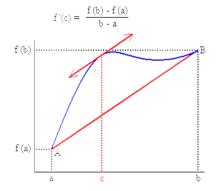
Teorema del Valor Medio de Funciones de $\mathbb{R} \to \mathbb{R}$

Teorema 1. Suponga que $f:[a,b] \to \mathbb{R}$ es derivable en (a,b) y continua en [a,b] entonces existe $c \in (a,b)$ tal que

$$f'(c) = \frac{f(b) - f(a)}{b - a}$$



Ahora bien si $c \in (a, b)$ entonces lo podemos escribir c = a + t(b - a) con $t \in (0, 1)$, si hacemos $a = x_0$ y $b = x_0 + h$ entonces nos quedaría

$$f'(x_0 + th) = \frac{f(x_0 + h) - f(x_0)}{h} \Rightarrow f'(x_0 + th)h = f(x_0 + h) - f(x_0)$$

Teorema del Valor Medio para Funciones de $\mathbb{R}^n \to \mathbb{R}$

El caso general sería

Teorema 2. Sea $f: A \subset \mathbb{R}^n \to \mathbb{R}$ una función definida en el conjunto abierto A de \mathbb{R}^n . Si $x_0, y_0 \in A$ se pide que el conjunto A sea tal que $[x_0, y_0] = \{x_0 + t(y_0 - x_0) \mid t \in [0, 1]\} \subset A$. Sea u un vector unitario en la dirección del vector $y_0 - x_0$. Si la función f es continua en los puntos del segmento $[x_0, y_0]$ y tiene derivadas direccionales en la dirección del vector u en los puntos del segmento (x_0, y_0) , entonces existe θ $0 < \theta < 1$ tal que $f(x_0 + hu) - f(x_0) = \frac{\partial f}{\partial u}(x_0 + \theta hu)h$ donde $h = \|y_0 - x_0\|$.

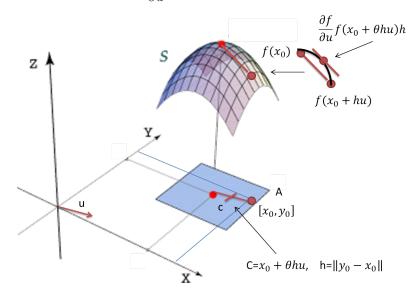
Una consecuencia del teorema anterior es el teorema

Teorema 3. Sea $f: A \subset \mathbb{R}^n \to \mathbb{R}$ una función definida en el conjunto abierto A de \mathbb{R}^n . Si las derivadas parciales $\frac{\partial f}{\partial x_i}$ $\forall i = 1, ..., n$ son continuas en $x_0 \in A$ entonces f es diferenciable en $x_0 \in A$

Vamos a dar una idea de la demostración para el caso n=2

Teorema del Valor Medio para Funciones de $\mathbb{R}^2 \to \mathbb{R}$

Teorema 4. Sea $f: A \subset \mathbb{R}^2 \to \mathbb{R}$ una función definida en el conjunto abierto A de \mathbb{R}^2 . Si $x_0, y_0 \in A$ se pide que el conjunto A sea tal que $[x_0, y_0] = \{x_0 + t(y_0 - x_0) \mid t \in [0, 1]\} \subset A$. Sea u un vector unitario en la dirección del vector $y_0 - x_0$. Si la función f es continua en los puntos del segmento $[x_0, y_0]$ y tiene derivadas direccionales en la dirección del vector u en los puntos del segmento (x_0, y_0) , entonces existe θ $0 < \theta < 1$ tal que $f(x_0 + hu) - f(x_0) = \frac{\partial f}{\partial u}(x_0 + \theta hu)h$ donde $h = \|y_0 - x_0\|$.



Demostración. Considere la función $\phi:[0,h]\to\mathbb{R}$ dada por $\phi(t)=f(x_0+tu)$ ciertamente la función ϕ es continua en [0,h] pues f lo es en $[x_0,y_0]$. Ademas

$$\phi'(t) = \lim_{h \to 0} \frac{\phi(t+h) - \phi(t)}{h}$$

$$= \lim_{h \to 0} \frac{f(x_0 + (t+h)u) - f(x_0 + tu)}{h}$$

$$= \lim_{h \to 0} \frac{f(x_0 + tu + hu) - f(x_0 + tu)}{h}$$

$$= \frac{\partial f}{\partial u}(x_0 + tu)$$

de modo que para $t \in (0,h)$ $\phi'(t)$ existe y es la derivada direccional de f en $x_0 + tu \in (x_0,y_0)$ en la dirección del vector u. Aplicando entonces el teorema del valor medio a la función ϕ , concluimos que existe un múmero $\theta \in (0,1)$ que da $\phi(h) - \phi(0) = \phi'(\theta h)h$ es decir de modo que

$$f(x_0 + hu) - f(x_0) = \frac{\partial f}{\partial u}(x_0 + \theta hu)h$$

Ahora para la versión del teorema 3

Teorema 5. Sea $f: A \subset \mathbb{R}^2 \to \mathbb{R}$ una función definida en el conjunto abierto A de \mathbb{R}^n . Si las derivadas parciales $\frac{\partial f}{\partial x}$, $\frac{\partial f}{\partial y}$ son continuas en $(x_0, y_0) \in A$ entonces f es diferenciable en $(x_0, y_0 \in A)$

Demostración. Vamos a probar que

$$f((x_0, y_0) + (h_1, h_2)) = f(x_0, y_0) + \frac{\partial f}{\partial x}(x_0, y_0)h_1 + \frac{\partial f}{\partial y}(x_0, y_0)h_2 + r(h_1, h_2)$$

donde

$$\lim_{(h_1, h_2) \to (0, 0)} \frac{r(h_1, h_2)}{\|(h_1, h_2)\|} = 0$$

para ello tenemos que

$$r(h_1, h_2) = f((x_0, y_0) + (h_1, h_2)) - f(x_0, y_0) - \frac{\partial f}{\partial x}(x_0, y_0)h_1 - \frac{\partial f}{\partial y}(x_0, y_0)h_2$$

sumando un cero adecuado

$$r(h_1, h_2) = f((x_0, y_0) + (h_1, h_2)) - \frac{f(x_0, y_0 + h_2)}{f(x_0, y_0 + h_2)} + \frac{f(x_0, y_0 + h_2)}{f(x_0, y_0)} - \frac{\partial f}{\partial x}(x_0, y_0) + \frac{\partial f}{\partial y}(x_0, y_0) + \frac{\partial$$

trabajaremos

$$f((x_0, y_0) + (h_1, h_2)) - f(x_0, y_0 + h_2)$$

Considerando la función $\varphi(x) = f(x, y_0 + h_2)$ por lo tanto tenemos que

$$\varphi'(x) = \lim_{h_1 \to 0} \frac{\varphi(x+h_1) - \varphi(x)}{h_1} = \lim_{h_1 \to 0} \frac{f(x+h_1, y_0 + h_2) - f(x, y_0 + h_2)}{h_1}$$

este limite existe y nos dice que φ es es continua en este caso en el intervalo $[x_0, x_0 + h_1]$. Por lo tanto aplicando el TVM en dicho intervalo se obtiene

$$\varphi(x_0 + h_1) - \varphi(x_0) = \varphi'(x_0 + \theta_1 h_1)h_1$$
 p.a. $\theta_1 \in (0, 1)$

es decir

$$f((x_0 + h_1, y_0 + h_2) - f(x_0, y_0 + h_2)) = \frac{\partial f}{\partial x}(x_0 + \theta_1 h_1, y_0 + h_2)h_1$$

Analogamente

$$f(x_0, y_0 + h_2) - f(x_0, y_0)$$

Considerando la función $\varphi(y) = f(x_0, y)$ por lo tanto tenemos que

$$\varphi'(y) = \lim_{h_2 \to 0} \frac{\varphi(x_0, y_0 + h_2) - \varphi(y_0 + h_2)}{h_2} = \lim_{h_2 \to 0} \frac{f(x_0, y_0 + h_2) - f(y_0 + h_2)}{h_2}$$

este limite existe y nos dice que φ es es continua en este caso en el intervalo $[y_0, y_0 + h_2]$. Por lo tanto aplicando el TVM en dicho intervalo se obtiene

$$\varphi(y_0 + h_2) - \varphi(y_0) = \varphi'(y_0 + \theta_2 h_2)h_2$$
 p.a. $\theta_2 \in (0, 1)$

es decir

$$f((x_0, y_0 + h_2) - f(x_0, y_0)) = \frac{\partial f}{\partial y}(x_0, y_0 + \theta_2 h_2)h_2$$

Sustituimos en

$$r(h_1, h_2) = f((x_0, y_0) + (h_1, h_2)) - \frac{f(x_0, y_0 + h_2)}{f(x_0, y_0 + h_2)} + \frac{f(x_0, y_0 + h_2)}{f(x_0, y_0)} - \frac{\partial f}{\partial x}(x_0, y_0) + \frac{\partial f}{\partial y}(x_0, y_0) + \frac{\partial$$

y obtenemos

$$r(h_1, h_2) = \frac{\partial f}{\partial x}(x_0 + \theta_1 h_1, y_0 + h_2)h_1 - \frac{\partial f}{\partial x}(x_0, y_0)h_1 + \frac{\partial f}{\partial y}(x_0, y_0 + \theta_2 h_2)h_2 - \frac{\partial f}{\partial y}(x_0, y_0)h_2$$

es decir

$$r(h_1, h_2) = \left(\frac{\partial f}{\partial x}(x_0 + \theta_1 h_1, y_0 + h_2) - \frac{\partial f}{\partial x}(x_0, y_0)\right) h_1 + \left(\frac{\partial f}{\partial y}(x_0, y_0 + \theta_2 h_2) - \frac{\partial f}{\partial y}(x_0, y_0)\right) h_2$$

por lo tanto

$$\frac{r(h_1,h_2)}{\|(h_1,h_2)\|} = \left(\frac{\partial f}{\partial x}(x_0 + \theta_1 h_1, y_0 + h_2) - \frac{\partial f}{\partial x}(x_0, y_0)\right) \frac{h_1}{\|(h_1,h_2)\|} + \left(\frac{\partial f}{\partial y}(x_0, y_0 + \theta_2 h_2) - \frac{\partial f}{\partial y}(x_0, y_0)\right) \frac{h_2}{\|(h_1,h_2)\|}$$

ahora bien si $||(h_1, h_2)|| \to (0, 0)$ se tiene

$$\left(\frac{\partial f}{\partial x}(x_0 + \theta_1 h_1, y_0 + h_2) - \frac{\partial f}{\partial x}(x_0, y_0)\right) \to 0$$

у

$$\frac{h_1}{\|(h_1, h_2)\|} < 1$$

Analogamente

$$\left(\frac{\partial f}{\partial y}(x_0, y_0 + \theta_2 h_2) - \frac{\partial f}{\partial y}(x_0, y_0)\right) \to 0$$

у

$$\frac{h_2}{\|(h_1,h_2)\|}<1$$

en consecuencia

$$\lim_{(h_1, h_2) \to (0, 0)} \frac{r(h_1, h_2)}{\|(h_1, h_2)\|} = 0$$

por lo tanto f es diferenciable en (x_0, y_0)