

GEOMETRÍA MODERNA

Notas del curso Geometría Moderna 1

Unidad 1

Autor: Esteban Rubén Hurtado Cruz & Selma Fernanda Espinosa Guevara

Instituto: Facultad de Ciencias UNAM

Fecha: May. 2, 2021

Versión: 4.1

Bio: Semestre 2022-1

icción de que puedes

Índice general

1.	Unidad 1. Geometría del triángulo	1
	1.1. Teorema de Euler	1
	Capítulo 1 Problemas para pensar	3

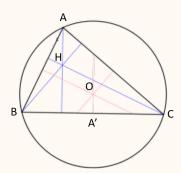
Capítulo 1 Unidad 1. Geometría del triángulo

1.1 Teorema de Euler

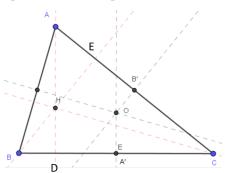
Lema 1.1 (Propiedad del ortocentro y el circuncentro)

Consideremos un triángulo \triangle ABC. Sean H su ortocentro, O su circuncentro y A' el punto medio del lado BC, entonces se tiene que

$$AH = 2A'O$$

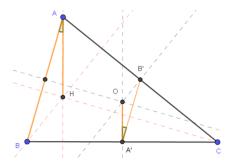


Demostración Trazamos AD altura por A, BE altura por B, OA' mediatriz de BC y OB' mediatriz por AC



Tenemos entonces que

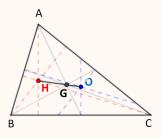
- 1. AB es paralela a A'B' pues une los puntos medios
- 2. AH es perpendicular a BC y A'O es perpendicular a BC
- 3. según lo anterior AH es paralela a A'O
- 4. $\angle BAH = \angle OA'B'$
- 5. Por el criterio de semejanza LAL se tiene que los triángulos ABH y A'B'O son semejantes



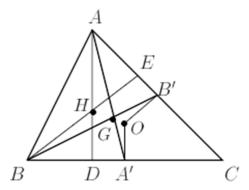
Como AB = 2A'B' entonces $\frac{AB}{A'B'} = 2$ en particular AH = 2A'O

Teorema 1.1 (Teorema de Euler)

En un triángulo \triangle ABC, el ortocentro H, centroide G y el circuncentro O son colineales. La recta donde se encuentran estos punto se conoce como la **recta de Euler**.



Demostración Trazamos dos medianas AA', BB' para localizar el centroide G,dos alturas AD y BE para localizar el ortocentro H. Por el lema anterior tenemos que AH = 2A'O; como G es el centroide sabemos que AG = 2GA', finalmente AH y A'O son ambas perpendiculares a BC, se tiene que son paralelas y entonces $\angle HAG = \angle OA'G$



lo anterior es suficiente para garantizar que los triángulos HAG y OA'G son semejantes, en particular tenemos que

$$\angle HGA = \angle OGA'$$

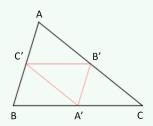
luego H, G y O son colineales.

En la figura de la demostración se tiene que los triángulos \triangle HAG y \triangle OA'G son semejantes en razón 2 a 1, con esto se puede asegurar que

$$HG = 2GO$$

Definición 1.1 (Triángulo Medial)

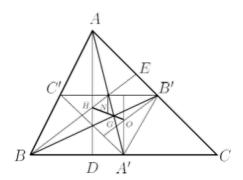
En un triángulo \triangle ABC, si unimos los puntos medios A', B' y C' de los lados BC, CA y AB respectivamente, se forma un triángulo A'B'C' semejante al triángulo \triangle ABC, con razón de semejanza 2 a 1, llamado triángulo medial



4

🗫 Capítulo 1 Problemas para pensar 📚

1. Sea N el circuncentro del triángulo medial \triangle A'B'C' del triángulo \triangle ABC. Pruebe que OG=2GN.



- 2. Pruebe que N es el punto medio del segmento OH.
- 3. ¿Es cierto o falso que el circunradio del triángulo \triangle A'B'C' es la mitad del circunradio del triángulo \triangle ABC