

GEOMETRÍA MODERNA

Notas del curso Geometría Moderna 1

Unidad 1

Autor: Esteban Rubén Hurtado Cruz & Selma Fernanda Espinosa Guevara

Instituto: Facultad de Ciencias UNAM

Fecha: May. 2, 2021

Versión: 4.1

Bio: Semestre 2022-1

icción de que puedes

Índice general

1.	Unidad 1. Geometría del triángulo	1
	1.1. Ángulos en circulos	1
	1.2. Triángulos Pedales	3
	Capítulo 1 Problemas para pensar	4

Capítulo 1 Unidad 1. Geometría del triángulo

1.1 Ángulos en circulos

Uno de los teoremas más útiles sobre los círculos se le atribuye a Tales, de quien se dice que sacrificó dos bueyes después de descubrir la prueba. (En realidad, los babilonios conocían versiones del teorema unos mil años antes).

Teorema 1.1 (Teorema de Tales)

Un ángulo inscrito en un círculo es la mitad de la medida del ángulo del área interceptada.

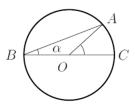
 \Diamond

En la figura, α es la medida del ángulo inscrito, el arco CD es el arco interceptado, y β es la medida del ángulo del arco interceptado.

Las siguientes figuras ilustran el teorema de Thales

Demostración

• Un lado del ángulo inscrito pasa por el centro de la circunferencia. Supongamos que $\alpha = \angle ABC$ es el ángulo inscrito que pasa por el centro de la circunferencia, O se encuentra sobre BC.



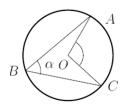
Como el triángulo \triangle ABO es isóceles tenemos que

$$\angle ABO = \angle BAO = \alpha$$

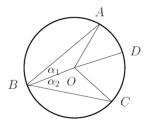
y como la medida del ángulo exterior al vértice O del triángulo \triangle ABO es la suma de los otros dos ángulos interiores, entonces

$$\angle AOC = 2\alpha$$

• El centro de la circunferencia es un punto interior del ángulo



Trazamos la cuerda BD que pase por el centro O. El ángulo $\alpha=\angle BAC$, queda dividido en dos partes por BD,



si $\alpha_1 = \angle ABD$ y $\alpha_2 = \angle DBC$ tenemos por el primer caso

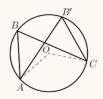
$$\angle AOD = 2\alpha_1 \quad y \quad \angle DOC = 2\alpha_2$$

por lo tanto

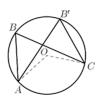
$$\angle AOC = \angle AOD + \angle DOC = 2\alpha_1 + 2\alpha_2 = 2\alpha$$

Corolario 1.1 (Ángulos que abren en un arco de circunferencia)

Todos los ángulos inscritos que abren un mismo arco tienen la misma medida.



Demostración Sean $\angle ABC$ y $\angle AB'C$ dos ángulos inscritos que abren un mismos arco



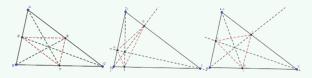
Según el resultado anterior

$$\angle ABC = \angle AB'C = \frac{1}{2} \angle AOC$$

1.2 Triángulos Pedales

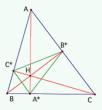
Definición 1.1 (Triángulos Pedales)

A los triángulos cuyos vértices son los pies de las medianas, alturas o bisectrices de un triángulo se les llama triángulos pedales del triángulo: triángulo pedal de las medianas, triángulo pedal de las alturas, triángulo pedal de las bisectrices. Al triángulo pedal de las medianas se le llama también triángulo mediano y al triángulo pedal de las alturas, triángulo órtico. Algunos autores cuando aluden simplemente al triángulo pedal se refieren, en general, al triángulo órtico.



Definición 1.2 (Triángulo órtico)

Dado un triángulo $\triangle ABC$ con ángulos agudos, sea A^*, B^*, C^* los pies de las alturas del triángulo, donde A^*, B^*, C^* son puntos a los lados del triángulo, de modo que AA^*, BB^*, CC^* son alturas. El triángulo órtico del $\triangle ABC$ se define al triángulo $\triangle A^*B^*C^*$.

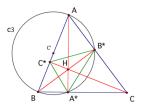


Este triángulo tiene algunas propiedades notables que demostraremos:

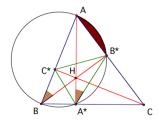
Teorema 1.2 (Propiedad del triángulo órtico)

Las alturas de lados del triángulo $\triangle ABC$ son las bisectrices de los ángulos interiores del triángulo órtico $\triangle A^*B^*C^*$, por lo que el ortocentro H del triángulo $\triangle ABC$ es el incentro del triángulo $\triangle A^*B^*C^*$.

Demostración Si consideramos el lado AB como el diámetro de una circunferencia, el centro del círculo es el punto medio C ' de AB. Dado que AC'B es un diámetro y un ángulo recto, para cualquier punto P en el circulo, el ángulo $\angle APB$ es un ángulo recto. Por lo tanto, el círculo intersecta AC en un punto P, de modo que BP es perpendicular a AC; el único punto es $P = B^*$. Del mismo modo, el círculo se intersecta a C en A^* .

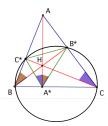


Según la figura, el ángulo $\angle ABB^*$ = ángulo $\angle AA^*B^*$.

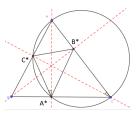


Ya que ambos ángulos son ángulos inscritos en el círculo c con diámetro AB. Ambos equivalen a la mitad del ángulo del arco B^*A . Así son iguales.

Sobre el triángulo \triangle ABC, considerando el lado BC como diámetro, tenemos que el ángulo \angle ACC^* = ángulo \angle C^*BB^* .

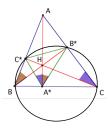


Ya que ambos ángulos son ángulos inscritos que subtienden el mismo arco. Sobre el triángulo \triangle ABC, considerando el lado AC como diámetro, tenemos que el ángulo \angle C^*CA = ángulo \angle C^*A^*A .



Ya que ambos ángulos son ángulos inscritos en el círculo c con diámetro AC.

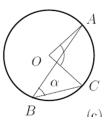
Tenemos entonces que el ángulo \angle AA^*B^* = ángulo \angle ABB^* y ángulo \angle AA^*C^* = ángulo \angle ACC^* . En otras palabras, A^*A bisecta el ángulo A^* del triángulo $A^*B^*C^*$



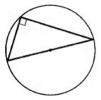
🗫 Capítulo 1 Problemas para pensar 📚

1. Pruebe el siguiente caso particular del teorema del ángulo central: El centro de la circunferencia es un punto exterior del ángulo, es decir

$$\angle AOC = 2 \alpha = 2 \angle ABC$$



2. Pruebe lo siguiente: El ángulo de un semicírculo es un ángulo recto.



3. Calcule el tamaño del $\angle \theta$ en la siguiente figura

