Geoemtría Analítica II Guía 4

Guia para el cuarto examen parcial

La función $\pi:\mathbb{C}\to S^2-\{e_3\}$ esta dada por

$$\pi(z) = \left(\frac{z + \overline{z}}{|z|^2 + 1}, \frac{z - \overline{z}}{i(|z|^2 + 1)}, \frac{|z|^2 - 1}{|z|^2 + 1}\right)$$

la función $\psi = S^2 - \{e_3\} \to \mathbb{C}$ como

$$\psi(x_1, x_2, x_3) = \frac{x_1 + ix_2}{1 - x_3}$$

- 1.-Compruebe que $(\psi \circ \pi)(z) = z$
- 2.-Demuestre que si P_1 y P_2 son puntos de la esfera y están en los extremos opuestos de un diámetro (puntos antipódales) entonces sus imágenes estereográficas z_1 y z_2 satisfacen

$$z_1\overline{z_2} = -1$$

- 3.- Demuestre que la transformacione compleja $T(z)=\frac{1}{z}$ (inversión) preserva ángulos 4.-Encuentre una transformación $T:\mathbb{C}\to\mathbb{C}$ de Möbius que mande $z_1=0,\,z_2=-i,\,z_3=-1$ en $w_1=i,$
- $w_2 = 1, w_3 = 0$
- 5.-Hallar los puntos invariantes de la transformación

$$w = \frac{2z - 5}{z + 4}$$