Por otro lado según el inciso c

$$\sup(-xA) = -\inf(xA)$$

por lo tanto

$$-x \sup A = -\inf(xA) \implies x \sup A = \inf(xA)$$

Teorema 3. Dados $A, B \subset \mathbb{R}$ definimos $A + B = \{a + b \mid a \in A, b \in B\}$

- (a) Si A y B son acotados inferiormente entonces $\inf(A+B) = \inf(A) + \inf(B)$
- (b) Si A y B son acotados superiormente entonces $\sup(A+B) = \sup(A) + \sup(B)$

 $Demostración. \ \forall \ a \in A, \ b \in B$ se tiene $a+b \in A+B$ y $a \geq \inf A$ y $b \geq \inf B$ por lo que

$$a+b \ge \inf A + \inf B$$

Tenemos entonces que ínfA + ínfB es una cota inferior de A + B. Supongamos ahora que w es otra cota inferior de A+B. Entonces $\forall a \in A, b \in B$ se tiene a+b > w es decir a > w-b por lo que $\forall b \in B, w-b$ es una cota inferior de A. Entonces

$$\forall b \in B, w-b \leq \inf A, es decir w - \inf A \leq b$$

por lo que $w - \inf A$ es una cota inferior de B y se tiene

$$w - \inf A \le \inf B$$

por lo tanto

$$w \le \inf A + \inf B$$

y por lo tanto

$$\inf(A+B) = \inf(A) + \inf(B)$$

(b) $\forall a \in A, b \in B$ se tiene $a + b \in A + B$ y $a \leq \sup A$ y $b \leq \sup B$ por lo que

$$a + b \le \sup A + \sup B$$

Tenemos entonces que sup $A + \sup B$ es una cota superior de A + B. Supongamos ahora que w es otra cota superior de A + B. Entonces $\forall a \in A, b \in B$ se tiene $a + b \leq w$ es decir $a \leq w - b$ por lo que $\forall b \in B, w - b$ es una cota superior de A. Entonces

$$\forall b \in B, w - b \ge \sup A, es decir w - \sup A \ge b$$

por lo que $w - \sup A$ es una cota superior de B y se tiene

$$w - \sup A \ge \sup B$$

por lo tanto

$$w \ge \sup A + \sup B$$

y por lo tanto

$$\sup(A+B) = \sup(A) + \sup(B)$$

Teorema 4. Si $A, B \subset \mathbb{R}$ y $A, B \neq \emptyset$ son tal que \forall $a \in A$, \forall $b \in B$, $a \leq b$, entonces $\sup A \leq \inf B$ y las signientes proposiciones son equivalentes

$$(a) \sup A = \inf B$$

$$(b) \ \forall \ \epsilon > 0 \ \exists \ a \in A, \ b \in B \ \ni \ b - a < \epsilon$$

$$(c) \ \exists \ k > 0 \ \ni \ \forall \ \epsilon > 0 \ \exists \ a \in A, \ b \in B \ \ni \ b - a < k\epsilon$$

$$(d) \ \exists \ un \ unico \ real \ u \ \ni \ \forall \ a \in A, \ b \in B, \ a \le u \le b \ (en \ ese \ caso, \ u = \sup A = \inf B)$$

Demostración. Supongamos que $A, B \subset \mathbb{R}$ son tal que $\forall \ a \in A, \ \forall \ b \in B, \ a \leq b$. Entonces $\forall \ a \in A, \ a$ es cota inferior de B, por lo que $a \leq$ ínf B. Esto es, $\forall \ a \in A, \ a \leq$ ínf B por lo que ínf B es una cota superior de A y consecuentemente sup $A \leq$ ínf B

 $(a \Rightarrow b)$ Supongamos que $u = \sup A = \inf B$. Sea $\epsilon > 0$. Por propiedades de supremo

$$\exists \ a \in A \ \ni \ a > u - \frac{\epsilon}{2} \ \Rightarrow \ -u + \frac{\epsilon}{2} < -a$$

$$\exists \ b \in B \ \ni \ b < u + \frac{\epsilon}{2}$$

de lo anterior se tiene

$$b + (-a) < \left(u + \frac{\epsilon}{2}\right) + \left(-u + \frac{\epsilon}{2}\right) \implies b - a < \epsilon$$

 $(b \Rightarrow c)$ Supongamos que $\forall \epsilon > 0 \; \exists \; a \in A, \; b \in B \; \ni \; b - a < \epsilon \; \text{si consideramos} \; k = 1 \; \text{se sigue}$

$$\exists 1 = k > 0 \ \ni \ \forall \ \epsilon > 0 \ \exists \ a \in A, \ b \in B \ \ni \ b - a < k\epsilon$$

 $(c \Rightarrow d)$ Supongamos que $\exists k > 0 \Rightarrow \forall \epsilon > 0 \exists a \in A, b \in B \Rightarrow b - a < k\epsilon$ y sea $u = \sup A$ como se probo al pricipio $u \leq \inf B$. Por lo tanto $\forall a \in A, b \in B, a \leq u \leq b$. Ahora supongamos que

$$\exists v \neq u \ni \forall a \in A, b \in B, a \leq v \leq b$$

Sea $\epsilon = \frac{|u-v|}{K}$ se tiene que $\epsilon > 0$ y por el inciso (c) , $\exists a \in A, \ b \in B$ tal que $b-a < k\epsilon$ por lo que b-a < |u-v| pero $u,v \in [a,b]$ por lo que |u-v| < b-a por lo tanto hay una contradicción y en ese caso u=v

 $(d \Rightarrow a)$ Supongamos que (d) es cierto tenemos que probar que sup $A = \inf B$. Supongamos que sup $A \neq \inf B$. Entonces sup $A < \inf B$ pero al principio mostramos que sup $A \leq \inf B$. Por tanto

$$\forall a \in A, b \in B, a \le \sup A < \inf B \le b$$

esto contradice (d) por lo tanto $\sup A = \inf B$

Teorema 5. Suponga que $x, a \in \mathbb{R}$.

(a)
$$Si \exists k > 0 \ \ni \ \forall \epsilon > 0, \ x \leq a + k\epsilon, \ entonces \ x \leq a$$

(b)
$$Si \exists k > 0 \ \ni \ \forall \epsilon > 0, \ x \geq a - k\epsilon, \ entonces \ x \geq a$$

(c)
$$Si \exists k > 0 \ \ni \forall \epsilon > 0, |x - a| \le k\epsilon, entonces x = a$$

Demostración. (a) Supongamos que $\exists \ k > 0 \ \ \ni \ \ \forall \ \epsilon > 0, \ x \leq a + k\epsilon$. Sea $\epsilon > 0$. Entonces $\frac{\epsilon}{k} > 0$, por tanto

$$x \le a + k\left(\frac{\epsilon}{k}\right) = a + \epsilon$$

como ϵ es tan pequeña como se quiera, se sigue $x \leq a$.

(b) Supongamos que $\exists \ k > 0 \ \ni \ \forall \ \epsilon > 0, \ x \ge a - k\epsilon$. Sea $\epsilon > 0$. Entonces $\frac{\epsilon}{k} > 0$ por lo que

$$x \ge a - k\left(\frac{\epsilon}{k}\right) = a - \epsilon \implies x \ge a - \epsilon \implies -x \le -a + \epsilon$$

como ϵ es tan pequeña como se quiera, se sigue $-x \leq -a$ por lo tanto $x \geq a$

(c) Supongamos que $\exists k > 0 \ \ni \ \forall \epsilon > 0, \ |x - a| \le k\epsilon$ entonces

$$-k\epsilon \le x - a \le k\epsilon$$

de la primera parte de la desigualdad

$$-k\epsilon \le x - a \implies x \ge a - K\epsilon \underset{(b)}{\Longrightarrow} x \ge a$$

de la segunda parte de la desigualdad

$$x - a \le k\epsilon \implies x \le a + k\epsilon \underset{(a)}{\Longrightarrow} x \le a$$

de lo anterior se sigue x = a