Teorema 1. Criterio de Cauchy para Convergencia Uniforme de sucesiones de funciones.

Una sucesión de funciones $\{f_n\}$ definidas en I, converge uniformemente si y solo si

$$\forall \ \epsilon > 0, \ \ exists \ n_0 \ \ tal \ que \ n > n_0, \ p > 0 \ \Rightarrow \ |f_{n+p} - f_n(p)| < \epsilon, \ \ x \in I$$

Demostraci'on. Supongamos que $\{f_n\}\to f$ uniformemente en I. Dado $\epsilon>0$ existe n_0 tal que $n>n_0$ implican

$$|f_n(x) - f(x)| < \epsilon$$

entonces si $n > n_0$ y p > 0

$$|f_{n+p}(x) - f_n(x)| = |f_{n+p}(x) - f(x) + f(x) - f_n(x)|$$

$$\leq |f_{n+p}(x) - f(x)| + |-f_n(x) + f(x)|$$

$$< \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon$$

Reciprocamente si se cumple

$$\forall \epsilon > 0$$
, exists n_0 tal que $n > n_0$, $p > 0 \Rightarrow |f_{n+p} - f_n(p)| < \epsilon$, $x \in I$

Dejando x fijo la sucesión $\{f_n(x)\}$ cumple la condición de Cauchy y por tanto es una sucesión convergente, el límite dependerá de x, podemos entonces asignar este valor f(x). Ahora bien fijando $n > n_0$ se tiene que para todo $x \in I$

$$|f_n(x) - f(x)| = \lim_{p \to \infty} |f_{n+p}(x) - f_n(x)| < \epsilon$$

por lo tanto

$$|f_n(x) - f(x)| < \epsilon$$
 si $n > n_0$

Ejemplo Sea $\{f_n(x)\}$ una sucesión de funciones dadas por

$$f_n(x) = \frac{x}{nx+1}$$
 en $[0,\infty)$

Vamos a comprobar que $f_n(x)$ converge uniformente en $[0,\infty)$, en este caso

$$f_n(x) - f_k(x) = \frac{x}{nx+1} - \frac{x}{kx+1}$$
$$= \frac{x^2(k-n)}{(nx+1)(kx+1)}$$

entonces para k > n se tiene

$$|f_n(x) - f_k(x)| = \left| \frac{x^2(k-n)}{(nx+1)(kx+1)} \right| = \frac{x^2(k-n)}{(nx+1)(kx+1)}$$

$$\leq \frac{x^2(k-n)}{nkx^2}$$

$$= \frac{k-n}{kn}$$

$$= \frac{1}{n} \left(1 - \frac{n}{k} \right)$$

$$< \frac{1}{n}$$

por lo que dado $\epsilon > 0$ si escogemos $n_0 > \frac{1}{\epsilon}$ entonces para $n > n_0$ se cumplira

$$|f_n(x) - f_k(x)| < \epsilon$$

y por tanto la sucesión de funciones converge uniformenete en $(0, \infty]$

Series de Funciones

Definición 1. Si $\{f_n\}$ es una sucesión de funciones definidas en un intervalo I, decimos que $\{S_n(x)\}$ es una serie de funciones, donde

$$S_n(x) = f_1(x) + f_2(x) + f_3(x) + \dots + f_n(x)$$

A $f_n(x)$ se le llama el enésimo término de la serie y a $S_n(x)$ se le llama suma parcial enésima de la serie.

Definición 2. Decimos que la serie de funciones

$$\sum_{n=1}^{\infty} f_n(x)$$

definida en un intervalo I, converge uniformemente en I, si la sucesión de funciones $\{S_n(x)\}$ converge uniformemente en I. esto es $\forall \epsilon > 0$ existe n_0 tal que si $n > n_0$ entonces

$$|S_n(x) - s(x)| < \epsilon$$

esto es $\forall \epsilon > 0$ existe n_0 tal que si $n > n_0$ entonces

$$\left| \sum_{n=n_0+1}^{\infty} f_n(x) \right| < \epsilon$$

Teorema 2. Si se tiene una serie $\sum_{n=1}^{\infty} f_n(x)$ que converge uniformemente en I y cada término de la serie se multiplica por una función acotada φ en I, entonces la serie

$$\sum_{n=1}^{\infty} \varphi(x) f_n(x)$$

converge uniformemente en I.

Demostración. Como la serie $\sum_{n=1}^{\infty} f_n(x)$ converge uniformemente, entonces dado $\epsilon > 0$ existe n_0 tal que si $n > n_0$ entonces

$$|S_n(x) - s(x)| < \frac{\epsilon}{M}$$

es decir

$$\left| \sum_{n=n_0}^{\infty} f_n(x) \right| < \frac{\epsilon}{M}$$

en consecuencia

$$M\left|\sum_{n=n_0}^{\infty} f_n(x)\right| < \epsilon$$

al ser $\varphi(x)$ acotada, existe M tal que $-M < \varphi(x) < M$ de manera que

$$\left| \sum_{n=n_0}^{\infty} \varphi(x) f_n(x) \right| = |\varphi(x)| \left| \sum_{n=1}^{\infty} f_n(x) \right|$$

$$\leq M \left| \sum_{n=n_0}^{\infty} f_n(x) \right| < \epsilon$$

por lo tanto la serie

$$\sum_{n=n_0}^{\infty} \varphi(x) f_n(x)$$

converge uniformemente en I.

Definición 3. Dada una serie de funciones $\sum_{n=1}^{\infty} f_n(x)$ en I, decimos que una serie $\sum_{n=1}^{\infty} M_n$ donde $M_n > 0$ son números positivos domina la serie de funciones si

$$|f_n(x)| \le M_n \ \forall \ n \ y \ \forall \ x \in I$$

A la serie $\sum_{n=1}^{\infty} M_n$ se le llama serie dominante y a la serie $\sum_{n=1}^{\infty} f_n(x)$ se le llama serie dominada.

Teorema 3. Prueba M de Weirstrass $Si \sum_{n=1}^{\infty} f_n(x)$ es una serie de funciones $y \sum_{n=1}^{\infty} M_n$ es una serie dominante convergente de la serie de funciones, entonces ésta converge uniformemente

Demostración. Como la serie numérica $\sum_{n=1}^{\infty} M_n$ es convergente, entonces dado $\epsilon > 0$ existe n_0 tal que si $n > n_0$ entonces se cumple

$$\left| \sum_{n_0+1}^{\infty} M_n \right| < \epsilon$$

es decir

$$M_{n_0+1} + M_{n_0+2} + \dots < \epsilon, \quad \forall n > n_0, \quad \forall \ x \in I$$

por lo tanto

$$|f_{n_0+1} + f_{n_0+2} + \dots| < \epsilon, \quad \forall n > n_0, \quad \forall \ x \in I$$

de manera que

$$\left| \sum_{n_0+1}^{\infty} f_n(x) \right| < \epsilon, \quad \forall n > n_0, \quad \forall \ x \in I$$

es decir la serie de funciones converge uniformemente

Ejemplos Pruebe que la serie de funciones $\sum_{n=1}^{\infty} \frac{\sin nx}{n^2}$ converge uniformemente

Solución Se tiene que

$$\frac{\text{sen } nx}{n^2} \le \frac{1}{n^2}, \ \forall \ x \in I$$

por lo tanto la serie

$$\sum_{n=1}^{\infty} \frac{1}{n^2}$$

es una serie dominante de la serie de funciones y sabemos que la serie $\sum_{n=1}^{\infty} \frac{1}{n^2}$ converge y en consecuencia la serie de funciones converge uniformemente

Ejemplos Pruebe que la serie de funciones $\sum_{n=1}^{\infty} \frac{x}{1+n^4x^2}$ converge uniformemente

Solución Se tiene que Derivando $f_n(x)$ se tiene

$$f'_n(x) = \frac{(1+n^4x^2) - 2n^4x^2}{(1+n^4x^2)^2} = \frac{1-n^4x^2}{(1+n^4x^2)^2}$$

de donde

$$f'_n(x) = 0 \Leftrightarrow \frac{1 - n^4 x^2}{(1 + n^4 x^2)^2} = 0$$
$$\Leftrightarrow 1 - n^4 x^2 = 0$$
$$\Leftrightarrow x = \frac{1}{n^2}$$

entonces el valor máximo de $f_n(x)$ es

$$f_n\left(\frac{1}{n^2}\right) = \frac{\frac{1}{n^2}}{1 + n^4 \left(\frac{1}{n^2}\right)^2}$$
$$= \frac{1}{2n^2}$$

por que la serie $\sum_{n=1}^{\infty} \frac{1}{2n^2}$ es una serie dominante de la serie de funciones y además es convergente, por lo tanto la serie de funciones converge uniformemente por lo tanto la serie

$$\sum_{n=1}^{\infty} \frac{1}{n^2}$$

es una serie dominante de la serie de funciones y sabemos que la serie $\sum_{n=1}^{\infty} \frac{1}{n^2}$ converge y en consecuencia la serie de funciones converge uniformemente