Funciones de $\mathbb{R}^n \to \mathbb{R}$

Definición 1. Una función $f:A\subset\mathbb{R}^n\to\mathbb{R}$ es una función $f(x_1,x_2,...,x_n)$ que asocia a cada n-ada ordenada $(x_1, x_2, ..., x_n)$ de \mathbb{R}^n un número real $f(x_1, x_2, ..., x_n)$

Ejemplo La función $f: \mathbb{R}^2 \to \mathbb{R}$ dada por $f(x,y) = x^2 + y^2$ asocia a dada pareja $(x,y) \in \mathbb{R}^2$ el número real $x^2 + y^2$

Ejemplo La función $f:\mathbb{R}^3 \to \mathbb{R}$ dada por $f(x,y,z) = \sqrt{1-x^2-y^2-z^2}$ asocia a dada terna $(x,y,z) \in \mathbb{R}$ \mathbb{R}^3 el número real $\sqrt{1-x^2-y^2-z^2}$

Definición 2. El dominio de una función $f:A\subset\mathbb{R}^n\to\mathbb{R}$ es el conjunto

$$Dom_f = \{(x_1, x_2, ..., x_n) \in \mathbb{R}^n \mid f(x_1, x_2, ..., x_n) \in \mathbb{R}\}$$

Ejemplo La función $f: \mathbb{R}^3 \to \mathbb{R}$ dada por $f(x,y,z) = \sqrt{1-x^2-y^2-z^2}$ asocia a dada terna $(x,y,z) \in \mathbb{R}$ \mathbb{R}^3 el número real $\sqrt{1-x^2-y^2-z^2}$ tiene como dominio el conjunto

$$Dom_f = \{(x, y, z) \in \mathbb{R}^3 \mid 1 - x^2 - y^2 - z^2 \ge 0\} = \{(x, y, z) \in \mathbb{R}^3 \mid 1 \ge x^2 + y^2 + z^2\}$$

Ejemplo La función $f: \mathbb{R}^2 \to \mathbb{R}$ dada por $f(x,y) = x^2 + y^2$ asocia a dada pareja $(x,y) \in \mathbb{R}^2$ el número real $x^2 + y^2$ en este caso el dominio es \mathbb{R}^2

Definición 3. El rango de una función $f: A \subset \mathbb{R}^n \to \mathbb{R}$ es el conjunto

$$Ran_f = \{ f(x_1, x_2, ..., x_n) \in \mathbb{R} \mid (x_1, x_2, ..., x_n) \in \mathbb{R}^n \}$$

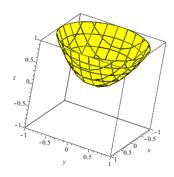
Ejemplo La función $f: \mathbb{R}^2 \to \mathbb{R}$ dada por $f(x,y) = \sqrt{1-x^2-y^2}$ asocia a dada pareja $(x,y) \in \mathbb{R}^2$ el número real $\sqrt{1-x^2-y^2}$ en este caso el rango de la función es el conjunto

$$\{z \in \mathbb{R} \mid 0 \le z \le 1\}$$

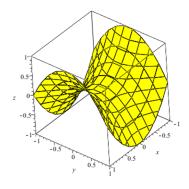
Definición 4. La gráfica de una función $f:A\subset\mathbb{R}^n\to\mathbb{R}$ es el conjunto

$$Gra_f = \{(x_1, x_2, ..., x_n, f(x_1, x_2, ..., x_n)) \in \mathbb{R}^{n+1} \mid (x_1, x_2, ..., x_n) \in \mathbb{R}^n\}$$

Ejemplo La gráfica de la función $f: \mathbb{R}^2 \to \mathbb{R}$ dada por $f(x,y) = x^2 + y^2$ es un paraboloide cuyo aspecto



Ejemplo La gráfica de la función $f: \mathbb{R}^2 \to \mathbb{R}$ dada por $f(x,y) = x^2 - y^2$ es un paraboloide hiperbolico (silla de montar) cuyo aspecto es



Conjuntos de Nivel

Definición 5. Sea $f: \mathbb{R}^n \to \mathbb{R}$ y sea $c \in \mathbb{R}$. El conjunto de nivel del valor c se define como:

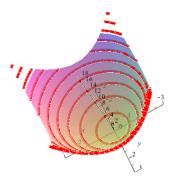
$$C_N = \{ x \in \mathbb{R}^n \mid f(x) = c \}$$

Ejemplo Describir el conjnuto de nivel de la función $f(x,y) = x^2 + y^2$

Solución En este caso el conjnuto de nivel es

$$C_N = \{(x, y) \in \mathbb{R}^2 \mid x^2 + y^2 = c\}$$

geometricamente son circunferencias con centro el origen y radio c

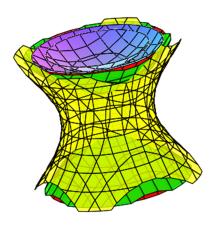


Ejemplo Describir el conj
nuto de nivel de la función $f(x,y) = x^2 - y^2$

Solución En este caso el conjuto de nivel es

$$C_N = \{(x, y) \in \mathbb{R}^2 \mid x^2 - y^2 = c\}$$

geometricamente son circunferencias con centro el origen y radio c



Diferenciación de funciones $\mathbb{R}^n \to \mathbb{R}$

Sea $f: A \subseteq \mathbb{R}^n \to \mathbb{R}$ y $\overline{a} = (a_1, \dots, a_n) \epsilon \mathring{A}$. Se define la derivada pacial *i*-esima en \overline{a} denotada $f_x(\overline{a})$, $D_x f(\overline{a})$ ó $\frac{\partial f}{\partial x}(\overline{a})$ de la forma $f_x = \lim_{h \to 0} \frac{f(a_1, \dots, a_i + h, \dots a_n) - f(\overline{a})}{h} = \lim_{h \to 0} \frac{f(a + he_i) - f(a)}{h}$ siendo $\overline{e}_i = (0, \dots, \frac{1}{i - esimo}, \dots, 0)$. Si n = 2 existen 2 derivadas parciales.

Sea $\bar{a} = (x_0, y_0)$ un punto del interior del dominio de $f : A \subseteq \mathbb{R}^2 \to \mathbb{R}$ las derivas parciales de f en el punto \bar{a} denotada respectivamente por $f_x(x_0, y_0)$, $f_y(x_0, y_0)$ son:

$$f_x(x_0, y_0) = \lim_{h \to 0} \frac{f(x_0 + h, y_0) - f(x_0, y_0)}{h}$$

$$f_y(x_0, y_0) = \lim_{k \to 0} \frac{f(x_0, y_0 + k) - f(x_0, y_0)}{k}$$

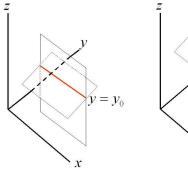
Ejemplo: Si $f(x,y) = x^2 + x + 1$ entonces $f_x(0,0) = 1$ ya que

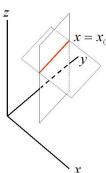
mplo: Si
$$f(x,y) = x^2 + x + 1$$
 entonces $f_x(0,0) = 1$ ya que
$$f_x = \lim_{h \to 0} \frac{f(0+h,0) - f(0,0)}{h} = \lim_{h \to 0} \frac{h^2 + h + 1 - 1}{h} = \lim_{h \to 0} \frac{h(h+1)}{h} = \lim_{h \to 0} h + 1 = 1 \text{ y}$$

$$f_y = \lim_{k \to 0} \frac{f(0,0+k) - f(0,0)}{k} = \lim_{k \to 0} \frac{1 - 1}{k} = 0$$

Observación: La derivada parcial en un punto de una función de varias variables en la derivada de la función de una variable, obtenida haciendo constante todas las variables, menos una. en consecuencia se pueden aplicar con esta interpretación, las reglas de derivación en una variable.

Las derivadas parciales en el punto (x_0, y_0) de la función z = f(x, y) representa la pendiente de las curvas intersección C_1 y C_2 de la superficie z = f(x, y) con los planos $y = y_0$, $x = x_0$ respectivamente





Ejercicio: Calcular las derivadas parciales

a)
$$f(x,y) = a \arcsin(x-y)$$

b)
$$f(t, u) = \frac{\cos(2tu)}{t^2 + u^2}$$

c)
$$f(x, y, z) = \frac{xyz}{x^2 + y^2 + z^2}$$

d)
$$f(x,y) = \int_0^{x-t} e^{-t^2} dt$$
 $x > 0, y > 0$

Solución:

a)
$$f_x = \frac{x}{\sqrt{1 - (x - y)^2}} + \arcsin(x - y)$$

$$f_y = \frac{-x}{\sqrt{1 - (x - y)^2}}$$

b)
$$f_t = \frac{-(t^2 + u^2)\sin(2tu) \cdot 2u - \cos(2tu)2t}{(t^2 + u^2)^2}$$
$$f_u = \frac{(t^2 + u^2) - \sin(2tu)2u - \cos(2tu)2u}{(t^2 + u^2)^2}$$

c)
$$f_x = \frac{(x^2 + y^2 + z^2)yz - xyz(2x)}{(x^2 + y^2 + z^2)z}$$

$$f_y = \frac{(x^2 + y^2 + z^2)xz - xyz(2y)}{(x^2 + y^2 + z^2)z}$$

$$f_z = \frac{(x^2 + y^2 + z^2)xy - xyz(2z)}{(x^2 + y^2 + z^2)xy - xyz(2z)}$$
d)
$$f_x = e^{-xy} \frac{y}{2\sqrt{xy}}$$

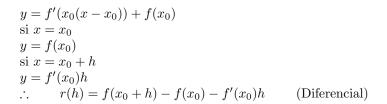
$$f_y = e^{-xy} \frac{x}{2\sqrt{xy}}$$

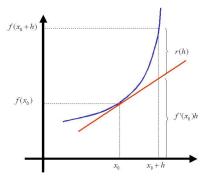
d)
$$f_x = e^{-xy} \frac{y}{2\sqrt{xy}}$$

 $f_y = e^{-xy} \frac{x}{2\sqrt{xy}}$

Diferenciabilidad

Idea Geometrica





Definición 6. Sea $A \subset \mathbb{R}^2$, un abierto, $f: A \to \mathbb{R}$ y $(x_0, y_0) \in A$. Se dice que f es diferenciable en (x_0, y_0) si existen constantes A_1 , A_2 tal que

$$f((x_0, y_0) + (h_1, h_2)) = f(x_0, y_0) + A_1 h_1 + A_2 h_2 + r(h_1, h_2)$$

donde

$$\lim_{(h_1,h_2)\to(0,0)} \frac{r(h_1,h_2)}{\|(h_1,h_2)\|} = 0$$