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Chapter 1

Review of Probability
Theory and an
Introduction to Stochastic
Processes

1.1 Introduction

The underlying mathematical theory of stochastic modeling is sfochastic
processes. The theory of stochastic processes is based on probability the-
ory. Therefore, we begin with a brief review of some basic principles from
probability theory. An important reference for stochastic processes with
applications to biology is the classic textbook by Bailey, The Elements of
Stochastic Processes with Applications to the Natural Sciences, which has
been referenced frequently since its initial publication in 1964. John Wiley
& Sons republished this classic textbook in 1990. Other good references for
stochastic processes include Elements of the Theory of Markov Processes
and Their Applications, by Bharucha-Reid {1997, a Dover republication of
a 1960 textbook); Stochastic Models in Biology, by Goel and Richter-Dyn
(1974); Stochastic Processes and Applications in Biology and Medicine,
Volumes I and II (Theory and Models), by losifescu and THutu (1973);
A First Course in Stochastic Processes, by Karlin and Taylor (1975); A
Second Course in Stochastic Processes, by Karlin and Taylor (1981); Mod-
elling Fluctuating Populations, by Nisbet and Gurney (1982); Modelling
Biological Populations in Space and Time, by Renshaw (1993); Stochas-
tic Processes, by Ross (1983); Classical and Spatial Stochastic Processes,
by Schinazi (1999); and An Introduction to Stochastic Modeling, by Taylor
and Karlin (1998). The books by Karlin and Taylor have become classics
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on stochastic processes; they provide an excellent introduction to general
stochastic processes. In addition, Gard’s book, Intreduction to Stochastic
Differential Equations (1988), discusses the theory of stochastic differential
equations with applications to population dynamics. Additional references
on stochastic processes will be given in subsequent chapters.

Numerous stochastic models from biology will be introduced and stud-
ied in this book. Often the stochastic models have a deterministic analogue,
including models for population growth, competition, predation, and epi-
demics. For these models, the behavior of the deterministic model will
be discussed and compared to that of the corresponding stochastic model.
One of the most imporiant differences between deterministic and stochas-
tic models is that deterministic models predict an outcome with absolute
certainty, whereas stochastic models provide only the probability of an out-
come. For example, in a deterministic model, such as a difference equation
or differential equation with initial conditions prescribed at ¢ = 0, the so-
lution follows a prescribed path or trajectory in the solution space. The
numerical solution of a difference or differential equation gives the value
of the solution (to a fixed number of decimal places) at a particular time
t. In a stochastic model, the process may still be described by a system
of difference equations (transition matrix) or differential equations (for-
ward Kolmogorov equations or stochastic differential equations). However,
unlike the deterministic model, the solution to these equations is more
complicated, and a single solution trajectory does not describe the entire
behavior of the model but represents only a single realization of the pro-
cess. To understand the behavior of a stochastic model, it is important to
know the entire probability distribution of the process over time. When
this is not possible, the qualitative behavior of the process is studied by
other methods, such as by obtaining the moments (mean, variance, etc.) of
the distribution.

In models of populations, where the population size is sufficiently large,
a deterministic formulation is often used. However, when population sizes
are small, population extinction may occur, and then it is more realistic to
model the variation in size by a stochastic formulation. Stochastic mod-
els may be used to study the probability of population extinction or the
expected duration of time until population extinction. Random variations
associated with demography and the environment can be taken into account
in stochastic models.

A variety of mathematical techniques will be introduced, and the un-
derlying theory will be developed for stochastic processes. The techniques
and theory will be applied to stochastic models in biology. Methods for
analyzing the dynamical behavior of the stochastic models will be studied
as well as methods for constructing numerical simulations.

In the next section, a review of some basic concepts from probabilivy
theory are presented. In sections 1.3 and 1.4, generating functions are
introduced and the central limit theorem is stated. Many examples are
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given to jllustrate and reinforce these important concepts from probability
theory. In the last two sections of this chapter, stochastic processes are
defined and an example of a simple birth process is given. This chapter
is not intended to be a comprehensive review of probability theory but
only to be a brief review of some concepts from probability theory that are
important to the theory of stochastic processes.

1.2 Brief Review of Probability Theory

In this section, a brief review is given of many important definitions and
concepts from probability theory. Important terms and definitions are put
in italicized notation. Many books may be consulted for a more extensive
review of probability. A classical reference for probability theory is the book
by Feller (1968). Ross’s 1989 book is another good source of reference for
probability theory and prebability models. Other references on the basic
theory of probability and statistics include Hogg and Craig (1995), Hogg
and Tanis (2001), and Hsu (1997).

Let § be a set, any collection of elements, which shall be referred to as
the outcome space or sample space. For example, the sample space could
be § = {H, T}, § ={0,1,2,...}, § = {3]|s € [0,00)}, or any collection of
objects or elements. Each element of § is called a sample point and each
subset of § is referred to as an event. For example, suppose a coin is tossed
and whether the coin lands with heads or tails showing is recorded. Then
the sample space is {H, T}, a sample point is H or T, and an event may be
{H}, {T}, {H,T}, or 0. If the coin is fair, then the probability of a head
appearing is 1/2, the probability of a tail is 1/2, and the probability of any
other event is zero. In general, for any experiment, a probability measure
is defined on the set of events in § as follows:

Definition 1.1. Let P be a real-valued set function defined on the collec-
tion of subsets of the sample space §. The set function P : § — [0,1] is
called a probability measure if it has the following properties:

(1) 0< P(B), BC S.
(2) P(S) =1
(3) U B;nB; = fori,j =1,2,.... % # j, (pairwise disjoint), where
B; C 8, then P(UX,B;) =5 P(B)).
i=1

. Next, the concepts of conditional probability and independence are de-
hed.

Definition 1.2. Let B; and Bz be two events defined on a sample space
S. The conditional probability of event B, given event B, (has occurred) is
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given to illustrate and reinforce these important concepts from probability
theory. In the last two sections of this chapter, stochastic processes are
defined and an example of a simple birth process is given. This chapter
is not intended to he a comprehensive review of probability theory but
only to be a brief review of some concepts from probability theory that are
important to the theory of stochastic processes.

1.2 Brief Review of Probability Theory

In this section, a brief review is given of many important definitions and
concepts from probability theory. Important terms and definitions are put
in italicized notation. Many books may be consulted for a more extensive
review of probability. A classical reference for probability theory is the book
by Feller (1968). Ross’s 1989 book is another good source of reference for
probability theory and probability models. Other references on the basic
theory of probability and statistics include Hogg and Craig (1995), Hogg
and Tanis (2001), and Hsu {1997).

Let S be a set, any collection of elements, which shall be referred to as
the outcome space or sample space. For example, the sample space could
be § = {H,T}, S ={0,1,2,...}, § = {s|s € [0,00)}, or any collection of
objects or elements. Each element of & is called a sample point and each
subset of § is referred to as an event. For example, suppose a coin is tossed
and whether the coin lands with heads or tails showing is recorded. Then
the sample space is {H, T}, a sample point is H or T, and an event may be
{H}, {T}, {H,T}, or 8. If the coin is fair, then the probability of a head
appearing is 1/2, the probability of a tail is 1/2, and the probability of any
other event is zero. In general, for any experiment, a probability measure
is defined on the set of events in § as follows:

Definition 1.1. Let P be a real-valued set function defined on the collec-
tion of subsets of the sample space S. The set function P : § — [0,1] is
called a probability measure if it has the following properties:

(1) 0< P(B),BCS.
(2) P(8) =1
(3) If B;nB; =B fori,j =1,2,..., i # j, (pairwise disjoint), where
BiC S, then P(U2,B;) = 5 P(B;).
i=1

Next, the concepts of conditional probability and independence are de-
fined.

Definition 1.2. Let B; and B; be two events defined on a sample space
8. The conditional probability of event By given event By (has occurred) is
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denoted as P(B,|B;) and defined as

P(By N By)

P(B,|Bz) = —PE)

provided that P(Bg) > 0. Similarly, the conditional probability of event Bs
given event B, is

P(B:|By) = %};)&),

provided that P(B;) > 0.

The events B; and By are independent if the occurrence of either one of
the events does not affect the probability of occurrence of the other. More
formally,

Definition 1.3. Let By and B; be two events defined on a sample space
S. Events By and B; are said to be independent if and only if

P{B, N By) = P(B)P(B:).
If the events By and Bj are not independent, they are said to be dependent.

Therefore, B; and B; are independent if and only if P{Ba|B;) = P{B>)
or P(B,|Bz) = P(By). In other words, the events By and B, are indepen-
dent if the probability of B2 does not depend on whether B, has occurred
or the probability of By does not depend on whether B has occurred.

The concept of a random variable is central to probability theory.

Definition 1.4. A random variable X is a real-valued function defined
on the sample space S, X : § — R = (—00,00), where there is an as-
sociated probability measure P defined on §. Let A be the range of X,
A= {z|X{s) = 2,5 € S}. The range A is known as the space of X or state
space of X.

If the range of X is finite or countably infinite, then X is said to be a
discrete random variable, whereas if the range is an interval (finite or infinite
in length), then X is said to be a continuous random variable. However,
the random variable could be of mized type, having properties of both a
discrete and continuous random variable. The distinction between discrete
and continuous random variables will be seen in Definitions 1.6 and 1.7.
‘We shall only be concerned with discrete and continuous random variables.

Example 1.1 Suppose two fair coins are tossed sequentially and the out-
coimes are HH, HT, TH, and TT (e, § = {HH,HT,TH,TT}). Let
X be the discrete random variable associated with this experiment hav-
ing state fpace A = {1,2,3,4}, where X(HH} = 1, X(HT) = 2, and
s0 on. Assume each of the cutcomes has an equal probability of 1/4.
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P{HH}) = 1/4, P({HT}) = 1/4, etc. Let B; be the event that the
first coin is a head, By = {HH, HT}, and B; be the event that the second
coin is a head, By = {HH,TH}. Then P(B,) = 1/2, P(B2) = 1/2, and
P(B1 N By) = P({HH}) = 1/4. Then

PBB) = " T = 15 = 4

Since P(B3) =1/2, By and B, are independent events, [ |

Events associated with a random variable X can be expressed as sub-
sets of R. For example, we shall use the shorthand notation {X = z} to
mean the event {s|X (5} = z,s € §} and the notation {X < z} = (o0, 7]
for the event {s|X{s) < z,s € S}. In Example 1.1, By = {HH,HT} ex-
pressed in terms of the state space of X is represented by the set {1,2} and
By = {HH,TH} by the set {1,3}. With this convention, the probability
messure P associated with the random variable X can be defined on R.
Sometimes this measure is denoted as Px : R — [0,1] and referred to as
the induced probability measure (Hogg and Craig, 1995). The subscript X
is often omitted, but it is clear from the context that the induced proba-
bility measure is implied. This notation is used in defining the cumulative
distribution function of a random variable X that is defined on the set of
real numbers.

Definition 1.5. The cumulative distribution function (c.d.f.) of the ran-
dom variable X is the function F defined on R with values in [0,1], F :
R — [0, 1], satisfying

Fz) = Px((—o0,z}).

It can be shown that F is nondecreasing, right continuous and satisfies

lim F(x)=F(-00)=0 and lim F(z)=1.

T——00 T

The cumulative distribution describes how the probabilities accumulate (see
Examples 1.2 and 1.3).

Important functions associated with discrete and continuous random
variables are the probability mass function and probability density function.

l?eﬁnition 1.6. Suppose X is a discrete random variable. Then the func-
tion f(z) = Px(X = r) that is defined for each z in the range of X is
called the probability mass function (p.m.f.) of X.

it follows from Definition 1.1 that f has the following two properties:

~ > fz)=1 and Px(X € B)=_ f(a), (1.1)

TEA zel
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Fix)

¥ 1 2 3 4 5
Figure 1.1. Discrete uniform c.d.f.

for any B C A, where A is the range of X. In addition, the c.d.f. F of a
discrete random variable satisfies

Fzy=)_ fla),
a; sy
where A = {ay,a2,...} is the space of X (F(z) =0 if < inf;{a;}).

Example 1.2 Let the space of the discrete random variable X be A =
{1,2,3,4,5} and f(x) = 1/5 for x € A, The c.d.f. F(x) of X satisfies

0, z < 1,
1/5, 1<z<2,
F(z) = 2/5, 2<x<3,

1, bz,

The graph of F is given in Figure 1.1. This distribution is known as a
discrete uniform distribution. |

Definition 1.7. Suppose X is a coniinuous random variable with c.d.f. F
and there exists a nonnegative, integrable function f, f : R — [0, 00), such
that

Flx) = / fly)dy.
Then the function f is called the probability density function (p.d.f.) of X.

The p.d.f. of a continuous random variable can be used to compute the
probability associated with an outcome or event. Suppose A is the space
of X and B C A is an event. Then

' Px(xGA)=Lf(m)m=[m f@yde = 1
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and
Px(X € B) =Lf(w)dx- (1.2)
In particular,
b
Prla<X <b)= ] f(z)dz = F(b) - F(a).

For a continuous random variable X,
Pxfa< X <b)=Px(a< X <b)=Px{la< X <b)=Px(a< X <b),

which follows from {1.2). In addition, if the camulative distribution function
is differentiable, then

dF (x)

& @)

Example 1.3 Let the space of a continuous random variable X be 4 =
[0,1] and the probability density function be f(z) = 1 for 2 € A. The c.d.f.
F(z) satisfies

0, <0,
Fz)=4{ =z, 0<z<]1,
1, 1<z

The graphfof F' is given in Figure 1.2. This distribution is known as a
continuous uniform distribution. |

Sometimes we shall use the term probability density function to include
both the p.d.f of a continuous random variable and the p.m.f. of  discrete
random variable. In addition, sometimes the notation Prob{-} will be used

]

g

v 1

Figure 1.2. Continuous uniform c.d.f.
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in place of P(-) or Px{-) to emphasize the fact that a probability is being
computed. For example, for a discrete random variable X,

Px{X =z)=Prob{X =z} = f(x)
and for either a continuous or discrete random variable X,
Px (X < z) = Prob{X < ¢} = F(z}.

Some well-known discrete distributions include the uniform, binoinial,
negative binomial, and Poisson. The probability mass functions for each of
these distributions are given below. The binomial distribution will be seen
in many of the applications for discrete and continuous time Markov chains.
The distribution for the number of deaths in a simple death process will be
shown to have a binomial distribution. In addition, the distribution for the
number of births in a simple birth process will be shown to have a negative
binomial distribution. The Poisson distribution is especially important in
the study of continuous time Markov chain models. The Poisson process is
discussed in detail in Chapter 5.

Discrete Uniform:

|
f(x)z Hs :B_ls?!"'}‘ns
0, otherwise.

flz) = (2) F-p)" 2=0,1,2...,n,

0, otherwise,

where n is a positive integer and 0 < p < 1. The notation (2) for the

binomial coefficient is defined as

()
()= (-

It is assumed that 0! = 1. The binomial probability distribution is denoted
as b(n,pd. The value of f(z) can be thought of as the probability of =
successes in 1 trials, where p is the probability of success.

For example,
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Negative Binomial:

zt+n-1% , T _
f(.’B): ( n—1 )P(I—P) , z=0,1,2,..., (13)
0, otherwise,

where 7 is a positive integer and ¢ < p < 1. The value of f{z) can be
thought of as the probability of n successes in n + z trials, where p is the
probability of success.

Poisson:
/\:l:e—)\
flz)= g #=0L%..,
0, otherwise,

where A is a positive constant.

Some well-known continuous distributions include the uniform, normal,
gamma, and exponential. The uniform distribution is the basis for a ran-
dom number generator, which is used extensively in numerical simulations
of stochastic models. The normatl distribution is the underlying distribution
for Brownian motion, a diffusion process studied in Chapter 8. The gamma
and exponential distributions are associated with waiting time distribu-
tions, the time until one or more than one event occurs. The exponential
distribution will be seen extensively in the continuous time Markov chain
models discussed in Chapters 5, 6, and 7. The probability density functions
for each of these distributions are defined below.

Uniform:

1 <z <b
f(a:)={ b—a *=F2%

0, otherwise,

where a < b are constants. The uniform distribution is denoted as U/ (a, b).

Gamma:

1 xc«—le—z/ﬁ

f@)=4 T(a)B° ’

0, z <0,

x>0,

where o and /3 are positive constants and

e =]
I'(a) = / —lzz“'le_zmdx.
o B

For a positive integer n, T(n) = (n — 1)\,

Exponential:
Ae™AE, r >0,

- f(:c)={ 0, T <0,
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Figure 1.3. Graphs of the Poisson mass function with parameter A = 3 and
the standard normal density.

where X is a positive constant.

Normal:

a2
flz) = m}% exp (—%) , —20 < T < 00,

where y and o are constants. We denote the normal distribution as N{u, 0%}
and the standard normal as N(0, 1}, where = 0 and o2 = 1.

Note that the exponential distribution is a special case of the gamma
distribution, where &« = 1 and 3 = 1/X. Graphs of a Poisson mass function
and the standard norinal density are given in Figure 1.3. The MATLAB pro-
gram which generated the Peisson mass function is given in the Appendix
for Chapter 1.

An important concept that helps characterize the p.d.f. of a random
variable is the expectation.

Definition 1.8. Suppose X is a continuous random variable with p.d.f. f.
Then the ezpectation of X, denoted as E(X), is defined as

E(X}= /R;rf(:r)d:r.

Suppose X is a discrete random variable with probability function f defined
on the space A = {a;}7%,. Then the expectation of X is defined as

B(X) =) a:f(a:).
i=1

The ex'pectation of X is a weighted average. The p.d.f. f is weighted
by the values of the random variable X.
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The definition of expectation of a random variable can be extended to
expectation of a function of a random variable. Suppose X is a continuous
random variable. Then the ezpectation of u{X) is ;

E(u(X)) = [R u(z) f(z) d.

If X is a discrete random variable, then the erpectation of u{X) is

[ w)

E(X)) =>_ ufa:)fla:)-

i=1

It can be seen that the expeciation is a linear operator defined on the set
of functions uw{X): If a; and a2 are constants, then it follows from the
definition that

E{a1u1(X) + azu2(X)) = a1 E(ui (X)) + aaE(u2(X)).

In addition, for b = constant, £E(b) = b. The mean, variance, and moments
of X, which measure the center and the spread of the p.d.f., are defined in
terms of the expectation.

Definition 1.9. The menn of the random variable X, denoted as u or px,
is the expectation of X, px = E(X). The variance of X, denoted as 62,
6%, or Var(X), is Var(X) = E([X — px]?). The standard deviation of X is
o = y/Var(X). The nth moment of X about the point a is E([X — a]™).

The subscript X on the mean and variance is used to avoid confusion,
especially if more than one random variable is being discussed. The first
moment. about the origin is the mean, and the second moment about the
mean is the variance. An important identity for the variance can be derived
from the linearity property of the expectation,

0% = B(X - px]?) = E(X?) - 2ux B(X) + vk = B(X?) - k.

Example 1.4 Suppose X is a random variable with a discrete uniform
distribution and Y is a random variable with a continuous uniform distri-
bution [ie., ¥ is distributed as U/(0,1)]. The mean and variance for each
of these two random variables are computed. The mean of X is

n

1 1 +1
#x=E(X)=Z($R)=;§$=n2 ,

=1

becayse i z = n{n + 1)/2. Then

r=1

n

po) = 37 (1) = L yoar - (Bt D),
r=1

z=1
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because ¥ x? = n(n + 1}(2n + 1}/6. The vartance of X is

r=1

n+1D2n+1) (n+1)2 n2-1
o} = B(xY) - p = 23D D[t DE_ w1

The mean of ¥ is
! 1
uy=E(Y)=/ ydy =3
0
and E(Y?) = fal 42 dy = 1/3 so that the variance of Y is

of = E(Y®) ~ py = =73 a2

Example 1.5 Consider the normal distribution N(0,02). The first, sec-
ond, third, and fourth moments about the origin of this normal distribution
are calculated. The normal p.d.f. corresponding to N(0, 0?) satisfies

fe) = exp (—2%/20%) .

oV 2n

It is an even function over the interval (—o00,00). Therefore, zf(z} and
1% f(x) are odd functions on (—o0,oc). It follows that the first and third
moments are zero,

E(X) = /_:, zf(x)dz =0 = f: B f(z)dr = E(X3).
In addition,
E(X?) = ]; o; 22 f(z) dr = f_ o; 2 e"pa(;;;/ 29) g
_ oz expE/—Q%Z/QJQ) : N /:; Jexp(\;;:_: /26%) e

I

02/60 flz)dz = o2,

where integration by parts is used in the first integral, # = x, and dv =
« f(x) dx. Therefore, the normal distribution N(0,0?) has mean and vari-
ance, six = 0 and 6% = ¢*. In a similar manmer, it can be shown that the
normal distribution N (s, 02) has mean and variance, px = u and % = o2.
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The fourth moment is computed using the same technique,

o _ 44 z* exp (—z*/20%)
oz exp(—z 2/20’ ) 30> exp(—z2/20%)
B - f_m v
= 30° fm 22 f(z) dz = 302 E(X?) = 3(6°)2. a

A simple relationship exists between any normal random variable and
the standard normal random variable. If X is distributed as N (g, a?), then

it turns out that
X—p

p
is distributed as N(0,1). This relationship can be verified by showing the
c.d.f. of Z corresponds to a standard normal:

Z =

Prob{Z <2} = Prob {X —H < z} =Prob{X < 20 + u}
o

S (@~ )2
exp{ — dx.
/_m ov'2n p( 202 )
Make a change of variable in the integral, y = {x — p)/o and dy = dz /0o,
so that

N | 2
Prob{Z < =f L e vizgy
The latter integral is the c.d.f. of the standard normal distribution.

Example 1.6 The standard normal distribution N (0, 1) has the property
that Prob{Z < 0} = 0.5 and thus, for an arbitrary normal distribution,
where X is distributed as N(u, 02}, we have that

Prob { X-p 0} = Prob{X < pi} = 0.5.

Values of the c.d.f F(2), z € [0, 3], for the standard normal distribution can
be found in tabular form in many textbooks. In addition, these values can
be numerically approximated directly from the integral; for example,

1
1 2
Prob{-2.1< Z < 1 :f =" /2 dz = 0.8235.
{ b=/ 7t z

If X is distributed as N(1,4), then

X-1_3-1
< T} =Prob{Z < 1} ~ 0.8413. ®

Prob{X < 3} = Prob {
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An interesting property of the normal distribution is that approximately
two-thirds of the values lie within one standard deviation of the mean,
approximately 95% are within two standard deviations, and more than
99% of the values are within three standard deviations. In particular,

0.6827, k=1,
Prob{—ko < X — u < ko} =Prob{|Z]| < k} = { 09545, k=2,
09973, k=3
(Refer to Figure 1.3.)
When several random variables, X3, Xs,..., and X,,, are associated
with the same sample space, a multivariate probability density function
or probability mass function f(zr1,z2,...,%,) can be defined. Definitions

associated with two random variables, X; and X3, are given, that is, for
a random vector (X, X2), where (X1, X2) : § — R?. These definitions
can be easily extended to more than two random variables. For each el
ement s in the sample space S, there is associated a unique ordered pair
(X3(s), X2(8)). The set of all ordered pairs

A = {(X1(s), X2(8))|s € §} C RZ, (1.4)
is known as the state space or space of the random vector (X;, X3).

Definition 1.10. Suppose X; and X, are two continuous random variables
defined on the common sample space S, having probability measure P :
S — [0,1]. I there exists a function f : R%Z — [0,00) such that

!!f(xhxz)dx; dmz=£/f(a:1,:c2)¢;pl dro =1

and for B C A,

ID(X:,X;)(B) = Prob {(Xl,Xg) e B} = -/f f(ﬂ?],l‘g) dI1 dﬂ?g,
B

then f is called the joint probability density function (joint p.d.f.} or joint
density function of the random variables X; and X. The marginal p.d.fof
X is defined as

fl(xl):ff(zl:IZ)da:?-
R

The marginal p.d.f. of X3, fa{xa}, can be defined in a similar manner.
The set A in Definition 1.10 is defined by equation (1.4} and the function
Fex,,x,) refers to the induced probability measure on RZ,
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Definition 1.11. Suppose X; and Xy are two discrete random variables
defined on a common sample space S, having probability measure P: § —
[0, 1]. If there exists a function f: A — [0, 1] such that

D fle,z) =1
A
and for B C A,

Pxy x,)(B)Y =Prob{{X1, X2} € B} = > f(z1,22),
B

then f is called the jeint probability mass function {p.m.f.) or joint mass
Junction of the random variables X; and Xa. The marginal probability mass
funetion (p.m.f.) of X; is defined as

filz) =) flza, z2).

The marginal p.m.f. of Xa, fao(x2), can be defined in a similar manner.

If the set A can be written as the product space, A = Ay x As, then
the integrals in Definition 1.10 can be expressed as double integrals and the
sums in Definition 1.11 as double sums:

J[[=]] ma 5-%3%.
h Ay A A A Ar
In addition, the sum in Definition 1.11 can be expressed as

Z2 To €Ay
The marginal p.d.f.’s or p.mf’s fi(z,) and fo{xg) are indeed p.d.f.’s
or p.m.f.’s in their own right, satisfying either (1.2) or (1.1), respectively.
The definitions of conditional probability and independence of events are
extended to random variables, important concepts in stochastic processes.

Definition 1.12. Let the random variables X; and X5 have the joint p.d.f.
f(z;,2;) and marginal p.d.f.’s fi(x,} and fo(z,), respectively. Let Xz,
denote the random variable X, given that the random variable X, = x5,
and X|z, denote the random variable X2, given that the random variable
X1 = ;. The conditional p.d.f. of the random variable X1|z, is defined as

Fla)z) = %l, falzz) > 0.

The conditionel p.d.f. of Xj|x; is

f($1!m2)

fzalx) = B

fi(z) > 0.
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Definition 1.13, Let the random variables X'; and X5 have the joint p.d.f.
flay, o) and marginal p.d.f’s fi(a;) and fa(xa), respectively. Assume
A = A) x Az. The random variables X; and X, are said to be independent
if and only if

_ flzr,z2) = filen) f2(x2),
for all x; € A, and x2 € As.

Definitions 1.12 and 1.13 apply to discrete and continuous random vari-
ables. It follows from these definitions that if X; and X, are independent,
then

flei|xz) = filz1) and f(xz[z1) = fola).

An important consequence of the independence of the two random vari-
ables X7 and X is that the expectation of their product is the product of
their expectations; that is,

E(X, X2} = E(X1)E(X2).

Example 1.7 Suppose the joint p.d.f of the random variables X; and X
is f(xy,2s) = Bxyas for 0 < 21 < 2 < 1 and 0 otherwise. The marginal
p.d.f’s of Xy and X, are

1
filxy) =/ 8x1x2drs = 43l —23), 0 <2 < 1

iy

g
fz(i’g) :/ 8,2 dr; = 4.’17%, 0<xy < 1.
0

The random variables X; and X are dependent. The reason there is not
independence, fy(x)f2(xe) # flxy,32), is that 4 = {(x1,22)[0 < 2, <
x2 < 1} is not a product space, 4 # Ay x Az. A necessary condition for
independence of the random variables is that the state space A be a product
space. |

Example 1.8 Suppose the joint p.d.f. of the random variables X; and X,
is flxy,2g) = dry2p for 0 < 7y < 1 and 0 < 2 < 1 and 0 otherwise. It
is easy to see that the random variables X, and X: are independent. The
marginal p.d.f.’s of X; and X, respectively, are fi(z,) =2z, for0 <z, < 1
and fa{xs) = 223 for 0 < xz < 1. Hence, to compute E{X,X>) we need
only compute

E(Xy) Z/Ulﬂffl(iv)d&? = ]:Q:BZ'd;c = % = E(X3).

Then E(Xng) = E(X])E(XQ) = 4,9 ]
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Linear combinations of independent random variables often occur in
applications. Suppose {X;}2, is a set of n independent random variables.
Guppose the mean of X; is y; and the variance is 02,i=1,2,...,n. Then
it is easy to show that the random variable

Y= i ag-X,-
i=z]

has mean and variance satisfying
n ¥t
Hy = Zai,‘.&f and o% = Zafaf‘ (1.5)
i=1 i=1

The expectation is a linear operator and, therefore, the identity for the mean
gy in (1.5} holds even if the set {X;}7_; is not independent. However, the
identity for the variance o2 in (1.5) requires that the set of random variables
be independent. We verify the variance identity in the following example
forn =2.

Example 1.9 Suppose X, and X, are two random variables with respec-
tive means u; and pz and respective variances: o2 and 0. Let ¥ =
a1 X7 + a2 X5, Then the mean of V' is )

gy = E(Y) = E(a1X; + a2 X2) = 01 E{X) + a2 B{X>) = a1p1 + azpta.

Now, suppose the random variables X; and X> are independent. Then the
variance of V' is
0% = B(Y ~ iy ]?) = E([ar (X1 — ) + a2(Xs — p2)]?)

= o} B((X1 — m]?) + 20102 E([(X1 — p1) (X2 — p2)]) + @3 E((Xz — po]?)

= .2
= afo] +afa}

Because of the independence of X, and X3, E([(X; — pu1)(Xy — pa)]) =
B(X1X2) — papz = 0. »

We shall use the standard notation X to denote the average of a sum
of n independent random variables,

X = iX;/ﬂ
i=1

Suppose p; = p and o7 = o? so that the independent random variables
have the same mean and variance. Then, according to (1.5),

1 4 o2 /1 22 a2
—~ i = an T = —_ = —
= ad k=30 (3) =2
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In addition to these basic concepts from probability theory, the concept
of generating functions will be helpful when analyzing stochastic models.
A ghort review of some important facts concerning generating functions is
given in the next section.

1.3 Generating Functions

Generating functions are first defined in terms of a discrete random variable.
Then the definitions are extended to a continuous random variable.

Assume X is a discrete random variable and, for convenience, assume
the state space is {0,1,2,...}. Let f denote the probability mass function
of X and suppose the probabitities are given by

f) =Prob{X =j} =p;, §=0,1,2,..., where ¥ p;=1

j=0

The mean and variance of X satisfy
==}
px = B(X)=3"ip;
‘—

and -
ok = B{(X —px)*] = B(X®) —px = >_i*pi — vk
rd

Definition 1.14. The probability generating function (p.g.f.) of the dis-
crete random variable X is a function defined on a subset of the reals,
denoted as Py and defined by

Px(t)= E(t*) =) p;t’,
=0

for some ¢t € R.

The script notation P is used for the p.g.f. to distinguish this function
from the probability measure P and the subscript X is used to denote its
association with the random variable X. This subscript is often omitted
when it is clear from the context what is the associated random variable.
Because Z;’io pj = 1, the above sum converges absolutely for |t| < 1. Thus,
P(t) is well defined for [£| < 1. As the name implies, the p.gf. generates
the probabilities assoctated with the distribution

Px (0} = po, PE((O) =M. :D;((O) = 2lp2.

In general, the kth derivative of the p.g.f. of X satisfies

]

P (0) = ktpy.
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(Since the series for the p.g.f. converges absolutely on {¢| < 1, it is infinitely
differentiable inside its interval of convergence.)

The p.g.f. can be used to calculate the mean and variance of a randoin
variable X. Note that Py(t) = >.°2 jp;t/ ! for -1 <t < 1. Lett
approach one from the left, £ — 17 to obtain

Pi(l) = ijj =FE(X)=px.

=1

The second derivative of Px satisfies
i .
Pr(t)=>_j(i — Dp;t? 2,
=1
sothat as ¢ — 17,

PR(1) =3 ili — bpy = E(X* - X).
J=1 |

Suppose the mean is finite. Then the variance of X 'satisfies

o4 = Var(X) = B(X?) - B(X) + B(X) — |B(X))?
= Pi(1) + P(1) - [P (D]

There are several other generating functions useful to the study of
stochastic processes, the moment generating function, the characteristic
function, and the cumulant generating function. These are defined in terms
of a discrete random variable, then extended to a continuous random vari-
able.

Definition 1.15. The moment generating function {m.g.f.) of the discrete
random variable X with state space {0,1,2,...} and probability function
F(J)=p;, 7=0,1,2,..., is denoted as Mx (i) and defined as

Mx(t) = B(e™) = > p;e'*
i=0

for some f € R.

For the state space {0,1,2,...}, Mx(t) is defined for ¢ < 0, but since
the series may not converge for ¢t > 0, it may not be defined for ¢ > 0.
The values of ¢t for which the series converges depend on the particular
values of the probabilities. The moment generating function generates the
moments E(X*) of the distribution of the random variable X provided the
summation converges in some interval about the origin:

Mx(0)=1, My(0)=px =E(X), M%{0)=E(X?),
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and, in general,
k
ME 0y = E(x*).

Definition 1.16. The characteristic function (ch.f.) of the discrete ran-
dom variable X is

gl
éx(t) = E(e"™) = ijem, where i = /1.
3=

The characteristic function is defined for all real ¢ because the summma-
tion converges for all ¢,

Definition 1.17. The cumulant generating function (c.g.f} of the discrete
random variable X is the natural logarithm of the moment generating func-
tion and is denoted as Kx (¢),

Ky (t) = ln[ﬂfx (t)]

The generating functions for continuous random variables can be defined
in a similar manner.

Definition 1.18, Assume X is a continunous random variable with p.d.f.
f. The probability generating function (p.g.f.) of X is defined as

Px(t) = ) = [ forda.
The moment generating function (m.g.f.) of X is
My(t) = Be™) = [ flo)e’ de
R

and the characteristic function {ch.f.) of X is
ox(t) = Be™) = [ f@)e= e
R

Finally, the cumulant generating function (c.g.f.) is Kx(¢) = In[Mx (¢)}.

The p.g.f. is defined for [¢] < 1, the ch.f. for all real £ and the m.g.f.
and the c.gf. for ¢ € 0. One generating function can be transformed into
another by applying the following identities:

Px(e’) = Mx(t} and Mx(it) = ¢x(t). (1.6)

The same relationships established between the generating functions
and the mean and the variance that were shown for discrete random vari-
ables hold for eontinuous random variables as well. In addition, formulas
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for the mean and the variance in terms of the cumulant generating function
are verified in the Exercises. These formulas are sumrarized below.

lux = = My(0) = Kx(0)|

and
Pi(1) +Px(1) - [Py (L)
%% = M) - (MO
4 (0)

Generating functions for linear combinations of independent randem
variables can be defined in terms of the generating functions of the individ-
ual random variables. Suppose X7, X,,..., X, are n independent random
variables and Y is a linear combination of these random variables,

Y = Zaa

Then the moment generating function of ¥ has a simple foﬁﬁ“;‘ it is the
product of the individual moment generating functions:

J‘rfy(t) = E(etY) = E(et(Za«Xs})
= E(ealtxl]E(ea;th) . E(ea"tx"]

= ]-2[ ﬂfx‘. (ait)‘

i=1

It is through the generating functions that information is obtained about
the distributions of the process over time. In the next example, the p.g.f.
and m.g.f. of a binomial distribution are calculated.

Example 1,10 Let X be a binomial random variable, b{n, p), with p.d.f.
fy) = ( Npf(1—p)»?, for j = 0,1,2,...,n. The probability and moment

generating functions of X are computed using the fact that >, 5=0 ( P (1-
P 7 =(p+1-p)" =1. The pgt. is

™

0= ()= (Yo

3=0

o0 that
Px{t)=(pt+1-p)".
The m.g.f. can be obtained from the identity {1.6):

Mx(t)= (pe' +1-p)"
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Calculation of the derivatives,
Pi(t) =np(pt +1-p)*~! and PY(¢) = n{n — )p’(pt + 1 - p)* 2,

leads to
ix =Py(1) =np

and
ok = Px{1} + P{1) - [PX (D)) = n(n - 1)p* + np — n?p?

50 that
ok =np(1—p). =

A very important result concerning generating functions states that the
moment generating function wniquely defines the probability distribution
(provided the m.g.f. exists in an open interval about zero). For example, if
the m.g.f. of X equals Mx(t) = {0.75 + 0.25¢'}*°, then the distribution is
binomial with » = 20 and p = 0.25 [i.e., b{n, p) = b(20,0.25)).

1.4 Central Limit Theorem

An important theorem in probability thecry relates the sum of indepen-
dent random variables to the normal distribution. The central limit the-
orem states that the mean of n independent and identically distributed
random variables, X, has an approximate normal distribution if n is large.
Generally, the expressions random samgple of size n or n independent and
identically distributed (%id) randotn variables are used to denote a collection
of n independent random variables with the same distribution. We shall
use this standard terminology.

The central limit theorem is an amazing result when one realizes this
normal approximation applies to a collection of random variables from any
distribution with a finite mean and variance, discrete or continuous. If the
distribution is skewed and discrete, the size of the random sample may need
to be large to ensure a good approximation.

Recall that the mean and variance of X = )1
is a random sample satisfying px, = 4 and O'QX‘_ = o5

Xi/n, where {X;}2,
Li=12,...,n,is

pgg =p and o'?—( =g /n.

The central limit theorem is stated in terms of the random wvariable W,
where _
_X-u

WR_U/\/H.
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Theorem 1.1 (Central Limit Theorem). Let X,, Xs,...,Xy,..., be
a sequence of iid random variables with finite mean, || < oc, and positive
standard deviation, 0 < ¢ < oo. Then, as n — oo, the limiting distribution

f
k — 2:';1 Xi/n—p

W m

ig a standard normal distribution.

The sequence {W,,} converges in distribution to a standard normal dis-
tribution. In particular, it can be shown for each z € {(—o0, o0) that

] B _ # 1 —y2/2
nangD Prob{W, <z} =F{z) = /_m \/2_1?6 dy,

where F'(2) is the c.d.f. of the standard normal distribution. In a simple
proof of the central limit theorem, based on the assumption that the m.g.f.
exists, it is shown that the m.gf. of W,, M(t;n), approaches a m.g.f.
from a standard normal distribution, limg, .. M{t;n) = et'/2 {Hogg and
Craig, 1995; Hogg and Tanis, 2001). For a more general proof based on_
characteristic functions, see Cramér (1945) or Schervish (1995). The central
limit theorem is applied in Chapter &, when deriving stochastic differential
equations for interacting populations.

Example 1.11 Suppose X, Xs, ..., X5 are iid random variables from the
binomial distribution b(6,1/3). The mean and variance for each of the X;
are p = 2 and o2 = 4/3. A graph of the approximate probability density
(histogram) of

B X152

Wie = =i/ /s

{n = 15) is compared to the standard normal density on the interval
[-3.5,3.5] (Figure 1.4). The histogram is generated from many random
samples of size n = 15. For each random sample, the value of w5 is calcu-
lated. It can be seen that the probability histogram is in close agreement
with the standard normal p.d.f. |

A practical application of the central limit theorem is to approximate
Prob{a < X < b}, where X = Y |, Xi/n is the average of a random
sample of size n.

Example 1.12 Let X,..., X, be a random sample of size n = 25 from
the uniform distribution 7(0,1). The mean E(X;) = 1/2 and the variance
Var(X;) = 1/12 (see Example 1.4). Thus, by the central limit theorem,

X-1/2
W25=—/—

1/(5V12)
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Figure 1.4. Graphs of the binomial mass function 6(6,1/3), and the standard
norimal density. A probability histogram of p.d.f. Wis {defined in the central
limit theorem) is graphed against the standard normal density.

has a distribution close to N{0,1). Then

Prob{X < 1/2} = Prob{Was < 0} ~ 0.5

and

_ e f X Y2 13172
Prob{X < 1/3} =P 0b{1/(5\/ﬁ) 1/ (5v13) }
= P‘l’Ob{W25 < ——2887}

= 0.0019, |

1.5 Introduction to Stochastic Processes

A stochastic process is just a collection of random variables. More specifi-
cally,

Definition 1.19. A stochastic process is a collection of random variables
{X:i(s) : t € T, 5 € §}, where T is some index set and § is the common sam-
ple space of the random variables. For each fixed ¢, X;(s) denotes a single
random variable defined on S. For each fixed s € 5, X,(s) corresponds to a
function defined on T that is called a sample path or a stochastic realization
of the process,

In addition, a stochastic process may be a collection of random vectors.
For example, for two random variables, a stochastic process is a collection
of random vectors {(X}(s), X}(s}):t € T,s € S).

When speaking of a stochastic process, sometimes the variable s is omit-
ted; the random variables are denoted simply as X, or X (). We will follow
this practice. A stochastic model is baged on a stochastic process in which
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specific relationships among the set of random variables { X} are assumed
to hold.

There are different methods and techniques for formulating and analyz-
ing stochastic processes that depend on whether the random variables and
index set are discrete or continuous. These distinctions between discrete
versus continuous random variables and discrete versus continucus index set
determine the type of stochastic model and the techniques that can be used
to study properties of the model. The set T is often referred to as time,
and in our stochastic models it will frequently represent time. The first
type of stochastic models discussed in the next chapter are those where the
index set and the state space are discrete; the models are discrete time Mar-
kov chain models. In subsequent chapters, stochastic models are discussed
where the index set is continuous but the state space is discrete, referred to
as continuous time Markov chain medels. These types of models have re-
ceived the most attention in terms of biclogical applications: competition,
predation, and epidemic processes. It will be easy to see the connection be-
tween deterministic differential equation models and stochastic models of
this type. Finally, the last type of models that will be discussed are those
where the index set and state space are continuous. These types of models
are referred to as diffusion processes, and the stochastic realization X{t)
satisfies a stochastic differential equation. When the demographic variabil-
ity in the birth and death rates is included, the model can no longer be
expressed in terms of an ordinary differential equation but is expressed as
a stochastic differential equation.

The theory of stochastic processes arose from studying biological as
well as physical problems. According to Guttorp (1995), one of the first
occurrences of a Markov chain may have bheen in explaining rainfall pat-
terns in Brussels by Quetelet in 1852. The simple branching process was
invented by Bienaymé in 1845 to compute the probability of extinction of
a family surname. In 1910, Rutherford and Geiger and the mathemati-
cian Bateman described the disintegration of radicactive substances using
a Poisson process. In 1905, Einstein described Brownian motion of gold
particles in solution, and in 1900, Bachelier used this same process to de-
scribe bond prices {Guttorp, 1995). The simple birth and death process
was introduced by McKendrick in 1914 to describe epidemics, and Gibbs
in 1902 used nearest-neighbor models to describe the interactions among
large systems of molecules (Guttorp, 1995). Stochastic processes are now
used to model many different types of phenomena from a variety of dif-
ferent areas, including biology, physics, chemistry, finance, economics, and
engineering.

Four examples of stochastic processes from population biology are de-
scribed, where the state space or index set are discrete or continuous.

1. X, is the position of an object at time #, during a 24 hour period,
whose directional distance from a particular point 0 is measured in

-
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integer units. In this case, T'= {0.1,2,...,24} and the state space is
{0,41,+2,...}; both time and state space are discrete.

2. X; is the number of births in a given population during the time
period [0,¢]. In this case, T = Ry = [0,o¢) and the state space is
{0,1,2,...}. Time is eontinuous and the state space is discrete.

3. X, is the population density at time ¢t € T'= Ry = [0, 00}. The state
space is also Ry ; both time and state are continuous.

4. X, is the density of an annual plant species in year ¢, where T =
{0,1,2,...} and the state space is R . Time is discrete but the state
space is continuous.

Examples such as these will be studied in more detail in Chapters 2
through 8. In the case of discrete time, assumptions are made regarding
the relationship between the state of the system at time ¢ to the state at
time ¢t + 1. In simple cases, the first example is a random walk model,
the second example is a simple birth process, and the third example is a
birth and death process with a continuous state space. The fourth example
is a stochastic process for which its deterministic analogue is a difference
equation. We do not discuss stochastic models of this latter type, where
the state space is discrete and time is conrtinuous, because the theory is not
as well developed, and there are few biological models of this type.

One of the simplest examples of a stochastic process of the type men-
tioned in the second example is a simple birth process (the analogue of expo-
nential growth in deterministic theory). Recall that a deterministic model
of exponential growth satisfies y = ae®, a,b > 0, ¢ € [0,00). Graphs of
three stochastic realizations of the simple birth process whena = 1 = b are
given in Figure 1.5 and compared to the deterministic exponential growth
model. The deterministic model has a single solution, ¥ = ¢!, whereas the
stochastic model has an infinite number of stochastic realizations, three of
which are graphed. For a fixed time ¢, there is, associated with the random
variable X, a probability function f;. At a fixed value of ¢, the stochastic
realization equals n, X; = n, for some »=0,1,2,. .., with probability

fi{n) = Prob{X, = n}.

The stochastic realization may equal any value of n at time ¢, provided
fi(n) > 0. It will be shown in Chapter 6, for this example, that the mean
of X; equals the deterministic solution,

= E(X,) = ant(n) = et
n=0

In the simple birth process, time is continuous and the state space is
discrete. The simple birth process is discussed briefly in the next section.
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Figure 1.5. Three stochastic realizations of the simple birth
process and corresponding deterministic exponential growth
model y = &' {dashed curve).

Some techniques useful to the study of stochastic processes will be intro-
duced and some of the differences between deterministic and stochastic
models will be illustrated. The simple birth process will be studied in more
detail in Chapter 6.

1.6 An Introductory Example: A Simple
Birth Process

Deterministic and stochastic exponential growth models are derived from
firsi principles. The stochastic model is continnous in time but discrete in
the state space. The stochastic model is only briefly deseribed, and details
are left for discussion in later chapters.

Three assumptions are made in developing this simple birth model. 1t
is assumed that

(i) No individuals die.
(i1) There are no interactions between individuals.
(iii) The birth rate b is the same for all individuals.

See also Renshaw (1993). The term individual could mean a cell or some
type of organism.

First, a deterministic model is derived. Let n(¢) denote the population
size at time £. In a small time period At, the increase in population size due
to a single individual is b x Af and the iucrease in size due to all individuals
is b At x n(t). Thus,

n(t + At) = ni(t) + bAtn(t).
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Rewriting this expression leads to
n(t + At) — nit)
At

Letting At — 0, we arrive at the differential equation for exponential
growth,

= bn{t).

dn (¥)
dt
If the initial population size is n(0) = a, then the solution to this differential
equation is

= ba(t).

n{t) = ae.

The population size is predicted at time ¢ with absolute certainty once the
initial size @ and the birth rate b are known.

Next, a stochastic model is formulated. In this case, the population
size i3 not known with certainty but with some probability; the population
size will be n at time ¢. It is assumed that the population size is discrete
valued but time is continuous. Since the state space is discrete and time
is continuous the stochastic process satisfies X, € {0,1,2,...}, t € [0, 00),
where X, is the discrete random variable for the size of the population
at time f. Let the probability mass function associated with the random
variable X; be denoted {p,(t)}72,, where

Pn(t) = Prob{X; = n}.

Note that the notation is different from the previous sections. This notation
for the probability mass function p,(t) is consistent with the notation used
in later chapters.

The random variables { X, } are related by making the following assump-
tions. Assume that in a sufficiently smail period of time At,

1. The probability that a birth occurs is approximately b At.
2. The probability of more than one birth in time Af is negligible.
3. At t=0,Prob{Xy=a} =1

That the probability is negligible means it is of order At or o(At); that
is, lima;.o o At)/ At = 0; o{At) approaches zero faster than Af. Thus,
the first assumption can be stated more precisely as the probability that a
birth occurs is b Af + o At).

Based on assumptions 1 and 2, for the population to be of size n at time
t + At, either it is of size n at time ¢ and no birth occurs in (¢, ¢ + At),
or else it is of size n — 1 at time ¢ and one birth occurs in (¢, -+ At). The
probability that a population of size n increases to n + 1 in (t,f + At) is
approximately b At x n, and the probability that the population fails 1o
increase in that time period is then, approximately 1 — b At x n.

The assumptions relate the state of the process at time £ + Atf, X, a
to the state at time £, X;. In terms of the probabilities, the probability
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that the state equals n at time ¢ + At depends on whether at time ¢ the
population size was n — 1 and there was a birth or the size was n and there
was no birth; that is,

Palt + At) = pa-1(D)b(n — 1) At + palt)(1 — bn At).

There is an inherent. assumption about independence in deriving this equa-
tion; that is, the state of the process at time £ + At only depends on the
state at time ¢ and not the times prior to ¢ (this is known as a Markov
property). Subtract pn(t) from both sides of the equation above, divide by
At, and let At — 0, to obtain a system of differential equations known as
the forward Kolmogorov differential equations:

dpnt) = b(n — Dpp-1(t) — bnpa(t),
dt
where n = 1,2, .... For example,
dp(t) dpolt) _
prae bp(t) and prani bpy(t) — 2bpo(t).

If the initial population size is zero, then no births can occur and po(#) = 1
for all time.

The process begins with a known probability distribution for Xp; that
is, {pn(0)}5%,. Initially, the population size is fixed at a, Xo = @, so
that the initial probabilities satisfy p,{0) = 1 and p,,(0) = 0, » # a. The
forward Kolmogorov equations can be solved iteratively or by using moment
generating function techniques. Methods of solution will be discussed in
Chapter 5. 1t will be shown in Chapter 6 that the solution p,(t} has the
form of a negative binomial distribution for each fixed time #:

n—1
a—1

Palt) = ( )e"“bt(l—e'w}“'“, n=a,a+1l,a+2,....

This distribution is a shift of e units to the right of the negative bino-
mial distribution defined in (1.3) (see Exercise 7). The parameter p in
the negative binomial distribution is p = e, The probability distribu-
tion {pn(£)}32, is graphed in Figure 1.6 when a = 1 and b = 1 at times
t=0,1,2, and 3.

Finding the probability distribution solves the stochastic modeling prob-
lem, just as finding the solution n(t) solves the deterministic modeling prob-
lem. Other information about the stochastic process can be assessed from
the probability distribution (e.g., mean and variance). Therefore, the goal
in stochastic modeling is to determine the probability distribution asscci-
ated with the stochastic process. If this is not possible, then information
about the mean or variance or other properties of the distribution is sought.
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Figure 1.6. Graphs of the probability mass function pa(t), n = 0,1,2,.. ., at
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Figure 1.7. Three stochastic realizations of the simple birth
process are graphed when b = 1, @ = 1, and Xp = 1. In
addition, the deterministic exponential growth model, n(f) =
e!, is the dashed curve.
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Hi Utz Ty

t

0 1 0 0
1) 2.72 4.67 2.16
2

3

7.39 | 47.21 | 6.87
20.09 | 383.34 | 19.58

Table 1.1. The mean ., variance o2, and standard deviation o, for the
simple birth process at times t =0,1,2,3 whena=1and b =1

The mean and variance of the simple birth process X, can be obtained
directly from the negative binomial probability distribution:
ge = aet
o2 = aed(e® ~1).

Note for this example that the mean equals the solution to the deterministic
model. However, the variance increases as time increases. Specific values
for the mean and variance when @ = 1 and b = 1 are given in Table 1.1.

An important part of modeling is numerical simulation. Many different
programming languages can be used to simulate the dynamics of a stochas-
tic model. The output from a MATLAB program for the simple birth process
is graphed in Figure 1.7. MATLAB and FORTRAN programs for the simple
birth process are given in the Appendix for Chapter 1. Three stochastic
realizations of the simple birth process when b= 1, a = 1, and p1(0) = 1
are graphed in Figure 1.7. The corresponding deterministic exponential
growth model, n(t) = ¢, is also graphed. Table 1.2 lists the times at which
a birth occurs (up to a population size of 50} for two different realizations
or sample paths for the simple birth process. Notice that it requires times
of 2.675 and 4.573, respectively, for two of the three realizations to reach
a population size of 50. Recall that the time to reach a population size of
50 in the deterministic model with & = 1 = a = n(0) is found by solving
50 = exp(t) for t or t = In50 =~ 3.9120. In general, the time between births
is much longer when the population size is small. As the population size
builds up, then births occur more frequently and the interevent time de-
creases. See the Appendix for Chapter 1 for a brief discussion of interevent
time. _

The values of the stochastic realizations at a particular time ¢, X; = n,
depend on the probability p,(t),

pa(t) = Prob{X, = n}.

If p,(¢) > 0, then it is possible for a stochastic realization to have the value
n at time t. For example, for t = 0,1, 2, and 3, the probability distributions,
Pn{1), pn(2) and p,(3) graphed in Figure 1.6 show that it is possible for
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Realization 1 Realization 2
Size n(t) | Event Time t | Size n(¢) | Event Time ?

1 ¢ 1 0
2 0.1379 2 1.7642
3 0.4065 3 2.1740
4 0.5753 4 2.2688
5 0.7546 5 2.3901
6 0.7664 6 2.6641
7 0.9430 T 2.8388
8 1.1731 8 2.9087
9 1.4634 9 3.0444
10 1.5109 10 3.0047
50 2.8898 50 4.6784

Table 1.2. For two stochastic realizations, the times at which a birth
occurs are given for a simple birth process withb=1and a =1

the stochastic realization to have any positive value n at ¢ = 1,2, or 3.
However, the probability of a large value of n is very small.

In the following chapters discrete time Markov chain models, contin-
uous time Markov chain models, and diffusion processes are studied. In
Chapter 2 the theory of discrete time Markov chain models is presented.
Discrete time Markov chain models are models that are discrete in time
and in state.

1.7 Exercises for Chapter 1

1. The following probability mass function for the discrete random vari-
able X defines a geometric distribution:

fGh=pl—-pY¥, §=0,1,2,..., 0<p<l

{a} Show that the prabability generating function (p.g.f.) of X sat-
isfies Py (t) = p(1 — (1 —pjt)~ 1.
2

(b) Use the p.g.f. to find the mean px and variance o.

2. The continuous random variables X; and X; have the joint probabil-
ity density function (p.d.f.),

Fleg,zy=e772 0y €<, D<o <0 {1.7)

and zero otherwise.
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(a) Show that X, and X are independent and have exponential
distributions.

(b) Find the moment generating function (m.g.f.) of X; and X».
(c) Find E (et¥1+X2)),

. Suppose X; and X, are independent, continucus random variables

with joint p.d.f. satisfying f(x1,z2) = fi(e1}falza).

(a) Show that E(X1X2) = E(X1)E(Xz).

(b) For the joint p.d.f. defined by equation (1.7), find F{XX,) and
E(X?X3).

. Assume that the m.g.£. of X, Mx(t), converges in some open interval

about the origin. Use the facts that the cumulant generating function
{c.g.f) satisfies
Kx(t) =InMx(t)

and the properties of the m.g.f. to show that the c.g.f. satisfies

Kx(0)=0, Kx(0)=px, Kx{0)=o%.

. Show that the p.g.f. of the Poisson distribution is Px(t) = eMt—1),

Then use the p.g.f. to show that the mean and variance satisfy px =
A=o%.

. Show that the p.gf. of the negative binomial distribution defined in
equation (1.3) is
pn
Pxlt) = ————.
S T T

Then use the p.gf. to find the mean and variance of X. [Hint:

5 (m N "1 1) p*(1—p)* =p"(p) ™ =1]

=0} n

. The following p.m.f. is associated with a negative binomial distribu-

tion:

-1 .
w={ (D)o s

0, otherwise,

where n is a positive integer and 0 < p < 1 (see Section 1.6). This
function of y is a shift of n units to the right of the function f(x}
given in (1.3). Show that the p.g.f. of ¥ satisfies Py (t} = t*Px (1),
py = px +n, and 0% = 0%, where X is the random variable defined
by (1.3) (see Exercise 6).

. For the garhma distribution,
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(a) Show that the m.g.f. is My () =(1 — Ft) > for t < 1/85.

(b) Use the m.g.f. to find the mean and variance of the gamma
distribution.

(¢) For the special case of the exponential distribution, & = 1 and
# =1/A, find the mean and variance.

Suppose that the p.g.f. of a continuous random variable X satisfies
Pty =1/{1-01n{i)), 6 > 0.

(a) Find the m.g.f. M(¢#) and the c.g.f. K(t).

(b) Find the mean and variance of X.

Suppose that the random variable X is exponentially distributed.
Show that X has the following property:

Prob{X >t + At|X >t} = Prob{X > At}.

This property of the exponential distribution is known as the memo-
ryless property.

Suppose the discrete random variable X has a geometric distribution
{see Exercise 1}. Show that X has the memoryless property (see
Exercise 10)

Prob{X > j[X > i} =Prob{X > j -4}, i< J

Suppose the continuous random variable X has an exponential dis-
tribution with mean g = 10. Find

(a) Prob{s < X < 15}

(b) Prob{X > 15}

(c) Prob{X > 20X > 5}
Suppose the random variable X has a distribution that is N(2,1),
Find

(a) Prob{X < 2}

(b) Prob{-1 < X -2< 1}

{¢) Prob{-3< X -2<3}

(d) Prob{-0.9< X < 1.5}
Show that the m.g.f. of the normal distribution is My (t) = ext+o”t*/2

and the c.g.f. is Kx(t} = ut + 0%¢?/2. Then use the c.g.f. to show
that i and o? are the mean and variance of X, respectively.

Suppose that the random variable X has a m.g.f. Mx(t).
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{a) Show that the m.g.f. of Y = X — px is My (¢} = e #x Mx(f)
and M{P(0) = B(Y*) = E[{(X — ux)*] gives the kth moment of
X about its mean (Bailey, 1990}.

{b) Suppose that X is a binomial random variable. Find My (2);
then find the first three moments of X about its mean value,
[Hint: A computer algebra system may be used to calculate the
derivatives of My and to evaluate at t = 0.}

16. Suppose X;...., X, is a random sample of size n = 25 from a Poisson
distribution with parameter A. Apply the central limit theorem to
approximate Prob{X < A} and Prob{X < X + vA/5}.

17. Consider the exponential growth model, dn/dt = bn, n(0) = a. Find
the doubling time, Ty, 4, the first time the population size is 2a; then
find Trq q

18. Modify the MATLAB program in the Appendix and graph Poisson
probability mass functions for A = 5 and A = 10. On each of these
graphs, superimpose the graph of the normal density, N (A, A). How
do these two distributions compare? It can be shown that if X has
a Poisson distribution, then the random variable Z = (X — A)/VA
approaches a standard normal distribution as A — oo.
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1.9 Appendix for Chapter 1
1.9.1 MaTtLAB and FORTRAN Programs

The following MATLAB program can be used to graph the Poisson mass
function given in Figure 1.3.

% MATLAB Program:
% Poisson function.
clear all % Clears variables and functions from memory.
set (0, ’DefaulthixesFontSize’,18); ¥ Increases axes labels.
lastx=25; % Truncates the Poisson function at = = 25.
x=linspace(0,lastx,lastx+1);
w(1)=1;
w(2)=1;
lambda=3;
for i=2:lastx

w(i+l)=ixw(i);
end
y=lambda.Ax*exp(-lambda)./w;
bar(x,y,’k’} % Graphs a histogram of y.
axis([-1,12,0,0.25]) % Sets the scaling on the axes.
xlabel(x);
ylabel (f£(x)};

The following FORTRAN and MATLAB programs can be used to gen-
erate sample paths for the simple birth process.

REAL*8 N{50), T{(b0),Y,B,XX
PRINT *, ’'SEED (POSITIVE NUMBER < M)’
READ *, XX
T(1)=0.
N(1)=1.
B=1.
Y=RAND (XX}
DO I=1,49
Y=RAND (XX}
T{I+1)=—DLOG{Y)/(B*K(I))+T(I)
N(I+1)=N(I)+1
PRINT #*, 'T?, T(I+1), *N’, N(I+1)
ENDDD
STOP
END

FUNCTION RAND(XX)
REAL*8 XX,A,M,D
A=16807.
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M=2147483647 .
ID=A*XX/M
D=1D
XA=A*XX-D*M
RAND=XX/M
RETURN

END

% MATLAB Program:
% Sample paths for the simple birth process.
clear all % Clears variables and functions from memory.
set (0, 'DefaulthxesFontSize’,18); % Increases axes labels.
b=1,
x=linspace(0,50,51); % Defines the vector [0,1,2,...,50].
y=exp(x);
n=linspace(1,50,50); % Defines the population vector.
for j=1:3; % Three sample paths.

t(1)=0;

for i=1:49;

t{(i+1)=t(i)-log(rand)/(b*n{i});

end % End of i loop.

s= stairs(t,n); % Draws stairstep graph of n.

set (s, ’LineWidth’,2); % Thickens the line width.

hold on % Holds the current plet.
end % end of j loop
plot(x,y,’k--7, 'LineWidth’,2); % Plots the exponential.
axis([0,5,0,50)); % Sets scaling for the x— and y-axes.
xlabel(’Time’); % Label for the x-axis.
ylabel(’Population Size’); % Label for the y-axis.
hold off ¥ Erases previous plots before drawing new ones,

Note: A statement following % explains the command; these statements
are not executable.

1.9.2 Interevent Time

To simulate the simple birth process, it is necessary to know the random
variable for the time between births or interevent time. It is shown in
Chapter 5 that the random variable for the interevent time is exponentially
distributed; if the population is of size N, then the time H to the next
event {or interevent time) has a distribution satisfying

P(H > h) = exp(—bNh}.

To simulate a value h € H, a uniformly distributed random number Y is
selected in the range 0 < ¥ < 1 [i.e., from the uniform distribution U (0, 1}].
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Then
: Y = exp(—bNh),
which yields
b= _In(Y)
Y

(Renshaw, 1993). Notice in the simple birth process that as NV increases,
h = —In(Y)/bN decreases; the interevent time decreases as the population
size increases. To simulate an interevent time, it is necessary to apply a
random number generator that generates uniformly distributed numbers
in [0,1). The function subroutine RAND in the FORTRAN program is a
pseudo-random number generator and is based on the recursion relation
Yn+1 = {Ay,)modM, where RAND =y, /M € [0,1) and the modulus
M = 281 — 1 is a Mersenne prime (Anderson, 1990). The term “rand” in
the MATLAB program is a bunilt-in MATLAB function for a uniform random
number generator on {0, 1].



Chapter 2

Discrete Time Markov
Chains

2.1 Introduction

In this chapter, discrete time Markov chains are introduced. Both time and
state space are discrete. The theory and application of Markov chains is
probably one of the most well-developed theories of stochastic processes. A
classic textbook on finite Markov chains (where the state space is finite) is
the textbook by Kemeny and Snell (1960). Some additional references on
the theory and numerical methods for discrete time Markov chains include
A First Course in Stochastic Processes, by Karlin and Taylor (1975); An
Introduction to Stochastic Modeling, by Taylor and Karlin {1998}; Classi-
cal and Spatial Stochastic Processes, by Schinazi (1999); Moarkov Chains,
by Norris (1997); and Introduction to the Numerical Solution of Markov
Chains, by Stewart (1994).

We introduce some basic notation and theory for discrete time Markov
chains in this chapter. A discrete time chain can be classified as irreducible
or reducible, periodic or aperiodic, and recurrent or transient. These clas-
sifications help in determining the behavior of the Markov chain. Basic
theorems concerning the asymptotic behavior are stated that apply to par-
ticular types of Markov chains. For example, it is shown that a stationary
limiting distribution exists for an aperiodic, irreducible, and recurrent Mar-
kov chain. A stationary distribution is analogous to a stable equilibrium in
a deterministic model. However, in a stochastic model, the “equilibrium” is
defined by a probability distribution, known as the stationary probability
distribution. Some well-known examples of discrete time Markov chains
are diseussed in this chapter, including the random walk model in one, two,
and three dimensions. In addition, a problemn related to genetics inbreeding
is discussed.

41
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2.2 Definitions and Notation

Consider a discrete time stochastic process, {X,}, n = 0,.1,2,..., where
the random wvariable X,, is a discrete random variable defined on a finite
or countably infinite state space. For convenience, we denote the state
space as {1,2,...}. However, the set could be finite and could include
nenpositive integer values, Also, the variable n is used instead of t to denote
an element of the index set; this notation is used frequently in discrete time
processes. The index set is defined as {0,1,2,.. .}, since it often represents
the progression of time, which is also the reason for the terminology, discrete
time processes. Therefore, the index n shall be referred to as “time” n.

A Markov stochastic process is a stochastic process in which the future
behavior of the system depends only on the present and not on its past
history. More formally,

Definition 2.1. A discrete tine stochastic process { X, }3%, is said to have
the Markov property if

PI‘Ob{Xn = E'ano = ﬁ'u, ey Xn—l = é’n-l} = PI‘Ob{X—,; = ﬁn‘x n=1= én——l}e

where the values of 7, € {1,2,...} for ¥ = 0,1,2,...,n. The stochastic
process is then called a Markov chain or, more specifically, a discrete time
Markov chain. It is called a finite state Markov chain or a finite Markov
chain if the state space is finite.

The stochastic process is referred to as a chain when the state space is
discrete. The name Markov refers to Andrei A. Markov, a Russian proba-
bhilist (1856--1922), whose work in Markov chains contributed much to the
theory of stochastic processes.

The notation Prob is used to denote the induced probability measure,
Prob{-} = Py, {‘), because P will refer to the transition matrix that is
defined below. Denote the probability mass function associated with the
random variable X,, by {p;(n)}2,. where

pi(n) = Prob{X,, =1}. (2.1)

The state of the process at time n, X,,, is related to the process at time-
n + 1 through what is known as the transition probabilities. If the process
is in state i at time n, at the next time step n + 1, it will either stay in
state { or move or transfer to another state j. The probabilities for these
changes in state are defined by the one-step transition probabilities.

Definition 2.2. The one-step transition probability, denoted as p;;(n). is
defined as the following conditional probability:

p;i(n) = Prob{X 41 = jlIX, =i},

the probability that the process is in state j at time n + 1 given that the
process was in state ¢ at the previous time n, for 4,7 = 1,2,....
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_Pefinition 2.3. If the transition probabilities p;i(n) in a Markov chain do

“pot depend on time n, they are said to be stationary or time homogeneous
or simply homogeneous. In this case, we shall use the notation p;;. If the
transition probabilities are time dependent, p,;(r), then they are said to be
nonstationary or nonhomogeneous.

A Markov chain can have either stationary or nonstationary transition
probabilities. Unless stated otherwise, it shall be assumed that the transi-
tion probabilities of the Markov chain are stationary. For each state, the
one-step transition probabilities satisfy

o0
3 pi=1, for i=1,2,... and p;; >0,
=1

meaning that, with probability one, the process in any state { must move
or transfer to some other state 7, j £ 1 or stay in state i at the next
time interval. This identity also states for a fixed ¢, {p;;} is a probability
distribution.

The one-step transition probabilities can be expressed in matrix form,
which is referred to as the transition matrix.

Definition 2.4, The fransition matrix of the discrete time Markov chain
{Xn}S2, with state space {1,2,...} and one-step transition probabilities,
{pij 17521, is denoted as P = (p;;), where

P Pz Pz
P21 P2z Pz
P =

P31 Paz Paz

H the set of states is finite, {1,2,..., N}, then P is an N x N matrix.
Note that the column elements sum to one since Z;il P = 1. A nonneg-
ative matrix with the property that each column sum equals one is called
& stochastic matriz. The transition matrix P is a stochastic matrix. It is
left as an Exercise to show that if P is a stochastic matrix, then P” is a
stochastic matrix, for n any positive integer. If the row sums also equal
one, then the matrix is called doubly stochastic.

The notation used here differs from that used in some textbooks in two
respects. First, the transition matrix is sometimes defined as the transpose
of P, PT, Then the definition of a stochastic matrix is defined as a non-
Begative matrix whose row sums equal one (rather than column sums equal
one) (Kemeny and Snell, 1960; Norris, 1897; Stewart, 1994). Second, gen-
erally, the one-step transition probability p;, is defined as the probability
Pf a transition from state ¢ to state § rather than a transition from j to ¢ as
M our notation (Bailey, 1990; Karlin and Taylor, 1975; Kemeny and Snell,
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1960; Norris, 1997; Schinazi, 1999; Stewart, 1994; Taylor and Karlin, 1998),
We prefer this notation becaunse it closely resembles the notation used in
deterministic models and will allow us to more easily relate deterministic
models to stochastic models {see Tuljapurkar, 1997). For example, sup-
pose Y, .1 = AY, represents the dynamics of a deterministic system that
changes over time. Matrix A = (ai;) and Y = (w1, %2,...,y)7. The term
a;; in matrix A represents the effect variable y; has on y;, j — ¢ during
the time interval [n,n + 1]. In addition, using our notation, the element
pi; is in the #th row and jth column of the transition matrix P, which is
the standard notation used to define matrix elements. As an aid in setting
up and understanding how the elements of P are related, note that the
nonzero elements in the ith row of P represent all those states j (column j)
that can transfer into state ¢ in one time step. Next, we define the n-step
transition probabilities.

Definition 2.5. The n-step transition probability, denoted pN , is the prob-
ability of moving or transferring from state ¢ to state 7 in n time steps,

Pyt = Prob{X, = j|Xo = }.

The n-step transition matriz is denoted as P* = (pg?)) For the cases

(1)

n=0and n =1, Py = pj; and

m_s L 7=4
i ‘5’*“{0, j#i,

where &;; represents the Kronecker delta symbol. Then P} = P and
P©) = [ where [ is the identity matrix.

Relationships exist between the n-step transition probabilities and s-
step and (n —s)-step transition probabilities. These relationships are known
as the Chapman-Kolmogorov equations:

Py = ZPE‘Z Ipy. 0<s<n.

Verification of the Chapman-Kolmogorov equations can be shown as follows
(Stewart, 1994):

i) = Prob{X, = j|Xo = i},

= Z Prob{ X, = j, X: = k| Xy =4}, (2.2)
k=

=5 " Prob{X, = j|X, = k, Xo = i}Prob{X, = k| Xo =i}, (2.3)
k=1
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M8

Prob{ X, = j|X, = k}Prob{X, = k|Xo = i}, (2.4)

E
I

1
Mg

B p, (2.5)

]
Il
—

where equations (2.2)-(2.5) hold for 0 < s < n. The relationship (2.3)
follows from conditional probabilities {see Exercise 2). The relationship
(2.4) follows from the Markov property. The preceding identity written in
terms of matrix notation yields

pin) = pln=s)pls), (2.6)

However, because P} = P, it follows from the Chapman-Kolmogorov
equations (2.6) that P(® = P? and, in general, P™ = P The n-step
transition matrix P™ is just the nth power of P. The elements of P™
are the n-step transition probabilities, p . Be careful not to confuse the

notation pf} with 'pg‘), pg‘) # p}y. The notation p; is the nth power of the

element p;;, whereas p( ™) is the ¢ element in the nth power of P.

Let p(n) denote the vector form of the probability mass function associ-
ated with X,,; that is, p(r) = (p1(n), p2(n),...)7, where p;(n) is defined in
(2.1} and the states are arranged in increasing order in the column vector
p{n). The probabilities satisfy

Zpi{n) =1.
=1

Given the probability distribution associated with X, the probability dis-
tribution associated with X, can be found by multiplying the transition
matrix P by p(n); that is,

piln+1)= Zp«ejpj(“]

i=1

or
p(n+1) = Pp(n).
In general,

pln+m) = P"*p(0) = P™ (P™p(0)) = P"p(m).

2.3 Classification of States

Relationships between the states of a Markov chain lead to a classification
scheme for the states and ultimately classification for Markov chains.
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O O—®

Figure 2.1. In the directed graph, i — 5 (pj: > 0} and i — k
(pf‘.) > 0], but it is not the case that k — .

Definition 2.6. The state j can be reached from the state ¢ (or state j
is accessible from state i) if there is a nonzero probability, pg-?) > 0, for
some n > 0. This relationship is denoted as i — j. If ¢ can be reached from
j, § — 1, and if j can be reached from i, i — j, then ¢ and j are said
to communicate, or to be in the same class, denoted ¢ — j; that is, there
exists nonnegative integers n and n’ such that

(n) )

p;; >0 and pg? > 0.

The relation ¢ — § can be represented in graph theory as a directed
graph (see Figure 2.1).

The relation i «» j is an equivalence relation on the state space {1,2,...}.
The relation satisfies the following three properties (Karlin and Taylor,
1975):

(1) reflexivity: ¢ « i, because pﬁ?) = 1. Beginning in state ¢, the system

stays in state ¢ if there is no time change.
{(2) symmetry: ¢ — j implies § « ¢ follows from the definition.

(3) transitivity: i & 7, j — k implies i — k. To verify this last property,
note that the the first two properties imply there exist nonnegative
integers n and m such that p&?) >0 and pg-‘] > 0. Thus,

Pt = Prob{Xpim = k|Xo = i},
> Prob{X,im =k, X, = j|Xo =},
= Prob{ X, 4m = k| X, = j}Prob{X, = j|Xp =1}, (2.7)
=287,

where probability (2.7) follows from conditional probabilities and the

Markov property. Thus, pg"'m) > 0 and ¢ — k. Similarly, it can be

shown that p§:+m) > 0, which implies k — 1.
The equivalence relation on the states of the Markov chain define a set
of equivalence classes. These equivalence classes are known as classes of the
Markov chain.

Definition 2.7. The set of equivalence classes in a discrete time Markov
chain are called the communication classes or, more simply, the classes of
the Markov chain.
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If every state in the Markov chain can be reached from every other state,
\hhﬂl there is only one communication class (all the states are in the same

c\lasﬁ)

Definition 2.8. If there is only one communieation class, then the Markov
chain is said to be irreducible, but if there is more than one communication
class, then the Markov chain is said to be reducible.

A communication class may have the additional property that it is
closed.

Definition 2.9. A set of states €' is said to be closed if it is impossible to

reach any state outside of €' from any state in C by one-step transitions;
pi=0ifieCand j¢C.

A suffictent condition that shows that a Markov chain is irreducible is
the existence of a positive integer n such that p;?) > {) for all ¢ and j; that
is, every element in P" is positive, P" > 0, for some positive integer n. For
a finite Markov chain, irreducibility can be checked from the directed graph
for that chain. A finite Markov chain with states {1,2,..., N} is irreducible
if there is a directed path from 7 to j for every i, € {1,2,...,N}.

The definitions of irreducible and reducible apply more generally to NV x
N matrices, A = (a;;). A directed graph or digraph with N nodes can be
constructed from an N x N matrix. There is a single directed path from
node ¢ to node j if a;; # 0. Then node j can be reached from node % in one
step. A more general signed digraph can be constructed, where the sign of
a;; is associated with each directed path. Node j can be reached from node
i in n steps if a(-?) # 0, where a(-?) is the element in the jth row and éth
column of A”. A directed graph with N nodes constructed from a matrix
A is said to be strongly connected if there exists a series of directed paths
from i to j for every ¢, 7 € {1,2...,N} (i < j). Then a directed graph is
strongly connected if it is possible to start from any node ¢ and reach any
other node j in a finite number of steps. Matrix irreducibility is defined as
a strongly connected digraph (Ortega, 1987).

Definition 2.10. Matrix A is said to be irreducible if and only if its directed
graph is strongly connected. Alternately, matrix A is is said to be reducible
if and only if its directed graph is not strongly connected.

Example 2.1 A discrete time Markov chain with four states {1,2, 3,4}
has the following transition matrix:

0 0 ps 0O

_ Pz O
P= 0 0 0 0]
0 ps2 0 0

where p,; denotes a positive element. Then it is easy to see that 4 — 2 «
1+ 3and 4 « 2 — 3 {see Figure 2.2).
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@<§:®

Figure 2.2. Digraph for Example 2.1.

Since it is impossible to return to states 1 or 3 after having left them,
each of these states forms a single communication class, {1}, {3}. The set
{2,4} is a third communication class. The Markov chain is reducible. In
addition, the set {2,4} is closed, but the sets {1} and {3} are not closed. If
one of the elements, either p,s or p14, is positive, then the communication
classes consist of {1,2,4} and {3}. If one of the elements, either p32 or
P34, 18 positive, then there is a single communication class {1,2,3,4}; the
directed graph is strongly connected and matrix P is irreducible. Also, the
discrete time Markov chain is irreducible. |

The following example illustrates the classical gambler’s ruin problem.

Example 2.2 The state space is the set {0,1,2...,N}. The states rep-
resent the amount of money of one of the players (gambler). The gambler
bets $1 per game and either wins or loses each game. The gambler is ru-
ined if he/she reaches state 0. The probability of winning (moving to the
right) is p > 0 and the probability of losing (moving to the left) is ¢ > 0,
p+g=1{ie, piit1 =qgand pp1s =p, i = L,....,N — 1). In addition,
poo = 1 and pyy = 1, which are referred to as absorbing boundaries. All
other elements of the transition matrix are zero. In general, a state i is
called absorbing if p;; = 1. See the directed graph in Figure 2.3 and the
corresponding (N + 1) x (N + 1) transition matrix:

/1 ¢ 0 0 0\
00 ¢ 00
0 p O 0 0
00 p 0 0
P= _

0 0 qa 0
000 -~ 00
\0 0 0 -~ p 1/

NONQ @) i () >

Figure 2.3. The probability of winning is p and losing is ¢g. The
boundaries or end states, 0 and N, are absorbing, peo = 1 = pan.
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There are three communication classes for the Markov chain graphed in
“Figure 2.3: {0}, {1,2,...,N—1}, and {N}. The Markov chain is reducible.
The sets {0} and {N} are closed, but the set {1,2,..., N — 1} is not closed.
Also, states 0 and N are absorbing; the remaining states are transient.
A transient state is defined more formally later. This example is also an
illustration of a random walk with absorbing boundaries at 0 and N. B

Example 2.3 In an infinite-dimensional random walk or unrestricted ran-
dom walk, the states are the integers, 0,+1,4£2,.... Let p > 0 be the
probability of moving to the right and ¢ > 0 be the probability of moving
to the left, p + ¢ = 1. There are no absorbing boundaries, p; ;41 = ¢ and
piy1,i = p for i € {0,£1,£2, ...}, From the directed graph in Figure 2.4 it
is easy to see that the Markov chain is irreducible. Every state in the sys-
tem communicates with every other state. The set of states forms a cloged
get. In this case, the transition matrix P is infinite dimensional. If the

states are ordered such that ..., ~1,0,1,..., then matrix P is an extension
of the matrix in Example 2.2 with g along the superdiagonal and p along
the subdiagonal. [ |

Example 2.4 Suppose the states of the system are {1,2,3,4,5} with di-
rected graph in Figure 2.5 and transition matrix P given as follows:

1/2 1/3 0 0 0
1/2 2/3 0 0 0
P=| 0 0 0 1/4 0
0 0 1 1/2 1

0 0 0 1/4 0

There are two communication classes, {1,2} and {3,4,5}. Both classes are
closed. The Markov chain is reducible. |

—_ - — — —» > > ...
Tk
-~ .« - - - “

lFigl-lre 2.4, Unrestricted random walk; the probability of moving right is p and
eft is q.

< 20> @2%):@

Figure 2.5. Directed graph for Example 2.4.
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SROBOREES

Figure 2.6. Directed graph for Example 2.5.

(D—D)—()=

E Figure 2.7. Directed graph for Example 2.6.
3

i 'm

)

Bxgnple 2.5 Suppose the states of the system are {1,2,..., N} with tran-
ﬂ;l& mairix given by P and directed graph in Flgure 2.6. For this example,
ﬁeﬂarkov chain is irreducible. The set {1,2,..., N} is closed.

N.s. 00 - 01
=]
3 10 .- 00
w p_-| 01 - 00
00 -.- 10 [

The chain in Example 2.5 has the property that beginning in state ¢ it
takes exactly N time steps to return to state ¢, In addition, P¥ = F. The
chain is periodic with period equal to V.

Definition 2.11. The period of staie i, dencted as d(7), is the greatest
common divisor of all integers n > 1 for which p( B 0; that is,

d(i) = g.c. d{nip(n) >0andn > 1}

If a state ¢ has period d(i) > 1, it is said to be periodic of period d{i). 1
the period of a state equals one, it is said to be aperiodic. If p{n) =1 for
all n = 1, we define d(2) = 0.

It follows from the definition that d(¢) is a nonnegative integer.

Example 2.6 The directed graph of a Markov chain with three states
{1,2,3} is given in Figure 2.7. The corresponding transition matrix is

0 00
P=]1 0 0].
011

It is easy to see that there are three communication classes, {1}, {2}, and

{3}. The value of d{i) = 0 for ¢ = 1, Zbecausep( ™ =0 fori=12and
n=12,... Also, d(3) = 1, state 3 is aperiodic. [ |
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In the special case d(i) = 0, it can be shown that the set {i} forms
“a communication class (see Exercise 5). Also, if py > O, then d{¢} = 1.
Generally, the term periodic is reserved for the case d{2) > 1.

Example 2.7 In Example 2.1, the classes are {1}, {3} and {2,4}. States
1 and 3 satisfy d{1} = 0 = 4{3). States 2 and 4 are periodic with period 2,
d(2) = 2 = d{4); pfn) =1 and p(2n+” =0fori=2,4andn=12,.... n

Periodicity is a class property; that is, if ¢ — 7, then d(i) = d(7). All
states in one ¢lass have the same period. Thus, we can speak of a periodic
class or a periodic chain. This result is verified in the next theorem. -

Theorem 2.1. Ifi < j, then d(i) = d{j).

Proof. The case d(i) = 0 is trivial. Suppose d() > 1 and pm > 0 for some |
s > 0. Then d{i) divides s. Since i — j, there exists m and n such- that
pi_:n] >0 and p;’ > 0. Then '

s+
P 2 PR > 0.

Also, since p(zs > 0, p(n+23+m) > 0. Thus, d{j) divides n + s + m and
n + 23 + m and must clmde (n+2s+m)—(n+s+m)=s Since s was
arbitrary, d(j} < d(1).

Reverse the argument by assuming p( ™ > 0. Then it can be shown
that d(#) < d(j). Combining these two mequalit.ies gives the desired result,

d(t) = d(j). O

In the random walk model with absorbing boundaries, Example 2.2, the
classes {0} and {N} are aperiodic. The class {1,2,...,N — 1} has period
2. In the unrestricted random walk model, Example 2.3, the entire chain
is periodic of period 2. In this case, we shall use the notation d = 2 rather
than stating that d{i) = 2 for each of the i states. The two classes in
Example 2.4 are both aperiodic.

Some additional definitions and notation are needed to define a transient
state. This is done in the next section.

2.4 First Passage Time

Assume the process begins in state i, Xo = i. Then we define a first return
to state ¢ and a first passage to state 7 for 7 # i,

Definition 2.12. Let f;; (") denote the probability that, starting from state
t, Xo = 4, the first return to state ¢ is at the nth time step, n > 1; that is,

& = Prob{X, =&, Xm #i,m=1,2,...,n — 1|Xo =1}
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The probabilities f; (") are known as first return probabilities. Define f;; 0) =

0.

Note that f,-(:) = py but, in general, fi(‘; is not equal to p“) The first

return probabilities, ff:‘ ], represent the first time the chain returns to state
i; thus,

0<Z M

A transient state is defined in terms of these first return probabilities.
Definition 2.13. State i is said to be fransient if Z f(n) < 1. State ¢ is

said to be recurrent if 2 Fim =1,

=
The term persistent is sometimes used instead of recurrent (Bailey,
1990). If state ¢ is recurrent, then the set {f, (n)}nzo defines a probabil-
ity distribution for the random variable representing the first return time,
which is
T = inf {m{X,, = and Xo = 1};
m>1

that is, T;; = n with probability f“ ,n=01,2,.... When state { is tran-
sient, {f;] fin ») 2 o does not define a complete set of probabilities necessary
to define a probab;hty distribution. However, if fi; = 3 oo, f(”) < 1, then
we can define 1 — fi; as the probability of never returning to state ¢. The
random variable T;; may be thought of as a “waiting time” until the chain
returns to state .

Definition 2.14. The mean of the distribution of T}; is referred to as the
mean recurrence time or mean first return time for state { and is denoted
as gy = E{Ty;). For a recurrent state ¢,

=3 nf. (28)

n=1

Although T; is not defined for a transient state, we shall assume the
mean recurrence time for a transient state is always infinite (formally T}; =
oc with probability 1— f;;). The mean recurrence timne for a recurrent state
can be either finite or infinite.

Definition 2.15. If a recurrent state 7 satisfies p;; < o0, then it is said to
be positive recurrent, and if it satisfies p;; = oo, then it is said to be null
recurrent.

Sometimes the term nonnull recurrent is used instead of positive recur-
rent (Bailey, 1990).



2.4, First Passage Time 53
Example 2.8 A simple example of a positive recirrent state is an absorb-
\ing state. If ¢ is an absorbing state, then p; = 1, so that f; = =py =

and f3; tn) — 0 for # 1. The mean recurrence time of an absorbing state is
" ]
i = 1.

Example 2.9 Suppose the transition matrix of a two-state Markov chain

satisfies
_ (P11 P12
pa1 Ppez)
where 0 < pi; < 1 for ¢ = 1,2. Then all of the elements of matrix P are

positive, p;; > 0, 4, = 1,2. Hence, fl(}) = pu, fl{f) = prapar, flt?) _
P12pzapa1, and, in general,

f{?) = p12P%s P21, 0= 3.

This can be verified easily from the directed graph. Because pzz < 1, it
follows that lim,, .o, £{7’ = 0 and that

o

P12P21
Zfll = P11+ P2 Zpﬂ =put T 1= o

n=1
Next, applying the definition of a stochastic matrix, p1; + p21 = 1 and
Pz + pa2 = 1, it follows that

o

Zfl(;?) =pn+pa=1,
n=1

which implies that state 1 is recurrent. Similarly, it can be shown that state
2 ig recurrent. In addition, it can be shown that the mean recurrence times
are finite; for example,

o0
#11 = pn + pr2pn Z(n + 2)poy < o0
n=0

(see Exercise 6}. Therefore, the Markov chain is positive recurrent. [ |

Note that in the definitions of first return probabilities and mean recur-
rence time, the Markov property was not assumed. These concepts do not
reguire the Markov assumption and are sometimes discussed in the context
of renewal processes. These definitions are extended to first passage time
probabilities and mean first passage time. Then they are related to Markov
chains,

Define the probability f for j # ¢ in a manner analogous to f
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Definition 2.16. Let f}; (%} denote the probability that, starting from state
t, Xo =1, the first return to state j, j # ¢ is at the nth time step, n > 1,

f(n) PI’Db{Xn:jaxm?éjvmz 112,_“,ﬂ—1|X0:3‘}, j?éi

The probabilities f(n) are known as first passage time probabilities. Define
0
;=0

It follows from the definition that 0 < 37 f fim <11t Yoot (n) =1,

{ fj,; )}22., defines a probability distribution for a random varlable Ty =
inf>1{m| X, = 7 and X = i} known as the first passage to state j from
state ¢. If ¢ = j, then Definition 2.16 is the same as Definition 2.12.

Definition 2.17. If X = i, then the mean first passage time to state j is
denoted as uj; = E(T};) and defined as

Mji—Z fJ, s JFEL
n=1

This definition can be extended to include the case f;; = f (n)
by defining the probability of never reaching state 7 from state i 88 1 f i
If f;; < 1, then the mean first passage time is infinite.

There exists relationships between the n-step transition probabilities of

a Markov chain and the first return probabilities. The transition from state

 to 1 at the nth step, pgi ), may have its first return to state ¢ at any of the

steps j = 1,2,...,n. It is easy to see that

P = IR PR e 1)
n—k
= fof‘) &, (2.9)
k=1

since £ =0 and p{” = 1. A similar relationship exists for Fi ") and p(“).

n k) (n— . .
P = Z FPPTE A (2.10)
k——
Let the generating function for the sequence { fj(:‘ )} be
Fii(s) =Y 05" sl <1
n=0

and the generating function for the sequence {p:(__?)} be

*pﬁ{s) ijz R'J [Sl <1
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for all states ¢, j of the Markov chain. Note that these functions may not
\be probablhty generating functions since the set of probabilities { fj:‘ e

and {p; % o may not represent a probability distribution (the sum may
be less than one). However, relationships between these two generating
functions are shown and these relationships are used to prove results about
Markov chains,

Multiply Fi;(s) by Pi;(s) using the definition for the product of two se-
ries. The product C(s} of two series A(s} and B(s), where A(s) = 3°0° axs®
and B(s) =3 g bisl, is

C(s) = A(s)B(s) = Zcr ,

r={
where

¢ =aoby Farb 1+ -+ a by = Zakbﬂ,._k.
k=0
If A(s) and B(s) converge on the interval (—1,1), then C{s) also converges
on (~1,1) (Wade, 2000). Identify the coefficient ax of A(s) with £ of
,,(s) and the coefficient b; of B(s) with p(” of P;;(s) and apply equation

{(2.9) so that ¢, = p(r) The following relationship between the generating
functions is obtained:

n 3) ZPSI)ST — 1

where pi7) = 0, £”p7 ™" and || < 1. Note that the number one is
subtracted from F;;(s) since the first term ¢p = f (D)pi?] in the product of
Fii(3)P;i(s) is zero but the first term in Py (s) is p,(;i) = 1. Hence,

1

Ri(S) 1- “{3)

(2.11)

A similar relationship exists between Pj;(s) and Fj;{s) that follows from
(2.10):

Fyi(8)Py(s) = Pyls), i#3J. (2.12)

For equation (2.12), the number one is not subtracted from P;;(s) since the
first term in its series representation is p(O} =0, i # j, which equals the first

term in the series representation of Fj;(s)P;;(s); that is, g = f (D)p;?)
The above identities are used to verlfy some theoretical results on Markov
chains.
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2.5 Basic Theorems for Markov Chains

The relationships between the generating functions are used to relate a re-

current state ¢ to the n-step transition probabilities p("). In addition, an
important result referred to as the basic limit theorem for Markov chains
is stated that gives conditions for a Markov chain to have a limiting distri-
bution. Pirst, a lemma is needed.

Lemma 2.1 (Abel’s Convergence Theorem).

(i) If Z ay converges, then lim Z ars* =Y ap=a
k=0

d=1" p—p
(it) Ifai, > 0 and 11ri1 E aps® = a < oo, then Z e = a.
s—=1" £ k=0

For a proof of Abel's convergence theorem, consult Karlin and Taylor
(1975, pp. 64-65). The lemma is straightforward if the series converges
absolutely. Lemma 2.1 is used to verify the following thecrem.

Theorem 2.2. A state i is recurrent (transient} if and only if Z p(“)

n=

diverges {conwerges); that is,

Z Pl =00 (< 00).

n=0

Proof. We prove the theorem in the case of a recurrent state. The proof
in the case of a transient state follows as a direct consequence because if a
state { is not recurrent it is transient. Assume state ¢ is recurrent; that is,

Z f(ﬂ)

n=1
By part (i) of Lemma 2.1,

§ AP = tim Fu(e) =1
sﬂ-l— s—1—
n=1

From the identity (2.11), it follows that

. . 1
S Pa(s) = lm g <o

Because P;;(s) = 3 oory pg‘)s , it follows from Lemma 2.1 part {ii) that

Zp(n)
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~ The converse of the theorem is proved by contradiction. Assume that
\”Enﬂo pﬁ‘) = oo and state i is transient; that is,

Z f(ﬂ}

n=1
Applying Lemma 2.1 part (i),
lim F(s) = lim Zf(“) - Z flm Zf(n) <1
s=17 s—17 n=0 n=1
Now, applying the identity (2.11), it follows that
. 1
Jim Pals) = lim st <

Finally, Lemma 2.1 part (ii) and the above inequality yield

Zp(ﬂ) < 00,

n=0
which contradicts the original assumption. The theorem is verified. O

Next it is shown that if state ¢ is recurrent, then all states in the same
communicating class are recurrent. Thus, recurrence and transience are
class properties. If the chain is irreducible, thent the chain is either recurrent
or transient.

Corollary 2.1. Assume i — j. State i is recurrent (transient) if and only
if state j is recurrent (transient).

Proof. Suppose ¢ — j and state ¢ is recurrent. Then there exists n,m > 1
such that
;pU )>0 and p(m) > (.

Let k be a nonnegative integer,

+& k
o 2 o ey

Summing on k,

o0 o0

k + etk k k
Yoz Zp‘" ey ey = ol py Zp( g
k=0 k=0

The right-hand side is infinite by Theorem 2.2 because state i is recur-

rent. Thus, 3 .2, p_g J) is divergent and state j is recurrent. The theorem
also holds for transient states because if a state is not recurrent it is tran-
sient. O
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An important property about recurrent classes follows from the defini-
tion of a recurrent state. The next corollary shows that a recurrent class
forms a closed set.

Corollary 2.2. FEvery recurrent class in a discrete time Markov chain is
a closed sef.

Proof. Let ' be a recurrent class. Suppose C is not closed. Then for some
i€ Candj¢C, py > 0. Because j ¢ C, it is impossible to return to the
set C from state j (otherwise ¢ « j). Thus, beginning from state 7, the
probability of never returning to C is at Jeast p;; or 3, ft-(t-”) <l—pyu <1,
a contradiction to the fact that ¢ is a recurrent state. Hence, ¢ must be
closed. 2

Example 2.10 Suppose the transition matrix of a Markov chain with
states {1,2,3,...} satisfies

a] 0 0
2y 0
P= s Q3 Ay - o

where a; > 0 and 372, a; = 1. The communication classes consist of {1},
{2}, {3}, and so on. Each state represents a communication class. In
addition, none of the classes are closed. Hence, by Corollary 2.2, it follows
that none of the classes are recurrent, they must all be transient. In fact,
each class is aperiodic and transient. | |

We will use Example 2.3, the one-dimensional unrestricted random walk,
to illustrate Theorem 2.2. It will be shown that the Markov chain for this
process is recurrent if and only if (iff) the probabilities of moving right or
left are equal, p = 1/2 = g, which means it is a symmetric random walk.

Example 2.11 Consider the one-dimensional, untrestricted random walk
in Example 2.3. The chain is irreducible and periodic of period 2. Let
p be the probability of moving to the right and g be the probability of
moving left, p+ g = 1. We verify that the state 0 or the origin is recurrent
il p=1/2 = ¢q. However, if the origin is recurrent, then all states are
recutrent because the chain is irreducible. Notice that starting from the
origin, it is impossible to return to the origin in an odd number of steps,

part) — 0 for n=0,1,2,....

The chain has period 2 because only in an even numbers of steps is the
transition probability positive. In 2n steps, there are a total of n steps to
the right and a total of n steps to the left, and the n steps to the left must
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be the reverse of those steps taken to the right in order to return to the
“origin. In particular, in 2n steps, there are

2ny _ (2n)!

n/  nnl
different paths {combinations) that begin and end at the origin. Also, the
probability of occurrence of each one of these paths is p™¢™. Thus,

Zpon = ZP(M Z (2n) e

n=0

‘We need an asymptotic formula for n! known as Stirling’s formula to
verify recurrence. The notation f(n) ~ g{n) means

fln)

=1.
n—:oo g n)

Both guantities, f(n) and g(n), grow at the same rate as n — co. In

Stirling’s formula,

!
lim ———— =1.

oo ple~ny/ 27N

Thus, Stirling’s formaula is the following asymptotic relation:

Jn! ~ e 2rn. |

Verification of Stirling’s formula can be found in Feller (1968) or Norris
(1997).
Stirling’'s formula gives the following approximation:

{2n) _ (2?‘3) T
\/411'1 (2n)2ne=2
arentig—2n P 4
(4pg)"

= (2.13)

Thus, there exists a positive integer N such that for r» > N,

(4pa)” _  (2n) _ 204p)”
< < —_—
2/mn Poo VER
Considered as a function of p, the expression 4pg = 4p(1—p) has a maximum

at p=1/2. If p=1/2, then 4pg = 1 and if p # 1/2, then 4pg < 1. When

Pg £ 1/4, then
(2n) — 2(d4pg)”
E Poo . < N+ E _—ﬁ < 00

n=N
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The latter series converges by the ratio test. When pg = 1/4, we have

Z (2m) Z (4pq)" 1 Z 1
Tt
= = 2/ 2w oy Jn

The latter series diverges because it is just a multiple of a divergent p-
series. Therefore, the series 3 .., P& diverges iff p = 1/2 = ¢, which
means the one-dimensional random walk is recurrent iff it is a symmetric
random walk. If p 5 g, then all states are transient; there is a positive
probability that an object starting from the origin will never return to the
origin. What happens if an object never returns to the origin? It can be
gshown that either the object tends to 400 or to —oo. L]

Before giving additional examples, some important results concerning
irreducible and recurrent Markov chains are stated. Verification of these
results are quite lengthy and the proofs are not given. They depend on
a result from renewal theory known as the discrete renewal theorem. A
statement of the discrete renewal theorem, its proof, and proofs of the
following theorems can be found in Karlin and Taylor (1975) (also consult
Norris, 1997). The first result is known as the basic limit theorem for
aperiodic Markov chains, which gives conditions for recurrent, irreducible,
and aperiodic Markov chains to have a limiting probability distribution.
The second result applies to periodic Markov chains.

Theorem 2.3 (Basic limit theorem for aperiodic Markov chains).
Consider a recurrent, irreducible, and aperiodic Markov chain. Then

where i;; 18 the mean recurrence time for state i defined by (2.8) and i and
j are any states of the chain. [If py = 0o, then lim, o pg?) =0]

Theorem 2.4 (Basic limit theorem for periodic Markov chains).
Consider a recurrent, irreducible, and d-periodic Markov chain. Then

ke Hii

and pg:” )= if m is not a multiple of d, where u; is the mean recurrence

time for state i defined by (2.8). [If puz = 00, then limp— o Pz('?d) =0.]
In Theorem 2.4, d > 1, since the chain is irreducible (see Exercise 5).

Example 2,12 The Markov chain in Example 2.5 is periodic with period

d = N. The Markov chain is also irreducible and recurrent. Applying
Theorem 2.4, lim, .00 p°°) = N/ps. However, PV = I, so that P

it i = 1!
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and if i # 7, p(“m =Qforn=1,2,.... Therefore, 1 = N/u;,, which implies

“that the meﬁﬂ recurrence time is N This result is obvious if one notices
thatf“ _'landf =0forn#N. Then”“_Nf“)_N B

Theorems 2.3 and 2.4 apply to recurrent classes as well as to recurrent
chains. Suppose ' is a recurrent communication class. Then since ' is
closed, pg:) =0forie Cand k & C for n > 1. Therefore, the submatrix
Pe of P given by Pc = (p;;}ijec is a transition matrix for C. By Corol-
lary 2.1, the associated Markov chain for C is irreducible and recurrent.
Therefore, Theorems 2.3 and 2.4 can be applied to any aperiodic, recurrent
class (rather than a chain) or to any periodic, recurrent class. We state the
extension of Theorem 2.3 as a corollary.

Corollary 2.3. Ifi and j are any states in a recurrent and aperiodic class

of a Markov chain, then

1
tim p(ﬂ) —,

n—oG Hig
where py; is defined in (2.8).

Example 2.13 The Markov chain in Example 2.4 has two aperiodic, recur-
rent classes, {1,2} and {3,4,5}. Then llmn_.oop(n) = 1/py; for i,5 = 1,2

and for 1,7 = 3,4,5. Note that llmn_,mp( ") = 0 when i € {1.2} and
j€1{3,4,5} or wheni € {3,4,5} and j € {1, 2} We shall show in the next
section how to compute the limit, 1/ |

If jt;; = oo, then state ¢ is null recurrent and if 0 < g, < oo, then
state { is positive recurrent. It can be shown that if one state is positive
recurrent in a communication class, then all states in that class are positive
recurrent. In this case, the entire class is positive recurrent. In addition, it
follows that if one state is null recurrent in a communication class, then all
states are null recurrent. Verification of these results is left as an exercise
{see Exercise 11). Hence, null recurrence and positive recurrence are class
broperties. Therefore, it follows from the previous results that every irre-
ducible Markov chain can be classified as either periodic or aperiodic and
a8 either transient, null recurrent, or positive recurrent:

(1) periodic or (2) aperiodic.

(i) transient or (if) null recurrent or (iii) positive recurrent.

The classifications (1) and (2) are disjoint, and the three classifications,
(1), (i}, and (iii), are disjoint. This classification scheme can be applied to
Communication classes as well, provided the period d > 1. The special case
where d = 0 consists of a class with only a single element and the class
must be transient (see Example 2.6 and Exercise 5). The term ergodic is
used to classify states or irreducible chains that are aperiodic and positive
Tecurrent.
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Definition 2.18. A state is ergodic if it is both aperiodic and pesitive
recurrent. An ergodic chain is a Markov chain that is irreducible, aperiodie,
and positive recurrent.

When the entire class or chain is ergodic, it is also referred to as strongly
ergodic (Karlin and Taylor, 1975). If the ergodic class or chain is null
recurrent rather than positive recurrent, then it is said to be weakly ergodic
(Karlin and Taylor, 1975). :

The next example reconsiders the unrestricted random walk model. It
has already been shown that this Markov chair is irreducible and periodic.
In the case of a symmetric random walk, it is shown that the chain is null
recurrent.

Example 2.14 The unrestricted random walk model is irreducible and
periodic with period d = 2. The chain is recurrent iff it is a symietric ran-
dom walk, p = 1/2 = g (Example 2.11). Recall that the 2n-step transition
probability satisfies

@y 1
Poo ™~
VTR
(2n)

[see equation (2.13}] and hence, lim,,_. p5g * = 0. It follows from the basic
limit theorem for periodic Markov chains that d/ugp = 0. Thus, e = oo;
the zero state is null recurrent. Since the chain is irreducible, all states are
null recurrent. Thus, when p = 1/2 = ¢, the chain is periodic and null
recurrent and when p # 1/2, the chain is periodic and transient. ||

2.6 Stationary Probability Distribution

A stationary probability distribution represents an *equilibrium” of the
Markov chain; that is, a probability distribution that remains fixed in time,
For instance, if the chain is initially at a stationary probability distribution,
p(0) = &, then p(n) = P™r = « for all time n.

Definition 2.19. A stationary probability distribution of a Markov chain
with states {1,2,...} is a nonnegative vector 7 = {1, ms,...)T that satisfies
o0
Pr = 7 and whose elements sum to one {i.e., 3 w; = 1).
i=1
Definition 2.19 also applies to a finite Markov chain, where the vector
7 = (71, 72,...,75)T and Zil m; = 1. In the finite case, x is a right eigen-
vector of P corresponding to the eigenvalue A = 1, Pr = Awx. There may
be one or more than one linearly independent eigenvector corresponding to
the eigenvalue A = 1. In fact, there may be at most N linearly independent
eigenvectors. If there is more than one linearly independent eigenvector
corresponding to A = 1, then the stationary probability distribution of the
finite Markov chain is not unique.
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Example 2.15 Suppose we have the transition matrix

r 0 ¢
P=QPUa
0 g p

where p > 0, ¢ > 0 and p + ¢ = 1. To determine n, we solve Px = 7 or
(P-INr=0,

where I 15 the 3 x 3 identity matrix and 0 is the zere vector. There is
only one linearly independent eigenvector corresponding to the eigenvalue
X = 1. The unique stationary probability distribution satisfies 7, = w2 = m3
so that 7 = (1/3,1/3,1/3)7. |

Example 2.16 If the transition matrix P is the N x N identity matrix,
then there exist N linearly independent eigenvectors, e; = (1,0,...,0)7,...,
en = (0,0,...,1)T, corresponding to the eigenvalue A = 1. Hence, there
is an infinite number of stationary probability distributions. Any vector
T=(m,m2,...,7n)7, where m; > 0fori=1,2,...,N, and Ziﬁ"i =1is
a stationary probability distribution.

A stationary probability distribution for a finite state Markov chain
always exists; although it may not be unique. This is due to the fact that
a finite stochastic matrix always has an eigenvalue A = 1. However, if the
state space is infinite, a stationary probability distribution may not exist.

Example 2.17 Consider the transition matrix in Example 2.10,

151 0 0
az a1 0
P = [ 7Y o ap ‘ea ¥

where @; > 0 and > -; a; = 1. There exists no stationary probability
distribution because Px = 7 implies 7 = @, the zero vector. 1t is impossible
for the sum of the elements of 7 to equal one. |

As illustrated in the previous examples, nonexistence of a stationary
distribution only applies to infinite Markov chains. It can be shown that ev-
ery finite Markov chain has at least one stationary probability distribution
(Gantmacher, 1964). In addition, if the finite Markov chain is irreducible,
it has a unique stationary probability distribution {Ortega, 1987). The
Markov chain in Example 2.15 is irreducible, but the one in Example 2.16
is reducible.

If a Markov chain is irreducible, positive recurrent, and aperiodie, then
the next theorem shows that there exists a unique stationary probability
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distribution and, in addition, this distribution is the limiting distribution
of the Markov chain. It is the property of aperiodicity that is needed for
convergence to the stationary probability distribution. A proof of this result
can be found in Karlin and Taylor (1975).

Theorem 2.5. Suppose a discrete time Markov chain is irreducible, pos-
itive recurrent, and aperiodic (strongly ergodic) with states {1,2,...} and
transition mairic P. Then there erisis a unique positive stationary proba-
bility distribution © = (71, 72,...)T, Pr = «, such that

hm;uJ1 =m; for i,j=1,2,....

Theorem 2.5 gives sufficient conditions on the chain for existence and
uniqueness of the limiting probability distribution. The transition matrix
of a strongly ergodic chain satisfies

M ML m

lim P = |72 %2 72
A0 .

Thus,
lil_rgo P'p(0) = 7. {2.14)

The limit is independent of the initial distribution and equals the station-
ary probability distribution. The convergence to a stationary probability
distribution is similar to convergence to a stable equilibrium in a determin-
istic model. Theorem 2.5 applies to finite and infinite Markov chains. The
following example shows that a unique stationary probability distribution
may exist but that the Markov chain may not converge to that distribution,

Example 2.18 Suppose the transition matrix of Markov chain satisfies

(2 1)

This chain is irreducible, positive recurrent, and periodic of period 2. There
exists a unique stationary distribution, = = (1/2,1/2)7, but there is no
limiting distribution. For any initial distribution p{0}, P?"p(0) = p(0)
and P?"+1p(0) = p(1). This example shows the necessity of aperiodicity in
Theorem 2.5. a

Comparing Theorem 2.5 with the bagic limit theorem for aperiodic Mar-

kov chains, it follows that
1
ﬂ-i = — > On
s
where p1;; is the mean recurrence time for state . The mean recurrence time
of a positive recurrent, irreducible, and aperiodic chain can be computed

from the stationary probability distribution, gy = 1/m;.
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Example 2.19 Suppose the transition matrices for two Markov chains are

0 1/4 0
Plz(}jg ;jg) and Py=[1 1/2 1
0 1/4 0

These Markov chains are strongly ergodic. (In the next section, it is shown
that all irreducible finite Markov chains are positive recurrent.) These two
Markov chains represent the two recurrent classes in the Markov chain
discussed in Examples 2.4 and 2.13.

There exist unique limiting stationary probability distributions n for
each matrix P;. The stationary distribution corresponding to P, satisfies
7 = (2/3)mz and 1 = m + oy = (2/3)7y + 73, s0 that m = (2/5,3/5)T.
In addition, the mean recurrence times are w13 = 5/2 and g2 = 5/3. For
matrix P;, it can be shown that the stationary probability distribution
is m = (1/6,2/3, I/G)T. Hence, the mean recurrence times are u, = 6,
pro2 = 3/2, and p33 = 6.

It follows from Theorem 2.5 that the columns of P approach the sta-
tionary probability distribution,

/6 1/6 1/6
tim P{‘=(2/5 2/5) and lm PP =[2/3 2/3 2/3
LS 3/5 3/5 m e 16 16

For example, in the first Markov chain, eventually, 40% of the time is spent
in state 1 and 60% of the time is spent in state 2. After leaving state 1, it
takes on the average about 2.5 time steps until there is a return to state
1, and, after leaving state 2, it takes about 1.67 time steps until there is a
return to state 2. ]

2.7 PFinite Markov Chains

An important property of finite Markov chains is that there are no null re-
current states and not all states can be transient. Therefore, an irreducible,
finite Markov chain is positive recurrent. The assumption of recurrence is
not needed when the basic limit theorems are applied to finite Markov
chains. To verify these results, we begin with a lemma.

Lemma 2.2, If j is a transient state of a Markou chain and i is any state
n) _

in the Markov chain, then lIm pg-t- =
=30
Actually, Lemma 2.2 applies to finite and infinite Markov chains. The
proof is left as an exercise.

Theorem 2.6. In a finite Markov chain, not all states can be transient and
no states can be null recurrent. In particular, an irreducible finite Markov
chain is positive recurrent.
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Proof. From Lemma 2.2, it follows that if § is transient, then .
lim pjn =0, for i=1,2,...,N, (2.15)
=t oo

where V is the number of states. Suppose all states are transient. Then
the identity (2.15) holds for all i and 7,4, =1,2,...,N and

lim P" =0,

Fo— X

the zero matrix. Matrix P" is a stochastic matrix (Exercise 1). Hence,

ZN 11-",(:) = 1; the column sums of P* are one. Taking the limit as n — oo
a,nd interchanging the limit and summation {possible because of the finite

sum) leads to Z;v 11m p( )= = 1, a contradiction to the above limit. Thus,

not all states can be tranSJent.

Suppose there exists a null recurrent state ¢ and ¢ € C, where (' is a
class of states. The class C is closed by Corollary 2.2 and all states in C are
null recurrent. (See the remarks following Corollary 2.3 and Exercise 11.)

Suppose the class C' is aperiodic and null recurrent. Then according to
the basic limit theorem for aperiodic Markov chains, lim,, .« p("’] = 0 for all
1,7 € {7. The submairix Pg of P consisting of all states in C is a stochastic
matrix (p(") =0 for k ¢ C). But lim,,_.., PZ = 0, an impossibility. Thus,
all states are positive recurrent.

Suppose the class ¢ is periodic and null recurrent. Then according to
the basic limit theorem for periodic Markov chains, Hmy,—o p(n) = 0 for
any ¢ € C. Furthermore, for any State j € C, since i « j, there exists
positive integers m and n such that pt- > 0 and p(n) > {}. Therefore,

Pt 2 pPpi > 0.

Fix n and let m — oco. Then it follows that lim,, . p(m] = 0. Also, fix

m and let n — oo. Then lnnn_yoop(n) = 0. Thus, lim,_. P53 = 0, where
Pg is the submatrix of P consisting of states in C. This is an impossibility
since P2 is stochastic. Thus, all states are positive recurrent.

In the case that the finite Markov chain is irreducible, there is only
one class and all states in that class must be either positive recurrent, null
recurrent, or transient. Since they cannot all be transient and there are no
null recurrent states, they all must be positive recurrent. O

Since there are no null recurrent states in finite Markov chains, there are
only four different types of classification schemes based on periodicity and
recurrence, The states of a finite Markov chain can be classified as either
periodic or aperiodic and either transient or positive recurrent. Recurrence
in a finite Markov chain will always mean positive recurrence.
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Example 2.20 Let P be the transition matrix of a Markov chain:

/2 0 0 1/2
izt 0 0
P=1% 00 112

0 01 0

There are three communication classes, {1}, {2}, and {3,4}. Class {1} is
aperiodic and transient. Class {2} is aperiodic and recurrent. Class {3, 4}
is periodic and transient. State 2 is an absorbing state. Matrix P can be
partitioned accerding to the classes,

2 | o | © 1/2
o 7, 0 A

I LA L B R
O | 0 | 0 1/2 0 0%
0 | 0 | 1 0

The diagonal matrices T; and T3 corresponding to the transient classes have
the property that
lim T = 0.

=20
In addition, the entire first, third, and fourth rows all tend to zero as
n — oo (Lemma 2.2). Eventually, all transient classes are absorbed into
the recurrent classes. In this example, there is eventual absorption into
state 2. ]

An additional property of finite Markov chains is that a communication
class that is closed is recurrent. This is verified in the next theorem. See
Schinazi (1999).

Theorem 2.7. In a finite Markov chain, a class is recurrvent iff it is closed.

Proof. We have already shown that if a class is recurrent, it is closed. The
reverse implication is verified by contradiction. Assume a class of states C
is closed, but C is not recurrent. Then C is transient. By Lemma 2.2, if §

is a transient state, then lim,_ . p(“) = {) for all states 7. In particular, for

state i € C', we have
Z lim p_(,?) (2.16)

But because €' is closed, the submatrix P consisting of all states in C'.is
a stochastic matrix. In addition, PS" is a stochastic matrix (Exercise 1).
The column sums of Pg‘} equal one and must equal one in the limit as

n — 00, & contradiction to (2.16). Hence, C cannot be transient; € must
be recurrent. O
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Example 2.21 The finite Markov chain in Examples 2.4 and 2.13 has two
recurrent classes, {1,2} and {3,4,5}. The transition matrix can be parti-
tioned according to these classes,

1/2 13 | 0 0 0
1/2 2/3 | ¢ 0 0
P=19 o | 0 1/4 0
o 0 | 1 1/2 1
0 0 | 0 1/4 0

Since both classes are closed, they are both recurrent. They are also ape-
riodic. In addition, from the partition, it is easy to see that each of the
diagonal submatrices forms a stochastic matrix, [

In finite Markov chain theory, a stochastic matrix with the property
pg?) > 0, for some n > 0 and all 4,j = 1,2,...,N (P" > 0), is often
referred to as a regular matrix. If the transition matrix is regular, then
the Markov chain is irreducible and aperiodic {Why?). The Markov chain,
in this case, is also referred to as regular. Therefore, a regular Markov
chain is positive recurrent (strongly ergodic). The theorems of Perron and
Frobenius from linear algebra state that a regular matrix P has a positive
dominant eigenvalue X that is simple and satisfies A > [Ai], where A; is
any other eigenvalue of P (see Gantmacher, 1964, or Ortega, 1987). In
addition, the dominant eigenvalue A has an associated positive eigenvector
(see Gantmacher, 1964). The eigenvalue A of a regular stochastic matrix
P is A = 1, and the associated eigenvector = satisfying 3> 7 = 1 defines
a stationary probability distribution, Pr = #. If the assumption of regu-~
larity is weakened, so that the stochastic matrix P is irreducible, then the
theorems of Perron and Frobenius still imply that A = 1 is a simple eigen-
value satisfying A > |);| with associated positive eigenvector 7 (Ortega,
1987). Therefore, all that is required for existence of a unique stationary
probability distribution is that P be irreducible. However, the additional
property of aperiodicity {or regularity) is needed to show convergence to
the stationary probability distribution. The following result is a corollary
of Theorems 2.5 and 2.6.

Corollary 2.4. Suppose a finite Markov chain is irreducible and aperi-
odic. Then there exists a unique stationary probability distribution © =
{r1,...,78)T such that

lim p(n) =m Li=L12,...,N.

n—00 +

The next example is a finite Markov chain that models the dynamics of
two squirrel populations.
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.Example 2.22 The introduction of a new or alien species into an environ-
‘ment will often disrupt the dynamics of native species (Hengeveld, 1989;
Shigesada and Kawasaki, 1997; Williamson, 1996}. For example, the gray
squirrel, Sciurus carolinensis, was introduced into Great Britain in the late
nineteenth century and it quickly invaded many regions previously oceu-
pied by the native red squirrel, Sciurus vulgaris (Reynolds, 1985). Data
were collected in various regions in Great Britain as to the presence of red
squirrels only (R), gray squirrels only (G), both squirrels (B), or absence of
both squirrels (A). The data were summarized and a Markov chain model
was developed with the four states, {R,G, B, A}. The model is reported
in Mooney and Swift (1999). Each region was classified as being in one of
these states, and the transitions between states over a period of one year
were estimated (e.g., prr = 0.8797, pre = 0.0382). If the states 1, 2,
3, and 4 are ordered as R, GG, B, and A, respectively, then the transition
matrix has the form

0.8797 0.0382 0.0527 0.6008
0.0212 0.8002 0.0041 0.0143
0.0981 0.0273 0.8802 0.0527
0.0010 0.1343 0.0630 0.9322

It is easy to check that the corresponding Markov chain is irreducible, posi-
tive recurrent, and aperiodic (P is regular). There exists a unique, limiting
stationary distribution 7. We calculate this distribution by finding the
eigenvector of P corresponding to the eigenvalue 1,

7 = (0,1705,0.0560,0.3421, 0.4314)7.

Over the long term, the model predicts that 17.056% of the region will be
populated by red squirrels, 5.6% by gray squirrels, 34.21% by both species,
and 43.14% by neither species. The mean recurrence times, uy; = 1/,
i=1,2,3,4, are given by the vector

¢ = (5.865,17.857,2.923,2.318)7

For example, a region populated by red squirrels (R} may change to other
states (G, B, or A) but, on the average, it will again be populated by red
squirrels after a period of about 5.9 years, |

2.7.1 Mean Recurrence Time and Mean First Passage
Time

A method is derived for calculating the mean recurrence times and mean
first passages in irreducible finite Markov chains. Denote the matrix of
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mean recurrence times and mean first passage times by

M1 M1z - AN

M1 po2 o+ HoN
M=(py)=1 . - i

N1 N2 0 BNN

Instead of calculating the matrix elements via their definitions, using { f,-(i")}

and { fJ(:' )}, an alternate method is applied. A relationship between the
mean recirrence and the mean first passage times is derived that defines a
linear system whose solution is M.

Consider what happens at the first time step. Either state j can be
reached in one time step with probability p;; or it takes more than one
time step. If it takes more than one time step to reach j, then in one step
another state k is reached, k # j, with probability ps;. Then the time it
takes to reach state j is 1+ p;k, one time step plus the mean time it takes
to reach state j from state k. This relationship is given by

N N
pi=pi+ 3 pull+pp) =1+ D P {2.17)
k=L k] k=1 k]

The relationship (2.17) assumes matrix P is irreducible; every state j can
be reached from any other state 1,
The equations in (2.17) can be expressed in matrix form,

M = E + (M — diag(M))P, (2.18)

where F is an N x N matrix of ones. Since P is irreducible, the Markov
chain is irreducible, which means it is positive recurrent, 1 < p;; < o0,
i =1,2,...,N. It follows that 1 < p;; < oo for j # ¢. The system
(2.18) can be written as a linear system of equations, N? equations and N*
unknowns (the p;;’s). It can be shown that the linear system has a unique
solution given by the p;;’s. Stewart (1994) discusses an iterative method
based on equation (2.18) to estimate the mean recurrence times and mean

first passage times.
0 1
p=(® 1),

Then equation (2.18) can be expressed as

Bu pazy _ 1+ a2 1 )

M2l p22 1 1+ pm
Hence, pi12 = 1 = po1 and g1 = 2 and g2 = 2. This result is obvious once
we recognize that the chain is periodic of period 2. It takes two time steps

Example 2.23 Suppose
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to return to states 1 or 2 and only one time step to go from state 1 to state
2 or from state 2 to state 1. ]

The next section illustrates a method for determining the n-step tran-
gition matrix P® in the case of a finite Markov chain.

2.8 The n-Step Transition Matrix

In the case of a finite Markov chain, a general form for the n-step transition
matrix can be derived. A particularly simple form for P" can be generated
if P can be expressed as

P=UDU™},

where D is a diagonal matrix and U is a nonsingular matrix. In this case,
matrix P" satisfies
P*=UD" U,

An important theorem in linear algebra states that P can be expressed
as P = UDU! iff P is diagonalizable iff P has n linearly independent
eigenvectors (Ortega, 1987). Hence, it shall be assumed that P has n
linearly independent eigenvectors.

We show how the matrices I and D can be formed. Assume P is
an N x N matrix with ¥V eigenvalues, A, A2, -+, An. Let z; be a right
eigenvector (column vector) corresponding to A; and y; be a left eigenvector
(column vector):

Pz; = Ajz; and yl P =yl (2.19}

Define N x N matrices
H= (5[7]_,332,.“,.’3}\{) and K = (ylsy2s”'}yN)v

where the columns of H are the right eigenvectors and the columns of K are
the left eigenvectors. These matrices are nonsingular because the vectors
are linearly independent. Because of the identities in (2.19),

- PH=HD and KTP = DKT,
where D = diag{A1, A2,...,An). Thus,
P=HDH ' or P=(KT)'DKT,;
U=Hor U= (KT)"!. The n-step transition matrix satisfies
P*=HD"H™! and P* = (KT)"'D"KT, (2.20)

The identities in (2.20) demonstrate one method that can be used to cal-
culate P?. Another method is also demonstrated below (see Bailey, 1990).



72 Chapter 2. Discrete Time Markov Chains

Note that
y}“P:rl = y;-r/\,;a:,- = y?Ajwi.

If A; # Aj, then yjﬂmz = 0; the left and right eigenvectors are orthogo-
nal. Thus, in this method, it is assumed that the eigenvalues are distinet
{distinct eigenvalues imply the corresponding eigenvectors are linearly in-
dependent). Suppose y; and x; are chosen to be orthonormal:

0 i#j
T
yi“’"_{1 i=j.

Then KT H = I (identity matrix) or KT = H~! and
P = HDH'=HDK"

(A]:Bl"\2$2: L }’\N;BN)(yl:yQ'! e 3yN)T
= )\lxly;‘“ -+ )tg;vgyg + -+ /\NJ:Nyﬂ

It

Therefore,
N
P= Z Nzayl
+=1

Because the matrix x;yl xjy;'" is the zero matrix for ¢ £ j and the sum

SN 2T = HKT = I, it follows that P? can be expressed in terms of
the matrices x;y7:

P2 = (Z /\;‘xiyér) (Z /\k:r:ky{) = Z A?-’”i?y" ]
=1 k=1 i=1

In general, the n-step transition matrix satisfies

~3

N
Pr =% " Aregyl (2.21}
=1

In the case where the Markov chain is regular (or ergodic), which means
it is irreducible and aperiodic, then P™ has a limiting distribution. The lim-
iting distribution is the stationary distribution corresponding to the eigen-
value Ay = 1. In this case,

m ELS S |
T T ma T
lim PP=z1yy = | . . -
t— oo N ‘ PR M
?'rN TFN ‘e ?TN
where z; = m and y{ = (1,1,...,1).

Note that both methods apply to any finite matrix with distinet eigen-
values. The two methods of computing P7, given in {2.20) and (2.21), are
illustrated in the next example.
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Example 2.24 Consider a Markov chain with two states {1,2} and tran-
sition matrix
(17 2,)
p 1-p

where 0 < p < 1. Note that this is a doubly stochastic matrix and all
states are positive recurrent, Thus, lim,—. P*p(0) = 7 = (71, m )T, where
e = my (see Exercise 14).

The eigenvalues and corresponding eigenvectors of P are Ay = 1, Ay =
1-2p, 27 =(1,1), 2 = (1,-1), ¥{ = (1,1), and ¥ = (1, ~1). Note that
x1/2 = = is the stationary probability distribution and |A2] = |1 - 2pi < L.
Using the first identity in (2.20), an expression for P" is given by

A 10 1 1 \1
P*=HA"H ‘(1 —1)(0 (1—2;;}%)(1 —1)5'

Multiplication of the three matrices above yields

o= 1(1+(1—2p}“ 1—(1-—2p)“)

2\li-(1-2p)" 1+(1-2p)"

_lfr oy -1 -

o241 1 2 -1 1 J°
For example, the probability p(l'l’) is 1/2 + (1 — 2p)™*/2. Note that P"p(0)
approaches the stationary probability distribution given by = = (1/2,1/2)7.

For the second method (2.21), the eigenvectors are noimalized. Since
yT @1 = y3 xe = 2, we divide by 2. Thus,

T T
no n T1¥] nL2l2
P Al 2 + A3 5
_ bty a-wpr i1
T o2\1 1 2 -1 1}
The two methods give the same expression for P". |

There are other methods for computing P? (see Elaydi, 1999; Elaydi
and Harris, 1998; Kwapisz, 1998). We shall discuss one additional method
for computing P™, where it is not necessary that P be diagonalizable. This
method is based on the Cayley-Hamilton theorem from linear algebra, Ver-
ification of this method is given in the Appendix for Chapter 2.

Suppose the characteristic polynomial of an N x N matrix P is given
by

det(M = P)=2Y +ay_ A 14 4 gy =0.

This polynomial equation is also the characteristic polynomial of an Nth-
order scalar difference equation of the form

N +n)y+ay12(N+n—-1)+ - +apx(n) =0.
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To find a general formula for P®, it is necessary to find N linearly in-
dependent solutions to this Nth-order scalar difference equation, x,(n),

xa(n), ..., zpn(n), with initial conditions
{0 =1 x2(0) =10 rn( =0
x1{1)=0 x2(1) =1 xn(l) =0
N —1)=0 22N —1) =0 on(N—1) =1
Then
Pt =z +zo(n)P+ - +zxy)PV 7 n=0,1,2,.... (2.22)

Example 2.25 The nth power of matrix P = (1 ;p 1 f p)! given in

Example 2.24, is computed using equation {2.22). The characteristic poly-
nomial of P is
A= (2=-20A+1=-2p=(A-1}{) —~ 1 +2p} =0.
The second-order linear difference equation,
z(n+2) - (2-2p)z{(n+ 1)+ (1 - 2p)x(n) =0,

has two linearly independent solutions, 1 and (1 — 2p)*, for p # 0. The
general solution is a linear combination of these two solutions, x(n) =
c1 + e2{l — 2p)*. Next, we find the constants ¢, and ¢2 so that the two
solutions x; and xs satisfy the required initial conditions. For the first
solution, z1(0) = ¢; + ¢ = 1 and x1(1} = ¢1 + ¢a(1 — 2p) = 0. Solving for
¢; and ¢s we obtain the first solution:

_2p—1 +(1—2p)"
2 2p

x1(n)

For the second solution, 22(0) = ¢ +¢2 = 0 and z2(1) = ¢ +ec2(1 —2p) = 1.
Solving for ¢; and ¢ we obtain the second solution:

1 (-2

xa(n) = % »

Then applying the identity (2.22),

o _1 1+(1_2P)n 1_._(1—2;))“
P =g (n)] + z2(n)P = 2 (1 —(1-2p)" 1+(1-— 210)”) )

This latter formula agrees with the one given in Example 2.24. ]
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2.9 An Example: Genetics Inbreeding
Problem

Inheritance depends on the information contained in the chromosomes that
are passed down from generation to generation. Humans have two sets of
chromosomes {diploid), one obtained from each parent. Certain locations
along the chromosomes contain the instructions for some physical charac-
teristic. The collections of chemicals at, these locations are called genes and
their locations are called loci {see, e.g., Hoppensteadt, 1975). At each locus,
the gene may take one of several forms referred to as an allele.

Suppose there are only two types of alleles for a given gene, denoted a
and 4. A diploid individual could then have one of three different com-
binations of alleles: A4, Aa, or aa, known as the genotypes of the locus.
The combinations 44 and aa are called homozygous, whereas Aa is called
heterozygous.

Bailey (1990} and Feller {1968) discuss a problem on the genetics of
inbreeding and formulate a Markov chain model. We discuss this problem,
Assume two individuals are randomly mated. Then, in the next generation,
two of their offspring of opposite sex are randomly mated. The process of
brother and sister mating or inbreeding continues each year. This process
can be formulated as a finite, discrete time Markov chain whose states
congist of the six mating types,

1. AA x AA, 2. AA x da, 3. Aa x Aa, 4. Aa x aa, 5. AA X aa,
6. aa X aa.

Suppose the parents are of type 1, A4 x AA. Then the next generation
of offspring from these parents will be AA individuals, so that crossing of
brother and sister will give only type 1, p1: = 1. Now, suppose the parents
are of type 2, AA x Aa. Offspring of type AA x Aa will occur in the
following proportions, 1/2 AA and 1/2 Aa, so that crossing of brother and
sister will give 1/4 type 1 (A4 x AA), 1/2 type 2 (AA x Aa), and 1/4 type
3-{Aa x Aa). If the parents are of type 3, Aa x Aa, offspring are in the
proportions 1/4 AA, 1/2 Aa, and 1/4 aa, so that brother and sister mating
will give 1/16 type 1, 1/4 type 2, 1/4 type 3, 1/4 type 4, 1/8 type 5, and
1/16 type 6. Continuing in this manner, we can complete the transition
probability matrix P:

1 1/4 1/16 0 0 0

0 1/2 1/4 0 0 0
po|? W4 14 1410
“lo 0o 14 172 0 0
0 0 1/8 0 00

0 0 1/16 174 0 1
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I

— 2 | =D

[l = B =]

(1 | 1/4 1/16 0 0 | 0Y

o | 12 14 0 0 ] 0
{0 | 14 174 1/4 1 | 0O
“lo | /4 172 0 | 0

¢ ! /8 0 0 | 0O

\o | 0 1/16 1/4 0 | 1

1 A

o T

0 B

The Markov chain is reducible and has three communicating classes: {1},
{6}, and {2,3,4,5}. The first two classes are positive recurrent and the
third class is transient. States 1 and 6 are absorbing states, p;; = 1, i = 1,6.

Note that
1 A, 0
Pr=10 T™ 0 ]},
0 B, 1

where A, and B, are functions of T, 4, and B, A, = AY."=) 7%, and
B,=B 2::01 T%. Thus, to determine P?, we first determine T". Because
T corresponds to a transient class, lim, .. 7" =0,

A general formula can be found for T7?. The eigenvalues of T are A; =
1/2,1/4,3(1 4+ VB), 31 - v5), i = 1,2,3,4. For example, applying (2.20)
or (2.21},

4
T" = HD"H™' or T" =Y X'z .
i=1

In addition, it can be seen that
lim B, = B(I-T)"! and lim A, = A(J -T)"%
R— 00 oo

Once T™ is calculated, various questions can be addressed about the
dynamics of the model at the nth time step. For example, what is the
probability of absorptien and the proportion of heterozygotes in the popu-
lation in the nth generation? Absorption into states 1 or 6 can be calculated
as follows. Absorption at step n into state 1 implies that at the (n — 1)st
step state 2 or 3 is entered. Then state 1 is entered at the next step. Thus,
absorption into state 1 at the nth step is

(n-1) _ 1 (n- 1 (-1

(-1 1}
plsz? ) + p13p i = me + Ep3i

The values of pg?_” and pg?_” can be calculated from T, Absorption

into state 6 at the nth step is

(n (n-1) _ 1 (m-1)

_ 1 (n-1
Ps3Ps; 2 + Po4aPy; ‘1—6 3; —pi? )-

+ 4194:?
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The proportion of heterozygous individnals, Aa, at the nth time step sat-
isfies
1 1
o = 3P2(0) + poln) + 5pa(m)

where p;(n) is the proportion of the population in state i at time n. Because
states 2, 3, and 4 are transienf, lim,—.c h, = 0. A simpler method of
calculating A, is discussed in the Appendix for Chapter 2.

2.10 Unrestricted Random Walks in Two and
Three Dimensions

The random walk model can be extended to two and three dimensions. It
was shown for the unrestricted random walk in one dimension that the chain
is null recurrent if and only if p = 1/2 = ¢. For two and three dimensions,
it is assumed that the probability of moving in any one direction is the
same. Thus, for two dimensions, the probability is 1/4 of moving in any
of the four directions: up, down, right, or left. For three dimensions, the
probability is 1/6 of moving in any of the six directions: up, down, right,
left, forward, or backward. It is shown for two dimensions that the chain
is null recurrent but for three dimension it is transient. These examples
illustrate the distinctly different behavior between one and two dimensions
and dimensions greater than two. These examples were first studied by
Polya and are discussed in many textbooks (see, e.g., Bailey 199(0; Karlin
and Taylor, 1975; Norris, 1997; Schinazi, 1999). The verifications are quite
lengthy.

The Markov chain represented by this unrestricted random walk is ir-
reducible and periodic of period 2. Therefore, recurrence and transience
can be verified by checking recurrence or transience at the origin. Let the
origin be denoted as 0 and pgo) be the probability of returning to the origin

after n steps. Note that p(uzon) > 0, but p(gnﬂ) =0forn=0,1,2,.... It is
impaossible to begin at the origin and return to the origin in an odd number
of steps.

2.10.1 Two Dimensions

In two dimensions, for a path length of 2n beginning and ending at 0, if
k steps are taken to the right, then k steps must be also taken to the left,
and if n — k steps are taken in the upward direction, then n — k steps must
be taken downward, k+-k+n -k +n — &k = 2n. There are

(2n)!
Z Kk — k)l(n ~ k)]
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different paths of length 2n that begin and end at the origin. Each of these
paths is equally likely and has a probability of occurring equal to (1/4)%®
Thus,

B = > e (5)
- (Qnﬂz(k'(n k)')z(l)%
- Rl @)
> () - (%)

(2n

It can be shown that

} can be simplified to

n) _ @) (20} (1N _ 7)) 1
Poo " =emz\n/\d) T |awmr| &
Stirling’s formula can be applied to the right side of the above expression
(n! ~ n"/2rne™") so that

2
(2n) [(Zn)zn\/—tl?me_z"l 1
Poo ~

(see, e.g., Bailey, 1990). Hence, pgq

nn2rne—n 42n

B qn 1 1

- [TE‘H] 20 "
By compa.rmg Z: Poo . with the divergent harmonic series »  1/[rn], it fol-
lows that 3 poo ") also diverges. Thus, by Theorem 2.2, the origin is recur-
rent and all states must be recurrent. In addition, by applying the basic
limit theorem for periodic Markov chains, limy, ., p‘g?o“) = 2/poo. But this
limit is zero; thus, pgo = oo. The zero state is null recurrent and, hence,

the Markov chain for the symmetric, two-dimensional random walk is null
recurrent.

(2n)

2.10.2 Three Dimensions

In three dimensions, in a path of length 2n beginning and ending at the
origin, if k steps are taken to the right, then & must be taken to the left;
if j steps are taken upward, then j steps must be taken downward; and
if n — k — j steps are taken forward, then n — k — j steps must be taken
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backward, k+k+j+j+n—k—j+n—k—j=2n. The total number of
paths of length 2n is

(2n)!
2 (B2 [(n — & — %

Fthk<n

where the sum is over all of the j and &k, § + & < n. Because each path has
probability (1/6)2", it follows that

@y (2n)! 1\*"
w = ) EPGRIm R ﬁﬂ2(')

it+k=n

o > () ()

jtkEn

We use the fact that the trinomial distribution satisfies

:E: nl —l-—'l
el Jkn—5—Kk)3r 7

For convenience, denote the trinomial coefficient as

n! __(n
TR =R \ik)

The maximum value of the trinomial distribution ¢an be shown to oc-
cur when j = n/3 and £ ~ n/3 and is approximately equal to M, =~
n!(1/317/1(n/3)}}* when n is large. This can be seen as follows. Suppose
the maximum value occurs at j* and &’. Then

(j’ (k?— 1))

(j’ (k?+ 1)

[/
S
=
ke

T

~

|

— =

=
e N

[/

a:ﬁ
SN N

s0 that
n—k-1<2/<n—-K+1, n—57 1<% <n-45+1

or
_ -t ' _ ' . _
i1 1<2j+k<n+1 H l<2k+3<n 1.

= = +

n 1 n n - n T n




80 Chapter 2. Discrete Time Markov Chains

Letting n — oo, then 27 4+~ k' ~ n and 2k’ + 7' ~ n, from which it follows
that j/ ~ n/3 and &' ~ n/3.
We use the above facts to get an upper bound on pf)%“}‘ First,

>
Pgon)

1A

1 (2n)! 7! 1
22 (p)2 " J_J;(nj!kt(n—j—k)z?n
1 (2r)! =a! 1
220 (al)2 [(n/3)1° 3%

because the expression in the square brackets is a trinomial distribution
whose sum equals one. Next, Stirling’s formula is used to approximate the
right-hand side of the above inequality for large n:

12 a1 1 (2n)*"Vine " 1
2% (n)? [(n/3)1]3 37 227 o/ 2mne~ (n/3)7 (/270 /3)3e—n 3"
c
= m‘

where ¢ = (1/2)(3/7)*2. Thus, for large n, pio”’ < ¢/n®2. Because

3. ¢/n¥? Is a convergent p-series, it follows by comparison and Theo-
rem 2.2 that the origin is a transient state. Hence, because the Markov
chain is irreducible, all states are transient. The discrete time Markov
chain for the symmetric, three-dimensional random walk is transient.

The distinctly different behavior of discrete time Markov chains in three
dimensions as opposed to one or two dimensions is not unusual. A path
along a line or in a plane is much more restricted than a path in space.
This difference in behavior is demonstrated in other models as well (e.g.,
systems of autonomous differential equations), where the behavior in three
or higher dimensions is much more complicated and harder to predict than
in one or two dimensions.

2.11 Exercises for Chapter 2

1. Suppose P is an N x N stochastic matrix (column sums equal one},

a1 M2 - PIN

P21 P22 o P2N
P = . . .

PNl PNz ' DPNN

(a) Show that P? is a stochastic matrix. Then show that P™ is a
stochastic matrix for all positive integers n.



2.11.

7.

Exercises for Chapter 2 81

(b) Suppose P is a doubly stochastic matrix {row and column sums
equal one). Show that P" is a doubly stochastic matrix for all
positive integers n.

Show that the relation {2.3} follows from conditional probabilities. In
particular, show that

Prob{An B|C} = Prob{A[B N C}Prob{ B|C}.

. 1f 7 is a transient state of a Markov chain with states {1,2,...}, prove

that for all states i = 1,2,.. .,
4]
Sk <o
n=1

and Yim,— e pﬁ?) = (. [Hint: Use the identity Pj(s) = Fj(s)P;;(s)
when s equals 1.]

Suppose a finite Markov chain has N states. State 1 is absorbing and
the remaining states are transient. Use Exercises 3 and 1 to show
that

1 1 -+ 1
00 --- 0
lim P" = .
00 --- 0

Then for any initial probability distribution corresponding to Xp,
2(0) = (p1(0),p2(0), - .., px{(O})T, it follows that

lim P"p(0) = (1,0,...,00T.

i Bande =]

Verify the following two statements.

(a) Assume the period of state ¢ in a discrete time Markov chain
model satisfies d(¢) = 0. Then the set {i{} is a communication
class in the Markov chain.

{b) In an irreducible, discrete time Markov chain, the period d > 1.

. Refer to Example 2.9. Show that the mean recurrence times for this

example are finite, p; < oo fori=12.

A Markov chain has the following transition matrix:

0 1/2 0
p=(1 0o 1}l.
0 1/2 0
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(a) Draw a directed graph for the chain.

{b} Identify the communicating classes and classify them as periodic
or aperiodic, transient or recurrent.

(c) Calculate the probability of the first return to state ¢ at the

nth step, f-(:‘), for each state i = 1,2,3 and for each time step

T

n=12,....
{d) Use {¢) to calculate the mean recurrence times for each state,
Ha, 1=1,2,8.
8. Three different Markov chains are defined by the following transition
matrices:
10 1/2 10 1/3 ? é g g
(i fo o0 1721, (i)|o 0 1/3], (iii) 00 0 1
01 0 0 1 1/3
' 0 01 0
{a) Draw a directed graph for each chain. Is the Markov chain irre-

ducible?

(b) Identify the communicating classes and classify them as periodic
or aperiodic, transient or recurrent.

9. Three different Markov chains are defined by the following transition

matrices:
13 1/4 0 1/2 162 163 133 g é
L | 1/3 1/4 0 O .
(i) é 1541 0 , iy | o 1;3 ? 0 0],
o 1/3 1/3 1 0
1/3 1/4 0 172 12 0 1/3 0 0
1/3 1/3 1/3
Gi) [1/3 2/3 0
1/3 0 2/3

{a) Draw a directed graph for each chain. Is the Markov chain irre-
ducible?

(b) Identify the communicating classes and classify them as periodic
or aperiodic, transient or recurrent.

10. Suppose the states of three different Markov chains are {1,2,...} and
their corresponding transition matrices are

a; 0 0 - 0 0 0
aa 0 O
az a; 0 ... 0 ...
Pl = as ay a1 - |- }32 —la & .

a3 a2 @O
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and

1 1/2 1/3
0 1/2 1/3
Pr=10 o0 1/3

The elements a; of P} and P, are positive and 2‘21 a; = 1.

(a) Draw a directed graph for each chain. Is the Markov chain irre-
ducible?

(b} Identify the communicating classes, find their period, then clas-
sify them as transient, null recurrent, or positive recurrent.

11. Assume ¢ — j for states ¢ and j in a Markov chain. Prove the fol-
lowing: State 7 iz positive recurrent if and only if state j is posi-
tive recurrent. Show that the same result holds if positive recurrent
is replaced by null recurrent. {Hint: Apply the basic limit theo-
rems for periodic and aperiodic Markov chains and use the relation

(m+n) (m), (n}

Py > p;; Py > 0 for some m and n.)

12. The transition matrix for a three-state Markov chain is

1 ¢ 1]
P=10 r g ,
0O p p+r

peg>r>0,andp+g+r=1

(a) Draw the directed graph of the chain.
(b) Is the set {2,3} closed? Why or why not?
(¢} Find an expression for pg'f) . Then verify that state 1 is positive
recurrent.
(d) Show that the process has a unique stationary probability dis-
tribution, 7 = (w1, w, m3)T.
13. The transition matrix for a four-state Markov chain is
¢ 14 0 172
1/2 0 3/4 0

0 3/4 0 1/2
1/2 0 1/4 0

P=

{a} Show that the chain is irreducible, positive recurrent, and peri-
odic. What is the period?

(b} Find the unique stationary probability distribution.



84

14.

15.

16.

17.

18.

Chapter 2. Discrete Time Markov Chains

Suppose the transition matrix P of a finite Markov chain is doubly
stochastic; that is, row and column sums equal one, p;; = 0,

N N
Ep‘fj = ].., a.nd szj =1.
i=1 7=1

Prove the following: If an irreducible, aperiodic finite Markov chain
(ergodic chain) has a doubly stochastic transition matrix, then all
stationary probabilities are equal, m = w2 = --- = my.

The transition matrix for a three-state Markov chain is

00 1/2
P=|0 0 1/2].
11 0

(a) Draw a directed graph of the chain and show that P is irre-
ducible.

(b} Show that P is periodic of period 2 and find P?*, n=1,2,....

{(c¢) Use the identity (2.18) to find the mean recurrence times and
mean first passage times. Show that the mean recurrence times
agree with the formula given in the basic limit theorem for pe-
riodic Markov chains.

Suppose that the transition matrix of a two-state Markov chain is

P:(I:‘ ﬁb), (2.23)

where 0 < ¢ < 1 and 0 < b < 1. Use the identity {2.18) to find a
general formula for the mean recurrence times and mean first passage
times.

Suppose that the transition matrix of a two-state Markov chain is
given by equation (2.23) in Exercise 16. Use the identity P* =
UD?J -1 to show that P can be expressed as follows:

1 (b b\ (l-a-b"{a b
P" = —- :
a+b(a a)+ a+b (—a b)

1 1/4 1/2

et P=[0 1/2 0 |. A general formula for P* will be derived
0 1/4 1/2

using the method of Example 2.25.
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{a) Show that the characteristic polynomial of P is A3 — 2A2 4+
5/ — 1/4 = (X — 1){A = 1/2)2 = 0. Therefore, three lin-
early independent solutions of the third order linear difference
equation, z{n + 3) - 2z(n + 2} + (5/)z{n + 1) —~ (1/9)z(n) =0,
are y1{n) = 1, y2(n) = 1/2", and yz(n} = n/2™,

(b} Use the three linearly independent solutions, y;(n), ¢ = 1,2,3,
to find three solutions x;(n), ¢ = 1,2, 3 that satisfy the initial
conditions.

(¢} Use the identity (2.22) to find a general expression for P™.

19. Suppose that twoe unbiased coins are tossed repeatedly and after each

20.

21.

toss the accumulated number of heads and tails that have appeared
on each coin is recorded. Let the random variable X, denote the dif-
ference in the accumulated number of heads on coin 1 and coin 2 after
the nth toss [e.g, (Total # Heads Coin 1) — (Total # Heads Coin 2}].
Thus, the state space is {0,+1,4+2,...}. Show that the zero state,
where the total number of heads is equal on each coin, is null recur-
rent. Hint: Show that

I3

2
(m) _ L n —~ 1
Poo = 53n Z (k) JnE

k=0

{Bailey, 1990).
Consider the genetics inbreeding problem. Let
p(0) = (0,1/4,1/4,1/4,1/4,0)7.

{a}) Find a general formula for the proportion of heterozygotes h,, in
terms of the eigenvalues:

ha = alT + bA3 + Ay + dA].
{b} Find hgp and hyp (see the Appendix).

A Markov chain model for the growth and replacement of trees as-
sumes that there are three stages of growth based on the size of the
tree: young tree, mature tree, and old tree. When an old tree dies, it
is replaced by a young tree with probability 1 — p. Order the states
numerically, 1, 2, and 3. State 1 is a young tree, state 2 is a mature
tree, and state 3 is an old tree. A Markov chain model for the tran-
sitions between each of the states over a period of eight years has the
following transition matrix:

/4 0 1-p
P=13/4 1/72 0
0 1/2 p
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Transitions occur over an eight-year period. For example, after a
period of eight years the probability that a young tree becomes a
mature tree is 3/4 and the probability it remains a young tree is 1/4.

{(a) Suppose 0 < p < 1. Show that the Markov chain is irreducible
and aperiodic. Find the unique limiting stationary distribution.

{b} Suppose p = 7/10. Find the mean recurrence time for i = 1, 2,3
(i.e., the mean number of eight-year periods it will take a tree
in stage ¢ to be replaced by another tree of stage ¢).

A Markov chain model] for the growth and replacement of trees as-
sumes that there are four stages of growth based on the size of the
tree: seedling, young tree, mature tree, and old tree. When an old
tree dies, it is replaced by a seedling. Order the states numerically,
1,2,3, and 4. State 1 is a seedling, state 2 is a young tree, and so on.
A Markov chain model for the transitions between each state over a
period of five years has the following transition matrix:

P11 0 ¢ 1 —paa
P = 1—pnn  p2 0 0

0 1—po2  p33 0

0 0 1—p33  pas

Transition p;; is the probability that a tree remains in the same state
for five years and 1 — p,; is the probability a tree is at the next stage
after five years of growth.

(a) Suppose 0 < py < 1 for i = 1,2,3,4. Show that the Markov
chain is irreducible and aperiodic. Find the unique limiting sta-
tionary distribution.

(b) Suppose pyqg = 1 and 0 < p;; < 1 for ¢ = 1,2,3. What do
these assumptions imply about the growth and replacement of
trees? Show that lim, pg?) = pi. Identify the communicating
classes and determine if they are transient or recurrent.
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2.13 Appendix for Chapter 2
2.13.1 Power of a Matrix

Suppose P is an N x N matrix with characteristic polynomial
V) =det(M -~ Py =M +ay 1 XV 1+ 4 ap=0.
Note that matrix Z{n} = P” is the unique solution to the matrix difference
equation,
ZIN+n)+ay1Z(N+n—-1)+ - +aZ(n) =0, (2.24)

with initial conditions Z(0) = I, Z(1) = P,...,and Z(N—1) = P¥~1. This
follows from the Cayley-Hamilton theorem from linear algebra that states
a matrix P satisfies its characteristic polynomial, ¢( P) = 0. The following
theorem is due 10 Kwapisz (1998). It is based on a similar theorem for
matrix exponentials by Leonard (1996).

Theorem 2.8. Suppose x1(n), x2(n),...,zx(n) are solutions of the Nth-
order scalar difference egquation,

2N +n)+ay18(N+n -1+ 4+ goz{n) =0,

with initial conditions

71(0) =1 x2(0) =0 xn(0) =0
(1) =0 29(1) =1 xn(1) =0
2N =1) =0 22N =1) =0 en(N~1)=1
Then

P" =z (n)l + za(n)P + - +2n(n) PV, n=0,1,2,....

Proof. Let Z(n) = z1(n)I + z2(n)P + - +zn(R)PN¥ Y for n =10,1,2,....
Then substitution of Z{n} irto the difference equation (2.24} shows that
Z(n) satisfies the equation. In addition, Z(0) = I, Z(1) = P,..., and
Z(N — 1) = PN¥-1. Because the solution of (2.24) is unique it follows that
Zn)=Prforn=012,... O
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2.13.2 Genetics Inbreeding Problem

In the genetics inbreeding problem, h, is the proportion of heterozygotes
at time n,

1 1
hn = Epz(n] + p3(n) + §P4(n)a

where p;(n) is the proportion of the population in state ¢ at time n (Bai-
ley, 1990). The three states are elements of the matrix T™. Let p(0) =

(p2(0), 93(0), p3(0),5(0)™. Then T"p(0) = pln) = Ly Afwiylp(0). It
follows that the p;(n) satisfy

pg(n) = CﬂA? + CQ)\E + c.:3/\§ + Ci4/\2, t=2,3,4,5.

Hence,
he = adT + AT + cA5 +dA7,

where a, b, c, d are combinations of the ¢;;. The coefficients a, b, ¢, d can be
found by solving the following four linear equations {linear in a, b, ¢, d):

hi = aXi + bA5 + Al +dN, $=0,1,2,3.

Suppose, initially, the entire population is of type 2, AA x Aqa, pt® =
(0,1,0,0,0,0)T. Then hy = 1/2 and Pp® = (1/4,1/2,1/4,0,0,0)T so that
hy = (1/2)(1/2) + (1/2)(1/2) + (1/2)(0) = 1/2. By computing P?*p'®) and
P3p(% values for ks and hs can be calculated, hy = 3/8 and hz = 5/16.
The following Maple program was used to calculate hog and hzg and a
general formula was obtained for h,,

hop = 0.008445, ks = 0.001014,

and

B = (1/4 4+ 3V5/20)AF + (1/4 — 3v/5/20) A%,

> with(linalg):

> P;=matrix{(6,6,[1,1/4,1/16,0,0,0,0,1/2,1/4,0,0,0,0,1/4,1/4,
1/4,1,0,0,0,1/4,1/2,0,0,0,0,1/8,0,0,0, 0,0,1/16,1/4,0,1]):
> T:=matrix(4,4,[1/2,1/4,0,0,1/4,1/4,1,0,0,1/4,1/2,0,0,1/8,
0,01): '

p0:=vector([0,1,0,0,0,03):

h0:=1/2%p0[2]+p0[3] +1/2+p0[4]:

p:=n->evalm(P " nk*p0):

h:=n->1/2*%p(n) [2]+p{n) [3]+1/2*p(n) [4]:

evalm{p0); hQ;

v

[0! 1: 01 0! 0! 0]

1/2



90

Chapter 2. Discrete Time Markov Chains

evalm(p(1}); h{(1);

11/4,1/2,1/4,0,0,0]

1/2
evalm(p(2}); h(2);

[25/64,5/16,3/16,1/16,1/32,1/4]

3/8
evalm(p(3)); h(3);

(123/256,13/64,11/64,5/64,3/128, 11/256]
5/16
11:=[eigenvals(P)];
e [bh 4ol
f:=n->a#11{1] " n+b*1112] " n+c*11[3] ~n+d*11[4] " n:
solve({f(0)=q0,f{(1)=q(1),f(2)=q(2),f(3)=q(3)},{a,b,c,d});

1 3 1 3
{G—O,b——o,c—z+-2'ﬁ‘\/g’d= 1 -——2—0\/5}
£(20):=evalf(subs({a = 0, b = 0, ¢ = 1/4+3/20%sqrt(5),
= 1/4-3/20%sqrt(5)},£(20)));

7(20) := 0.008445262939
£(30):=evalf(subs({a = 0, b = 0, ¢ = 1/4+3/20*sqrt(5),
= 1/4-3/20*sqrt(5)},£(30)));

£(30) := 0.001014354178
evalf (h(20));

0.008445262909
evalf{(h(30));

0.001014354173



Chapter 3

Biological Applications of
Discrete Time Markov
Chains

3.1 Imtroduction

Several classical and biological applications of discrete time Markov chain
models are discussed in this chapter. The first application of Markov chains
is a random walk on the finite set {0,1,2..., N}, with absorbing bound-
aries at * = 0 and ¥ = N. This first application is often referred to as
the gambler’s ruin problem, a classical discrete time Markov chain model,
discussed briefly in Example 2.2. An expression is derived for the proba-
bility of absorption using techniques from difference equations. Then an
expression for the expected duration until absorption is derived. Finally,
the entire probability distribution for absorption at the nth time step is
derived using generating functions and difference equations. Some of these
results are extended to a random walk on a semi-infinite domain, where the
states include {0,1,2...}.

The second application of discrete time Markov chain models is to birth
and death processes. A general discrete time birth and death process is
described. The general birth and death process is applied to a logistic birth
and death process, where the birth and death probabilities are nonlinear
functions of the population size. In this model, it is assumed there is a max-
imal population size, so that the processes are finite Markov chains. A tran-
sition matrix can be defined. The theory developed from random walk mod-
els will be useful to the analysis of the birth and death processes. The prob-
ability of absorption or population extinction and the expected time until
population extinction are discussed. Further, the distribution conditioned
on nonextinction, known as the quasistationary distribution, is studied.

91
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The final application of discrete titne Markov chain models is to epi-
demic models. A stochastic Susceptible-Infected-Susceptible (5I8) epidemic
model is studied. In an SIS epidemic model, susceptible individuals become
infected but do not develop immunity; they immediately become suscepti-
ble again. In this model, there are N states, where the states correspond
to the number of infected individuals. It is shown that the process is equiv-
alent to a logistic growth model. In addition to the BIS epidemic model,
some other epidemic models, known as chain binomial models, are studied.
The chain binomial epidemic models were first developed in the 1920s and
1930s by Reed, Frost, and Greenwood and are appropriately named Reed-
Frost and Greenwood maodels. For these models, the duration and size of
the epidemic are computed.

3.2 Restricted Random Walk Models

A restricted random walk is a random walk model with at least one bound-
ary, so that etther the state space of the process is finite, {0,1,2...,N},
with two boundaries at 0 and N, or semi-infinite, {0,1,2,...}, with one
boundary at ¢. In a random walk model, the states are positions and will
be denoted by the variable ¢, z = 0,1,2,.... The variable n will denote
time, where n € {0,1,2...}. In the simplest random walk model, it is as-
sumed that p is the probability of moving to the right, x to x + 1, and ¢ is
the probability of moving to the left, x to x — 1.

Assumptions about movement at the boundary, at z = Qor x = N, differ
from movement at other positions. We shall discuss three types of boundary
behavior: absorbing, reflecting, and elastic. An absorbing boundaryatx =0
assumes the one-step transition probability

poo = L.
A reflecting boundary at x = 0 assumes the traz-lsition probabilities
poo=1-p and po=p, O0<p<l
An elastic boundary at © = 0 assumnes the transition probabilities

P21 =9 P = 54, }'}01:{1‘3)‘:?: p+q=11 a‘nd p(]O:]-!

for 0 < p,s < 1. An elastic boundary is intermediate in relation to absorb-
ing and reflecting boundaries. If s =0, then z = 0 is an absorbing bound-
ary, and if s = 1, then z = 1 is a reflecting boundary. When 0 < s < I, an
object moving toward the boundary from position x = 1 will either reach
x = 0 with probability (1 — s}g or return to & = 1 with probability sgq
(elastic property).

In the next several sections, the restricted random walk with absorbing
boundaries at * = 0 and » = N is studied. This process is also known
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as the gambler’s ruin problem, discussed briefly in Example 2.2, It will be
shown in Section 3.5 that the theory from the gambler’s ruin problem can
be applied to a simple birth and death process.

3.3 Gambler’s Ruin Problem

The position x in the gambler’s rnin problem represents the gambler’s cap-
ital, and each time step represents one game where the gambler may either
increase his/her capital to  + 1 or decrease it to © — 1. After each game
there is either a gain or loss, never a tie. If the gambler’s capital reaches
zero, he/she is ruined, the opponent has won, and the games stop, whereas
if the capital reaches N, he/she has won all of the capital (the opponent is
ruined}, and the games stop.

First, we define the transition matrix for the gambler's ruin problem.
Let p be the probability of moving to the right (winning a game), ¢ be the
probability of moving to the left (losing a game), and p + ¢ = 1; that is,

p, fji=i+1,
Py = PI‘Ob{X,,.;.] =j|Xn, = 3} = ¢ lfJ =i-1,
| 0, if jAi+1,i-1,

for i =1,2,..., N — 1. The state space is {0,1,2,..., N}. The boundaries
0 and N are ahsorbing,

poo =1 and pyy =1.

The transition matrix P is an {N + 1} x (N + 1) mairix of the following
form:

/{1 g 0 00\
00 g 0 0
0 p 0O 0 0
00 p 0 0
P= .
6 0 0 g 0
000 - 00
\000“-;,1}

There are three communication classes, {0}, {1,2,...,N — 1}, and {N}.
States 0 and N are absorbing {recurrent) and the other states are transient.

To understand the dynamics of the gambler’s ruin problem, we inves-
tigate the probability that the gambler either loses or wins all of his/her
money (probability of absorption) and the mean number of games until the
gambler either wine all of the money or loses all of the money (expected
duration of the games). Absorption oceurs at either = 0 (ruin) or at
r = N {jackpot). Beginning with a capital of k, the expected duration of
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the games (expected duration until absorption) is the sum of the following
mean first passage times, tor + fing.
Let —.

v, = probability of absorption at z = 0 on the nth game beginning
with a capital of &£, Prob{X, = 0|X, = k}. The gambler has lost
everything on the nth game.

byrn, = probability of absorption at * = N on the nth game beginning
with a capital of &, Prob{X,, = N|X, = k}. The gambler has won
everything on the nth game,

Assume that the beginning capital is restricted to k= 1,...,N — 1. Note
that ag, = 1, ayp = 0, bpp, = 0, and by, = 1 because the games stop when
the capital is either zero or N. As a mnemonic device, associate @ with
the left endpoint {(z = 0} and b with the right endpoint (z = N). Note
that ag, + bir is the probability of absorption at the nth game. Because
absorption occurs at either z = 0 or x = N, {ag, + ben} 22 represents the
probability distribution associated with absorption,

o0
> (akn+ben) =1, 1<k<N -1

n={}

Let Ai and By be the generating functions of the sequences {axn}o%,
and {bxn } oo

Ap(t) =D aunt™ and Bi(t) = ) bgat”, [t <1,

n=0 n=f(}

The functions Ag(t) and By (t) by themselves are not probability generating
functions. However, their sum Ag(t) + Bx(t) = Yoo 1(Gkn + brn )™ is 2
probability generating function. Define

ar = Ax(1) = Zakm

r=0

[ u]
be = Be(l) = D bea,
n=0
and
00
7= A1)+ B(1) =Y nlae + bin).
n=0

Then a;. is the probability of absorption at * = 0 or the probability of
ruin beginning with a capital of k, and by is the probability of absorption
at * = N or probability of winning all of the capital beginning with a
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capital of k. Finally, 7, is the expected or mean duration of the games
until absorption occurs either at x = Qor at & = N, 7. = pog, + pwi- I
particular, if T denotes the random variable for the time until absorption,
then 7 = E(T};}. Note that

ap + by =1, (3.1)

so that by = 1 — ar. Expressions for ag, 7, and ag, will be derived in the
next three sections.

3.3.1 Probability of Absorption

An expression for ay is derived, the probability of absorption at x = @
beginning with a capital of k. A difference equation relating a;_,, ax, and
ax41 is formulated. When boundary conditions are assigned at k = 0 and
k = N, the diiference equation can be solved for ay.

An expression for the probability of ruin az on the interval k € [0, N|
can be derived as follows. With a capital of k, the gambler may either
win or lose the next game with probabilities p or g, respectively. If the
gambler wins, the capital is £+ 1 and the probability of ruin is az;. If the
gambler loses, the capital is & — 1 and the probability of ruin is az_;. This
relationship is given by the following difference equation:

ap = Plgy + gay_, (3.2)

for 1 <k < N - 1. Equation {3.2) is a second-order difference equation in
aj.. Expressed in standard form, the difference equation is

Paryy —ag +gap_; =0, (3.3)

This method of deriving equation (3.2) is referred to as a first-step analysis
(Taylor and Karlin, 1998). In the derivation, we only consider what happens
in the next step, then apply the Markov property.

To solve the difference equation (3.3), we need the boundary conditions:

ap =1 and awy = 0.

If the capital is zero, then the probability of ruin equals one, and if the
the capital is IV, then the probability of rmin equals zero. The difference
equation is linear and homogeneons, and the coefficients are constants. This
type of difference equation can be solved easily {Elaydi, 1999). We review
the method of sclution below.

To solve the difference equation, let ax = A* # 0, and substitute this
value for a; into the difference equation. The result is the characteristic
equalion,

p/\k-i-l _Ak+qu—1 =0.
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Since A #£ 0, the characteristic equation simplifies to
A2~ A+q¢=0
The roots of the characteristic equation are the eigenvalues

1++/1-4pg
—

Az =
P

The expression for the eigenvalues can be simplified by noticing that {p +
¢)? = 1. Expanding and rearranging terms,

1
1—4pq

P’ +2pq+q°
P’ = 2pg+¢* = (p~q)*.

It

The radical in the expression for A; - simplifies to /T — dpg = |p — q|.

The solution to the difference equation (3.3) must be divided into two
cases, depending on whether p # g or p = 1/2 = ¢. In the first case, p # ¢,
Az = (1x{p—4))/(2p), so that Ay = 1 and Ay = ¢/p. The general solution
is

ar = c1 + e2q/p)F.
The constants ¢; and ¢; are found by applying the boundary econditions:
ag =1 =1¢ +cz and ay = 0 = ¢; + ex(qg/p)™. Solving for ¢; and ¢
and substituting these values into the general scolution yields the following
particular solution to the difference equation:

g/ - (g/p)*

Q= Wa p#q (3.4)
Since g + be = 1, the solution for by, is
(¢/p)f — 1
by = ———— .
k= =1 pP#4q

For the second case, p = 1/2 = g, note that 1 — 4pg = 0, so that the
characteristic equation has a root of multiplicity two, Ay 2 = 1. The general
solution to the difference equation (3.3) is ar = ¢; + czk. Again applying
the boundary conditions gives ¢y = 1 =¢; and ay =0 = ¢1 + e N so that
the particular solution is

N-k

ap = , p=1/2=4¢q. (3.5)

The solution to b is



3.3. Gambler’s Ruin Problem 97

-

Prob. a50 bso 50 soll) | Boll)
g =050 0.5 0.5 2500 1250 1250
g =10.51 0.880825 | 0.119175 | 1904 1677 227
¢ =055 [ 0.999956 | 0.000044 | 500 | 499.93 0.07
g =0.60 1.00000 0.00000 250 250 0

Table 3.1. Gambler’s ruin problem with a heginning capital of & = 50 and
a total capital of N = 100.

Example 3.1 Suppose that the total capital is N = 100 and a gambler
has & = 50 dollars. Table 3.1 gives values for the probability of losing all
of the money, asq, and winning all of the money, bsg, for different values of
pand ¢. (Recall that p = 1 — ¢, where p is the probability of winning $1 in
each game.) Values for the expected duration, 150 = A’'(50) + B'(50), are
also given in Table 3.1. Their derivation is discussed in Section 3.3.2. W

Note that as the probability of losing a single game increases (¢ in-
creases), the probability of ruin aso also increases but asp increases at a
much faster rate than ¢. When ¢ = 0.6, the probability of ruin starting
with a capital of k& = 50 is very close to one and the expected number of
games until ruin equals 250.

We have applied the theory of difference equations to find general solu-
tions for a; and ;. Numerical methods can alse be used to find solutions
for ax and by. To apply a numerical method, the system of equations is
first expressed as a matrix equation. Equations (3.3) can be expressed as
the following single matrix equation, Da = ¢, where a = (ao,a1,...,ax5)7
¢={L,0,...,0)7 and

¥

(1 | 0 0 0 0 0 | 0y

g | -1 p O 0 0o | O

0 | g =1 p 0 o0 0

0" 1 .

0 | o 0 0 g -1 | p

\0 | 6 0 0 -~ 0 0 | 1J
1 0 0

=|(D. Dn., Dy} (3.6)

0 0 1

Matrix D is an (N +1) x (N + 1) matrix that can be partitioned into block
form according to the three communication classes, {0}, {1,2,...,N - 1},
and {N}.
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Note that the first row and last row of Da = ¢ give the boundary
conditions ap = 1 and ey = G. The second row gives gag — @, + paz = 0,
which is equation (3.3) when k& =1 and, in general, the kth row of Da =@
gives the general equation (3.3). Matrix D is nonsingular and a sparse
matrix. Therefore, many efficient numerical methods can be applied to
solve for a.

A matrix with a form such as D will be seen in many other problems.
Therefore, we shall digress briefly to show the properties of D that make it
nonsingular,

Definition 3.1. An n % n matrix A = {a;,) is said to be diagonally domi-

nant if
i)

laisl = > lal, for i=1,2,...,7. (3.7)
i=Li#j
Matrix A is said to be strictly diagonally dominant if the inequality {3.7)
is strict for all 4.

Inequality (3.7) states that the absolute value of the diagonal element
dominates the sum of the absolute values of all of the off diagonal elements
in that row.

Recall the definition of an irreducible matrix from the discussion in
Chapter 2, Section 2.3. A square matrix A is irreducible iff its directed
graph is strongly connected (Ortega, 1987). The properties of irreducibility
and diagonal dominance lead to the following definition.

Definition 3.2, If matrix A is irreducible, diagonally dominant, and the
inequality in (3.7) is strict for at least one 4, then A is said to be srreducibly
diagonally dominant.

A result from linear algebra shows that irreducibly diagonally dominant
matrices are nonsingular. For a proof of this result, please consult Ortega
(1987).

Theorem 3.1. If an n x n matriz A is strictly diagonally dominant or
irreducibly diagonally dominant, then matriz A is nonsingular.

In addition, if matrix A is nonsingular, then matrix A7 is nonsingular.
The (N — 1) x (N — 1) submatrix Dy_; of D is irreducibly diagonally
dominant. By Theorem 3.1, det(Dny_1) # 0. But det{D) = det(Dy_1);
therefore, I) is nongingular. Theorem 3.1 will be applied to many other ma-
trices that appear in problems associated with the probability of absorption
or mean time until absorption.

3.3.2 Expected Time until Absorption

The duration of the games, beginning with a capital of k, lasts until all of
the capital N is either gained or lost. The expected duration of the games is
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]

denoted as 7. = E{T}). As was done for the probability of ruin, a difference
equation for 7, can also be derived. We use a first-step analysis. Beginning
with a capital of k, the gambler may either win or lose the next game with
probabilities p or g, respectively. If the gambler wins, then the capital is
k + 1 and the duration of the games is 1 + 74, (counting the game just
played), and if the gambler loses, then the capital is £ — 1 and the duration
of the game is 1 + 7¢_,. The difference equation for 7, has the following
form:
7k =Pl + 7eq1) + g(1 + 7e1),

for k=1,2,...,N~1. Using the fact that p+¢ = 1, the difference equation
can be expressed as follows:

PThyl — Ti + @1 = —1, (3.8)

a second-order linear, nonhomogeneous difference equation with constant
coefficients. The boundary conditions satisfy

T=0=17Nn

because if the capital is either zero or ¥, there can be no more games (ab-
sorption has occurred}. The difference equation (3.8) can be easily solved in
a manner similar to the difference equation for a,. First, the general solu-
tion to the homogeneous difference equation is found, and then a particular
solution to the nonhomogeneous is added to the homogeneous solution.

To solve for the homogeneous solution, let 7, = A¥ # 0 and substitute
this value into the difference equation. The following characteristic equation
is obtained:

PN =A4+¢=0.
The eigenvalues are Ay = 1 and Az = ¢/p, if p # ¢ and Ay = 1 = Ay, if
p=1/2=4q.

In the first case, p # ¢, the general solution to the homogeneous dif-
ference equation is 7, = ¢; + e2(g/p)*. To find a particular solution to
the nonhomogeneous equation, let 7, = ¢k for an arbitrary constant ¢ and
solve for ¢. Substituting 7, = ck into the difference equation gives the
following solution for ¢: ¢ = 1/{g — p}. Thus, the general solution to the
nonhomogeneous difference equation (3.8) is

k
T = c1 + e2{g/p)" + pmt
Next, applying the boundary conditions, the constants ¢; and ¢z can be
found, 70 = 0 = ¢; 4+ ¢3 and 7v = 0 = ¢1 + ca(g/p) + N/{g — p); then
c1 = —N/{g-p) [1/(1 - (¢/p)")] and ¢; = —¢; so that

k N [1—(4/13)“]

g-p a-pll-(g/p)¥

Tk
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Expected duration

2001

% 20 a0 60 80 100
Initial capitaf

Figure 3.1. Expected duration of the games, 7, for & =

0,1,2,...,100, when ¢ = 0.55.

A similar method is applied in the second case p = 1/2 = ¢. The general
solution to the homogeneous difference equation (3.8) is 7x = ¢1 + c2k and
a particular solution has the form ck?. Substituting c¢k? into the difference
yields ¢ = —1, so that the general solution to the nonhomogeneous equation
is T, = ¢ + cok — k2. Solving for ¢; and c; gives ¢; = 0 and cg = N. The
solution to {3.8) inthecase p=1/2=¢qis

n=k(N -k}, p=1/2=4. (3.10)

Example 3.2 Suppose N = 100 and p = 1/2 = q. Then, applying the
formula (3.10), 750 = 2500 {see Table 3.1). But when p = 0.45 and g = 0.55,
750 72 500. If the capital is increased to N = 1000, then for p = 1/2 = ¢,
500 = 250,000. For this same capital, but p = 0.45 and ¢ = 0.55, 7500 =
5000. The duration of the game increases significantly when the capital
increases, [ |

Figure 3.1 graphs the expected duration, 7, £k = 0,1,2,..., N, when
N = 100 and ¢ = 0.55. It can be seen from Figure 3.1 that although
Tsp ~ 500, the maximum duration is approximately 800 games at an initial
capital of & = 85 dollars.

As was demonstrated for the probabilities of absorption, a numerical
method can also be applied to find the expected duration of the games.
The equations (3.8) can be expressed as a single matrix equation,

Dr=d,

where D is defined by (3.6) andd = (0, -1, -1,...,-1,0)7. The solution 7,
the expected duration of the games is given by 7 = D~!d (see the MATLAB
program in the Appendix for Chapter 3).
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3.3.3 Probability Distribution for Absorption

In the previcus section, a formula for the expected duration until absorption
was derived. To calculaie the entire probability distribution until absorp-
tion at either x = 0 or at x = N, expressions for ag, and by, are required.
The probability distribution until absorption is

{@kn + brn faro

with generating function

Ar(t) + Bi(t) = > (akn + bt [t < L.

n=0

Closed form expressions can be derived for Ai(f) and By(t), but they do
not give explicit expressions for e, and by,. However, assuming Ag(t)
and By (t) have Maclaurin series expansions in t, these coefficients can be
obtained by repeated differentiation; for example,

1 d° Aglt)

= an
G nl di? ( )

t=0

A difference equation for A is derived using a first-step analysis similar
to the analysis used to derive expressions for ay and 7; in the previous
sections. First, a difference equation is derived for ay,. If absorption at
# = 0 occurs in n + 1 steps from an initial capital of k, then in the next
game if the gambler wins, the capital is k+1 and absorption will occur with
1 more games. Otherwise, if the gambler loses the next game, the capital
is £ — 1 and absorption will occur with n more games; that is,

Akntl = Plkgln + G0k_1m, K21, n20. N

The above equation is a partial difference equation, the difference equation
version of a partial differential equation, since ay, is a function of two
variables, k and n. The boundary and initial conditions for this system of
difference equations are

a0n=0=a'an n:]-szs"'s 0'00:1? and akﬂ:o’

for k= 1,2,...,N — 1. These conditions follow because if the beginning
capital is zero, absorption has already occurred and no games are required,
ago = 1, and absorption cannot occur in n > 0 steps, ag, = 0. In addition,
if the gambler has all of the capital, his/her opponent has already lost and
no games are required ayg = 0 and absorption cannot occur in n > 0 steps,
apnn- Finally, it takes at least k games to be ruined beginning with a capital
of k, @k, = 0 for n < k. These conditions give rise to simple expressions
for the generating functions, Aq(t} and An(f):

Ap(t) :Goo+a01t+aogt2+”. =1
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AN{f) =awo +awyt+ E}‘.N'th + =00
To obtain a difference equation for Ay, the equation in ag,, is multiplied
by t”*+! and summed from n =0 to n = oc. For k > 1, it follows that

o0

[= =] o0

+1_ +1 1

Akt = Zpak+1,ntn + Zqﬂk—l,ntn"' .
0 n=0 n=>0

n=

Because apq = ( for k& > 1, the above equation can be simplified:

s =3 (=] (=)
Z akntn = pt Z 'f:\'nfc-l-l,il'ttﬂ +qt Z ﬂ'k—l.ntn
n=0 n=i n=0

Ap(t) = ptApg{t) + g Ae-_1(t).

For ¢t fixed, 0 < ¢ < 1, the difference equation can be solved subject to the
following boundary conditions:

Ap{t) =1 and An(t) =0.
Let Ag{t) = XF # 0 so that the characteristic equation is
ptAZ = A+ gt =0.

The eigenvalues satisfy
14+ +/1— dpgt?

2pt !
where A; > Ay > 0. The two roots are real and distinct. The general
solution is Ag{t) = cl/\’f' + cz/\g. The constants ¢; and cs are found by

applying the boundary conditions, ¢; + ¢ = 1 and )\f" + c;;)«év =0, s0
that

Az =

ANAE AN OK
0= F

A closed form expression for By (f) can be obtained in a similar manner.
For example, B (t) satisfies the same difference equation as Ag(t),

B (t) = ptBria(t) + gt Br1{t)

fork=1,2,...,N — 1, but the boundary conditions differ,

(3.12)

By(t) =0 and By(f) =1.

The solution By(t) is
Bi(t) = A X
0= Ty
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Thus, the p.g.f. for the duration of the games is given by Ax(t) + Br(t).
Although the formula was derived for # restricted to 0 < ¢ < 1, if the p.g.f.
is expressed as a Maclaurin series over this region,

Ac(t) + Bi(t) = D (@kn + brn)t™,
n=0

then the series is absolutely convergent for |¢| < 1 and all of its derivatives
exist for |t| < 1 (Wade, 1995). Abel's convergence theorem (Chapter 2)
can be applied to the series and the derivatives of the series to extend the
domain to ¢ = 1. For example, the derivative of the series satisfies

o0

W)+ Bp(ty =Y nlarn + brn)t" Y,
n=1 -

which is finite for [¢t| < 1 and n{agn + bkn) = 0. Therefore,

1i nF bt = L € 0.
t_l)l'{l_ lZn(ak + bin) ] < o0

n=1

By Abel’s convergence theorem, Y oo | n(@xn + bxn) = L. Therefore, the
expected duration of the games, 7;, can be derived from the generating
function,

ne = A4(1) + By(1) = lim [44(0) + BL(0)).

Fortunately, the derivation in the previous section has already provided a
solution for 7. Bailey (1990) derives a general formula for ai, using a
partial fraction expansion. For specific values of N, k, and r, it is an casy
task to use a computer algebra system such as Maple to compute ag,,. This
is demonstrated in the next example,

Example 3.3 Suppose N = 10 and k = 5. Then As(¢) can be computed
from (3.12) so that

- ik
~ 1 — 5pgi? + 5pq*tt’

As(¢)

Through differentiation and application of (3.11), the values of ag, for
n =5,6,..., can be easily computed. The computer algebra system Maple
was used to compute as, for n =5,7,9,11,

ass = ¢°, as7 = 5¢°p, agg = 20¢°p?, as11 = 75¢°p°.

It can be easily seen that as,, = 0 for n < 5 and for n even. [ |
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> N:=10: k:=5: dAk:=n->simplify(diff(Ak,t$n)):

> ak:=n->limit{(dAk(n),t=0)/n!:
> ak({5};
7
> ak(8);
0
> ak(7};
5¢°p
> ak(9);
20¢"p?
> ak{(11};

Example 3.4 Assume N = 100, k = 50, and ¢ = 0.55. The expected
duration of the games is 150 ~ 500 and the standard deviation is o5g =
222.4. Approximations to these values were caleulated from 1000 sample
paths,

mean ~= 482.74, standard deviation = 203.27.

The mean and variance of the distribution for the duration of the games,
750 and o2, can be calculated directly from the p.g.f. Sp(t) = Ax(£)+Bi(t)
when k = 50,

750 = Sio(1) and o2y = Shy(1) + 550(1) — [Ske(1)).

Three samiple paths are graphed for this stochastic process in Figure 3.2. B

3.4 Gambler’s Ruin Problem on a
Semi-Infinite Domain

The gambler's ruin problem can be extended to a semi-infinite domain
{0,1,2...}, where it is assumed that there is an unlimited amount of cap-
ital, ¥ — o0. This problem is related to a birth and death process, where
the population size is unlimited. The general solution to A (f) has the same
form as in the finite domain:

Ap(t) = e 0¥ + o)k
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~

GO 100 200 300 400 500 600 700
Games

Figure 3.2. Three sample paths for the gambler’s ruin problem
when N = 100, &k = 50, and ¢ = 0.55

However, one of the boundary conditions changes,

Aoty =1 and lim |Ax(t)| < oc.
k—oo

The boundedness condition must be satisfied becanse

|Ar(t)] < Zakn =a; <1

n={

for |t] <1 and all &.
Recall that the two eigenvalues A; and A» satisfy

/1 — 2 — /1 = 2
[,\1|=1+_1_4pﬂ and |)\2|:1__w for |t| < 1.

2ple| 2plt]

In addition, the absolute values of the etgenvalues ||, 1 = 1,2, are roots
of the characteristic equation, f(A) = p|t|A%Z — A + ¢|t| = 0. Because the
graph of f is a parabola satisfying f{0) = qlt| > 0, f{1) = [t| - 1 < 0 for
0 < Jt| < 1, and limy_. f(A)} = oo, it follows that the two roots satisfy
0 < |Az] < 1 < |Ay]. Thus, the coefficient ¢; =0, ¢3 = 1, and

Ap(t) =28 = (1_____ \’I_W)k‘

2pt

Fl

The probability of ruin or of abserption at @ = 0, ag, can be calculated
directly from Ag(f):

{ 1, ifp<a,

a = Ax(1) = (q)" ‘ (3.13)
=), ifp>q
P r-4q
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Also, for p < q, the sequence {ag, }72; is a probability distribution and the
expected duration until absorption at © = 0 can be computed. It is easy to
see that for p > g the expected duration is infinite, In the other cases, 7~
is computed from Aj (1}):

LI
=4, g-p ' P°C (3.14)

00, if p>gq.

The probability of absorption in n time steps, a;,, can be calculated hy
applying formula (3.11).

3.5 General Birth and Death Process

A general birth and death process is formulated as a discrete time Markov
chain. The Markov chain model is related to the gambler’s ruin problem,
but the probability of a birth (or winning) is not constant but depends
on the size of the population and the probability of a death (or losing)
also depends on the population size. To define a birth and death process,
let X,,, n =0,1,2,..., denote the size of the population, where the state
space may be either finite or infinite, {0,1,2,...,N} or {0,1,2,...}, and
N is the maximal population size. The birth and death probabilities are
b; and d;, respectively. In addition, by = 0 = dp, b; > 0 and d; > 0 for
i=1,2,..., except in the finite case, where by = 0. It is assumed that the
time interval, n — n + 1, is sufficiently small such that during this time
interval at most one event occurs, either a birth or a death. Assume the
transition probabilities satisfy

P = Prob{Xn+1 = jEan = 3}

bi if j=i+1,
_ ) d if j=14-1,
T Y L—(btdi), if =4,
0, jAi—144+1,

for i =1,2,..., poo =1, and pjp = 0 for j # 0. In the case of a finite state
space, where N is the maximal population size, pyy1,n = by = 0.

The transition matrix P for the finite Markov chain has the following
form:

1 dy G 4] 0 0
O 1-(bi+di) dg o 1] 0O
0 B 1—{bz+d2) da 0 0
a 0 b 1—ibs+d3) - 0 o]
p= 2 (ba+d3) . {3.15)
) 0 0 oAby +dn 1) dn
1] Q 0 a LT 1—dy
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b
To ensure F is a stochastic matrix, it is assumed that

sup {b;+d;} <1
i€{l1.2,...}
During each time interval, n to n + 1, either the population size increases
by one, decreases by one, or stays the same gize. This is a reasonable
assumption only if the time step is sufficiently small.

There are two communication classes, {0} and {0,1,..., N} in the finite
case. It is easy to see that zero is positive recurrent; all other states are
transient. There exists a unique stationary probability distribution 7, Pr =
m,where mp = land m; = O for i = 1,2,.... In the case of a finite Markov
chain, it can be easily shown that eventually population extinction occurs
from any initial state,

lim Prob{X, =0} = nli_l’réopo(n) =1

—+xD

In the notation of Section 3.3.1, e, =1 for k=10,1,2,..., N.

3.5.1 Expected Time to Extinction

The techniques from Section 3.3.2 are used to find expressions for the ex-
pected time until population extinction. It is assumed that lim, ., po{n} =
1. Let 7 denote the expected time until extinction for a population with
initial size k. Then 7y = 0 and the following relationship holds for r,
k=1,2,...:

T = bk(l + Tk+1) + dk(l +Tk_.1) + (1 - (b]i- + dﬁ,))(l + Tk). (316)

If the maximal population size is finite, then for ¥ = N, 7v = dy(1 +
Tn-1) + {1 — dn){1 + 7). The difference equation can be simplified as
follows:

drTr—1 — (b + di)T + bpTig1 = =1, {3.17)
k=1,2,.... Tk =N, thendytnv_1 —dnTn = —1. Because the coefficients
for these difference equations are not constant, the same techniques cannot
be employed as in the previous sections. However, when the maximal pop-
ulation size is finite, then these difference equations can be expressed as a

matrix equation, D7 = ¢, where 7 = {79, 7,...,7n) T, ¢ = (0, -1,...,-1)T
and
1 | 0 0 6o .-~ 0 0
d | =b-d b 0 - 0 0
D = 1o | dy —bp—dy by - 0 D
Lo : : N :
o 0 0 0 - dy —dn

_(1 0)
 A\D, Dy}’
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Submatrix Dy of D is irreducibly diagonally dominant, and by Theorem 3.1
det(Dn} # 0. But det{D) = det(Dy). Thus, D is nonsingular and the
solution to the expected time until extinction is -

T =Dle. (3.18)

The solution 7 can be found using numerical methods. However, because
the matrix IJ is tridiagonal, simple recursion relations can be applied to
obtain explicit formulas for the 7, k = 1,2,..., N. This formula is given
in the next theorem. See Nisbet and Gurney {1982).

Theorem 3.2. Suppose {X,}, n = 0,1,2,..., N, is a general birth and
death process with Xg = m > 1 satisfying bg = 0 = dg, b; > 0 fori =
1,2,...,.N—1, and d; > 0 fori = 1,2,...,N. The expected time until
population extinction safisfies

1 Nobyobi

+Z . m=1
_ dy 3 d‘&
Tm = T+m§_:1 [dl ds % _bl“'bi—l] 2 N (3.19]
! Sl by i o ds o

Proof. For k=1,2,...,N — 1, the equations {3.17} are solved recursively
for 14, ..., 7n5 to obtain the formulas

dk 1 b b] “'bi—l
- == R R 3.20
k [1 dy g dy---d; (3:20)
for m = 2,...,N. The second summation is zero when k < 2. Then

applying the relation for k = N,

TNZE‘FTN 1

and equating the two values for 7, the following formula for 7y is obtained:

N
1 by ---bi_y
==+ 1
(T P 0

Substituting 7, into (3.20}, the formula for {3.19) follows. O

Example 3.5 Suppose the maximal population size is N = 20 in a birth
and death process, where b, = bi, for i = 1,2,...,19, d; = di, for i =
1,2,...,20, b and d are constants. This process is often referred to as a
simple birth and death process. When & > d, there is population growth,
and when b < d, there is population decline. Three cases are considered:
{i) b =0.02 < 0.03 = 4, (ii} b = 0.025 = d, and (iii} b = 0.03 > 0.02 = d.
The expected time until population extinction T = (g, ..., 720)7 is plotted



3.6. Logistic Growth Process 109

-~

250
800
200
5 S600
Eﬁo g
b b=d
2 400/
§1un be«d
I ]
50 200
% 15 20 ) 15 20

B

Expecled duration

ba

0 5 10 15 20
Initial population size

Figure 3.3. Expected time until population extinction ¥ when the maximal
population size is N =20 and =002 <003 =4, 0=0025=4d, or b = 0.03 >
0.02=4d.

in each of these three cases in Figure 3.3. The formula in Theorem 3.2
can be applied or 7 can be found using a numerical method, 7 = D¢,
Note how much greater the expected duration is for b > d than for b < d.
Three sample paths of the simple birth and death process in Example 3.5

are graphed in the case b = 0.025 = 4 in Figure 3.4. a3

Birth and death processes that are continuous in time will be discussed
in more detail in Chapter 6. For continuous time processes, the assumption
of at most one event occurring during a time period ¢ to £ + A# is more
reasonable than in the discrete time process, because in the continuous time
process, we let At — q

3.6 Logistic Growth Process
In this section, assumptions are made on the general birth and death prob-

abilities b; and d; so that the process has a logistic form. Recall that in the
deterministic logistic model, if y{t} is the population size at time ¢, then
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Figure 3.4. Three sample paths for the simple birth and death
process in the case b = 0.025 = d with maximal population size
N =20 and X, = 10,

the rate of change of y(t) satisfies

%=ry(l—%), y(0) =30 > 0.

The right-hand side of the differential equation is a quadratic function of y
and equals the birth rate minus death rate. The parameter r is the intrinsic
growth rate and K is the carrying capacity. It is well known that the unique
solution y(t) to this differential equation satisfies lim¢ .o y(t) = K. The
population size approaches the carrying capacity.

For a logistic growth process, we make the assumption that

b — d; = ri(1 — i/ K), (3.21)

for i =0,1,2,..., N, where N > K. Note that the birth probability equals
the death probability when the population size is zero or when the popula-
tion size is at carrying capacity K. This agrees with the logistic determin-
istic model. Due to the relationship (3.21}, it is reasonable to assume that
b; and d; are either linear or quadratic functions of i.

As demongtrated in the previous section, the expected time until popula-
tion extinction can be calculated analytically (Theorem 3.2) or numerically
r = D~ ¢, where 7 = (10, 71,...,7n)T and 7 is the expected time until
extinction for a population with initial size k.

Twe cases for the birth and death probabilities b; and d; are considered:

.2 ‘2

. t 2 .
(a) b,-—r(z-—ﬁ) andd,-—rﬁ, 2—0,],2,...,2K

ri, ¢=0,1,2,..., N -1 o 2
(b) b,;—-{o‘ i> N ancla',—'r?, i=0,1,....N
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rates satisfy (a) and {b) and the parameters are r = 0.015, K = 10, and N = 20.

In case (a), the maximal population size is N = 2K. Also, the birth
probability increases when the population size is less than K but decreases
when the population size is greater than K so that it equals zero at the
maximal population size N = 2K. In case {a}, the death probability is
an increasing function of the population size. In case {(b), both birth and
death probabilities increase as the population size increases.

Example 3.6 For the two cases defined above, the expected time until
population extinetion is calculated. Let r = 0.015, K = 10, and N = 20.
A MATLAB program was used to calculate D~ and 7 = D~ l¢. Graphs of
the expected time to extinetion in cases (a) and (b) are given in Figure 3.5.
Note how much longer the population persists in case (a). |

At this point, we should wonder why the logistic growth process ap-
pears to behave so much differently from the deterministic model. Why
doesn’t the population size approach the carrying capacity K7 If, in the
previous example, the maximal population size is doubled, N = 40 and
K = 20 {r = 0.0075), we can check that the expected time to extinc-
tion increases to 7.7x10!2 in case {a) and 3.6 x 10° in case (b). For large
N, the stochastic and deterministic logistic models have better agreement
because prior to extinction {which may take a long time), the distribu-
tion is approximately stationary for a long period of time {guasistationary
distribution). This can be seen in Figure 3.6, where the probability distri-
bution p{n) = {(po(n},p1(n),...,p{n)}7 is graphed as a function of time
n = 0,1,2,...,1000.* An approximate stationary distribution has been
reached by n = 500. The MATLAB program that generated Figure 3.6{a) is
given in the Appendix for Chapter 3.

The logistic growth process has no positive stationary distribution, « >
0 (it is not irreducible}. The unique stationary distribution corresponding
to the simple birth and death process and the logistic growth process is
7 =(1,0,0,...,0)7. However, if the time to extinction is sufficiently long,
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Figure 3.6. Probability distribution for the stochastic logistic model in cases
(a) and {b) when r = 0.015, K = 10, ¥ =20, and X, = 1.

the process approaches a quasistationary probability distribution, the dis-
tribution conditioned on nonextinction. For large K and N, it will be seen
that the mean of this quasistationary distribution is close to K (see Figure
3.6).

3.7 Quasistationary Probability Distribution

When the expected duration until absorption is large, it is reasonable to
examine the dynamics of the process prior to absorption. Let {X,} forn =
0,1,2,... denote a general birth and death process with p;{n) = Prob{X,, =
i},t=10,1,2,..., N. Define the conditional probability,

gi{n} = Prob{X, =4¢X;#0,j=0,1,2,...,n—1}

pi{n)
1 — po(n)

for ¢ = 1,2,...,N. The distribution g(n) = (g(n),g(n),....qgn(n))T
defines a probability distribution because

N N
2= bi{n)  1—poln)
2 = = Tt —

It is a conditional probability distribution. The probability ¢;(r) is condi-
tioned on the population size not hitting zero by time n (i.e., conditional on
nonextinction). Let this conditional discrete time Markov chain be denoted
as {Qn}, where @, is the random variable for the population size at time
n conditional on nonextinction; ¢;(n) = Prob{@, = i{}. The stationary
probability distribution for this process is denoted as ¢*; ¢* is referred to as
the quasistationary probability distribution or quasiequilibrium probability
distribution.
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a

Difference equations satisfied by ¢;(n) can be derived based on those
for p;(n) [i-e., p(n + 1} = Pp(n)]. From these difference equations the qua-
sistationary probability distribution ¢* can be determined. It will be seen
that g* cannot be calculated by a direct method but by an indirect method,
an iterative scheme. An approximation to the process {Q,} yields an irre-
ducible, positive recurrent, aperiodic Markov chain, {@,}, with associated
probability distribution §(n). For this new process, a iransition matrix,
P, and the limiting positive stationary probability distribution §* can be
defined. The stationary probability distribution §* is an approximation for
the quasistationary probability distribution g*.

Difference equations for ¢;(n+1) are derived from the identity p(n+1) =
Pp(n), where transition matrix P is defined in (3.15). Note that

pifn+ 1)
1-poin+1)

- (t5) (e en)
; 1 -
(5 (= )

Using the identity for p;(n + 1), the following relation is obtained:

gin+l) =

or

g(n+1)[1—digi(n)] = bic1gim1 () +(1—b; —di)gi{n) +dip1gi41(n) (3.22)

fori=1,2,...,N, by =0, and g;(n) =0fori ¢ {1,2,...,N}. It is similar
to the difference equation satisfied by p;(n) except for an additional factor
multiplying g¢;(n + 1). An analytical solution to the stationary solution ¢*
cannot be found directly from these equations since the coefficients depend
on n, but ¢* can be found via a numerical iterative method (Nasell, 1999,
2001).

To approximate the quasistationary probability distribution, g7, the
process {Q,} is approximated by assuming d, = 0. Equivalently, when the
population size reduces to one, it is assumed that the probability of dying is
zero. This is a reasonable assumption when d; =~ 0. With this assumption,
equation (3.22) simplifies to

Gitn+1) =bi_1gi—1(n) + (1 — b — di)gi{n) + di1Giv1(n),

1=2,....N-1 §iln+1) = (1 -b)h(n)+ deda(n), and ju(n+1) =
bv_1@n—1{n) + (1 — dn)dn{n). The new transition matrix corresponding
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to this approximation satisfies

1—b ds 0 0
by 1-—(bz+dQ) 0 0
. 0 ba L 0
P= . . . . .
0 0 1—(bN_1 +dN_1) dy

0 0 b1 1 —dn

Note that P is a submatrix of matrix P given in {3.15), where the first col-
umn and first row are deleted and d; = 0. The discrete time Markov chain
{Q..}, described by §(n+1) = Pg(n), is ergodic (irreducible, positive recur-
rent, and aperiodic) and has a unique stationary probability distribution,
§*, P§* = §*. It can be shown that §* = (§},3,...,d%)7 satisfies

Pt b bt 3
G = E_;—__Q1 and an =1 (3.23)

Example 3.7 The approximate quasistationary probability distribution,
§*, is compared to the quasistationary probability distribution ¢* when
r = 0.015, K = 10, and N = 20 in cases {a) and (b) in Figure 3.7. Both
distributions have good agreement for N = 20, but when N = 10 and
K = 5, then the two distributions differ, especially for values near zero
[Figure 3.7(c)).

The means and standard deviations for the quasistationary distribution
g*, which are graphed in Figures 3.7(a) and (b), are

(a) frqr =9.435 and oy« = 2.309
(b) pigr = 8.848 and o, = 3.171. »

Some of the differences and similarities between the deterministic and
stochastic models have been illustrated in the previous examples. The
estimate for the expected time until population extinction, 7%, and the
probability of population extinction, lim,, .o po(nt) = 1, are important in
stochastic theory but they have no counterpart in deterministic theory.
For large population sizes, K and N large, and initial conditions sufficiently
large, the deterministic model agrees much better with the stochastic model
than for K and N small. This can be seen in the stochastic logistic model
graphed in Figure 3.8. The shape of the probability distribution over time
is similar to that of the solution to the logistic differential equation, dy/dt =
ry(1 — y/K). The quasistationary probability distribution shows a mean
close to K = 50. The mean of the stochastic process and the solution
to the logistic differential equation show close agreement in Figure 3.8.
Formulation and analysis of deterministic and stochastic models provide us
with a greater understanding of and appreciation for the modeling process
and of the underlying biological phenomena.
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Figure 3.7. Quasistationary probability distribution, ¢* (solid curve), and the
approximate quasistationary probability distribution, §* (diamond marks), when
r = 0015, K = 10, and N = 20 in cases (a) and (b). In (¢), r = 0.015, K = 5,
N =10, where b; = ri and d; = ri®/K.

3.8 SIS Epidemic Model

In this section, a stochastic epidemic model is formulated. The model is
referred to as an SIS epidemic model because susceptible individuals (S)
become infected (I} but do not develop immunity after they recover. They
can immediately become infected again, § — I' — 5. No latent period is
included in the model; therefore, individuals that become infected are also
infectious (i.e., they can pass on the infection to others). It is also assumed
that there is no vertical transmission of the disease; that is, the disease is
not passed from the mother to her offspring. In our simple model, having
no vertical transmission means no individuals are born infected; newborns
enter the susceptible class. The total population size remains constant for
all time since the number of hirths equals the number of deaths, S+7 = N.

The compartmental diagram in Figure 3.9 represents the transitions
between the two states, § and [.

Let the time pericd At from time n to n+ 1 be sufficiently small so that
at most one event occurs. In the time interval At, either there is a suscep-
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Figure 3.8. The stochastic logistic probability distribution, p(n}, and the so-
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Figure 3.9. Compartmental diagram of the SIS epidemic
model, a susceptible individual becomes infected with probabil-
ity AF/N and an infected individuals recovers with probability
4 {solid lines). Birth and death probabilities of susceptible or
infected individuals equal b (dotted lines).
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tible individual that becomes infected, a birth of a susceptible individual
{and corresponding death of either a susceptible or infected individual), or
an infected individual recovers. A susceptible individual becomes infected
with probability 37/N. The constant 3 is the number of contacts made by
one infected {and infectious) individual that results in infection during the
time interval Af; only 85/N of these contacts can result in a new infec-
tion, and the total number of new infections by the entire class of infected
individuals is 81 /N. Susceptible and infected individuals die or are born
with probability b, during the time interval At. Also, infected individuals
recover with probability 7.

3.8.1 Deterministic SIS Epidemic Model

First, the dynamics of the deterministic SIS epidemic model are reviewed;
tiien an analogous stochastic model is formulated and analyzed. Let S, and
I, represent the number of susceptible and infected individuals at time n.
The change in the states S, and [, during the time interval At can be
represented by the system of difference equations:

Sn+1 = Sn - ﬁSnIn/N + In(b"_’}‘}
ﬁInSn/N + 1, (1 —-b- ’}"} 3

1

In+1

where n =0,1,2,..., 5 > 0, Iy > 0, and 5y + o = N. For example, the
number of new susceptible individuals at time n+1 equals those individuals
that did not become infected, S,{1 — 31, /N], plus infected individuals that
recovered, ~vI,,, plus newborns from the infected class, bl,,. The number
of newborns from the susceptible class equals the number of susceptible
individuals who die, bS5,,, hecause the total population size is assumed to
be constant.
It is assumed that the parameters are positive and satisfy

0< @<, 0O<bt+y<L.

It can be seen that S, + I, = N. Therefore, it is sufficient to consider only
the difference equation for I,,. Replacing S, by N - I,

N-I,
-{n+1 = In(ﬁ I +1_b_7)

I
= In(1+,ﬁ—b—fy—ﬁ—“)A (3.24)
s N
Because of the assumptions on the parameters and the initial conditions,
the solution [, satisfies 0 < In_g N for all time. There exists two constant
or equilibrium solutions I, = I to {3.24):
b+

I=0 and f:N(I—T). (3.25)
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It can be shown for model {3.24) that the dynamics depend on the
following parameter Rg, known as the basic reproduction number,

B

Ro = b+~

{Allen, 1994). The parameter Ry has a biological interpretation. When
the entire population is susceptible, Ry represents the average number
of successful contacts (3) by one infected individual during the period
of infectivity (1/[6 + ~]) {Anderson and May, 1992). If Ry > 1, then
one infected individual gives rise to more than one new infection, and if
Ry < 1, then one infected individual gives rise to less than one new infec-
tion. Note that the second equilibrium in (3.25) is positive iff Ro > 1. It
can be shown that if Ry < 1, then lim,_.,f, = 0 and if Ry > 1, then
lim, o0 In = N(1 —1/Rg), where this limit is the second equilibrium given
in (3.25) (Allen, 1994; Allen and Burgin, 2000). The magnitude of Ry de-
termines whether the epidemic persists in the population, that is, whether
it becomes an endernic infection.

3.8.2 Stochastic SIS Epidemic Model

Now, the stochastic SIS epidemic model is formulated. Let the random
variable I,, represent the number of infected individuals at time n. The
state space of the random variable [, is the set {0,1,2,..., N} and the index
set of the stochastic process {I,,} is n = 0,1,2,.... It will be shown that
the stochastic process {I,,} is a discrete time Markov chain. A transition
matrix P is defined, an expression for the expected duration of the epidemic,
Ty, i8 derived, and an approximation to the probability of absorption, aj
(probability the epidemic dies out), is given for a large population size N.

Assume that At is sufficiently small such that during this time interval
there is at most one change in the random variable f,. If I, = ¢, then
I 41 may change to only one of the following states, 1 + 1,4 — 1 or 4. The
one-step transition probabilities satisfy

Pit1i = Prob{ly =i+ 1|I, =4} =8N -i)/N=1I,
pi-1y = Prob{l,y =i- 1|1, =i} = (b+ v}
i = Prob{l, i =il =i} =1— BN —i)/N — (b+ )i
= 1-1IL = b+,

fori=1,2,....N—land p;; =0if j #{—1,4,i+ 1. Also, poo = 1, the
zero state is an absorbing state. The transition matrix P has the following
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form:
1 (b+~) 0 0
0 1-Th—(b+y) 26+ - 0
0 II; 1—"2-2(54‘*’]’) 0
0 0 0 o Nb+)
0 0 0 <o 1=N{b+4)

where max;{Il; +i(b+v}} < L.

1t can be seen from the transition matrix that there are two classes, {0}
and {1,2,...,N}. The zero class is absorbing and the remaining states are
-all transient. Thus, lim,_... P*p(0) = (1,0,...,0)7. Eventually absorption
occurs into the zero state, where there are zero infected individuals.

This model is similar to a logistic growth process if By > 1. Let b; =
II; = Bi(1 —4/N) and d; = (b+ y)i. Then

bi—dy=i{8 - (b+7v) — Bi/N| =ri[l —i/K],

where the intrinsic growth rate is represented by r = 8 — (b+ 7) > 0 and
the carrying capacity by K = Nr/3 = N(1 — 1/Rq). Note that this value
of K is the stable equilibrium of the deterministic model, equation (3.25).
If Rg < 1, then b, — d; < O and only at i = 0 does the birth rate equal the
death rate. The transition matrix can be used to calculate the probability
distribution p(n) and set up a linear system as in (3.18}, D7 = c, to solve
for the expected duration of the epidemic, 7.

Example 3.8 Suppose the population size N = 100, 3 = 0.01, b = .0025 =
v, and Ry = 2. Figure 3.10 shows the graphs of the probability distribution
p(n) when Iy =1 and the expected duration of the epidemic. ]

As can be seen in Figure 3.10, it may take a long time until the epidemic
ends, especially if N is large and k is large. If N is sufficiently large and k is
sufficiently small, the SIS epidemic model may behave similarly to a semi-
infinite random walk model; either there is absorption with probability a
or the size of the epidemic gets very large prior to ultimmate absorption.
The probability of absorption, ay, can be used to estimate the probability
that the epidemic ends quickly [i.e., the value of pg(n) ~constant is seen in
Figure 3.10]. The probability of absorption at x = 0 for the semi-infinite
random walk model’is given by (3.13):

(a/p)F, if g<p and 1, if ¢>p,

where ¢ is the probability of moving to the left (x — 2 — 1), p is the
probability of moving to the right {(z — x4 1), and & is the initial position.
In the epidemic model, the probability of moving to the left is (b + y)k
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Figure 3.10. The parameters for the SIS epidemic model satisty N = 100,
B =001, b= .0025 = ~, and Rg = 2. The probability distribution p{n) for
n = 0,1,...,2000 is graphed when Iy = 1 and the expected duration of the
epidemic 7 as a function of the initial number of infected individuals & = Iy.

and the probability of moving to the right is S&{N — k)/N. For N large,
q¢/p = (b+)/B8 = 1/Ry. Therefore, by analogy with the semi-infinite
random walk model, the probability that the epidemic dies out quickly,
given initially & infected individuals, is (q/p)* ~ (1/Rg)*. An estimate of
po(n) at the outset of an epidemic is

po(n) & (1/Re)*, if Ro>1 and po(n)~ 1, if Re<1

{Allen and Burgin, 2000; Jacquez and Simon, 1993). In Figure 3.10, Iy =
1 = £ and Ry = 2, so that the probability the epidemic dies out at the
outset of the epidemic is approximately 1/Rg = 1/2. We can see in Figure
3.10 that py(n) rises rapidly to 1/2 and stays approximately constant. The
increase in pg(n) after reaching 1/2 is very slow; the average number of
times steps until absorption is on the order of 10'° (see Figure 3.10).
Difference equations for the conditional distribution ¢(n) can also be
derived in a manner similar to the stochastic logistic model. As before,

_ piln+1)
WD T D

Using the relations satisfied by p;(n), it follows that

p,-(n+l)) ‘

aln+ 01 - 6+ ) = (22D

An approximation to the stationary distribution of g(n) can be found by
assuming that when there is one infected individual, that individual does
not recover or give birth. The approximate quasistationary distribution
G*{n) satisfies (3.23).

Consult the references for further information about stochastic SIS and
other stochastic epidemic models {e.g., Allen and Burgin, 2000; Bailey,
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L

1975; Bartlett, 1956; Daley and Gani, 1999; Gabriel, Lefevre, and Pi-
card, 1990; Jacquez and Simon, 1993; Nasell, 1996, 1999). Models such
as an Susceptible-Infected-Removed (SIR) epidemic model, where there
are immune or removed individuals and the population size is constant
8§+ I+ R = N, require a bivariate Markov process that includes two ran-
dom variables, {S,,I,}. The epidemic models studied in the next section
are bivariate Markov processes. They are known as chain binomial epidemic
models.

3.9 Chain Binomial Epidemic Models

Let 5, and [, be discrete random variables for the number of susceptible
and infected individuals at time n, respectively. The time interval n to
fn + 1 is of length Af and represenis the latent period, the time period
until individuals become infectious, n = 0,1,2,. ... The infectious period is
contracted to a point. In other words, the number of infected individuals f,,
represents new infected individuals who were latent during the time interval
1 — 1 to 1, These new infected individuals are infectious. They will contact
susceptible individuals at time 7, who may then become infected at time
n+ 1. There are no births nor deaths; the number of susceptible individuals
is nonincreasing over time. The newly infected individuals at time n + 1
and the susceptible individuals at time 1 + 1 represent all those individuals
who were susceptible at time n:

Sn+1 + In+1 = Sn-

The epidemic ends when the number of infected individuals equals zero,
I, = 0, becanse in the next time interval no more individuals can become
infected, I,4+1 = 0. Thus, S,4+1 = §,. Consult Daley and Gani (1999) for
further details about this model.

Two models based on the ahove assumptions are formulated. They are
known as the Greenwood and Reed-Frost models, named after the individ-
uals who developed the models. These models were developed in the 1931
and 1928, respectively (Abhey, 1952; Daley and Gani, 1999; Greenwood,
1931). Lowell Reed and Wade Hampton Frost, two medical researchers
at John's Hopkins University, developed their model for the purpose of
showing medical students the variability in the epidemic process. However,
neither Reed nor Frost thought their model was worthy of publication; it
was Abbey who published their results in 1952, Primarily, these two models
have been applied to small epidemics, or to epidemics within a household,
where an initial infected individual spreads the infection to other members
of the household (e.g., Bailey, 1975; Daley and Gani, 1999; Gani and Man-
souri, 1987). Both models are bivariate Markov chain models because they
depend on two random variables, the number of susceptible individuals, S,,,
and the number of infected individuals, I,,. The bivariate Markov process is
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denoted as {S,, In} = {(5, 1)} for n = 0,1,2,.... The state of the system
at time n + 1 is determined only by the state of the system at the previ-
ous time 7z. The transition probability Ps,idnrt (5i)n specifies the one-step
transition probability for moving between the two states, (3,2), — (8,£)n+1-
The lower case letters s and ¢ or 3, and 4, represent values of the random
variables, &, and I, respectively, at time n.

Let e be the probability of a contact between a susceptible individual
and an infected individual and 3 be the probability that the susceptible
individual is infected after contact. Then the probability that a susceptible
individual does not become infected is

l-a+a(l-=1-al=0p.

The probability p is an important parameter in the Greenwood and Reed-
Frost models. Please consult Daley and Gani (1993) and Bailey (1975) for
additional information about the mathematical properties of these models
and Ackerman, Elveback, and Fox {1984} for a discussion of numerical
simulations based on the Reed-Frost model.

3.9.1 Greenwood Model

The Greenwood model assumes that the transition probability pe, iy, | (s.i).
is a binomial probability. The probability of a successful contact resulting in
infection is 1 — p, and the probability of a contact not resulting in infection
(not successful) is p. At time n+1, if there are 5,41 susceptible individuals,
Spe1 Contacts were not successful and 4,41 = S, — $p41 contacts were
successful, so that

Bn Sng1 Fn—8ntl
p(&,i)"+1,(3,i)n = (Sn—‘rl)p o+ (1 —p) + . (3‘26}

As shown in the expression above, the transition probability is independent
of i,,. Because the transition probability can be expressed in terms of s, and
3n+1, we shall denote it as p,_,, s.- To initiate an epidemic, Iy = iy > 0.
The state space for S, and I, is {0,1,2,...,s0}, where So = s¢ > 0. The
maximal number of infected individuals is sg.

A particular realization or sample path of the process can be denoted as
{s0,%1,...,8t—1, 8¢}, where i; = 0, or, alternately, s, — s¢_; = 0. The value
t is the length of the sample path or the duration of the epidemic. Also, the
size of the epidemic is the number of susceptible individuals who become
infected during the epidemic or sg — s;. It can be seen from the identity
(3.26) that the random variable 5,4 has a binomial distribution, (S, p).
It is for this reason that the Greenwood model is referred to as a chain
binomial model. Using the facts that 5,4, has a binomial distribution and
that f,41 = 8, — 5441, the conditional expectation can be shown to satisfy

E(Sn—i-llsn = 3n) = P8n,
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and

E(Jp11)8: = 8,) = 85 — psn = (1 ~ p)sn.

[Recall that the mean of a binomial distribution b{s,, p} is 4 = ps,.|

A transition matrix for the Greenwood model can be expressed in terms
of the initial condition sq. It is a mairix of size (3¢ + 1) x (so + 1). The
transition matrix is given by

/L (1-p) (1-p)? (L—p)™

0 P 2p(1 - p) (Sf) p{1 —p)~1
P=fo 0 P (320) Pl — p)r-?

\0 0 0 p;" )

The transition matrix does not tell the whole story. Omnce there has been a
transition of the type s, — sa, Ps,, 5. the epidemic ends because s, = sp.49
and i, = i,41.

Example 3.9 Suppose that, initially, there are three susceptible individu-
als and one infective. The epidemic with sample path {sg, s} = {3,3} has
probability pss = p®. The duration of the epidemic in this case is T = 1 and
the size of the epidemic is W = 85— sy = 0. The epidemic with sample path
{30, 81,52} = {3,1,1} has probability pisp11 = [3p(1 — p)*|p = 3(1 — p)*p?
with duration T = 2 and size W = g5 — sa = 1. The other sample paths
and their eorresponding probabilities are given in Table 3.2 (see Daley and

Gani, 1999). u
Sample Path Duration | Size
{s0,81,...,8:-1,8:} T W | Greenwood Reed-Frost
3 3 1 0 p? P
3 2 2 2 1 | 31 - pipt 3(1 — p)p*
3 2 1 1 3 2 1 6(1—p)Ppt 6(1 —p)*p?
3 1 1 2 2 | 3(1 — p)*p? 31 —p)%p®
3 210 0 4 3 | 6(1 —p)*p° 6(1 —p)%p®
3 2 0 0 3 3 | 301 -p)%p? 3(1 — p)%p®
3 1 0 0 3 3] 30-p2p | 3(1-p¥p(1+p)
3 0 0 2 3 1-p° (1-p)®

Table 3.2. All of the sample paths, their duration, and size are computed
for the Greenwood and Reed-Frast models when sp =3 and 7 = 1.
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Figure 3.11. Four sample paths for the Greenwood chain
binomial model when sg = 6 and i = 1, {6,6}, {6,5,5},
{6,4,3,2,1,1}, and {6,2,1,0,0}.

Figure 3.11 illustrates four sample paths for the Greenwood model when
Sp = 6 and iu =1,

3.9.2 Reed-Frost Model

In the Reed-Frost model, a susceptible individual at time n will still be
susceptible at time n + 1 if there is no contact with an infected individual.
If the number of infected individuals at time n is i, it i3 assumed that the
probability that there is no successful contact of a susceptible individual
with any of the i,, infected individuals is p~. The Reed-Frost model has
the form of the Greenwood model except that p is replaced by p*». The
transition probabilities in the Reed-Frost model are binomial probabilities
satisfying

& ; i -
Pls,i)nrr (o) = (3?1:1) {p'r )+t (L = pin)SnTSnaL,

The cne-step transition probability depends on ¢, $,, and s,41, and, there-
fore, it cannot be expressed just in terms of the values of 5, and 8, as was
done in the Greenwood model. Recall that s, +3, = 8,_1 OF ip = Sp_1—Sn.
Although the transition probability depends on i,, s, and sp4+1, for sim-
plicity of potation, we denote the transition probability for the Reed-Frost
model as p,_,, 5. It follows from the form of the transition probability that
the random variable 8,41 has a binomial distribution, 5(S,,p’”). Hence,
the Reed-Frost model is also referred to as a chain binomial model. Using
the facts that 5, has a binomial distribution and I,,,.1 = S, — Spt, 1t
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can be shown that the conditional expectation
E(Sn+1|(S, Ip = (Sm in-)) = s,p'"
and

E(In+1|(ss I)n = (‘Smin}) = 8p — 3n-pin = 311{1 - piﬂ)'

Example 3.10 Suppose that, initially, there are three susceptible individ-
uals and one infected individual, s = 3, ig = 1. In the Reed-Frost epidemic
model, the sample path {3,3} has probability ps; = p3, the sample path
{3, 2,2} has probability ppspze = [3p%(1~p))p* = 3(1-p)p?, and the sample
path {3,1,1} has probability pjap1; = [3p(1 — p)®lp* = 3(1 — p)?p®. This
last sample path has a probability that is different from the Greenwood
model. In general, if there is more than one infected individual in a time
interval, the Greenwood and Reed-Frost model will differ. ]

3.9.3 Duration and Size of the Epidemic

Let T denote the duration of an epidemic and let W denote the size of
an epidemic or the total number of susceptible individuals who become in-
fected. For example, for a sample path {s¢,s),...,8-1,8}, T =t and
W = 53 — 8. For a given number of initial susceptible and infected
individuals, sy > 0 and i > 0, the maximum value of T is 55 + 1,
Te {1,2,...,8,+1} and the maximum value of W is s, W € {0,1,...,50}.
The epidemic may end in one time step if no one gets infected, 5 = s and
L =0(T=1and W =0}, or it may end after sg + 1 timne steps when one
individual gets infected each time step (7" = 5o+ 1 and W = s3). The vari-
ables T' and W are random variables whose probability distributions can
be computed from the probabilities of the sample paths {see Table 3.2).

Example 3.11 The probability distribution corresponding to the duration
an epidemic, T, in the Greenwood model for s = 3 and i = 1 can be
computed from Table 3.2:

Prob{T =1} = p*
Prob{T = 2} = (1 - p)® + 3p*(1 — p)* + 3p*(1 - p)
Prob{T+= 3} = 3p(1 + p)(1 — p)® + 6p*(1 — p)*
Prob{T = 4} = 6p°(1 — p)*. [ ]
Another method can be applied to find the probability distributions for
T and W in the Greenwood model. This method is deseribed by Daley and

Gani (1999) and is briefly presented here. First, partition the transition
matrix P of the Greenwood model into two matrices, P = U + D, where U
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is a strictly upper triangular matrix with zeros along the diagonal and D

is a diagonal matrix-that is, D = diag(l,p,p%,...,p") and
[0 (1-p (Q-pP* - 1-p=
0o o wa-p o (7)en-pen
U=lo o 0 (52") Pl —p)?
\0 0 0 0 ' )

Note that the matrix I/ represents those transitions that do not return to
the same state in one time step with probability p;; for ¢ # j, whereas D
represents those transitions that do return to the same state in one time
step with probability p;;. When s; = s, or p&?}st > 0, there is a positive
probability that the epidemic ends at time n. The elements of the matrix
7"~ represent the probability of transition between states ¢ and § in n—1
time steps, pg‘_l), where j — ¢, j # 4. Let

pln) = (po(n).p2(n), ..., psp ()T,

denote the probability distribution for the state of susceptible individuals
at time n, then I/~ 1p(0) represents the probability distribution p(n — 1)
given that the epidemic has not ended at time n — 1. Multiplying by
D, DU™~1p(0) gives the probability distribution vector that the epidemic
has ended exactly at time n. The sum of the elements of the probability
distribution vector DU p(0) is the probability that the epidemic has
ended at time n, Prob{T = n}. Let £ ={1,1,1,...,1) be a row vector of
ones. Then

Prob{T = n} = EDU" " 1p{0).

Since the epidemic couid end at states 0,1,2,...,8p, the p.gf. for the
random variable T, the duration of the epidemic, is given by

so+1 so+1

>~ EDU™'p(0)t" = ) Prob{T = n}t".
n=1 a=1

The computer algebra system Maple can be used to calculate the proba-
bility distribution 7' with the matrix formulas above (see the Appendix for
Chapter 3).

In a similar manner, the probability generating function for the random
variable W, the size of the epidemic, can be derived {Daley and Gani, 1999).
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For the Greenwood model, let (%) be defined as follows:

(0 1-pt [A-ppf - (1—pte
0 0 2p{l-pt - (Sf‘)p[(l—p)t]“""I
uti=lo o 0o (“‘2("')102[(1*p)t]&"‘2
o o S 0 J

The matrix U defined previously is then U = U(1). The elements p;;(¢t) of
U{t) satisfy p;;(t) = pi;t7 %, The elements of U(t), p;;(t), ¢ # 4, represent
generating elements for the probability the epidemic has not ended in one-
step transitions. Since the number of susceptible individuals has gone from
§ to i, the size of the epidemic is j — i. In addition, the elements in U?(t)
satisfy pgf-)(t) = pg)tj —t, If, in two time steps, the number of susceptible
individuals has gone from j to ¢, then the size of the epidemic is j — 4.
Thus, £DU ()"~ p(0) represents the generating function for the size of the
epidemic when it has ended in n time steps. Since the epidemic can end in
1,2,...,8+1 time steps, the probability generating function for W satisfies

ag+1

> EDU@)'p(0) = f: Prob{W = k}¢*,
n=1 =0

The coefficient of t* in the expansion of the left-hand side is Prob{W = k}
{Daley and Gani, 1999}.

Example 3.12 [t can be shown using the probability generating function
for W (see the Appendix for Chapter 3) or directly from Table 3.2 that if
so = 3 and ip = 1, then, in the Greenwood model,

Prob{W =0} = p*

Prob{W =1} = 3p*(l-p)

Prob{W = 2} 3p°(1 + 2p73(1 — p)®
Prob{W = 3} (1 —p)3(1 + 3p + 3p? + 6p”)

1l

The probability distributions for W and T are graphed in Figure 3.12 in
the case p = 0.5, so’=3. and 4o = 1, E(W) = 2.156 and F{T) ~2.438. B

3.10 Exercises for Chapter 3

1. Modify the gambler’s ruin problem so that the probability of winning
isp, losing isqgand atieisr, p+g+r=1.



128 Chapter 3. Biological Applications
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Figure 3.12. Probability distributions for the size of the epidemic, W, and the
duration of the epidemic, T, when p = (0.5, sp = 3, and % = 1.

{a) Show that the probability of ruin {or absorption at = = 0), be-
ginning with a capital of k, satisfies

_ (g/p)¥ - (a/p)*
ap = W—_—f—» PFQ

{b} Show that the expected duration of the games is

1 [, _w (g/p)f -1

v Py

} , P#q (3-27)

Note that this expression is the same as the one for + = 0, bui for
v > 0 the values of p and ¢ are smaller, so the expected duration
will have a larger value.

(¢} Find the probability of ruin a) and expected duration 7; when
P=q.

2. For the semi-infinite random walk model in one dimension, derive the
formulas for the probability of absorption, ay, equation (3.13), and the
expected duration untii absorption, 7, equation (3.14), directly from
the random walk model with ahsorbing boundaries. Let the right-
hand endpoint of the domain approach infinity, N — oo in (3.4),
(3.5), (3.9}, and (3.10}.

3. Consider a restricted random walk in one dimension with an absorbing
barrier at ¥ = ( and an elastic barrier at ¥ = N. Assume p is the
probability of moving to the right and ¢ is the probability of moving
to the left, p+ g = 1 and p # ¢. Find the probability of absorption
at x = 0.
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4. Verify the following statements for the gambler’s ruin problem.

(a) Tf n < k, then ag, = 0, and if n = k, then ax; = ¢*.

(b) The probability ax +2:i41 =0fori=0,1,2,....

(c) The probability az itz = kg*+'p.

(d} What are the values of by, if n < N —~ k7 What are the values
of b N—k and bk,N—k+2£+1 fori=0,1,2,...7

5. Consider the random walk model on {0,1,2,...,N}. Suppose state
N is absorbing, py v = 1, and state zero is reflecting, poo = 1 —p and
pro = p. Let b be the probability of absorption at # = N beginning
at state x = k.

(a) Show that by =1 and by = by.

{b} Derive a difference equation for the probability of absorption,
by; then show that by = 1 (i.e., the probability of absorption is
one).

6. In a simple birth and death process the transition matrix is

(1 d 0 00

0 1-b-—d 2d D

0 b 1-2(b+d) 0
p-|o0 0 2b 0

0 0 0 - 4N

\0 0 0 - 1-dN)

{See Example 3.5.)

(a) Show that the unique stationary distribution for this process is
7 =(1,0,0,...,007:

{b} Assume N = 20 and b = 0.025 = d. Suppose the initial prob-
ability distribution for Xy is Xy = 5 [ie., ps(0) = 1]. Find
p(1),p(2),...,p(100). Then graph the probability distribution
over time, n = 0, 5,10, ...,500. (Hint: Modify the MATLAB pro-
gram in the Appendix for Chapter 3 that was applied to the
logistie p}"ocess.)

(¢} Graph po(n) for n =0,1,2,...,500. What is lim,, ., pp{n)?

7. The formula for the expected duration of the game, given by equation
(3.27), can be checked numerically by performing some numerical
simulations. Let N = 100, &k = 50, ¢ = 0.5, r = 0.2, and p =
0.3. Write a computer program for this gambler’s ruin problem and
simulate a sufficient number of sample paths (total sample paths>



130

Chapter 3. Biological Applications

1000} to find the time until the game ends. Then compute the mean
duration for all of the sample paths. Compare the computer generated
mean duration with formula (3.27). o

. For the gambler’s ruin problem, calculate the mean 7, and standard

deviation o, of the the duration of the games. Use the p.g.f. Si(t) =
Ag{t)y + Bi(t) when N = 100, k = 50 and for values of p = 2/5, 9/20
and 1/2. (Hint: The mean and standard deviation can be computed
using Maple or MATLAB, if the limit is taken from the left at ¢t =
1. When using Maple, it is important to use exact values for the
parameters, e.g., p = 2/5 and not p =0.4.)

. In a simple birth and death process, the birth and death rates satisfy

b =bifori=1....N-1,d; = di fori = 1,...,N and zero
elsewhere {see Example 3.5 and Exercise 6}. The parameters b and
d are positive and satisfy (b + d)/N < 1. The mean of the population
size at time n, denoted as u{n), satisfles

N
pn) =Y ipi(n).
=0

(a) Use the transition matrix P to compute p;(n + 1), p(n + 1) =
Pp(n). Then show that u{n} satisfies the following first-order
difference equation:

pn+ 1) =(1+b—dp{n) — bBNpx(n).
(b) Use the fact that 0 < g(n + 1) < (1 + b— d)p(n) to show
p(n) < (1 +6—d)"u(0).
If b < d, find limn_.c0 (7).

10. For the logistic growth process,

(a) Show that the approximate quasistationary probability distribu-
tion, ¢*, satisfies the relation given in equation {3.23).

(b} Use this relation to compute §* for N = 50 and r = 0.01 when
b = r(t —4%/N)yand d; = ri*/N (K = 25) for i = 1,2,...,50.
Graph g} for i =1,2,...,50.

11. For the deterministic SIS epidemic model (3.24), verify the following.

(a} If Rg < 1, then lim,,—.oo I, = 0. (Hink: I < I,))

(b) If Ry > 1, then lim,_.oo [, = N(1 — 1/Rq). [Hint: Make a
change of variable and compare the model to the discrete logistic
equation zp41 = rTe{l — 2, ). The discrete logistic equation has
a stable equilibrium at (r — 1}/r iff 1 < » < 3 {Elaydi, 2000}.]
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12. Consider the stochastic SIS epidemic model with the following pa-
rameters.

(a)

(b)

Let N =20, 3 =001, & = 0.0025 = ~, and Ry = 2. Calculate
the expected duration of an epidemic 7, = E(7}%); then sketch a
graph of 7 for k =0,1,...,20. Maple or MATLAB may be used
to solve the linear system.

Let N =20, 3 = 0.005, b = 0.0025 = +, and Ry = 1. Calculate
the expected duration of an epidemic 1, = E(T}%); then sketch a
graph of 7.

13. Find the approximate quasistationary distribution §* for the stochas-
tic SIS epidemic model when N = 20, 3 = 0.01, and b = 0.0025 = v

(ie.,

the solution to P§* = §*, where S G = 1). Sketch §* for

i=1,2,...,20.

14. In the SIS epidemic model, an estimate was obtained for the probabil-
ity that the epidemic ends quickly. It was found that the probability
of extinction, pg{n}, reaches a plateau or constant value that is less
than one prior to ultimate extinction, pg(n) = constant = pg < 1. In
particular,

po{n} = po ~ (1/Ro)*

for Ro > 1 and Iy = k. This latter estimate was obtained from the
formula for the probability of absorption at x = 0 in the semi-infinite
random walk model, ax = (¢/p)*. This estimate can also be obtained
from the product IT¥_,{(d;/b;). We shall use this latter formula to
estimate the probability of population extinction fp in the stochastic
logistic model.

(a)

Consider the stochastic logistic model with b, = ri(1 — ¢/(2K))
and d; = ri2/(2K), for i = 0,1,2,...,2K. Suppose r = 0.015
and K = 20. Use the formnla 1% (d;/b;) to estimate the prob-
ability of population extinction, pg, when Iy = 1 and I = 2.
Compare these estimates with the values obtained from the prob-
ability distribution pg(n) in Figure 3.13. For 1000 < n < 2000,
po{n) is approximately constant, po(n) = fo. For Iy = 1,
p == 0.0264, and for [y = 2, g =~ 0.00143.

Use the formula %, (d;/b;) to estimate Py when b; = r¢ and
di = ri?/K for i = 0,1,2,...,N, N = 2K, by = 0, and r =
0.005 and compare the estimates with those in Table 3.3. The
values in Table 3.3 are the values of pp(n) for 2000 < n < 6000.

15. Consider a chain binomial epidemic model with initially one infective
and two susceptible individuals, sp = 2 and i, = 1.
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Figure 3.13. Probability of population extinction for the stochastic logistic
model when b = ri(l — i/(2K)) and di = ri®/(2K), for ¢ = 0,1,2,...,2K,
r =0.015 and K = 20.

K|l Po

201 1 | 0.0530
20| 2 | 0.0056
301 1 | 0.0346
30 2 | 0.0024

Table 3.3. Estimates of the probability of rapid population extinction
for the stochastic logistic model when b; = ri and d; = ri®/K for i =
0,1,2,... N, N =2K by =0, and r = 0.005

{a) Calculate the probabilities for the different types of chains in
the Reed-Frost and Greenwood chain binomial models and show
that both models have the same probabilities.

(b) Find the probability distribution for the duration time, T'; that
is, Prob{T = n}, n = 1,2, 3. Graph this distribution for p = 0.2,
0.5 and 0.8. Find E(T).

(¢) Find the probability distribution for the size of the epidemic, W:
Prob{W = n}, n = 0,1,2. Graph this distribution for p = 0.2,
0.5 and 0.8, Find E(W).

16. Consider the Reed-Frost chain binomial epidemic model with initially
one infective and three susceptible individuals, sp = 3 and ig = 1. Use
Table 3.2 for the different types of chains.

(a) Find the probability distribution for the duration time, T,
(b) Find the probability distribution for the size of the epidemic, W,

(¢} Sketch the probability distributions in (a) and (b} when p = 0.2
and p = 0.8,
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17. Suppose the size of a population remains constant from generation to
generation; the size equals N. The dynamics of a particular gene in
this population is modeled. Suppose the gene has two alleles, A and
a. Therefore, individual genotypes are either A4, Aa, or aa. Let the
random variable X,, denote the number of A alleles in the population
in the nth generation, n = 0,1,2,.... Then X, € {0,1,2,...,2N}.
Assume random mating of individuals so that the genes in generation
n + 1 are found by sampling with replacement from the genes in
generation 1z {Ewens, 1979). Then the one step transition probability
has a binomial probability distribution with the probability of success
Xa/(2N), ie, if X = 4, then the one step transition probability is
the binomial p.d.f (2N, /2N,

aNN [ i ) i\
pii=1 — 1= — ;
i J\2N 2N

i,7 = 0,1,2,...,2N (Ewens, 1979; Schinazi, 1999). This model is
known as the Wright-Fisher model.

(a) Given X, = k, show that the mean of X, ;. satisfies px, ,, =
E(Xn+1]Xn = k) = k. A discrete-time Markov process with the
property E(X,1|Xn = k) = k is called a martingale.

(b} Show that in the gambler’s ruin problem, with 1 < k¥ < N —1,
Pr+rk = pand peorp = ¢, E(Xnp1|Xn = k) =k iff p = ¢
In game theory, a martingale is a “fair game”. On the average,
there is no gain nor loss with each game that is played.
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3.12 Appendix for Chapter 3

3.12.1 Matlab Programs

The following three MATLAB programs can be used to compute the expected
duration of the gambler’s ruin problem, sample paths for the gambler's ruin
problem, and the probability distribution for logistic growth.

% MATLAB Program:
% Expected duration for the
% gambler’s ruin problem, Figure 3.1,

clear all

set (0, 'DefaultAxesFontSize’,18);
N=100;

q=0.55; % Probability of losing.
p=l-q;

C=sparse(2:N,2:N,-ones(1,N-1) ,N+1,N+1); % Diagonal entries.
C{1,1)=1;

C{N+1,N+1}=1;

L=sparse{2:N,1:N-1,g*cnes(1,N-1) ,N+1,N+1); % Subdiagonal.
Us=gparse(2:N,3:N+1,p*ones(1,N-1) ,N+1,N+1); % Superdiagonal.
D=L4C+U; ) Matrix D for the expected duration.
d=-ones{N+1,1);

d(1)=0;

d(N+1)=0;

t=D; % Expected Duration is the solution ¢t = D~1d.
Plot([0:N],t, ’k-?,’LineWidth’,2); ! Graphs the expected
¥xlabel(’Initial capital’); % duration.

ylabel (’Expected duration’};

set(gca, 'ytick’, [0,200,400,600,800]); % Sets the tick marks.
max(t) ) Maximum value of the expected durationm.

Notes: The command “sparse” is used to make the computations more
efficient. A statement following % explains the Matlab command. This
statement is not executed. If a semicolon is left off an executable command,
then the value generated by the command prints to the computer screen.
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% MATLAB Program:
% Sample paths and expected duration
% for the gambler’s ruin problem.
clear all
set (0, 'DefaultAxesFontS8ize’,18) % Increases axes labels.
£im=1000; % Number of simulations.
q=0.55;
for j=l:sim
j % Simulation number; prints on the computer screen.
clear r
r{1)=50;
i=1;
while r(i)>0 & r(i)<100
y=rand;
if y<=q
r(i+l)=r(i)-1;
else
r(i+1)=r(i)+1;
end % End of while loop.
i=i+l;
end % End of while loop.
t(j)=i; % Time until absorption.
if j<=3 % Plots three sample paths.
li=stairs([0:1:i-1],r) ! Draws stairstep graph.
set (11, ’LineWidth?,2) % Thickens the line width.
hold on % Holds the curremt plot.
end % End of sample path loop.
end ¥ end of j loop
meandur=mean(t) % Mean duration; printed on screen.
stdevdur=std{t} ) Standard deviation; printed on screen.
xlabel(’Games’)
ylabel(’*Capital?)
bold off ¥, Erases previous plots before drawing new ones.

% MATLAB Program:

% Probability distribution for logistic growth.
clear all

set (0, 'DefavlthizesFontSize’,18);

time=2000;

K=50;

N=2x%K;

r=0.004;

en=25; % Plot every enth time interval.
T=zeros{N+1,N+1); % T is the transition matrix (3.15).
p=zeros(time+1,N+1);
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s

p(1,6)=1;
v=linspace(0Q,N,N+1);
bl=r*v.*{1-v/(2*K)); % Defines the probabilities.
di=r*v,~ 2 /(2xK);
b2=r*v;
d2=r*v.*v/K;
b2 (N+1)=0;
for i=2:N Y% Define the transition matrix.
T(i,i)=1-bl(i)-d1{(i);
T(i,i+1)=41(i+1);
T(i+1,1)=bl(i);
end
T(1,1)=1;
T(1,2)=d1(2);
T(N+1,N+1)=1-d1(N+1);
for t=1:time
y=T+p(t,:)’;
pit+l,)=y’;
end
pm{l,:)=p{1,:);
for t=1:time/en;
pn(t+l,:)=p(en*t,:);
end
mesh([0:1:N], [0:en:time] ,pm}; % Three dimensional plot.
xlabel(’State’);
ylabel (*Time, n’);
zlabel (’Probability’);
view(140,30)

3.12.2 Maple Program

The following Maple program can be used to find p.g.f.’s for the duration
time and size of the epidemic in the Greenwood chain binomial epidemic
model.

>> with(linalg):

>» P:=t-rmatrix(4,4,[1, (1-p)*t, ((1-p}*t) "2, ((1-p)*t)"3,0,p,
2ep* (1-p)#t, 3xp* ((1-p) *£) "2,0,0,p 2, 3+p 2% (1-p) *t,0,0,0,p"3])
>> Di:=diag(1,p,p"2,p"3):

»> Ui=evale(P(1)-Di}:

>> E:=vector([1,1,1,11):

>> pbi=vector([0,0,0,1]1):

>> T:=txdotprod(evalm(E&*Di),pd):

>> for k from 2 to 4 do

T:=T+factor (dotprod(evalm(Ex*Di&*U" (k-1)) ,p0)) *xt k;



Chapter 4

Discrete Time Branching
Processes

4.1 Imntroduction

Discrete time branching processes are a special type of discrete time Markov
chain. The study of branching processes has a long history. The subject
of branching processes began in 1845 with Bienaymé and was advanced in
the 1870s with the work of Reverend Henry William Watson, a clergyman
and mathematician, and the biometrician Francis Galton {Mode, 1971).
These individuals were interested in studying the survival of family names.
Galton in 1873 submitted a problem to the Educational Times (Mode, 1971)
stating the following: Suppose adult males (N in number} in a population
each have different surnames. Suppose in each generation, ag percent of the
adult males have no male children who survive to adulthood; a, have one
such child; as have two, and so on up to as, who have five, Then Galton
posed two questions (Mode, 1971):

(1) Find what proportion of the surnames become extinct after + gener-
ations.

(2) Find how many instances there are of the same surname being held
by m persons.

Galton did not recéive satisfactory solutions to his problems and sought
help from Watson. Watson used probability generating functions to study
the problems. Even Galton and Watson did not completely solve the prob-
le.ms’ and it wasn't until the 1930s that complete solutions were found.

isher, Haldane, Erlang, and Steffenson contributed to the solution of
the problems (Mode, 1971). Thus, appropriately, these discrete time pro-
fesses are known as Galton-Watson branching processes. Schinazi (1999)
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also notes Bienaymé’s contributions and refers to the theory as Bienaymé-
Galton-Watson branching processes. Branching processes have been ap-
plied to electron multipliers, neutron chain reactions, population growtl,
and the survival of mutant genes.

In the next section, some notation and preliminary resuits will be given.
The main result regarding extinction will be given in Section 4.4. Some
extensions to multitype branching processes will be introduced in Section
4.6, and in Section 4.7 they will be applied to a discrete age-structured
model, a Leslie matrix model. Excellent references for branching processes
with applications to biological problems include the books by Harris (1963),
Jagers (1975). Kimmel and Axelrod (2002), and Mode (1971).

4.2 Definitions and Notation

Discrete time branching processes are discrete time Markov chains; the time
variable and state space are discrete and the state of the system at time n+1
depends only on the state of the sysiem at time n. Frequently, branching
processes are studied separately from Markov chains. One reason for this
separate study is the wide variety of applications in branching processes.
Another reason is that different techniques other than the transition matrix
are used to analyze their behavior. Techniques that employ probability
generating functions are important in the study of branching processes.

The following assumptions are made in studying Galton-Watson branch-
ing processes. Let Xy denote the total size of the population at the zeroth
generation and X,, the size of the population at the nth generation. The
process { X, }22 , has state space {0,1,2,...}. Assume that each individual
in generation n gives hirth to Y offspring in the next generation, where
Y is a random variable that takes values in {0,1,2...} whose offspring
distribution is {px}22,,

Prob{Y =k} =px, k=0,1,2,....

In addition, assume that each individual gives birth independently from
all other individuals. The process {X,}52, is referred to as a branching
process. Figure 4.1 indicates why the process is referred to as a branching
process; one sample path is graphed in the case X = 1.

If, in any generation n, the population size is zero, X,, = 0, then the
process stops, X,4p =0 for k=1,2,.... Thus, the zero state is absorbing
(i.e., the one-step transition probability pgy = 1). The zero state is positive
recurrent. We verify later that all of the other states are transient.

We do not study branching processes in terms of the transition matrix.
In fact, it would be very difficult to write down each of the one-step tran-
gition probabilities for the states {2,3...}. Instead, we study branching
processes via probability generating functions (p.g.f."s).
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YLHT L.
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Figure 4.1. A sample path or stochastic realization of a
branching process { X, }3Zq. In the first generation, four indi-
viduals are born, X; = 4. The four individuals in generation 1
give birth to three, zero, four, and one individuals, respectively,
making a total of eight individuals in generation 2, Xz = 8.

Some preliminary results are needed before we define the p.g.f. for
the random variable X,,. Suppose Sy = Yj + Yo, where ¥] and Y5 are
independent discrete random variables with values in {0,1,2...}. Suppose
the p.g.f. of 53 is dencted as H and the p.g.f. of Y] is denoted as F; for
t = 1,2. Then the p.gf. of 5 is

H{t) = iPmb{SQ:j}tj

=0
= E(t%%)
E[tyl+y2)
E(M)E(t?)
F{t) (),

il

which follows because Y7 and Y5 are independent. The p.g.f. of S5 is the
product of the p.g.f’s of ¥;. If the distributions of the ¥; are equal, then
Fi = F and H(t) = [F(t))*. In general, if 5 = Z’.“zl Y;, where the Y; are
independent and identicatly distributed {iid) and £ is fixed, then

H(t) = [F©). (4.1)
Now, suppose

Af
Sn = ZY:
i=1

Where M is not a fixed number but a random variable. Also, suppose the
random variables ¥; are iid. Suppose the p.g.f.’s for the random variables
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Y;, M, and S are F, G, and H, respectively, and defined as follows:

FO = Y40, = Probiy = 5)
i=0
= -
J=0

H{) = Zhjtj, h; = Prob{5x = j}
j=0

(see Bailey, 1990). Because M is a random variable, the p.gf. of Sy
does not have a simple form given by equation (4.1). The coeflicient k; =
Prob{Sx = j} can be expressed as follows:

h; = Prob{Sx =3}
= Z Prob{S,, = j|M = m}Prob{M =m}
m=0
= > gmProb{Sy = j|M =m}.
m=0

If M = is a constant, it follows from egquation (4.1) that
(P(O)]™ =S Prob{Sy = j|M =m}t. (4.2)
3=0

Now, we use equation (4.2) to calculate the p.g.f. H of Sy, where M is a
random variable (Bailey, 1990):

Hit) ihjtf = itﬁ i gmProb{S,, = j|M = m}
j=0

i=0  m=0

= Y gm Y Prob{S,=jIM=m}t’ = Y gu[F()™,
F=0

m=0 m=(0

where the summations can be interchanged if they converge absolutely.
Thus,

H(t) = G(F(t)),

the p.g.f. of Sp; is the composition of the generating function of M and
the generating function of the Y’s. Notice that if M = m is a constant,
the p.g.f. of G(t) = #™, so that G{F(t)) simplifies to [F(¢)]™. We use these
results to derive the p.g.f. of the branching process { X, }22,.
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4.3 Probability Generating Function of X,

Suppose Xy = 1 and denote the p.g.f. of X, as h,. The p.gf of Xy is
ho(t) = t. In the next generation, each individual gives birth to k individuals
with probability px. The p.g.f. of X, is

Rty =) pit®, (4.3)
k=0

(i.e., X1 = Y1). Also, X2 = ¥1+---+Yx, because each of the X individuals
gives birth to ¥ individuals and the sum of all these births is Xz; that is,

Prob{X, = j|X, =i} = Prob{z Y =j} .

k=1

Because X» is the sum of X; iid random variables, where X, is also a
random variable, we can apply the results from the previous section. The
p.gf. of X5 is

ha(t) = hy (R (2)).

In generation n + 1,

X,
Xns1=Y1+ Yo+ +¥x, =) ¥,
i=1

Xp+ is the sum of X, iid random variables ¥;. Thus, the p.gf. of X4 is
b1 (£) = halha(t)).
However, hn(t) = ha_1(R1(1)), so that
npa(t) = ha(ha (- {Raft)) -+ ),

where h (t) is the p.g.f. for ¥}, equation (4.3). For simplicity, denote f; (t)
as f(t). Then h, is just an n-fold composition of f denoted as

) = fUC- (o))

The derivation of the generating function b, is based on the fact that
Xo = 1. If Xo = N, where N is a positive integer, then ho(t} = tV¥
and the process begins with N independent branches {see Figure 4.2).
When X, = N, the process may be considered as N independent branching
processes, X, = Z?LIXZ-R, where X, are independent and identically
distributed random variables. Each of the random variables has a p.g.f.
given by f7(t). Because N is a fixed number, it follows from the previous
section that the p.gf. of X, is

Ru() = [f(6)]Y, when Xo = N.
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LT 1.
[T T

Figure 4.2. A sample path or stochastic realization of a
|4

branching process {X,}a%o, where Xp = 3, X, = 5, and
X:=90 .

ta

Example 4.1 Suppose a branching process {X,}3%, with Xy = 1 has an
offspring distribution {py} satisfying py = 1/4, py = 3/4, and pr = 0,
k = 2.3,.... There are either no births or a single birth. Then the p.g.f.
for X, is
1 3
t)=-+ -¢.
Ft) =4+

The p.g.f for X5 is

!

W [ =
PN
—_
+
Wl
N
_+,
o~
=)
R
[

o 23

A = £(5))

In general, the p.g.f. for X, is

1 3 N 3\
g = ~[1+24+... 2 2
fr(t) 4(+4+ +(4) )+(4)t
3\" ., /3\"
- (Z) + (1) :
If px(n) is the probability that the population size is k in generation n, then

po(n) =1-— (g)n and py{n) = (%)n

If Xy = N, then the p.g.f. satisfies

ol = () woen + () e st

+o 4 (ﬁ) (pr(n))VeY. (4.4)
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We should be careful not to confuse the notation py and pr(n). The
notation pg refers to the probability an individual gives birth to & individ-
wals, and pi(n} refers to the probability that the total population size is &
at generation n. This latter notation is consistent with previous chapters.
Note that when Xy =1, pp =pp{l) for £ =0,1,2,....

Galton's question {1} can be addressed for this example. After » gener-
ations, the probability that all surnames have gone extinct is [po(r)]", the
probability that N —1 surnames have gone extinct is N [po(r)]V~!p;(r), and
s0 on; so that the probability that no surnames have gone extinct is [p; (r})]V.
It can then be shown that the expected proportion of surnames that have
gone extinct by generation r is po(r). In Example 4.1, po(r} = 1 — (3/4}".
Notice, for this example,

lim po{r) = 1.
T— 0l

We do not address Galton’s question (2) in general but note that in
a single branching process, Xg = 1, the probability there are exactly m
surnames the same in generation r is py, (7). In Example 4.1, the probability
that there are two or more equal surnames in any generation is zero.

In the next section, the probability of population extinction as n — oo is
studied for the branching process {X,}; that is, lim,_,. Prob{X,, = 0} =

4.4 Probability of Population Extinction

Denote the p.g.f. of X, by
fe =]
ha(t) = pr(n)t*,
k=0

where the probability the total population size is k in generation n is given
by pi(n). Denote the probability distribution of the process at time zero by
(0} = {pp(0), p1{0},...)T and the probability distribution of the process at
time n as p(n) = (po{n),p1(n),...)T. The probability of total population
extinction in the nth generation is po(n) = h,(0). If X5 = 1, then £,(0} =
F7(0), and if Xg = N, then h,(0) = [f*(0)]V.
The following assumptions are made regarding the offspring distribution
{pe}io o Assume
D <py and O <pg+p < 1. (4.9)

Assumptions (4.5) imply that there is a positive probability of no births
occurring and a positive probability of more than one birth. If py = 0 or
1 = 1, then in every generation there is at least one birth and there is no
chanee of extinction, po(n) = 0. The probability of ultimate extinction is
zero in these cases. In the case of a linear p.g.f, f{t} = po+pit, po = 0, it can
be seen from Example 4.1 that the p.g.f. satisfies f7(t) =1 - (; )™ +pit”,
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where po(n) =1 — (p1)". Thus, lim, ., po(n) = 1. The assumptions (4.5)
exclude these few cases for which the asymptotic results have already been
verified.

The p.g.f. for the offspring distribution {p;} is

70 =S ptt. (4.6)
k=0
Denote the mean number of births as m,
m=f(1)= lim f'(t) ;Pk (47)

In addition, assume the p.g.f. has the following five properties:
(1) f(0) =po>0and f(1)=1
(2) f(¢) is continuous for ¢ € [0, 1].
(3) f(t) is infinitely differentiable for ¢t € [0,1}.

(4) /(1) = Tpo kpt*=! > 0 for t € (0,1], where f'(1} is defined by
(7).

(5) f7(8) = T2y klh = Dput*=? > 0 for t € (0, 1)

The five properties imply that the function f is continucus, strictly
increasing, and its first derivative is strictly increasing (concave upward)
on [0,1]. The graph of the p.g.f. y = f(t) may intersect y = ¢ in either
one or two points on the interval [0,1]. (See Figure 4.3.) Properties (1)~
(5) are used to prove two lemmas and the main result concerning ultimate
extinction of the branching process {X,,}.

Lemma 4.1. Assume the offspring distribution {py} and the p.g.f. f(t)
satisfy inequalities ({.5) and properties (1)-{5). Then m < 1 if and only if
F@)y<lfortel01).

Proof. Since f’ is strictly increasing on {0, 1] [property (5)] and m = f'(1) <
1, it follows that f'(¢) < 1fort € [0, 1). The converse is straightforward. O

Lemma 4.2. Assume the offspring distribution {py} and the p.g.f. f(t)
satisfy inequalities ({.5} and properties (1)-(5). If m < 1, then f(t) has a
unique fized point at t =1 on the interval [0,1].

Proof. To show that the fixed point is unique, note that Lemma 4.1 implies
Fit) < 1for ¢ € [0,1). Integration from ¢ to 1 yields 1 — f(t) < 1 -t or
t < f(t) for t € [0,1). Thus, the only fixed point of f on [0,1]is¢t=1. O
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Figure 4.3. Two different prohability generating functions
¥ = f(t) intersect ¥ =t in either one or two points on {0, 1}.

Theorem 4.1. Assume the offspring distribution {py} and the p.g.f. f(t)
satisfy inequalities ({.5) and properties (1)-(5). In addition, assume Xg =
1. ff m <1, then

lim Prob{X,, =0} = lim py(n)=1
n—o0 Fra— o

and if m > 1, then there exists ¢ < 1 such that f(¢) = q and
lim Prob{X, =0} = Iin’cnopo(n} =q.

If m < 1, then Theorem 4.1 states that the probability of ultimate
extinction is one. If m > 1, then there is a positive probability 1 — ¢ that
the branching process does not become extinct {e.g., a family name does
not become extinct, a mutant gene becomes established, a population does
not die out). For a proof with the assumption py + p; < 1 instead of (4.5),
see Schinazi (1999).

The branching process can be divided into three cases: m > 1, m = 1,
and m < 1. The case m > 1 is referred to as supercritical, m = 1 is referred
to as crifical, and m < 1 is referred to as subcritical (Jagers, 1975; Kimmel
and Axelrod, 2002).

Proof. First, we show that {py(rn)} is a monotone increasing sequence:
po = po(1) <po(2) < po(3) < - <poln) < -~ < L.

By property (4}, f is strictly increasing on (0,1}, so that 0 < f(0) =pp < 1
implies f(0) < f(po) < f(1) = 1. But po = po(1) and f(pe) = f(f(0}) =
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pol(2) so that po{l} < po(2) < 1. Assume py(n —1) < pg{n) < 1. Then
again, since f is strictly increasing and f(po(k)) = po(k + 1), it follows
Flpo(n —1)) < flpo(nr)) < f(1) or po(n) < pp(n+1) < 1. The mono-
tonicity of this sequence can also be deduced logically since pg{n) is the
probability of extinction by the time n that includes the probability of
extinction at times 1,2,...,n.

The sequence {pp(n)} is monotone increasing and bounded above by
one. Therefore, it has a limit. Let

¢ = lim po(n).
Thus, by the continuity of f,

g = lim flpo(n—1)) = fla)-
The limit q is a fixed point of f, f(g) = ¢, where ¢ < 1.

Suppose m < 1. By Lemma 4.2, the only fixed point of f on [0,1] is
one, s0 that ¢ = 1. The graph of f lies above y =¢. See Figure 4.3,

Suppose m > 1. We show that f has only two fixed peints on [0, 1], ¢ and
1, where 0 < g < 1. Since f’ is strictly increasing and continuous on {0, 1,
there exists 0 < r < 1 such that if 7 < s < 1, then 1 < f{s}) < f'(1) = m.
Integration of f/(t} from s to 1 yields 1 — f(s} > 1 —s or s > f{s) for
r < s < 1 [the graph of ¥ = f(¢) lies below y = £ for t € (r,1)]. See
Figure 4.3.

Let s € (r, 1). Consider the function g(t) = f(t) —¢. Then g(0) =po > 0
and g(s) = f(s) — s < 0, By the intermediate value theorem, there exists
a g € (0,5) such that g{g) = 0 or f{g) = q. Now, we show that q is the
unique fixed point on (0,1). There can be no fixed point on the interval
{r,1) since f{t) <t for t & (r,1). Suppose there exists another fixed point
w € (0,1). Either u € (0,q) or u € {g,1). In either case, g(g)} =0, g(u) =0
and g{1} = 0. By Rolle’s theorem, there exist numbers u; and us such
that 0 < u<uy <ga<uy<lifue(0,glorg<u <u<u <1if
u € (g, 1) such that ¢'(u1) = 0 = g'(ua). Then f'{u;) = 1= f'(ug). Thisis
a contradiction because f' is strictly increasing on (0, 1). Thus, f has only
two fixed points on [0, 1}-namely, q and 1.

Next, we show that lim, .. po{n) = g < 1. Suppose

nlergopo(n) =1
Then, for sufficiently large n, po(n) > r. But on the interval (r,1), the
graph of f(t) lies below the line y = ¢ so that

po(n) > f(po(n)) = po(n +1}.

This contradicts the fact that {pa{n)} is an increasing sequence. Hence,
limy oo po(n) = ¢ < 1. ' a
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Although the special case where the p.g.f. is linear, f(t) = po + p1#,
po > 0, was verified separately, it satisfies the results of the theorem. In
this case, m = p; < 1 so that lim, .., Prob{X, =0} =1.

Example 4.2 Suppose the offspring distribution {pi} satisfies
e =1/5, p1=1/2, p2 =3/10,

and pr = 0 for & = 3,4,.... Then m = 1/2 + 2(3/10) = 11/10 > 1,
so that the probability of ultimate extinction is the fixed point of f{t) =
1/5-+t/2+3t2/10 on (0,1). The solutions to f(t} =t aret =1 and ¢ = 2/3:

1 1 3 1
) —ft= - — ot 2= (3t —2}{t—1)=0.
) ~t=g - sth ot = (@ -2 1) =0
The probability of ultimate extinction is 2/3. |

Example 4.3 (Schinazi, 1999) Lotka assumed a geometric distribution to
fit the offspring of the American male population. Suppose the number
of sons a male has in his lifetime has the following geometrie probability
distribution:

3\
po=1/2 and py = (g) R for k=1,2,....

Note that 3 ;. , px = 1/2 and
=] k-1
1 13 L 1 1( ¢
so=5+53(5) *=3+5 (%)
To find m, note that

a1y 1/5 _ 9

The fixed points of f(2) are found by solving
1 t

_ z_ —
‘2+5—3t_t or 6t 11t 4+5=0.

This latter equation factors into (6¢ — 5)(t — 1} = 0, so that g = 5/6. A
male has a probability of 5/6 that his line of descent becomes extinct and
a probability of 1/6 that his descendants will continue forever. ]

Theorem 4.1 can be extended to the case Xg = N = 1. Recall that the
p.gf of X, in this case is [f"(t)}Y. Thus, the probability of extinction
at the nth generation is [f(0)]" = [po(r)]™. The result is stated in the
following corollary.
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Corollary 4.1. Assume the offspring distribution {p} and the p.g.f F(t}
satisfy inequalities ({.5) and properties (1}-(5). In addition, assume X, =
N. Ifm <1, then

lim Prob{X, =0} = lim [pg{n)]" = L.

n— ol

Ifn > 1, then

lim Prob{X,, =0} = lim [po(n)]N =g <1
I— 0 A0

The corollary also Lolds in the case of a linear p.g.f., f{t} = py + p1t,
po > 0, because according to Example 4.1, [f*{0)}¥ =1 —p?]"V. The mean
m=p <1and 0 < py, lim,— Prob{X,, =0} = limn_,w[pu(n)]N = 1.
In the two special cases, pp = 0 or pp = 1, it is impossible for ultimate
extinction to occur, lim, o, Prob{X,, =0} = 0.

The zero state of the branching process is positive recurrent. Next, it is
shown that the remaining states are transient. In addition, it is shown that
either the total population size X,, approaches zero or infinity (see Harris,
1963).

Theorem 4.2. Assume the offspring distribution {p;} and the p.g.f. f(1)
satisfy inequalities (4.5) and properties (1)-(5). In addition, assume Xy =
1. Then the states 1,2,..., are transient. In addition, if the mean m > 1,
then lim,, ., Prob{ X, = 0} = g, where 0 < ¢ < 1 is the unique fized point
of the p.g.f., f{¢) =g, and Prol:){nlli_‘n;0 Xn=00}=1-g¢q.

Proof. We consider the first return to state k, where & € {1,2,...}. The
process begins in state £ = 1, Xg = 1. Let m be the first time such
that X,, = k for k # 1. If there exists no such time m, then state k is
automaticalty transient. On the other hand, if there exists such a time m,
then extend the definition of first return to state & for & # 1 as follows.
Define the first return to state k, & # 1, at the nth generation as

I < Prob{Xpin =k, Xonp; 2k j=1,2,...,n — 1| X, = K},

where fég} = (1. Then define

S = ng:)-
=0

Thus, the first return probability is defined for all states £ = 1,2, .. .. Recall
that a state k is transient iff fp, < 1.

Let pogx be the probability that beginning in state k, the process is in
state 0 in the next generation; that is,

por = Prob{ X, 4y = 0|1 X,, = k}.
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Since zero is an absorbing state, X, =0 for n > m + 1; the process cannot
leave the zero state. Therefore, there is a positive probability of at least
por that the process never returns to state k. Hence,

Jir €1—pox < 1.

For a transient state k, the n step transition probability pgc"i) ~ 0 as

n — oo, for any state j; that is,

Therefore, every state k is transient, where k € {1.2,...}.

lim Prob{X, =k} =0

{see Lemma 2.2). Because X, cannot approach any finite state k as n — oo,
either X, approaches 0 or X, approaches infinity. Fromn Theorem 4.1, it
follows that im,_.o Prob{X,, =0} =¢. If m < 1, theng = land ifm > 1,
then 0 < g < 1. ]

If m > 1, then, as n — o0, the population size approaches zero with
probability ¢ and approaches infinity with probability 1 — ¢. Theorem 4.2
also holds in the case py = 0. But in this case, ¢ = 0; the process approaches
infinity with probability one. Next, expressions are derived for the mean
and variance of the process.

4.5 Mean and Variance of X,

Generating functions can be used to find the mean and variance of X,,, the
random variable for the total population size in generation n. Recall from
Chapter 1 the properties of the p.g.f, f{z), moment generating function
{m.g.f.), M{t) = f{e*), and cumulant generating function (c.g.f.), K(¢) =
In M(¢). These functions satisfy

fy=1, ffl)=m=EX), f'(1)=EX(X-1)).
M) =1, M'(0)=m, M"(0)=E(X?).
K(0)=0, K'(0)=m, K"(0)=¢%=E[(X -m)?.

In general, we shall denote the mean and variance of X,, as m, and o7,
respectively, and the generating functions associated with X, as f"(x),
My(t), and K, (t). For the random variable X, in the first generation,
m; = m and ¢ = o%; that is,

o (=]
my=m= ka;,- and af=¢%= Zkzpk —m2.
k=1 k=1
In addition, the generating functions of X satisfy f; = f, M, = A, and
K1 = K. The following theorem gives the mnean and variance of the process
when Xg = 1.
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Theorem 4.3. Assume Xy = 1. The mean of the random variable X,,,
the size of the population in generation n, is

My = E(X,) = m"

and the variance is

m*Hm" - 1) ,

UiZE[(Xn~?nn)2}={ m— 1 o, m#Fl

no?, m == 1.

Note that when m = 1, m, = 1 and 02 = ng? — oo if 02 3 0. Before
we prove this theorem we note some properties of the generating functions.
Recall that M,(t) = f*(e’'}. Then

Ma(t) = fr(e)=f"Hi(eh) = M)
FA U MEYy = A (In M),

Thus, M, () = M,_,{K{#}). By taking natural logarithms of this identity,
we ¢btain the following identity for the c.g.f.:

I\,n(t) = Kn—l(-h’(t))‘
Since f(f™~(e')) = f(e"), it can also be shown that
Kn(t) = I{{Kn—l(t))
The first and second derivatives of the first identity yield two relationships
that are used to verify Theorem 4.3:
K {t) = K, (K()K'(t) (4.8)
K (t) A (K)E' (O + Kl (K())K"(2). (4.9)

Proof of Theorem 4.3. The proof follows Bailey {1990). First, identity (4.8)
is evaluated at ¢ =0,

KL (0) = K, ,(K(0))K'(0},

My = Mp_m

because K,{0) = 0, K,(0) = m,, and m; = m. The equation m, —
MMy = 0 is a first-order, homogeneous, constant coefficient, difference
equation in m,. The solution is

My, =M.
Second, identity (4.9) is evaluated at ¢ = 0,

K3 (0) -1 (KOO + K;,_, (K{0)) K" (0)

2 2
ot = o2 m*+mp_10°
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Substituting mn,_; = m*!, then 2 — m?e>_, = m? 'o? is a first-order
1 1 el n—1 r

nonhomogeneocus, constant coefficient, difference equation in 2. The gen-
eral solution to this difference equation is a sum of the general solution to
the homogeneous equation and a particular solution. The general selution
to the homogeneous equation is cm?®. Assume the particular solution has
the form o2 = km™~1, m # 1. Substituting this value into the difference
equation yields

kmtl - mPem™™? = il
m* 'k—km—-0% = 0
k1-m) = o°
k= o?
l-m

provided that m s 1. Thus, the general solution to the nonhomogeneocus
difference equation is

The constant ¢ is found by setting o = ¢*. Then o2 = em? + 62/(1 — m)
or ¢ = 0% /[m{m — 1)]. The solution to o2 is
m"Hm™ - 1)
G"i = —W—U , i 7‘!—' 1.
In the case m = 1, the particular solution has the form kn. Substitution
of this solution into the difference equation gives

kn —k(n—1) =o?

2, Thus the general solution to the nonhomogeneous difference

ork=g¢
equation is ¢2 = ¢ + noZ. Application of 0¥ = ¢? yields ¢ = 0. Thus, the

solution to the difference equation is

2 _ 2 _
g, =n0", m=1.

The proof is complete. |}

In the case that m = 0, then pp = 1 and 0% = 0. The population be-
comes extinet in one generation. In general, in the subcritical case, m < 1,
the process decays geometrically. In the eritical case, m = 1, the process is
constant, and in the supercritical case, the process increases geometrically.

The conditional expectation in the case Xy = 1 can be expressed in
terms of the mean:

X
E(Xn-i—llxn) =FK (Z Yian) = E(Xny;an) = XnE{Yz) =mXn,
i=]
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because all of the random variables ¥; are identically distributed with mean
m. In general, it follows from the Markov property and by induction that

E(Xn+TIXn) =m' X, (410)
{see Karlin and Taylor, 1975).

Example 4.4 Consider the p.g.f. in Example 4.2, () = 1/5+1/2+3t2/10.
The mean m = /(1) = 1.1 and variance 0% = f"(1) + /(1) — [f'(1)]* =
0.6 + 1.1 - (1.1)? = 0.49. Therefore, the mean and variance for X,, satisfy

m, = (L))" and ol = [(Ll]z”‘1 - (LI)"'I] 4.9, |

The results of the theorems are applied to an example on the spread of
a inutant gene {Bailey, 1990).

Example 4.5 Suppose the population size is very large. A new mutant
gene appears in N individuals of the population; the remaining individuals
in the population are normal; they de not carry the mutant gene. Individ-
uals without the mutant gene and those with the mutant gene reproduce
according to a branching process, Suppose the mean number of individu-
als with a mutant gene that are produced by a mutant individual is m. If
m < 1, then the line of descendants from the individual with a mutant gene
will eventually become extinct. Suppose the mean reproductive potential
of a normal individual is 1 but the mean of a mutant individual is greater
than 1. Then m > 1, but suppose it is only slightly larger than 1,

m=1<4+¢ €0

Then there is a probability ¢, ¢ = f(g), that the subpopulation with the
mutant gene will become extinct. Note that ¢ is close to 1 since ¢ is small.
The value of ¢ can be approximated from the mean and variance without
knowing the p.g.f. f. Let ¢ = e®. Then e’ = f(e?) = M (6). Also,

9

in M(6) = K(6)
2

2 8
O—t—mé—i—a‘)‘aﬁ—‘n

because K(0) = 0, K'{0} = m, and K"{0) = 6%. Now, ¢ = €% = 1, s0 that
8 = 0, but 8 < 0. Thus, the preceding Maclaurin series can be truncated:

2

B = mb + o %

Solving this equation for 8,

2 2 _
9%6-—2(1—131):—&36 or gRe e,
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N qN 1-— qN

1 0.9804 | 0.0196
100 | 0.1380 | 0.8620
200 | 0.0191 | 0.9809
300 | 0.0026 | 0.9974

Table 4.1. Approximations to the probability that a mutant gene becomes
extinct, ¢g”, or becomes established, 1 — ¢/, when there are initially N
mutant genes in a population with a Poisson offspring distribution and
m = 1.01 = ¢?

For an initial size of N mutants, the chance of extinction is ¢™ or
I
qN . 6-3;2-6.

For example, in the case of a Poisson distribution, m = ¢ = 1+¢. Suppose
¢ = 0.01. Then

qN e e—%’;(n.m) — o~ N0.01980198... . (0‘98039)}\?‘

The probability that the mutant gene becomes established in the population
is 1 — gV, See Table 4.1. a

4.6 Multitype Branching Processes

In a multitype Galton-Watson process, it is assumed that each individual
behaves independently of any other individual. In the Galton-Watson pro-
cess just described and analyzed, each individual gives hirth and is replaced
by its progeny. Every individual is of the same “type”-that is, gives birth
to new individuals, each with the same probahility distribution from gen-
eration to generation. In a multitype branching process, each individual
may give “birth” to different “types” or “classifications” of individuals in
the population. There is an offspring distribution corresponding to each of
these different types of individuals. For example, the population may be
divided according to age or size and in each generation, individuals may
“age” or “grow” to another age or size class. In addition, in each gen-
eration, individuals give birth to new individuals in the youngest age or
smallest size class. In the nexi section, the multitype branching process
is applied to a population structured according to age, a stochastic model
related to the well-known Leslie matrix model {Leslie, 1945). References for
multitype branching processes include the books by Harris (1963}, Karlin
and Taylor (19753), Kimmel and Axelrod {2002}, and Mode (1971).
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The notation is changed slightly from the previous section. Denote the
multitype branching process as {X{n}}2%, where X{n) is a vector of ran-
dom variables, X(n) = (X,(n), Xz(n),..., Xx(n))T, with k different types
of individuals. Here, the subscript ¢ in X;(n) denotes the ith component of
the vector random variable X {n) and n is the time step. In addition, each
random variable X;(n) has k associated random variables, {¥;;}5_;.

Each random variable Y;; has an associated offspring distribution de-
scribing the probability an individual of type ¢ gives “birth” to an indi-
vidual of type j, for j = 1,2,..., k. For each ¢ = 1,2,... % assume that
(Y, Yh,....Y}) areiid for { = 1,2,.... Each Y}; has the same offspring
distribution as Yj; for { = 1,2,.... Let pi(s1,ss,...,5;) denote the prob-
ability an individual of type ¢ gives birth to s; individuals of type 1, s
individuals of type 2, ..., and sy individuals of type k; that is,

p§(81,32,.‘ . ,Sk) = PI‘O]){Yfe- = 81,Y2£i = 82y, ‘kai = Sk}

for s; = 0,1,2,...and 4, = 1,2,... k. Define the k-dimensional p.g.f.’s
fi 1 [0,1]F — [0, 1] as follows:

o0 [ o0
fé(t]_,tg,.“,tk) - Z T Z Z pi(slsSQs'-'ssk)t;It;‘Z '”tik‘
sp=0 sa=0 g1 =0

fori=1,2,....k

Let §; denote a k-vector with the ith component being one and the
remaining components zero, & = {14,682, ...,8x)T, where J;; is the Kro-
necker delta symbol. Then X{0) = §; means there is initially one individ-
ual of type ¢ in the population. The p.g.f. for X;(0) given X(0} = 4, is
ﬁj(h,tg, e ,tk) = {;. Then the pgf for X,;{n) is denoted fin(tl,tg, cas }tk)
and defined by

3D T Prob{X(n) = s1,..., Xi(n) = sy X(0) = 8,143 - 13,
sp=0 ga=05;=0

For n =1, fl{t1,ta,...,0) = fi{t1,t2,.. ., t&). Let
F=Fty,. .. te)=(frlts, ..o ted-oon feltn, o te))

denote the vector of p.g.f.’s, F': [0,1]¥ — [0,1}*. The function F has a fixed
point at (1,1,...,1), since for each 4, f;{1,1,...,1) = 1. Ultimate extinc-
tion of the population depends on whether F' has another fixed point in
[0, 1)%. The following theorem on extinction (Theorem 4.4} is an extension
of Theorem 4.1, and as in Theorem 4.1, the probability of extinction de-
pends on the value of the mean. The analogue of the mean for a nultitype
branching process is defined next.

The mean number of births of a j-type of an individual by an i-type
individual is defined. Let rn;; denote the expected number of “births” of a
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type j individual by a type ¢ individual; that is,
my = B(X;(INX(0) =4d;) for 4,5 =1,2,...,k.
The means m;; can be defined in terms of the p.g.f.’s,

Afiltr, ... k)
o

My = .
t1=1,... fr=1

Define the & x k expectation matrix,

Mir Mz o Mk

Mz Mgz - T2
M=

Mpy Mg -0 MWigg

Matrix M is nonnegative. If matrix M is regular (i.e., some power of M is
strictly positive, MP > 0, for some p > 0), then M has a simple eigenvalue
of maximum modulus {Gantmacher, 1964). Denote this eigenvalue as A.
The main theorem regarding ultimate extinction in a multitype branching
process assumes that M is a nonnegative regular matrix. Extinction de-
pends on the magnitude of A. We state the theorem but do not include
a proof. A preof in the two-dimensional case when M is positive can be
found in Karlin and Taylor {1975), and for the more general case, see Harris
{1963) or Mode (1971).

Theorem 4.4. Assume each of the components functions f; of the p.g.f.
F, where

F(tl,‘..,tk} = (f]_(tl}---:tk‘):-”sfk(tla“'!tk])

are nonlinear functions of the variables t,, ...t and the expectation matriz
M is reqular. If the dominant eigenvalue X of M satisfies A < 1, then

lim Prob{X(n) =0{X(0) =4} =1,
i=1,2,...,k If the dominant eigenvalue of M salisfies A > 1, then there
exists @ vector ¢ = (q1.d2, .., qe)T, @ € [0,1), i = 1,2,... k, the unigue
nonnegative solution to F{t;. to, ..., tx) = (t1,te, ..., tx), such that

lim Prob{X(n) =0]X({0) = §,} = ¢,
i=12,..,k

Theorem 4.4 excludes the case that the p.g.f.'s are linear; that is,

fk(tls--'stk)) '-o’épf-(ovos"'so) +pi(1'0!""10)t1 + - +p‘i(030w”:1)tk
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for all 7. In the case of a single branching process, the p.g.f. is linear when
py+p = 1. This case was studied separately. In Theorems 4.1 and 4.2 and
Corollary 4.1, the case of a linear p.g.f. was also excluded. It was assumed
that 0 < pg + p1 < 1 inequalities (4.5) were assumed to hold.

Corollary 4.1 can be extended to the multitype branching case. If
X(0) = (r,ron.o.ori)T, r >0, =1,2,... k, then

Jingo Prob{X(n) = 0|X(0) = (r1,72,-..,m)" } = )" 5> -+ g}*.

For the multitype branching process, the zero state is an absorbing state.
It can be shown under the hypotheses of Theorem 4.4 that all other states
are transient (see Harris, 1963). '

Example 4.6 This example shows the importance of the assumptions in
Theorem 4.4. Cousider a two-dimensional multitype branching process,
where fi(t1,t2) = t1t2 and fa(¢;,82} = 1. The p.gf. f2 is linear. The
expectation matrix satisfies
1 0
- (1 0).

Hence, M is not regular. If X(0) = & = (1,0)7, then X(n) = (1,1)7,
for n > 1, and if X(0) = & = (0,1)7, then X{(n) = (0,07, for n > 1.
According to the generating functions, an individual of type 1 gives birth
o an individual of type 1 and type 2 with probability 1, but an individual
of type 2 gives birth to zero individuals of type 1 or type 2. The chain is
reducible. Only states {0,0)7 and (1,1)7 can be reached when X (0} = §;,
i=1,2 State (1,1}T is not transient. |

Example 4.7 Consider a two-dimensional multitype branching process.
Suppose the p.g.f.'s satisfy
1 2 42 1 2 2
f] (t],tg) = 1(1 + t] + tg + t1t2) and f‘}(t[,tg} — ;1(1 + tl + t2 + tltz).
For example, an individual of type 1 gives birth to a single individual of the
same type or two individuals of type 2 or two individuals of type 1 and one
individual of type 2, each with probability 1/4. The expectation matrix

satisfies / /
3/4 1/2
M= (3/4 1 ) :

The expectation matrix is regular with dominant eigenvalue A = 3/2 and
the p.g.f.'s satisfy the hypothesis of the theorem. Since A > 1, there exists
1,92 € [0,1) such that fi(q1,¢2) = g1 and f2(q1,q2) = g2. The fixed point
is gy = v2 — 1204142 and g3 = v2 — 1 ~ 0.4142. If X(0) = (ry,72), then
limy,— o Prob{X (n) = 0} = (0.4142)71+2, n
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The identity for the conditional expectation {4.10) can be extended to
multitype branching processes (see, e.g., Karlin and Taylor, 1975 or Harris,
1963). The conditional expectation satisfies

E(X{n+1}X{n)) = MX(n); (4.11)

that is, the expectation of X (n + 1) given the vaiue of X(n) is the expec-
tation matrix times X{n). In general,

E(X(n+ 1)) X(n)) = M"X(n).

It is important to note that these identities apply only to the conditional
expectation (see Exercises 8, 9, and 10).

Example 4.8 Consider the multitype branching process in Example 4.7.
If X(0) = (1,1}, then

soamn= (3 ) () - ()
oo =gy ') ()= (ene) ™

4.7 An Example: Age-Structured Model

Suppose there are k age classes, i = 1,2...,&. The first age class, type
1, represents newborns. An individual of age i gives birth to individuals
of type 1, then survives, with a given probability, to the next age class
becoming an individual of type i+ 1. Age class k is the oldest age class, and
individuals in this class do not survive past age k. Assume an individual
of type ¢ at time n either survives to become a type i + 1 individual at
time n + 1 with probability p;1;,; > 0 or dies with probability 1 — p;1 .,
i=1,2,....k — 1. Probability pr11 = 0 because age k i3 the oldest age
class. In addition, a type ¢ individual gives birth to r individuals of type
1 at time n + 1 with probability b; .. The offspring distribution, {b;r}22,,
for an individual of time i satisfies

bir 20, and > bo=1, i=12.. k
=0

The mean of this distribution is dencted by

[=e)

b = Z T‘b,'__‘,u

r=1
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The expectation matrix M can be computed from these probability distri-
butions:

by by - By b

pan O - 0 0
M=|0 p= -~ 0 O (4.12)

6 0 - Pk O

The form of matrix M is known as a Leslie matriz or a projection matriz
(Caswell, 2001; Cushing, 1998; Leslie, 1945). In the deterministic Leslie
matrix model, the value of each of the age classes at time n+ 1, X{n+1), is
found after multiplication by A; that is, X(n+1) = M X (n). In particular,
the first age group xi{n + 1) consists of offspring from alt of the other age
groups; that is,

k
zi{n + 1) = hyzy(n) + baxa(n) + - - - + bprp(n) = Zbixi(n)

The i+1st age group, i = 1,2,..., k=1, £;41({n+1), consists of individuals
from age group ¢ who survived and became age ¢ + 1:

Zip1(n+ 1) = peyysxi(n).

It is interesting to note that, in the stochastic model, the conditional ex-
pectation satisfies a similar identity, equation (4.11).

The expectation matrix M can be determined directly from the p.g.f.'s
{see Exercise 11). The p.gf’s f;, i = 1,2,...,k satisfy

)
filti o, bk} = preration + (1 = pigr )] Zbi,r 1o =Lk

=0 _
(4.13)
Note that f;(1,1,...,1) =1L
It will be assumed that the expectation matrix M is regular and that the
p.g.f.'s are nonlinear. Then Theorem 4.4 can be applied. These assumptions
are reasonable for many age-structured models. For example, for matrices
M satisfying pip1; > Ofor i = 1,...,k — 1 and b, > 0, # can be shown
that M s regular if and only if the greatest common divisor of the set of
indices ¢, where b; > 0, is 1, g.c.d.{ijb; > 0} = 1 (Sykes, 1969).

Example 4.9 Suppose

b 0 0 b, 0 b 0 by

s _|pn 0 0 O P 0O 0 0
A 1 = 0 Daa 0 0 and .ﬁ/fg = 0 P32 0 0 )

0 0 ps O 0 0 pi3 0O
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where the elements p;41; > 0 and b; > 0. Applying the criteria of Sykes
(1969), it can be seen that M is regular (g.c.d.{1,4} = 1) but that M is
not regular (g.c.d.{2,4} = 2). [ ]

When Theorem 4.4 applies, the extinction behavior in a multitype
branching process is determined from the dominant eigenvalue A of M and
from the p.g.f.’s. If the dominant eigenvalue satisfies A > 1, then the limit,
limg e Prob{ X (n) = 0}, depends on the initial distribution and the fixed
point of the p.g.f.’s. If X{0) = (r1,72,...,r)T, and the fixed point of F is
(@1, 2. -Gk} then

lim Prob{X(n) = 01X {0) = (r1,72,...,re)T} = 15" -~ g3
In the particular case b; o =0, 1 = 1,2,...,r, every individual has at least
one offspring and the fixed point of F is at the origin, ¢; = 0 for all ¢ (see
Exercise 12). In this case the probability of ultimate extinction is zero.

The multitype branching process simplifies to a single branching process
when the number of age classes is reduced to one, & = 1. In this case, there

is one p.g.f. given by
o
A=Y bt
r=0

where b, , = p, is the probability of r births. If the mean number of births
m = f{(1) > 1, then there exists a fixed point g € [0,1) of f; such that
lim,— o Prob{X, =0|X, =1} =¢q.

Example 4.10 Suppose there are two age classes and the expectation ma-
trix is
we(m §)=(30)
The cha.racﬁeristic equation of A is
-{3/4)A-1/2=0

so that the dominant eigenvalue is X = (34 /41}/8 ~ 1:17539 > 1. Suppose
the birth probabilities are

1/2, r=0 1/4, r=10,2
bir.=4¢ /4, r=12 | bor,=2¢ 1/2, r=1
0. r#0,1,2 0, r#0,1,2

‘The mean number of births for each age class is

by =3/4= Zrbl,, and by =1 =i rbor

r=1
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Proportion of Extinct
x0T Sarmple Paths nlﬂrgc Prob{X(n} = 0| X{0)}
Out of 10,000
{1.0 0.6318 0.62%85
{0,1} 0.6665 0.6631
(1,1} 0.4197 0.4168
(0,2} 0.35892 0.3950
{2,0) 0.4391 0.4396

Table 4.2. Probability of population extinction for Example 4.10 {Block
and Allen, 20060)

(the values in the first row of Af). In addition, the p.g.f.’s for the two age
classes satisfy

filty, ta)
falti ta)

Since A > 1, the preceding system of p.g.f.'s has a unique fixed point on

[0,1) x[0,1). The fixed point {g;, ¢2) satisfies fi(q1,¢2) = q1 and fa(q1, 42} =
g and satisfies

[((1/2)t2 + 1/20[1/2 + (1/4)t, + (1/4)¢7]
1/4 + (1/2)t + (/5.

{q1,q2) = (0.6285,0.6631).

For example, if there are initially five individuals of age 1 and three indi-
viduals of age 2, then the probability of ultimate extinction of the total
population is approximately

(0.6285)5(0.6631)° ~ 0.02886. [ ]

In Block and Allen (2000), sample paths were numerically simulated
for the branching process in Example 4.10. Ten thousand sample paths
were generated for each set of paramefer values. From these 10,000 sample
paths, the proportion of paths for which the population size had reached
zero by time 39 was calculated and compared with the preceding estimate
(0.6285)™ (0.6631)>. See Table 4.2.

For additional examples on branching processes in the context of Leslie
age-structured or general structured models and models with size-depen-
dent birth or transition probabilities, see Pollard (1966, 1973) and Block
and Allen (2000). In addition, please consult Tuljapurkar (1990} for a
discussion of stochastic matrix models with applications to structured pop-
ulations. Tuljapurkar (1990} studies models of the form

Xi{n+ 1) = M{n+ 1)X{n),

where matrix M is a random matrix depending on time n+ 1. In these mod-
els, the population structure depends on environmental variation. Birth and
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survival rates depend on the state of the environment (see Exercise 16). We
end this chapter with an example of a size-dependent branching process.

The single and multitype branching processes discussed thus far exhibit
either exponential growth or decline. Eventually, either the total population
size approaches zero or infinity. This is due to the fact that the offspring
distribution is constant over time. If the offspring distribution depends on
the population size, then the branching process is size dependent. Size-
dependent branching processes based on simple discrete time population
models have been formulated and analyzed by Hognés (1997, 2000). The
next example illustrates a size-dependent branching process that is based
on a population growth model known as the Ricker model

Tyl = TpeXP(r —qxa), 0<r 0<y

{May, 1976; Ricker, 1954). The Ricker model has been used frequently in
biological applications (see Caswell, 2001). It has very interesting behavior
for various values of the parameter r. For example, if 0 < r < 2, then xz,,
converges to a stable fixed point r/+:
. r
lim &, = ~.
n—o0 ’}'
But if 2 < v < 2.526, then solutions converge to a stable two-cycle; solutions

Zp oscillate between two values. For increasing values of r, solutions exhibit
what is known as period-doubling hehavior (see May, 1976; Elaydi, 2000).

Example 4.11 We describe the size-dependent Ricker branching process
formulated by Hognis (1997). Let X, be the random variable for the
total population size. Let {p}32, denote the size-independent offspring
distribution, where the probability an individual produces & offspring is p,
> ie, Pk = L. In addition, assume the mean satisfies

= o
m = kak =¢ > 1.
k=1

Each individual produces offspring independently of any other individ-
ual. For a population of size # € {0,1,2,...}, let the size-dependent
offspring distribution be defined as follows: The probability that an in-
dividual produces & offspring is p; exp(—vx) for k= 1,2,... and the prob-
ability that an individual produces no offspring is 1 — exp(—~yz). Let
{Y;} be a set of iid random variables having the aforementioned size-
dependent offspring distribution; that is, Prob{Y; = k} = piexp(—vz}
and Prob{Y; = 0} = 1 — exp{—vx). Then if X,, = x,

T Y o=
Xnt1= { DZJ_l ! >

[l

1.2,...,
0.
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Figure 4.4. Solutions fo the deterministic and stochastic Rickef models. The
deterministic solution is the solid curve. One sample path for the size-dependent
branching Ricker process is the dotted curve and the mean of 100 sample paths
is the dashed curve. In the first case, the size-independent offspring distribution
satisfies pr, = 1/6 for & = 1,2,...,6, r = 1.2528 < 2, and ¥ = 0.02. Then
the deterministic solution and the stochastic mean converge to r/y = 62.64. In
the second case, the size-independent offspring distribution satisfies ps = 0.2,
pe = 06, and pro = 0.2, r = 21972 > 2, and v = 0.005. In this case, the
deterministic solution and the stochastic mean oscillate between two values.

It can be shown that the following conditional expectation of the branching
process has the same behavior as the deterministic model:

E(Xpy1|Xy = z) = zexp(r — yz).

Numerical simulations comparing the deterministic and stochastic Ricker
models are graphed in Figure 4.4 for the two cases: r = 1.2528 and r =
2.1972. ]

4.8 Exercises for Chapter 4

1. Consider Galton’s problem in the context of Example 4.1, where X =
N adult males each have different surnames. In each generation, a
proportion po of the adult males have no male children who reach
adult life and py have one such child, pyp + p; = 1. Show that the
expected proportion of surnames that has gone extinet in generation
r is po{r). Notice that the proportion that has gone extinct is either
1(N-1)/N (N ~2)/N,...,1/N, or 0. The probabilities for each
of these proportions are given by the coeflicients in the expansion of
[fT ()™, equation (4.4). (Hint: Refer to Example 4.1.)

2. Suppose a branching process with X¢ = 1 has an offspring distribution
satisfying
pr=abt"l k=12,...
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and -
Po = 1":{:;%:
k=1
where 0 < b < a+ b < 1 {Karlin and Taylor, 1975).
{a) Show that the p.g.f satisfies

1—{a+b) at

f=—= 1- bt

(b) Assume a > (b— 1)>. Then find lim, o Prob{X,, = 0}.

3. The p.g.f. of a branching process with Xy = 1 satisfies f(t} = at? +
bt + ¢, where a, b, and ¢ are positive and f(1) = 1. Assume f'(1) > 1.
Then show that

lim Prob{X, =0} = =
T—ton a

(Karlin and Taylor, 1975).

4. Suppose the p.g.f. of a branching process satisfies f(t) = pp + mf,
po>0,p1 >0,and pp+p; = 1.

(a) Show that f"(t) =1 — p? + pit. (Hint: Refer to Example 4.1.)
(b) Suppose X = N so that the p.g.f. of X,, is [f*()]V. Let T be
the random variable for the first time to extinction; that is, the
smallest n such that X, = 0 (i.e., the first passage time into
the state 0). Then Prob{T = 1} = {1 - p;}". Use the fact
that Prob{T < n} = [f*(0)]V to show that Prob{T = n} =
(1—p)™ — (1 —py~H¥.
5. Suppose a branching process with Xo = 1 has an offspring distribution
satisfying
e‘*hk
ko
(a) Find the p.g.f. f(#); then find the mean and variance of X,
m = E{X,), and ¢? = Var(X,).
(b} Find the mean and variance of X,, m, = E(X,), and a2 =
Var{ X,).
(c) For A=1.5 and A = 2, find lim,_,» Prob{X,, = 0}.

Pr = k=0,1,2,....

6. Suppose Zp = Z:=o Xpfork=0,1.2,...and Z =737, Xn, where
{X,} is a branching process with Xy = 1. Suppose the mean m of
the offspring distribution satisfies 0 < m < 1. Show that E(Z;) =
> _om™ and E(Z) = (1 — m)~! (Taylor and Karlin, 1998).
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7. Suppose a branching process with Xy = 1 has an offspring distribution
with mean m > 0. Let Z, = X, /m®. Show that E(Z,1|Z, = k) =k
{Taylor and Karlin, 1998).

8. Suppose a multitype branching process with two types X (n) = (X;{n},
Xo(n))T has p.gt’s

filt,t) = (1/9(1 + t2 + 263) and folty, t2) = (2/3)(1/2 + £3).
(a) Find the expectation matrix M and show that M is a regular
matrix.
(b) Find the expectation E (X (n)}X(0) = (3,4)7) for n = 1,2,3.
(¢) Find lim,_o, Prob{X(r) = (0,0)7|X(0) = (3,4)7}.

9. Suppose a multitype branching process with three types X(n) =
(X1(n), X2(n), Xa(n))™ has p.g.f’s

1 1 1 1
At to,t3) = 3+ §t2{t1 +1t3), fa(tita,t3) = 5t §t1f2t3,

and !
falt1,tg.t3) = :1(1 +17 + 63+ 13).
(a) Find the expectation matrix M and show that M is a regular
matrix.
(b) Find limy—.c Prob{X(n} = 0|X(0) = (r1,r2,73)7 }.
(c) IF X(0) = (1,1,1)7, find the expectation E (X (n}|X(0)) for n =
1,2,3

10. Suppose a multitype branching process with three types X({n) =
(X1({n), X2(n), Xa(n))” has p.gi’s

1 1
filty,ta,t3) = §t1t2t3+§t§' falt,ta,8a) = 1, and fs(ty, t2,t3) = 3.

{a) Find the expectation matrix Af. Is M regular?
(b} If X(0) = &; = (1,0,0)T, find the expectation E(X (n)|X(0)) for

n=123.

(¢) If X(0) = & = (0,1,0)7, find the probability distribution for
X{n)yn=1.

(d) If X(0) = &3 = (0,0,1)T, find the probability distribution for
X(n),n > L

11. Use the p.g.f’s given by (4.13) to verify that the expectation matrix
M of the age-structured example satisfies (4.12).



4.8. Exercises for Chapter 4 167

12.

13.

14.

Suppose a multitype branching process for an age-structured popula-
tion model satisfies b; g =0 and by, =0 forr >5and i=1,2,.... k.
Show that a fixed point of the generating function F is the origin [i.e.,
£:(0,0,...,0) = 0-the probability of population extinction is zero].

Suppose the offspring distribution for an age-structured branching
process satisfies

1/2, r=0 1/6, r=0,2
bl?rZ 1/2, =2 bg,,. = 2/3, r=1
0, r#10,2 13 r#0,1,2

In addition, suppose the probability of surviving from the first to the
second age class is po; = 3/4.

{(a) Find the mean birth rates, #; and b;.

{b) Find the expectation matrix M. Show that M is regular; then
find the dominant eigenvalue of Af.

{c} Find the p.g.f’s for the two age classes, fi(¢1,%2) and fo{ty,to).
Then find the probability of population extinction given X (0) =
(1,2)7; that is, lim,_ ., Prob{X{n) = 0|X(0) = (1,2)T}.

A simple example of a multitype branching process related to cellu-
lar dynamics is discussed by Jagers (1975}, Cell division results in
two identical daughter cells containing the same number of chromo-
somes as the original cell (2n for a diploid cell). Sometimes a mistake
occurs and only one cell is produced having twice the number of chro-
mosomes (4n chromosomes), referred to as endomitosis. When this
abnormal cell divides again, it will produce two daughter cells with
twice the number of chromosomes (4n chromosomes). Endomitosis
can occur again for a cell having 4n chromosomes to produce a cell
with 8n chromosomes and, in general, endomitosis occurring in a cell
with 2°n chromosomes produces a cell with 2**1n chromosomes. Cells
with more than two copies of the genes are known as polyploid cells.
The incidence of higher ploidies than four is small. Therefore, it is
reasonable to consider a cellular model with only two types: diploid
cells and polyploid cells (Jagers, 1975). Let p be the probability of
endomitosis, 0 < p < 1/2. The p.g.f.’s for the two types satisfy

filts, t2) = (1 — p)t2 + ptz and fo(ta,t2) = pta + (1 — p)t3.

(a) Find the expectation matrix M and the dominant eigenvalue of
M. Is M regular?

(b) Find all of the fixed points of (f1. f2) on the interval [0, 1] x [0, 1].
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15.

16.

Chapter 4. Discrete Time Branching Processes

(a} Consider the size-dependent Ricker branching process { X, }32,
discussed in Example 4.11. Show that the conditional expecta-
tion E(X,41| X, = z) satisfies

E(Xp1|Xn = z) = vexp(r — ya).

{b) Formulate a size-dependent branching process similar to the one
described in Example 4.11 but one based on the following dis-
crete time population model:

FiLr,
149z,

Trpy1 = 0<r, 0.

This population model is known as the Beverton-Holt model
{Caswell, 2001). Assume the size-independent offspring distri-
bution {px} satisfies 3 7. kpx = r > L. Then show that the
model satisfies the following conditional expectation:

re

E(Xn+1|Xn = :B) = 1+ 7’33‘

Suppose a population has two stages and the birth rates for each
stage are constant, b; > 0 and b2 > (), but the survival probability
from stage 1 to 2 is an environmentally determined, time-dependent,
random variable p,,, where 0 < pSpe<p=lforn=12... The
stochastic model satisfies

_ bl b2
X{n+1)= (pn“ 0

)X(n), b >0, i=1,2

(see Tuljapurkar, 1990). The ratio of stage 2 to stage 1 over time is
denoted as U,, = Xa{n}/ X (n), where X(n) = (X;(n), Xo(n))7.

(a) Show that
P+l

b+ bUy’

(b) Use the fact that p/(by +boUsn) < Unyy < B/ (b +b2U5) to show
that there exist constants 0 < &) < ¢ such that ¢; < U,, < ¢
for all time n (i.e., it is possible to obtain bounds on the ratio of
the age structure).

Upt1 =
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In matrix form,
P(s5)P(t) = P(s+1)

for all s,t € [0,00). Notice that these definitions are the continuous ana-
logues of the definitions given for discrete time Markov chains. There are
some special cases known as explosive processes when condition (5.1} may
not hold for all times, but these special cases can occur only when the state
space is infinite. An explosive process is defined, but first the concept of a
jump time is defined.

The distinction between discrete and continuous time Markov chains
is that in discrete time chains, there is a “jump” to a new state at times
1.2,..., but in continuons time chains the “jump” to a new state may
occur at any time ¢ > 0. In a continuous time chain, with beginning state
X(0), the process stays in state X (0} for a random amount of time W)
until it jumps to a new state, X(W)). Then it stays in state X{W;) for a
random amount of time until it jumps to a new state at time Wy, X{W3),
and so on. In general, W; is the random variable for the time of the ith
jump. Define Wy = 0. The collection of random variables {W;} is referred
to as the jump times or waiting times of the process {(Norris, 1999; Taylor
and Karlin, 1998). In addition, the random variables T, = W, — W; are
referred to as the interevent times or holding témes or sojourn times (Norris,
1999; Taylor and Karlin, 1998). The waiting times W; and interevent times
T; are illustrated in Figure 5.1.

In an explosive process, the value of the state approaches infinity at
a finite time, lim;_.7- X{t) = oo for T < oco. Then p,;;(T) = 0 for all
t,7 = 0,1,2,..., which means Z?io p;#(T) = 0. Hence, condition (5.1}
does not hold. See Norris (1999) or Karlin and Taylor (1975) for further
discussion on explosive processes. Most of the well-known birth and death
processes are nonexplosive. In particular, all finite, continuous time Markov
chains are nonexplosive. Explosive birth processes will be discussed in
Chapter 6.

To Ti T: T2
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Figure 5.1. One sample path of a continuous time Markov
chain, illustrating waiting times and interevent times.
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Figure 5.2. One sample path of a continuous time Markov
chain that is explosive.

One sample path of an explosive process is graphed in Figure 5.2. The
values of the waiting times are approaching a positive constant, W =
sup{W;}, and the values of the states are approaching infinity, @l_l.n; X{W;)=
00; the process is explosive. Notice that the sample path in Figure 5.2 is a
piecewise constant function that is continuous from the right. However, for
ease in sketching sample paths, they will be drawn as connected rectilinear
curves (as in Figure 5.3).

As before, our notation differs from the standard notation in that we
have defined the transition probability from state i — j as pj;;, rather
than the more commonly used notation p;; (e.g., Bailey, 1990; Karlin and
Taylor, 1975, 1981; Norris, 1999; Schinazi, 1999; Stewart, 1994; Taylor and
Karlin, 1998). This notation is consistent with our notation for discrete
time Markov chains. In our notation, the element in the ith row and jth
column of P(t) is p;;, which represents the transition j — 1.

5.3 The Poisson Process

The Poisson process is a continuous time Markov chain {X(¢)} defined on
{0,1,2,...} with the following properties:
(1) For t = 0, X(0) = 0.
(2) For At sufficiently small, the transition probabilities satisfy
Pit1,i(At) = Prob{X{t + At) =i+ 1|X(t) = ¢} = AAL + o(At)
pii(At) = Prob{X{t+ At) = {|X(t) =i} =1 - MAt + o(At)
pi(Af) = Prob{X(t+At) = jIX(t) = i} = o(At), j>i+2
pﬁ'(At) = 0, J < i,

where the notation o(At) (“little ch At") is the Landau order symbol.
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In general, we say that the function f(At) = o(At) or f{At) is o(At)
as At — 0 if f has the following property:

flar)

At—0 At =0

Therefore, in part (2) of the definition of the Poisson process, the functions
pis1:(At) — AAL, pu(At) - 1+ A At, and py;(At) are o(At) as At — 0. In
particular,

p§+1,i(At) — MA¢ _ pﬁ(At) -1+ AAE

Al At 0= lim At
and )
palB)
Ao AE =0 j=zit2

Frequently, contimuous time Markov processes are defined by conditions
such as those given in (2). From these “infinitesimal” transition probabili-
ties, other properties of the process can be derived.

In a small time interval Atf, the Poisson process can either stay in the
same state or move to the next larger state, 1 — 1 + 1; it cannot move
to a smaller state. The probability that the Poisson process moves up
two or more states is a very small probability and approaches zero when
At — 0. Note that the transition probabilities p;;(At) are independent of
i and § and only depend on the length of the interval Af. If the intervals
[s,s + At] and [t,t + At] are nonoverlapping, s + At < £, then property
(2) and the Markov property imply that the following random variables
from the Poisson process, X(t + At) — X(?) and X (s + At) — X(s), ate
independent and have the same probability distributions (i.e., the Poisson
process has stationary and independent increments).

The assumptions (1) and (2) are used to derive a system of differential
equations satisfied by p:(t) for ¢ =0,1,2,.... The solution to p;{t) is then
shown to be a Poisson probability distribution. Because in the Poisson
process X{0) = 0, it follows that p,o(2) = p;(t). Let ppo(t+ At) = pp(t+ At).
Then

polt + At) = Prob{X(t + At) =0}
= Prob{X(t) =0, X(t + At) — X(t) =0}
= Prob{X(t) = 0}Prob{X(t + At) - X(2) = 0}
= Prob{X(t) = 0}Prob{X(At) = 0},

where we have used the fact that X{t) — X (0} = X () and X (t + At) - X(t)
are independent. Therefore,

polt + At) = pplt) [T — MAt + o(At)].
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Subtracting py(¢) from both sides of the last equation,
polt + At} = po(t) [1 — MAt + o{ At))
and dividing by At,

polt + At) — polt) o(A?)

= o (t) + polt) 2

At
Then taking the limit as At — 0,
dpolt
‘%) = Apolt). (5.2)

Given that pp(0) = 1 = Prob{X(0) = 0}, the solution to this linear first-
order differential equation is

polt) = e~

The differential equations for ¢ > 1 are derived in a similar manner. Let
pio(t + A) = pi(t + At). Then

ml(t + At) = Prob{X(t+ At) =14}
= Prob{X(t) =4, AX(t) =0}
+Prob{X(t) = - 1,AX(t) = 1}
k<i
+ > Prob{X(t) =i—k AX(t) =k},
k=2 '

where AX(t) = X{t + &t) — X(t). The latter summation is of At) since

k<i k<i
> Prob{X(t) =i - k,AX(t) =k} = >_ pi_(t)o(Af) = o(At).
k=2 k=2

Applying the definition of the transition probabilities and the independence
of the increments,

pi{t + At) = pi(8)[1 — AAE + 0(At)] + pi—1 (B[ AAL + o AL)] + o(At). (5.3)

Note that the equations given in (5.3} can be derived directly from the
infinitesimal transition probabilities. If the process is in state ¢ at time
t + At, then at the previous time ¢ it was either in state ¢ or ¢ — 1 [the
probability it was in some other state is o(At)]. If the process is in state 4
at time £, the process stays in state ¢ with probability 1 — AA# + o{At), and
if the process is in state ¢ — 1 at time £, it moves to state ¢ with probability
AAE + o At).
Subtract p;{t} from both sides (5.3) and divide by At. Then

pi(t + Af) — pi(t) ol A#)
At At

= =Api(t) + Ap;—1{t) +
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where all terms with a factor of o{ At) are bounded and can be absorbed in
of At). Taking the limit as At — 0, then

dp;(t)
dt

The preceding equations represent a system of differential-difference equa-
tions, difference equations in the variable ¢ and differential equations in the
variable £.

The system of differential-difference equations (5.4} can be solved se-
quentially. Replace po(t} by e~ and apply the initial conditions pi{0) =0
i > 1. The differential equation for p,(t} is a linear first-order differential
equation,

= pilt) + dpica(t), i 1. (5.4)

dpﬁ;f(t) +ApL{t) = xe™™, pi(0) =0
Multiplying by the factor e* (known as an integrating factor) yields
d [eMp(t '

In general, an integrating factor for a linear differential equation of the form
dz/dt + a(t)x = b(t) is ef *¢ Integrating both sides of (5.5) from 0 to ¢
and applying the initial condition yvields the solution '

p1(t) = Me™?,
Next, the differential equation for pa{t) is

dp>(t)
dt

+ Ap2(t) = A%te ™, pa(0) =0.
Applying the same technique to po{t) as for py(f), it follows that
d [e*palt
dXptt)] Mt
dt
Integrating both sides and applying the initial condition yields the solution
et
pa(t) = (Af}ZT-
By induction, it can be shown that
Y
pi(t) = (Af)t—z.!—‘ i=0,1,2,....

The probability distribution, {p;(£)}<,. represents a Poisson probability
distribution with parameter Af. The mean and variance of this Poisson
distribution satisfy

m{t) = M = o?(t).
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For more general continuous time Markov chains, it can be difficult to
solve a system of differential-difference equations in a sequential manner
and obtain a general formula for p{t}). A pattern may not emerge as in
the case of the Poisson process. Therefore, other techniques for obtain-
ing information about the probabilities p;(#) in a continuous time Markov
chain will be applied-in particular, techiiques that involve solving a partial
differential equation for the probability or moment generating function.

The probability po(f) = e~** in the Poisson process can be thought of
as a waiting-time probability (i.e., the probability that the first event 0 — 1
occurs at a time greater than ). Let W be the random variable for the
time until the process reaches state 1, the holding time until the first jump.
Then

Prob{W; >t} = e~ or Prob{W; <t} =1-e .

This latter expression is the cumulative distribution function for an expo-
nential random variable with parameter A. Thus, W) is an exponential
random variable with parameter A, with c.d.f. F(t) = 1 — e~ and p.d.f.
f(t) = F'(t) = de~*t. In general, it can be shown that it takes an expo-
nential amount of time to move from state ¢ to state i + 1 (i.e., the random
variable for the time between jumps i and i+ 1, W, — W,, has an exponen-
tial distribution with parameter A). In fact, sometimes in the definition of
the Poisson process it is stated that the interevent times, T; = W3, — W,
are independent exponential random variables with parameter A (Norris,
1999; Schinazi, 1999). Interevent times for more general continuous time
Markov chains are discussed in Section 5.9, where it is shown that they are
also exponential random variables.

Figure 5.3 is a sample path or realization of a Poisson process when
A = 1. A general method will be given for generating sample paths of
birth and death processes based on this exponential distribution for the
interevent time.

5.4 Generator Matrix ()

The transition probabilities p;; are used to derive transition rates ¢;;. The
transition rates form a matrix known as the infinitesimal generator matrix
. Matrix @ defines a relationship between the rates of change of the
transition probabilities. First, we define the elements of the matrix @ =
(Q'jf)‘

Assume the transition probabilities p;;(t) are continuous and differen-
tiable for t > 0 and at ¢ = 0 they satisfy

p;(0)=0. j#i, and py(0) =1
Define

o= i BB, pulB)
G AT A TR

¥ i 7‘93 (5.6)
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Figure 5.3. Sample path for a Poisson process with A = 1.

Notice that ¢;; > 0 since p;;(At) > 0. In addition, define

pulAt) — pis(0) lim pu{At) —1
Ar—0t At At—0+ At :

From equation {5.1}, Z;’io p;i(At) = 1, it follows that

1 — pi(At) = Z pi{Aty= 3 [guAt+o(At)].
J=0.3#1 F=0,j#¢
Thus,
T Ygm g [iDE + o(A)
W = All—l.?ﬁ LY
= - Z jSs
=054

179

(.7)

(5.8)

where it is assumed that 3 ,; o(At} = o(At). This is certainly true if the
summation contains enly a finite number of terms (finite state space). If
the summation contains an infinite number of terms {state space is infi-
nite)}, Karlin and Taylor (1981) show that the limit (5.8) does exist on the
extended interval, [-00,0], 0 € —gy; < oo. In either case ¢;; < 0. If gy is

finite, then Z:}io g;: = 0 and it follows from (5.6) and (5.7} that
pji(At) = 6j;f + qngt + O(At],

where §;; is Kronecker’s delta symbol.

(5.9)
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Definition 5.2. The matrix of transition rates @ = (g;;), where the el-
ements g;, are defined in (5.6} and (5.7), is known as the infinitesimal
generator matrit,

(QDU Jo1  qo2
i 11 Gz
QR = |gqo g g

\
(

i=1 o
d10 - Z Ti1 q12
= i=0,i#£1
= u]
G20 ga1 - 3 q
i=0,i#£2

Semetimes the terms transition rate matriz or infinttesimal matriz or
simply generator matriz are used when referring to matrix . Matrix Q
has the property that each column sum is zero and the ith diagonal element
is the negative of the sum of the off-diagonal elements in that column.

The next example shows that the system of differential-difference equa-
tions for the Poisson process {5.4) can be expressed in terms of the generator

matrix @ {i.e., dp/dt = Qp).
Example 5.1 The generator matrix for the Poisson process can be calcu-
lated easily:

Gt = Jim PBD ) AAESO(BT)

S0 At fsoo At =A

In addition,
Gii = —-A and s =0$ j#i,ﬁ"'l.

The generator matrix satisfies

- 0 0
A=A 0
Q=|9 A=A
0 0 A

The system of differential-difference equations for the Poisson process, equa-
tions (5.2} and (5.4}, can be expressed in terms of the generator matrix @
as follows:

dp(t)

7l Qp(t). n
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The generator matrix ¢ will be shown to be important for several rea-
sons. In particular,  is used to define the forward and backward Kol-
mogorov equations, which express the transition matrix P(t) in terms of
a differential equation, dP/dt = QF and dP/dt = PQ. In addition, the
generator matrix ¢ is used to define a transition matrix for the embedded
Markov chain. We discuss these two concepts in the next two sections.

5.5 Embedded Markov Chain and
Classification of States

Every sample path or realization of a continuous time Markov chain remains
in a particular state {stays constant) for a random amount of time before
making a jump to a new state. Recall that the waiting times are denoted
as Wi, i = 0,1,2,..., and the interevent times as T; = W, — W, i =
0,1,2..... For example, in the Poisson process, the states 0,1,2,..., are
visited sequentially with an exponential amount of time between jumps.

Definition 5.3. Let Y, denote the random variable for the state of a
continuous time Markov chain {X{t)}, £ € [0,00) at the nth jump,

Y, =X(W,), n=0,1,2,....

The set of random variables {Y,}32, is known as the embedded Markou
chain or the jump chain associated with the continucus time Markov chain
{X(}.t=o0

The embedded Markov chain is a discrete time Markov chain. The
embedded Markov chain is useful for classifying states (transient, recurrent,
etc.) in the corresponding continuous time Markov chain. We shall define
a transition matrix T = (¢;;) for the embedded Markov chain, {¥,}32,,
where t;; = Prob{Y,41 = j|¥Y» = ¢}, which will be useful in classifying
states. First, we demonstrate how to define the transition matrix for the
embedded Markov chain of the Poisson process.

Example 5.2 Consider the Poisson process, where X(0) = X(Wg) = 0
and X(W,.}=ntforn=12,.... The embedded Markov chain {¥,,} satis-
fies ¥, = n,n =0,1,2,.... The transition from state n to n+1 occurs with
probability 1. It is easy 1o see that the transition matrix for the embedded
Markov chain corresponding to the Poisson process satisfies

000
10 0
T=gé{1]::j. © (5.10)
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In general, the transition matrix T = (t;;) can be defined using the
generator matrix Q). First, note that the transition probability #;; is zero,
because an assumption inherent in the definition of the embedded Markov
chain is that the state must change, unless state ¢ is absorbing. A state {
in the continuous time chain is absorbing if ¢;; = 0 (i.e., the rate of change
is zero since the state does not change}. Thus,

t___{m if g £ 0

1, if i — 0. (511)

As motivation for the definition of the transition probability ;;. recall that
qii = hmﬁt_.o-&. pjg(At)!At and — i = lil’[lﬁt__(jé—(l - p-j-j(At}) /At ThUS,

G im ACON .
Qi At—0+ 1 — py{At)

This latter probability is the probability of a transfer from state ¢ to §, given
the process does noi remain in state 7. Hence, we define ¢;; = —¢;:/qu,
gi; # 0. The transition probability #;; for j # { satisfies

=l g A0
tie = Qrs b 5.12
i kzg_«;# i (5.12)
0, if g = 0.

Definition 5.4. The matrix T = (;;), where the elements t;; are defined
in (5.11) and (5.12), is the transition matriz of the embedded Markov chain
{Yo}22,. In particular, for ¢; #0,7=10,1,2,..,

(o _o _s2 )
q11 a2
L@, gz
T= Foo g22
e
qo0 11

A R

If any g;; = 0, the (i,7) element of T is one and the remaining elements in
that coluinn are zero.

Matrix T is a stochastic matrix; the column sums equal one. The tran-
gition probabilities are homogeneous (i.e., independent of n}. In addition,
™ = (t;?)), where t;’:) = Prob{Y, = j|Yo = i}. Using the generator ma-
trix @ defined in Example 5.1 for the Poisson process, it can be seen that

the transition matrix of the embedded Markov chain has the form given hy
(5.10).
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Example 5.3 Suppose a continuous time, finite Markov chain has a gen-
erator matrix given by

-1 0 0 1
1 -1 0 o

@=lo 1 -1 o (5.13)
6 0 1 -1

The transition matrix of the corresponding emhedded Markov chain satisfies

0

T = (5.14)

o= o o
o= ==
[ R e o Y

1
0
0

From the embedded Markov chain, we can see that the states communicate
in the following manner: 1 =2 —-3 —4 — 1. |

The classification schemes for states in continuous time Markov chains
are the same as for discrete time Markov chains. The transition probabil-
ities P{t} = (p;:(t)) and the transition matrix for the embedded Markov
chain T = (#;;) are used to define these classification schemes. Definitions
for communication class and irreducible in continuous time Markov chains
can be defined in 8 manner similar to those for discrete time Markov chains.

Definition 5.5. State j can be reached from state ¢, 1 — 7, if py{¢) > 0
for some ¢ > 0. State i commaunicates with state §, i — j, if { — j and
4 — 1. The set of states that communicate is called a communication class.
If every state can be reached from every other state, the Markov chain is
irreducible; otherwise, it is said to be reducible. A set of states C is closed
if it is impossible to reach any state outside of C from a state inside C,
pjt)=0fort >0ifi€ Candj¢C.

In the case that p;;(At) equals §;; + q;: At + o(At), then p;;{At) > 0
iff g;; > 0 for j # ¢ and At sufficiently small. Therefore, ¢ < j in the
continuous time Markov chain iff i < j in the embedded Markov chain.
The generator matrix @ in the continuous Markov chain is irreducible iff
the transition matrix T in the embedded Markov chain is irreducible.

Definitions for recurrent and transient states in the comntinuous time
Markov chain can be defined in a manner similar to discrete time Markov
chains. Let T}; be the first time the chain is in state ¢ after leaving state 4,

Ty = inf{t > Wy, X(t) = i[X(0) = i}.

The random variable T}, is known as the first return time. The first return
can oceur at any time t > 0; T}; is a continuous random variable,
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Definition 5.6. State ¢ is recurrent (transient) in a contimious time Mar-
kov chain {X(#)}. ¢ > 0, if the first return time is finite (infinite},

Prob{T;; < o0|X(0) =i} =1 (< 1). (5.15)

These definitions are similar to the definitions of recurrence and tran-
sience in discrete time Markov chains. Recall that state 7 is said to be
recurrent (transient} in a discrete time Markov chain {Y,,}, with Yy =4, if

ifi[:l) =1 (< 1):

n=0

where ft-(%-") is the probability that the first return to state € is at step n.
The following theorem relates recurrent and transient states in continuous
time Markov chains to recurrent and transient states in the corresponding
embedded Markov chain. For a proof of this result, please consuit Norris
(1999) or Schinazi {1999}

Theorem 5.1. State { in g continuous time Markov chain {X{t)}, t > 0,
s recurrent (transient) iff state ¢ in the corresponding embedded Markov
chain Y,, n=0,1.2,..., is recurrent (transient).

Recurrence or transience in a continuous time Markov chains can be
determined from the properties of the transition matrix T of the embedded
Markov chain. For example, a state ¢ in a continuous time Markov chain
{X(t)}, t = 0, is recurrent (transient) ifl

)
Ztg?) = oo (< 00),

n=0

where tg?) is the (¢,4) element in the transition matrix of T of the embed-
ded Markov chain {¥,}5%,. Other properties that determine recurrence
and transience in discrete time Markov chains can be applied to continuous
time Markov chains. For example, in a finite Markov chain, all states cannot
be transient and if the finite Markov chain is irreducible, it ig recurrent.
Note that the transition matrix of the embedded Markov chain for the
Poisson process (Example 5.2) satisfies lim, ., T™ = 0. For sufficiently

large n and all 4, £ = 0, which implies $.°°, {7} < 0c. Therefore, every
state is transient in the Poisson process. This is an obvious result since
each state X {(W,) = i can only advance to state i + 1, X(Wi1) =i+ 1; a
return to state ¢ is impossible.

Unfortunately, the concepts of null recurrence and positive recurrence
for a continuous time chain cannot be defined in terms of the embedded
Markov chain. Positive recurrence depends on the waiting times {W;} so
that the emhbedded Markov chain alone is not sufficient to define positive
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recurrence. See Schinazi {1999} for an example of an embedded Markov
chain that is null recurrent but the corresponding continuocus time Markov
chain is positive recurrent.

Recall the definitions of positive recurrence and null recurrence in dis-
crete time Markov chains. State ¢ is positive recurrent (null recurrent) in
the discrete time Markov chain {Y,,} if the mean recurrence time is finite

(infinite}, Yoo n ft-(t-n) < 00 (= 00). Positive and mull recurrence in a con-
tinuous time Markov chain depends on the expected value of the random

variable Tn

Definition 5.7. State ¢ is positive recurrent (null recwrrent) in the contin-
uous time Markov chain {X(#)}, ¢ > 0, if the mean recurrence time is finite
(infinite}; that is,

pii = E(Ts| X{0) =4) <0 (= 0).

This definition is not very useful to show positive or null recurrence.
Instead, the next theorem gives a method that can be used to determine g,
and hence, positive or null recurrence. There are a number of limit theorems
for continuous time Markov chains that give results similar to those for
discrete time Markov chains. Recall the basic limit theorem for aperiodic
discrete time Markov chains: A discrete time Markov chain {¥,,}5%, that
is recurrent, irreducible, and aperiodic with transition matrix T' = (¢;;)
satisfies

lim ¢ = -,

n=oo Hij
where p;; is the mean recurrence time for the discrete time Markov chain.
There is no concept of aperiodic and periodic in continuous time Markov
chains because the interevent time is random. Therefore, the basic limit
theorem for continuous time Markov chains is simpler. See Norris (1999)
for a proof of the following result.

Theorem 5.2 (Basic limit theorem for continuous time Markov

chains). If the generator matriz Q@ of a continuous time, nonezplosive
Markow chain {X (1)}, t > 0, is irreducible and positive recurrent, then
1

Grithis

Jim py;(f) = (5.16)
where py; 15 the mean recurrence time in the continuwous time chain {X{£)}.
In particular, if the state space is finite, then the process is nonexplosive
and the limit (5.16) exists and i positive if Q is frreducible.

Matrix @ is irreducible iff matrix T is irreducible. The result (5.16)
differs slightly from discrete time Markov chains since an additional term
—@i; is needed to define the limit. For finite Markov chains, all that is
needed to show the existence of a positive limit (5.16) is to show that the
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generator matrix @ is irreducible. In addition, since the limit is positive,
0 < py < oo, it follows that irreducible, finite Markov chains are positive
recurrent. The following result is reminiscent of the results from discrete
time, finite Markov chains.

Corollary 5.1. A coniinuous time, finite Markov chain with irreductble
generator matriz (} is positive recurrent.

Example 5.4 Consider Example 5.3. Matrix T given in equation (5.14)
and matrix () given in equation {5.13) are irreducible. All states are positive
recurrent. Notice that the embedded Markov chain is periodic with period
4. However, the continuous time Markov chain is not periodic because
periodicity is not defined for continuous time Markov chains. [ ]

In the next section, the forward and backward Kolmogorov differential
equations are defined in terms of the generator matrix ¢). In addition, the
stationary probability distribution is defined for a continuous time Mackoy
chain.

5.6 Kolmogorov Differential Equations

The forward and backward Kolmogorov differential equations are expres-
sions for the rate of change of the transition probabilities. The transi-
tion probability p,;(t + At) can be expanded as follows by applying the
Chapman-Kolmogorov equations,

o

piilt + At) = Z Pir{At)pri(t).

Given that the generator matrix @ exists, we can apply the identity (5.9),

Pir{t+ At) =) pri(t) (85 + gt + 0(AL)].
k=0

Subtract p;;(t}, divide by Af, and apply the identity > 5o o pai(t) = 1,

pult Aﬂtz — pilt) Z‘Ph(t [sz + O(At)] Zpke(t)‘bk + O(At}

Let At -+ 0. Then

dpji{l)

= > aupeilt), 4,3=0,1,.... (5.17)
k=0
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Definition 5.8. The system of equations {5.17) represents the forward
Kolmogorov differential equations. Expressed in matrix form, they are

PO - qro,

where P(t) = (p;:(t)} is the matrix of transition probabilities and Q = {g;;)
is the generator matrix.

In the case that the initial distribution of the process satisfies X(0) = k
{p:(0) = i), then the transition probability pi(£) is the same as the state
probability p;(¢) = Prob{X{t} = i{|[X(0) = k}. Therefore, in this case, the
state probabilities satisfy the forward Kolmogorov differential equations,

dp(t) _
3t Qp(t), (5.18}

where p(t) = (po(t), p1 (1), .. .)7-

The system of differential equations (5.18) can be approximated by a
system of difference equations corresponding to a discrete time Markov
chain: p(n + 1) = Pp(n). This approximation shows the relationship be-
tween the Kolmogorov differential equations and the discrete time Markov
chain. In particular, if the derivative dp(t)/dt is approximated by the finite
difference scheme, [p{t + At) —p(t)]/At, then the differential equation (5.18)
can be expressed as

plt+ At) = [QAt + 1] p{t),

where I is an infinite dimensional identity matrix, J = diag(l,1,...). Sup-
pose time is measured in units of At and 1 + ¢;;At > 0. Then it can be
shown that the matrix P = QAt + I is a stochastic matrix and

p{n + 1) = Pp(n),

where the unit length of time n to n + 1 is At (see Exercise 7).

The backward Kolmogorov differential equations can be derived in a
manner similar to the forward Kolmogorov equations. Apply the Chapman-
Kolmogorov equations and make the following substitutions:

pji(t + At) = Z Pri{At)p;(t) = Z [Ori + qri At + o A)] pj(?t).
k=0

k=0

Simplifications similar to the derivation of the forward equations and the
assumption ¥ .. o Pix(t) < oo yield the following system of differential equa-
tions:

dp;i
pj ijk(t)f-?kn iL,j=01,. (5.19)
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Definition 5.9. The system of equations (5.19) represent the backward
Kolmogorev differential equations. Expressed in matrix form, they are

PO e

d
where P(t) = (p;i(¢)) is the matrix of transition probabilities and @ = (g;;)
is the generator matrix.

These differential equations depend on the existence of the generator
matrix . For finite-dimensional systems or finite Markov chains, Q al-
ways exists. The solution P{#) can be found via the forward or backward
equations. In birth and death chains and other applications, the transi-
tion matrix P{t) is defined in such a way that the forward and backward
Kolmogeorov differential equations can be derived.

The Kolmogorov differential equations can be used to define a station-
ary probability distribution. A constant solution to {5.18) is a stationary
probability distribution. A formal definition is given next.

Definition 5.10. Let {X(2)}, ¢ > 0, be a continuous time Markov chain
with generator matrix (). Suppose m# = (@p,#1,...}7 is nonnegative and
satisfies

Qn =10, and Zﬂ',; =1.
i=0

Then r is called a stationary probability distribution of the continuous time
Markov chain.

A stationary probability distribution m can be defined in terms of the
transition matrix P(f) as well. A constant solution r is called a stationary
probability distribution if

[ea)
Pityr=x, for t >0, Zmzl, and m; >0

=0

for ¢ = 0,1,2.... This latter definition can be applied if the transition
matrix P(¢) is known and the process is nonexplosive.

The two definitions involving P(¢) and @ for the stationary probability
distribution are equivalent if the transition matrix P(t) is a solution of the
forward and backward Kolmogorov differential equations [i.e., dP(2)/dt =
QP(t} and dP(?)/dt = P(#)Q]. This is always the case for finite Markov
chains. The equivalence of these two definitions can be seen as follows. If
@m = 0, then for a finite Markov chain

[dP(t)] - _ diP(o)]

dt @~ PBer=0,
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which implies P(¢)r = constant for all . But P(0) = [ implies P{t)m = 7.
On the other hand, if P(t)x = 7 in a finite Markov chain, then

dlP(t)r] _ [dP(t)

0= dt

] 7 =QP(t)r = Qn.

An explicit solution P(t) cannot be found for many continuous time Markov
processes. Definition 5.10 is the one that will be applied most often to find
the stationary probability distribution.

5.7 Finite Markov Chains

For some finite Markov chains it is possible to find an explicit solution P(t)
to the forward and backward Kolmogorov differential equations. In addi-
tion, in the case that the probability distribution p(¢) satisfies the forward
Kolmogorov equation (X (0) = k, p.(0) = &4,), it is possible to calculate the
probability distribution p(t) directly [i.e., p{t) = P(¢)p(0)].

Assume the state space of a finite Markov chain is {0,1,2,...,N}. The
forward and backward Kolmogorov differential equations have a unigue
solution. The forward and backward Kolmogorov differential equations
satisfy dP/dt = QP and dP/dt = P(). respectively, where P(0) = I. The
systems are linear, and the unique solution to each of them is given by

P(t) = e9 P(0) = ¥,

where €% is the matrix exponential,
ot 2t et S
=I+Q+ QP+ Q%+ =3 Q.

This result can be verified easily. Let P(t) = e®!. Then differentiation
yields

%)
tkl

0¥ Q i— = Qe = QP(t).
k=0

However, it is also true that

o k
‘di{it) = (Z Q"%) Q =e¥'Q = P(Q.

k=0

The solution e<* satisfies the forward and backward Kolmogorov differential
equations, dP/dt = QP and dP/dt = PQ, respectively. Uniqueness follows
from the theory of differential equations {Brauer and Nohel, 1969). Some
techniques for computing €%? for finite Markov chains are demonstrated.
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Suppose matrix ¢ is an n x n diagonalizable matrix with eigenvalues, A;,
i=1,2,...,n. Then an expression for Q* can be obtained by the method
presented in Chapter 2, Section 2.8,

QF = HA*HL,

where A = diag(A;, A2,..., A,) and the columns of H are the right eigen-
vectors of H. The expression for ¢! simplifies to

B Ak
eVt = Hzﬁk%H_l = Hdiag(eM?, ™', ... eM ) H ™2 (5.20)
k=0 . .

Differentiation of P(t) = e¥? can be used to generate information about the
derivatives of P evaluated at ¢ = 0. Notice that P'(0) = Q, P"(0) = Q*
and, in general, d*P(t)/dt*|;_o = Q* or

d*p;i(t) ()

e =4, 2
where qﬁf) is the element in the jth row and ith column of Q*. The identity
(5.20) shows that the elements of P(t) satisfy

pii(t) = areMt + age?? + .. 4 gnett

Using the initial conditions (5.21), the coefficients ay, & = 1,2,...,n can
be determined. Alternately, first computing I, then H~7,

P(t) = Hdiag(e™!, &3, .. e H L,

There are many other methods for computing the matrix exponential
(see e.g., Leonard, 1996; Moler and Van Loan, 1978; Waltman, 1986). One
may also use a computer algebra system or mumerical methods to compute
e?t. We mention one additional method for computing €2t which is due to
Leonard (1996). This method is similar to one of the methods discussed in
Chapter 2, Section 2.8 for computing the power of a matrix.

Suppose ¢} is an n x n matrix with characteristic polynomial,

detM — QY = X + @ A" 4+ -+ =0

This polynomial equation is also a characteristic polynomial of an nth-order
scalar differential equation of the form

() + apo12@7 V(@) + - apx(t) = 0.

To find a formula for e?* it is necessary to find n linearly independent so-
lutions to this nth order scalar differential equation, x;(¢), z2(¢),...,z,(t),
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with initial conditions

{0y =1 22{0) =0 zn(0) =0
24(0)=0 zHh(0) =1 . (0) =0
2" o) =0 20y =0 2700 =1
Then
eV =2 (O + 5@+ + 2 (QV, —co <t < 0. (5.22)

Some of these techniques are illustrated in the following examples.

Example 5.5 Suppose the generator matrix of a continuous time Markov

chain with two states is
—-a b
Q — ( a _b) 1

where @ > 0 and b > 0. The matrix exponential, ¥, is computed first

using the definition. Note that @* = —(a + b)Q and, in general, Q" =

[~(a +5)]""1Q. Then P{t) = e =T+ ¥ (cgfl) i
n=1 :

for @™, it follows that

Applying the identity

P{t) =7- Q i ["'{G, ;:l b)t]n S ai_’_{)[e_(a+b)t _ 1] (523]

Secondly, we compute the matrix exponential using the identity (5.22).
The characteristic polynomial of @ is X% + {@ + b)A = 0. Therefore, the
eigenvalues of @ are A; 2 = 0, —(a+b). The general solution to this second-
order differential equation x”(t) + (a + )z’ (t) = 0 is z(t) = ¢, + cpe (@),
Apolying the initial conditions to find the constants ¢; and ¢s, the solutions
a1 (t) and x2(f) are 21 (¢} = 1 and z22(t) = (1—e~21%) /(a4 b), respectively.
Applying the identity {5.22) gives the solution

1 ae—{at+bi — ho—la+b)t
BQt = .'Ill(t}f + $2(t}Q = m (Zt ae_(a.i,b)t Z+i§‘(“+b)‘) .

This latter formula agrees with the solution given in {5.23).
The limit of P(t} exists,

b b
lim P(t) = a+b a+b
t—ca a a

=3
+
o
=]
+
=
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and, therefore, for any initial distribution p(0) = (p,(0), p2{0)7T,

b

lim P(t)p(0) = | “ 1P| =

Jim PO = | * 77 =
a+b

This limiting distribution # is the unique stationary probability distribution
satisfying @Qm = 0.
The transition matrix of the embedded Markov chain is

(0 )

Matrices T and Q are irreducible. Therefore, according to Theorem 5.2, the
limit (5.16} satisfies b/(a +5) = —1/{qr101) and af{a + b) = —1/{gs2p22).
Elements ¢1; = —a and gpo = —b. so that the mean recurrence time for the
contintous time Markov chain is
atb
ab '
It is interesting to note that the mean recurrence time for the corresponding
embedded Markov chain is u; =2, i=1,2. n

Hy = t=1,2

Example 5.6 The forward Kolmogorov differential equations in Exam-
ple 5.3 satisfy dP/dt = QP, where the generator matrix () and transition
matrix T of the embedded Markov chain are

10 0 1 00 01
;-1 0 0 1 00 0
Q=109 1 -1 ol ™M T=}y 1 ¢ ¢
0 0 1 -1 0010

The matrix exponential e¥! can be computed by one of the methods dis-
cussed above or a computer algebra system may be used. Matrix P() = ¢%*
is given by

cos{t) —sin(t) -—cos(t) sin(f)
| 1 _ sin(f) cos(t) —sin(t}) —cos(t)
¥ = ZIE + ¢ r —cos{t)  sin{f) cos{ty  —sin(t)

—sin{t) —cos(t) sin(f) cos(t)
1 -1 1 -1

where E is a 4 x 4 matrix of ones. Thus,

_ 1
lim P(t) = ;.
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Matrices T' and @ are irreducible. Thus, according to Theorem 5.2, the
mean recurrence time of the continnous time chain satisfies py; = 4, ¢ =
1,2,3,4. This mean recurrence time agrees with that of the embedded Mar-
kov chain. There exists a unique stationary probability distribution 7 sat-
isfying Q@ = 0. The stationary probability distribution = = 1(1,1,1,1)7.
In addition, note that = = lim,_.., P(t)p{0), where m; = —1/(gs;pti) is the
limit in Theorem 5.2. ]

These examples have illustrated that the limit in Theorem 5.2 is a sta-
tionary probability distribution. This result is true in general for finite
Markov chains and is stated in the next theorem.

Theorem 5.3. Suppose the generator matriz Q of a finite, continuous time
Markov chain {X{(t)}, t > 0, with state space {0,1,2,..., N} is irreducible.
Then the limit in (5.16) is o stationary probabilily distribution w, where
7= (7o, M1, ., x)T and m = —1/(gupis) > 0.

Proof. Since matrix P(t) is a finite matrix, it is a stochastic matrix for all
t > 0. Hence, lim; o P(t)p(0) = 7 has the property that 3" m{i) = 1.
By the Chapman-Kolmogorov equations P{#)P(s)r = P{t + s)x. Hold t
fixed and take the limit as s — oc; then P(#)L = L. Since t is arbitrary, 7
is a stationary probability distribution. 0O

Example 5.7 The generator matrix @ of a continuous time Markov chain
and transition matrix T of the embedded Markov chain are

01 0 0 11 0 0
0 -1 2 0 0010
QR=lg ¢ —2 3| 2™ T=[y 4 ¢ 1
0 0 0 -3 000 0

Matrices T and @ are reducible because the first state is absorbing. The
exponential matrix €' is computed using the eigenvalues of e?*. The
eigenvalues of Q are 0, -1, -2, and —3, @ = Hdiag{0,—1,-2, -3}H"! so
that

et = Hdiag(1,e t e %, e\ H L.

We compute p44(t) by the method described in this section,

p1s(t) = ay + ase™t + aze 2 4 gge7 3.

Applying the initial conditions, pga{0) = 1, p},(0) = g4, p14{0) = qf) , and

PL(0) = g%, yields the four linear equations,

g tazt+azta; = 1
—ap —2a3—3ay = —3
ay+4a3+9%, = 9
—as — 8a3 — 270y = —27.
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L)

Figure 5.4. Directed graph of the embedded Markov chain
{Yal.

The soluticn of this linear system is @1 = a2 = a3 = 0 and a4 = 1. Thus,
paa(t) = e73L. A closed form expression can be obtained for e9¢. Matrix

1 loe™? 1-2 t4e 2 1 _3et43e 2%
o _ {0 et 278~ 27 Fet—Be M 4 3e”H
“=lo o e~ 2t 3e~2t _ 3e—3
0 0 0 e3¢

Let p(0) = (0,0,0,1)T. Then p(¢) = P{t)p{0}, where p(¢) is
(1-3e7t +3e72 — &% 3™ — 62 4 3e7H, 3¢ — 37 =) T,

The mean and variance of this distribution satisfy

3
m{t) =Y kpu{t) = 3™

k=0
and 5
(1) =D Kp(t) —mi(t) =31 -7
k=0

Although Theorems 5.2 and 5.3 do not apply to this example, note that
tlim o{t) = (1,0,0,0)7, which is a stationary probability distribution. The

probability of extinction, py(f), approaches one,
lim po(t) = 1.
t—o0

This result is reasonable becanse the zero state is absorbing {(see Figure
5.4). This example is a special case of a simple death process that will be
discussed more fully in Chapter 6. [ ]

5.8 Generating Function Technique

We present another method for finding the probability distribution associ-
ated with the process {X(¢)}. In this method, a partial differential equation
satisfied by a generating function is derived, either p.g.f., m.g.f, or c.g.f. De-
note the p.g.f. of a continuous time Markov chain {X(¢)} as

P{z,t) = Zpl(t)zé,
=0
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the m.g.f. as

[ ]
MG, =" pilt)e”,

i={
and the c.g.f. as K(#,¢) = In M (6,t). Notice that the generating functions
depend on two continuous variables, z and £ or 8 and ¢, where ¢ > 0, and
the domain of z or & consists of the values where the summation converges
le-g., |2] < 1 for P(z,%)].

Recall that the mean m({¥) of the process at time ¢t satisfies

Z ipi (t b

mit) =

In terms of M(8,¢) and K(8,t),

_ OM(8,t) _ OKi8,t)
i) = # lomo 9 oo
In addition, the variance o?{t) satisfies
9 P(z,t) BP(z,t) AP(z 1) 2
2 = 1/ —_— —
7 (t) B 82?2 z=1 N 0z z=1 ( 9z zzl)

or, in terms of M(8,t} and K{8,¢),

(8M(6' £)
oo 56

9*M(0.1)
7 = g

)2 _ BPK(9,8)

#=0

A partial differential equation for the generating function is derived
using the forward Kolmogorov equation. First, the technique is discussed;
then an example is given using the Poisson process. When the initial distri-
bution is a fixed value, then the forward Kolmogorov differential equations
can be expressed in terms of the state probabilities, dp/dt = Qp,

d .
p’ qum(f i=0,1,2,....

If each of these equations is multiplied by z* and then summed over i,

LU 3 SPPRES

120 i=0 k=0

Interchanging the summation and differentiation and the order of the sum-
mation (possible for values of t and z, where the summation ronverges
absolutely}, vields

BP(z t) i": lz - l

k=0 Li=0
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If for each ¢, g is zero, except for finitely many k, then the right-hand
side may be expressed in terms of either P{z,t) or the first-, second-, or
higher-order derivatives of P with respect to z.

A partial differential equation for the m.g.f. can be derived in a similar
manner. Instead of multiplying by 2%, the forward Kolmogorov differential
equation is multiplied hy €. Alternately, a differential equation for the
m.g.f. can be derived directly from the differential equation for the p.g.f.
by making a change of variable. Recall that M (8,¢) = P(e?,t), so that
z = ¢®. In addition, a differential equation for the c¢.g.f. can be obtained
from the one for the m.g.f. by letting K{#,¢) = In M(8,t). The generating
function technique will be used frequently with birth and death chains and
other applications. 1f the differential equations are linear and first order,
they can be solved by the method of characteristics. The last section of
this chapter is devoted to a brief review of the method of characteristics.
The generating function technique is Mlustrated in the next example for the
Poisson process.

Example 5.8 The forward Kolmogorov differential equations for the Pois-
son process given in (3.2) and (5.4) are

P pt) e, i21,
dpo {t) _
7 Apo(t).

Multiplying by #¢, then summing over i,

de’" (t) ,\ch 2 +/\Zpg_ ()2

=0
Interchanging differentiation and integration yields the differential equa-
tion,

aP(z,t)

H
Because there is no differentiation with respect to z, the variable z can
be treated as a constant. The solution to this differential equation is an
exponential function in ¢,

P{z,t) = P(z,0)eM*- 1t

Recall that X{0) = 0. Thus, pg(0) = Prob{X(0) = 0} = 1 and p,{0) =
Prob{X(0) = i} = 0. Hence, P(z,0) = 1 and the p.g.f. satisfies

P(z,t) = D,

= —AP{z,t) + zAP(z,1) = Az — 1) P(z,1).

Replacing z by €® yields the m.g.f. M{8,t) = e** 1) and taking loga-
rithms yields the c.g.f, K(6,t) = M(e? — 1). As expected, the p.g.f., m.g.f.,
and c¢.g.f. are the generating functions corresponding to a Poisson distribu-
tion with parameter At. ||



5.9. Interevent Time and Stochastic Realizations 197

5.9 Interevent Time and Stochastic
Realizations

To calculate sample paths of a continuous time Markov chain {X(¢)},t > 0,
we need to know the distribution for the time between successive events or
the interevent time. Recall that the random variable for the interevent time
is T, = Wip1 — Wi, where W is the time of the ith jump (see Figure 5.5).
In applications, the event may be a birth, death, immigration, or any other
event that changes the value of the state variable. Note that W1, > W;
so that T; € [0,00); T; is a continuous random variable. It will be shown
that the interevent time T} is an exponential random variable.

Assume the value of the state at the ith jump is n, X{W;) = n. Let
afn)At+o{ At) be the probability that the process moves to a state different
from n in the time period At; that is,

=)

Z Pin(At) = a(n}At + o At).

J=0.5#n

A change in state could result from a birth, death, or immigration. Then
the probability of no change in state is 1 — a(n)At + o(At); that is,

Pan( Ot} =1 — a(n)At + o(At),

Let G.(t) be the probability that the process remains in state n for a
time of length ¢, that is, for a time of length [W;, W, +t]. Then G;(t) can
be expressed in terms of the interevent time T;,

G;(#) = Prob{t + W; < Wi, 1} = Prob{T; > t}.

If state  is not an absorbing state, so that there is a positive probahility
of moving to another state, then, at ¢ = 0, G;(0) = Prob{T; > 0} = 1. For

To T T: Ta
i ————
X(n=2 ‘ :

0 \:IV| \iV: \J\h \ill.-a

Figure 5.5. A sample path or single realization X(t} of a
continuous time Markov chain, ¢ € {0, oc) illustrating the jump
times {W;} and the interevent times {T}}, X(0) = 2, X{W) =
3, X{W2) =4, X(W3)=3.
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At sufficiently small,
Gilt + At) = Gi(D)prn(At) = Gi(t)(1 — a(n)At + o(At)). (5.24)

Subtract (3;(t) from both sides of the preceding equation and divide by At.
Then taking the limit as At — 0, it follows that

dGi{t)
df

The differential equation is first order and homogeneous with initial condi-
tion G;{0) = 1. The solution is

—a(n)Gi(t).

G;(t) = Prob{T; > t} = e~}
Thus, the probability that T; < ¢ is
Prob{T; <t} =1 -Gt} =1—-e "t = Fi(1), t>0.

The function F;(¢) is the cumulative distribution function for the interevent
time T;, which corresponds to an exponential random variable with param-
eter a(n). The p.d.f for T; is FI(t) = fi(t) = a{n)e ™. Recall that
the mean and variance for an exponential random variable with parame-
ter A satisfy E(T}} = l/a(n} and Var(T;) = 1/[(n)]2. These results are
summarized in the next theorem.

Theorem 5.4. Let {X(8)}, t = 0, be o continuous time Markov chain such
that

=3

3" pin(At) = a(n)At + o(At)
F=0.)#n
and

Prn(AF) = 1 — a{n}At + o(At)

for At sufficiently small. Then the interevent time, T, = W, — W, given
X{W;) = n, is an exponeniial random variable with parameter c(n). The
e.d.f. for Ty is Fi{t) = 1 — e~ g5 that the mean and variance of T;

satisfy
i

1

E{T) = o) and Var(T;) = POk

For example, in a birth process with birth probability b, At + o{ A#),
given X{W,) = n, there will be a mean waiting time of E(T;) = 1/b,, until
another birth, X(W;y;) = n 4+ 1. Suppose there is more than one event,
such as a birth or a death and X(W;) = n. If the death probability is
d. At + o(At), there will be a mean waiting time of E(T;) = 1/{b, + d,).
When an event occurs, it will be a birth with probability b, /(b, + dy)
and a death with probability d./(b, + d,,). To ensure that the Markov
process defined in this mannper is the unique representation of the original
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continuous time Markov process requires a more rigorons mathematical
justification than presented here; the interested reader is referred to the
references {e.g., Karlin and Taylor, 1981; Norris, 1999).

An assumption used in the preceding derivation for ;(¢) is an inherent
property of the exponential distribution. It was assumed in (5.24) that
Prob{T; > t + At} = Prob{T; > t}Prob{T; > At}. This property can be
written as

Prob{T; > t + At|T; > t} = Prob{T; > At}.

It is a property of the exponential distribution referred to as a memoryless
property. It is due to this memoryless property that Markov processes have
an interevent time that is exponential.

The set of interevent times {7;} have an important probabilistic re-
lationship. The interevent times {T} are independent if conditioned on
the successive states visited by the Markov chain. In particular, given
X(W;) =Y, then the interevent time T; is independent of T;_;. i =1,2,. ..
{Schinazi, 1999).

Example 5.9 Let AX(#) = X(t + At) — X(t). A simple birth process is
defined. For At sufficiently small, the transition probabilities satisfy

Pivsi(At) = Prob{AX(¢) = j|X(t) =1}

biAt + o( At), ji=1
) 1-biAt+o(At), =0
- o(At), jiz2

0, j < 0.

Denote the expected time to reach state k, &k > 2, as 7. In general, if
X(W;) = k, then the interevent time T has p.d.f. bke~"* and the expected
time to reach state &k + 1 from state & is E{T;|X (W;) = k) = 1/(bk). If, for
example, X(0) = 1, then X (W} = 2, and, in general, X (W) = k+1. The
expected time to reach state & beginning from state 1 can be compnted,

1

n=BT) =1,
1 1 1 1
ro=B(To) + E(Ty) = 1 + 3. = 3 [1+§],
and
k-2 LRy
Tk:ZE(E):E T [ ]

=0 i=1

Next, we show that the random variable T, can be expressed in terms of
the distribution function F}(#) and a uniform random variable IJ. This rela-
tionship is very useful for computational purposes; that is, when stochastic
reelizations are numerically simulated.
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Theorem 5.5. Let U be a uniform random variable defined on [0, 1] and
T be a continuous random variable defined on [0,00). Then T = F~1IN),
where F' is the cumulative distribution of the random variable T.

Proof. Since Prob{T < t} = F(£), we want to show that Prob{F~1(U) <
t} = F(t). First note that F : [0,00) — [0,1) is strictly increasing, so that
F~? exists. In addition, for ¢ € [0, 00},

Prob{F-}{U/) <t} = Prob{F(F}(U)) < F(t)}
= Prob{l/ < F(t}}.

Because U is a uniform random variable, Prob{U < y) = y for y € [0,1].
Thus, Prob{U < F(t)} = F(t). O

In the Poisson process, the only change in state is a birth that occurs
with probability AAf+e{At) in a small interval of time At. Because a(n} =
A, the distribution funetion for the interevent time is F;(t}) = Prob{T; <
t} = 1 — exp{~At). But because X is independent of the state of the
process, the interevent time is the same for every jump ¢, T; = 7. The
interevent time T, expressed in terms of the wniform random variable U,
is T = F~'(U). The function F~YU) is found by solving F(T) = 1 —
exp{—AT) =U for U:

In(1-1)
3 .
However, because U is a uniform random variable on [0,1], so is 1 — U,

It follows that the interevent time can be expressed in terms of a uniform
random variable I/ as follows:

T=FYU)=-

_ In{ln)
T = — S (5.25)

For more general processes, the formula given in (5.25) for the interevent
time depends on the state of the process. In particular, given X{(W;} = n,
the interevent time T satisfies

.- _111(U)
= a(n)

, (5.26)

where UJ is a uniform random variable on [0,1].

The formula given in (5.26) for the interevent time is applied to three
simple birth and death processes, known as simple birth, simple death, and
simple birth and death processes. In each of these processes, probabilities
of births and deaths are linear functions of the population size. These
processes will be considered in more detail in Chapter 6. Let X (#) be the
random variable for the total population size at time £.
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Figure 5.6. Three stochastic realizations of the simple birth
process, X{(}) =1 and b= 1.

Example 5.10 [Simple birth process| Consider the simple birth process
defined in Example 5.9. Given X(W;} = n, the probability of a change in
the population size is nAf + o{ At). Thus, a{n} = bn. The interevent time
T satisfies
In(T7)

bn
where U is a uniform random variable. The next event is a birthn — n+1,
X(Wi+ 1) = n+1. The deterministic analogue of this simple birth process
is the exponential growth model dn/dt = bn, n(0) = N, whose solution is

n(t) = Nebt, [ ]

Ty =-

A MATLAB program is given in the Appendix for Chapter § that gener-
ates three sample paths or realizations of a simple birth process when b = 1
and X(0) = 1. Three sample paths are graphed in Figure 5.6.

Example 5.11 [Simple death process| In a simple death process, the only
event is a death, that is, state ¢ — 7 — 1. For At sufficiently small, the
transition probabilities satisfy

Pi+;i(Bt) = Prob{AX(t) = j|X(t) =i}

diAt + o(Af), j=-1

1 - diAt +o{At), j=0 _
o(At), j< =2 (5:27)
0. j>o0.

Given X(W;) = n, then a(n) = dn. Therefore, the interevent time T. is
infl’})
dn

T = -
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Figure 5.7. Three stochastic realizations of the simple death
process, X{0} = 100 and d = 0.5.

The next event is a death n — n — 1, X(W;,) = n — 1. The deterministic
analogue of this simple death process is the differential equation dn/df =
—dn, n{0) = N, with solution

n(t) = Ne~ %,
Figure 5.7 graphs three sample paths of this process when X{0) = 100 and
d=0.5. ]

Example 5.12 [Simple birth and death process] In the simple birth and
death process, an event can be a birth or a death, i - i +1ori—i—1.
For At sufficiently small, the transition probabilities satisfy

Pirj(Ot) = Prob{AX(t) = jlX(f) = ¢}

diAt + o At), i=-1
_ biAt + o At), i=1
o 1 —(b+d)yiAt+ofAt), j=0
o(At), i#~1,0, 1.

Given X(W;) = n, a(n) = (b + d)n. Therefore, the interevent time T

satisfies
In{lF)

(b+dmn’
The next event is either a birth or a death; a birth occurs with probability
b/(b+d} and a death with probability d/{b-+d). The deterministic analogue

of this simple birth and death process is the differential equation dn/dt =
(b — d)n, n(0) = N, with solution

T;::._

n(t) = Nelo—d%,
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% 2 4 5 8
Time
Figure 5.8. Three stochastic realizations of the simple birth
and death process, X{0) =5, b=1, and d = 0.5.

Figure 5.8 graphs three sample paths of the simple hirth and death process
when X(0) =5, b=1, and d = 0.5. Note that one of the sample paths hits
zero hefore ¢ = 4. a

5.10 Review of Method of Characteristics

For the simple birth, simple death, and simple birth and death processes,
the generating functions will be first-order linear partial differential equa-
tions. To solve these partial differential equations, the method of charac-
teristics can be applied. For more information on the method of character-
istics, please consult a textbook on partial differential equations {Farlow,
1982; John, 1975; Schovanec and Gilliamn, 2000). The method of character-
istics is illustrated with an example.

Example 5.13 Let P(2,¢#) satisfy the partial differential equation

apP P

N +(z+ 1)52 =1, P(z,0) = ¢(z). (5.28)
The domain of the differential equation corresponds to ¢ € [0,c00) and z €
(—o0, oc).

In the method of characteristics, it is assurned that the partial differen-
tial equation can be expressed as a system of ordinary differential equations
along characteristic curves, curves expressed in terms of auxiliary vartables
s and 7. Assume that P(z,t) = P(z{s,7},t(s,7)) = P(s,7). Along the
characteristic curves, the variable s = constant, so that P{z(s,7),t(s, 7)) =
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P(z(7),t(1)). The characteristic curves are found by solving the following
ordinary differential equations:

ﬂ:l, d—z=z+1, and d—P=1,
dr

dr dr
with initial conditions
t(s,0) =0, z(s,0) =35, and P(s0) = ¢(s).

The reason this method works is that along characteristic curves, solutions
satisfying the ordinary differential equations also satisfy the partial differ-
ential equation, '

E_@_ng+?£ﬁ_(z+l)5‘_P+3_P
dr Bz dr Otdr dz 8

The system of ordinary differential equations is solved and P is expressed
in terms of & and 7. Then the variables s and 7 are expressed in terms of
the original variables z and ¢.

The solution to the system of ordinary differential equations along the
characteristic curves satisfies

tHs.7)=7, z+1=(s+ 1), and P(s,7} =7+ ¢(s).

The variables + and s can be expressed in terms of z and ¢ as follows: 7 =1
and s = (z + 1)e™* ~— 1. Substituting these values for 7 and s into P gives
the solution in terms of z and ¢,

Piz,) =t+ ¢((z + Vet = 1).
For example, if ¢(z) = 2%, then
Plxty=t+ [{(z+1)et ~ 1]3 .

The solution can be verified by checking that it solves the partial differential
equation and the initial condition given in {5.28). [ |

5.11 Exercises for Chapter 5

1. Suppose the generator matrix of a continuous time Markov chain is

—a—b e €
Q: a —-c~d f 1
b d -e—f

where the constants a, b, ¢, d, e, and f are positive. Find the transition
matrix T of the embedded Markov chain. Are the states recurrent or
transient?
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2. Suppose the generator matrix & of a continuous time Markov chain

satisfies
—a d 0 0
Q=12¢ ~b-d—a 2d 0
1o b+ a —-2b—2d—-a 3d
0 0 2b+a —3d

(a) Suppose b = d = e > 0. Find the corresponding transition ma-
trix T" for the embedded Markov chain. Are the states recurrent
or transient?

(b) Suppose a = 0 and b = 4 > 0. Find the corresponding transi-
tion matrix T for the embedded Markov chain. Are the states
recurrent or transient?

3. Suppose the generator matrix @ of a continuons time Markov chain

satisfies
-1 2
Q=( ; _2).

(a) Show that Q" = (—3)“'1Q

(b) Use (a) to compute P(t) = et =37 (Q1)"/n!.

{¢) Show that @ is 11'redu(:1ble. Find lim;_ . P(t); then use (5.16)
to compute py, for i =1,2.

(d) Show that there exists a unique probability stationary distribu-
tion w, Qm =0

{e) Verify that the limit 7 = lim;_ ., P(£)p(0) equals the unique
stationary probability distribution.

4. Suppose the generator matrix of a continuous time Markov chain

satisfies
-2 1 2

=11 -1 1]. (5.20)
1 0 -3

(a) Find the eigenvalues Ay, Az, and As of matrix @; then express

At Aot

p11(f) = @€t + age™?t 4 ggest

{b) Find p1:(0), p{,(0) = q1, and pf,(0) = q“) then golve for the
coeflicients ¢, a2, and aj (see Norrls, 1999).

5. Suppose the generator matrix satisfies (5.29).

{(a) Find the corresponding transition matrix 7' and show that T is
irreducible.
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(b) Find the matrix P{t) = e@t,

(¢) Find lim;_.o P(¢). Then apply equation {5.16) to compute p;;
fori=1,2,3.

{(d) Show that there exists a unique stationary probability distribu-
tion 7 satisfying Qw = 0.

(e} Verify that the limit 7 = lim, .., P(£)p(0) equals the unique
stationary probability distribution.

6. Suppose the generator matrix of a continuous time Markov chain

satisfies
-1 4 2
Q=10 -4 1
1 0 -3

(a) Find the corresponding transition matrix T of the embedded
Markov chain. Is the chain irreducible or reducible?

(b} The lim,_, ., P(¢)p(0) converges to a unique stationary distribu-
tion. Find the stationary distribution.

7. When the initial distribution of the process is a fixed value, then the
probability distribution p(t) satisfies the forward Kolmogorov differ-
ential equations,

aplt)

7 = o).
(a) Show that the differential equation can be approximated by
p(n + 1) = Pp(n)a

where n = £, the unit length of time n to n + 1 is Af, and
P=QAt+1I.

(b) Assume the elements ¢;; are finite and 1 + ¢;At > 0 for i =
0,1,2,.... Show that P is a stochastic matrix.

8. Suppose {X(t)} is a birth process with values in {1,2,...}. Let
AX(£) = X(¢+ At) — X(£). Assume

Pitgi(A8) = Prob{AX(t) = jlX(t) =i}

b At + o(At), j=1
) 1-bAttoan, j=0
= Y olaw), j>2
0, j <0,

for At sufficiently small and ¢ = 1,2,.... Suppose X(0) =1, by = 0,
by =1, bs = 3, and b3 = 6. Find the differential equations satisfied by
the probabilities p;(t), p2(t), and ps(t}). Then solve for p1(t), pa(t},
and pa(#).
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9. Suppose in a simple death process X(0) = 100 and d = 0.

{a) Find the expected time to reach a population size of zero.

(b} For d = 0.5, use part (a) to find the expected time to reach a
population size of zero.

10. Suppose in a simple birth process X(0) = 1 and b > 0.

(a) Find the expected time to reach a population size of 100,

(b) For b = 0.5, use part {a) to find the expected time to reach a
population size of 100.

11. Consider the sitnple death process described in equations (5.27).

{a} Derive the differential equations for the probabilities p;(t) =
Prob{X: = i} in the same manner as for the Poisson process
to show that

dp;

i d(i + 1)pi1(8) — dipi(t), i < N.

What is the differential equation satisfied by py(£)?

(b) Suppase there are initially &N individuals, pn(0) = 1. Use the
generating function technigue to show that the probability gen-
erating function P(z,t) = Zf';o pi(t)z' satisfies

o°P 8P e
B d(1 — z}a, P{z,0} = z". (5.30)

12. Assume the p.g.f. of a process satisfies equation (5.30).

(a) Apply the method of characteristics to show that the solution of
(5.30} is
P(z,t) = [l —e™ 4 ze~)"

{b} Note that P(z,t) is a p.gf. of a binomial distribution, b{n,p},
where n =N, p=e¢"%, and ¢ = 1 —p. Find the mean m(t) and
the variance 2(t) of the simple death process.

13. Consider the simple death process described in equations (5.27).

(a) Use the differential equation satisfied by the p.g.f., equation
(5.30), and make a change of variable z = € to find a differ-
ential equation satisfied by the m.g.f., M{8,t) = P{e?,t).

(b} Use the differential equation satisfied by the m.g.f. in part (a)
to find a differential equation satisfied by the c.g.f., K(0.¢) =
In M8, ¢).
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15.

16,

Chapter 5. Continuous Time Markov Chains
Suppose the m.g.f. M{4,#) of a continuous time Markov process sat-
isfies the following first-order partial differential equation:

amf+e—9—1@_0
ot e=® 99

with corresponding initial condition
M(6,0) = e

Apply the method of characteristics to show that the solution (8, 1)

satisfies
M(8,t) =1+ e —1)]75.

Write a MATLAB program for a simple death process and graph three
sample paths. Assume d = 0.25 and X (0) = 100

Write a MATLAB program for a simple birth and death process and
graph three sample paths., Assume b= 1, d =1, and X(0) = 50.
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5.13 Appendix for Chapter 5
5.13.1 MaTLaB Program

The following MATLAB program generates three stochastic realizations for
the simple birth process. '

% Matlab program for the simple birth process
clear
set(0, 'DefaultAxesFontSize’,18); ¥ Increases axes labels.
b=1; '
x=linspace(0,100,101});
y=exp(x};
n=linspace(1,100,100); ¥ Defines the population vector.
for j=1:3;
£(1)=0;
for i=1:49;
t(i+1)=t{(i)—log{rand)/{b*n(i));
end % End of i loop.
s= gtairs(t,n); % Draws stairstep graph.
set(s,’LineWidth’,2); % Thickens the line width.
hold on % Helds current plot.
end ¥ end of j loop
plot(x,y,'k--’,’LineWidth’,2); % Plots the exponential.
axis{[0,8,0,100]);
xlabel (*Tims’) ;
ylabel(’Population Size’);
hold off % Erases previous plots before drawing new ones.

Note: A statement following % explains the command; these statements
are not executable.



Chapter 6

Continuous Time Birth
and Death Chains

6.1 Introduction

In this chapter, continnous time birth and death processes are studied. In
the next two sections, a general birth and death process is formulated and a
necessary and sufficient condition is stated for existence of a unique positive
stationary probability distribution. If the birth and death process is non-
explosive and a unique positive stationary probability distribution exists,
then by applying convergence results from the previous chapter, it follows
that the process converges to this stationary probability distribution.

Following the general discussion on birth and death processes, some
well-known birth and death processes are discussed: simple birth, simple
death, simple birth and death, and simple birth and death with immigra~
tion processes. For the simple birth and simple death processes, explicit
formulas are derived for the state probabilities, p;(f) = Prob{X(¢) = i}.
It is shown that the probability distribution for a simple birth process is a
negative binomial distribution, and for a simple death process it is a bino-
mial distribution. For the other two processes, simple birth and death and
simple birth and death with immigration, explicit formulas are derived for
the moment generating functions. In addition, it is shown that the process
with immigration has a unique positive stationary probability distribution
provided the death rate exceeds the birth rate. An important application
of birth and death processes is queueing processes. In queueing theory, the
state of the system is the number of individuals in the queue. We discuss a
few examples, where arrivals and departures in the system can be modeled
as births and deaths.

For many birth and death processes in biology, a positive stationary
probability distribution may not exist, because the zero state (extinction
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state) is absorbing. For processes with an absorbing state at zero, the prob-
ability of extinction po{t} and the mean time until population extinetion are
investigated. General conditions are given that allow determination of the
value of the probability of population extinction as ¢ — oo, limy—. po(t),
and the expected time until population extinction.

A stochastic logistic process is formulated and discussed. The zero state
is an absorbing state for the logistic growth model. Using results derived
in previous sections, it is shown that lim;_ . po{t) = 1 and the expected
time to extinction is finite. Ewvery state is transient except the zero state.
However, if the initial population size is targe and the carrying capacity is
large, it may take a long time for the process to reach the zero state, and
in this ease, a quasistationary probability distribution can be defired. For
the process conditioned on nonextinction, there exists a stationary distri-
bution, known as the quasistationary probability distribution. Such types
of probability distributions were studied in connection with the discrete
time logistic process. It is shown that by approximating the probability
distribution associated with the process conditioned on nonextinction, an
approximation to the quasistationary probabhility distribution can be easily
defined that has the same form as the approximate quasistationary distri-
bution that was derived for the discrete time logistic process.

The last two sections of this chapter present two examples. The first
example is an explosive birth process. The second example is a nonhomo-
geneous birth and death process, a process in which the transition proba-
bilities are not stationary (nonhomogeneous).

Before we discuss the general birth and death process, some notation is
introduced that will be used throughout this chapter. Let AX(t) denote
the change in state of the stochastic process from ¢ to £ + At; that is,

AX(t) = X{t+ At) — X(2).

When birth and death processes were introduced at the end of the last
chapter, the birth rate was denoted as b; and death rate as d; when the
state of the process was X(#) = i. However, in this chapter, we will use
notation that has become almost standard in birth and death processes. If
the population size is 4, then the birth and death rates will be denoted as

A; = birth rate  and  u; = death rate
(see, e.g., Bailey, 1990; Karlin and Taylor, 1975; Norris. 1999; Schinazi,
1999: Taylor and Karlin, 1998).

6.2 General Birth and Death Process

The continuous time birth and death Markov chain X {¢} has either a finite
or infinite state space {0,1,2,..., N} or {0,1,...}. Assume the infinitesimal
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transition probabilities of a general birth and death process satisfy

Pit;i(At) = Prob{AX(t) = jIX(t) =i}
A AL+ o(AL), i=
_ it + o At), ji=-1 (6.1)
- P—(h +p)At+olAL), j=0 '
o{At), i#-1,0,1

for At sufficiently small, where A; > 0, u; > Ofors =0,1,2,... and g = 0.
It is often the case that Ay = 0 also, except, for example, when there is
immigration. The initial conditions satisfy p,;(0} = 4;;. If the state space
is finite, then the initial transition matrix P{0) = (p;;(0)) is just the identity
matrix, P{0) = I. The infinitesimal transition probabilities based on At
being small, (6.1), are similar to the type of assumptions made in defining
the Poisson process and the simple birth, simple death, and simple birth
and death processes that were introduced in the last chapter. In a small
interval of time At, at most one change in state can occur, either a birth
or a death. If the population size is i, and a birth occurs, then ¢ — ¢ + 1,
but if a death occurs, i — ¢ — 1.

The forward Kolmogorov differential equations for p;;(t) can be derived
directly from the assumptions in (6.1). Assume A¢ is sufficiently small and
consider the transition probability p;;(t + At}. This transition probability
can be expressed in terms of the transition prohabilities at time ¢ as follows:

Pt + A = pio1s (A1 A+ 6o{AD] + pigi ({1 At + o(At)]

+Pa(O1 - (4 + At +o(AB] + Y pirkalt)o(At)
E#—1,0,1

Pi—1i8)A 1 AL+ pyp (D p At

+ i (E)1 = (A + ;)48 + o(At),

which holds for all 7 and j in the state space with the exception of the
endpoints, j =0 and j = N. If = 0, then '

poi(t + At) = pri(t)m At + poi(8)[1 — AoAt] + o At).

In the case of a finite state space, where j = N is the maximum population’
size, then '

prilt + At) = pn_y (B AN AL+ pri(t)[1 — pun At) + o At).

In the finite case, it is assumed that Ay =0 and prn(t) =0fork > N. In
deriving these expressions, note that we determine what has happened prior
to time £+ Af given that the process will be in state j at time t+ At. From
this process, we shall see that a forward Kolmogorov equation is derived.
Recall in deriving expressions for the probability of absorption a; (first
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step analysis), we determined what will happen in the next time interval
given that the process is currently in state k (this process gives a backward
equation). '

Now the forward Kolmogorov differential equations are derived. Sub-
tract p;;(t), poe(t}, and py;(t) from the preceding three equations, respec-
tively. Then, dividing by At and taking the limit as At — 0, the forward
Kolmogorov differential equations are obtained for the general birth and
death process,

dp;i(t)

gy = AaPi-nilt) ~ (g + p3)25:(8) + B 19541.4(1)
doo, (t '
-ﬂ;}(—l = ~Aopo.ft) + papas(t)

for i > 0 and 7 > 1. For the finite state space, the differential equation for
prilt) satisfies
dpn:
dt
The forward Kolmogorov differential equations satisfy dP/dt = QP,

where €} is the generator matrix. The generator matrix ¢ has the following
form when the state space is infinite:

= Ay apn—1lt) — pailthun.

- Ao 1 0 0
N 2 0
g=| 0 A1 ~Az = pio 3 , (6.2)

and when the state space is finite,

—Ao 11 0 0
Ao —AL— 2 0
0 A |
Q=1 . : : .- (6.3)
0 0 0 e uN
0 0 0 e N

When the initial distribution X(0) is a fixed value, the state probabil-
ities p(t) = {po(t) ;1 (¢),...)7, pi(t) = Prob{X(t) = i}, satisfy the forward
Kolmogorov differential equations, dp/dt = Qp. These differential equa-
tions can be derived in the same manner as previously:

pif{t + ALY = pia(DAi—1 At + piga{t)ps At
+ pg(t)[l —{ A + ) A+ o At).
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— — b ——p — e
-«— «— s =
Figure 6.1. The directed graph for the embedded Markov chain

of the general birth and death process when Ag > 0 and Ay + pu; > 0
fori=1,2,....

Subtracting p,(%), dividing by At and letting At — 0 leads to
dni
dt

The transition matrix T = (t;;) for the embedded Markov chain {Y,,} is

easily defined from the generator matrices (6.2) and (6.3). For the generator
matrix (6.2), the transition matrix of the embedded Markov chain satisfies

= A_1Pi—1 — ()‘ + ﬁz)P:(t) + Hit1Pig1-

0 g /(A + ) 0 0

1 0 pof(As + ) 0
7= 10 A/ + ) 0 B3/ (A3 + ps)

0

¢ Az/ (A2 + 12) ¢

For the generator matrix {6.3), the transition matrix of the embedded Mar-
kov chain satisfies

0 p:l/()q +,|‘.L1) 0 <o D
1 0 p2/ (M + p2) 0
0 )A1/()|.1 +,\‘.L1) 0 R |
T=]. . . .
0 0 0 e 1
0 0 0 e D

In both cases, it is assumed that A; + p; > 0 for i =0,1,2,.... If, for any
1, A; + 15 = 0, then state i is absorbing,

The embedded Markov chain can be thought of as a generalized random
walk model with a reflecting boundary at zero (and at N in the finite case).
The probability of moving right (or a birth) is #;31,; = A/{x + i) and
the probability of moving left {or a death) is ¢;_,; = f:/(As + p;). See the
directed graph in Figure 6.1. It can be verified easily from the transition
matrix T or from the directed graph that the chain is irreducible if and
onlyif A; > 0and g,y >0 for¢=0,1,2,.... If any A; =0, thEntH_“ =10

for all n, and if any u; = 0, then tiﬂ}l ; = 0 for all n.

6.3 Stationary Probability Distribution

In this section, a positive stationary probability distribution is defined for
a general birth and death chain. Recall that a stationary probability dis-
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tribution ® = (mwp, w1, 7m2,.. .}

of a continuous time Markov chain with
generator matrix € satisfies '

Q@ =0, zm;:l, and m; >0
1={)

for 1+ = 0, 1,2,.... The stationary probahility distribution also satisfies
Pltyn == for t > 0.

For birth and death chains, there is an iterative procedure for comput-
ing the stationary probability distribution. The following theorem gives a
formula for the stationary probability distribution when the state space is
finite or infinite. '

Theorem 6.1. Suppose the continuous time Markov chain {X(t)}, ¢ > 0,
18 a general birth and death chain satisfying (6.1). If the state space is
infinite, 10,1,2,...}, a unique positive stationary probability distribution
exists iff

pie >0 and Aoy >0 for £=1,2,...,

and

x>
Z 1N § i1—1 < na.
paper

i=1

The stationary probability distribution satisfies
_ApAr-r A

= —

M, +=1,2,... (6.4)
PRS2 R )
and 1
T = . (65)
NV VS
1+z (A1 1
=1 HMHi1Hz - Hy

If the state space is finite, {0,1,2,..., N}, then a unique positive stationary
probability distribution « exists iff

;>0 and Ny >0 for i=1,2,...,N.

The stationary probability distribution is given by (6.4) and (6.5), where
the index 1 and the summation on i extend from 1 to N,

Proof. The stationary probability distribution n satisfies Qn = 0 or
0= 1oy~ (As + )M + pamn 1=1,2,...,
0= —Agmg + 1,
and Z;ﬁ_o a; = 1. These equations can be solved recursively. For my,
Ag

T = —fo.
H1
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Then my satisfies

pome = (AL 4 pa)m — Ao
A A
_ (1+Pb1)o_AD o
F251
Aoy
T = Ti3-
Hi1p2

The general formula for 7; can be proved by induction. Assume #; has
been defined for j =1,2,...,1,

Ao - Aoy
Ty = ——————7Q-
fafta e
Then
il = (At pdm— Ao
- {)\0/\2 e Aio{Aat ) AcAr - /\:'-1] o
LTI AR 1 [ P R e
. MoArr A |:/\1; +pi 1] o
BLftg -l Hi
MoAs -+ Ay

Myl = —————=p
Hapha - i

It follows that #; is defined for j = 1,2,.... Applying the additional con-
straing, ¥ coqm = 1 or mo(l + Y io, /™) = 1, it follows that

1
o =
o 1+ =, AOAI‘ A1—1
i=1 H1f2 Hi

A unique positive stationary distribution exists if and only if the following
summation is positive and finite:

pYYIRR
0< L < oo 6.6
Z ipz - (6.6)

i=1

If the continuous time Markov chain is finite, then the sumnation in
(6.6) is antomatically finite, so that a unique positive stationary distribution
is given by the preceding formulas for n;, ¢ = 0,1,2,..., N, where the
summation is from i =1 to N. O

Note that if A; = 0 for some ¢ and u; > 0 for i > 1, a stationary

distribution stiil exists but it is not positive. If \; =0 and p; > 0fori > 1,
then mp = land m; =0 for ¢ > 1.
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Example 6.1 Suppose a continuous time birth and death Markov chain
satisfies \; = b and g, = id for : = 0.1, 2,.. .. Then, applying Theorem 6.1,

Mricc-hig B (b/dy

gy -y didd A

and
o .
(bjd} 44
1+ E T = g"/",
i=1

There exists a unique stationary probability distribution satisfying mp =

e~b/4 and _
(b/d)ee—b/d‘

¢ it

This stationary probability distribution is a Poisson probability distribution
with parameter b/d. |

Example 6.2 Suppose a continuous time birth and death Markov chain
satisfies i; = g > 0,i=12,...,and b, =p > 0,i=10,1,2,..., where
p+ g = 1. The embedded Markov chain is a semi-infinite random walk
model with reflecting boundary conditions at zero. The transition matrix
for the embedded Markov chain has a directed graph given by Figure 6.1,
The value of ¢ = £;_1; and p = #;41,;. The chain has a unique stationary
probability distribution iff

F=1

iff p < ¢. The stationary probability distribution is a geometric probability

distribution,
i
7ro=q P and TF.;:(E) o
q q

,r§=(1_3_’) (E), i=0,1,2,.... »
4/ \q

6.4 Simple Birth and Death Processes

or

In the next four subsections, some classical continuous time birth and death
processes are described: simple birth, simple death, simple birth and death,
and simple birth and death with immigration.
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6.4.1 Simple Birth Process

Let {X(f)} for t > 0 be a continuous time Markov chain, where the random
variable X (¢) denotes the total population size at time ¢. Let the initial
population size be N, X{(0) = N, so that p;(0) = d;n. In the simple birth
process, it is assumed that the only event is a birth. For At sufficiently
smali, the transition probabilities satisfy

Pi+ji{At) = Prob{AX(t) = jlX(¢) =1}
MAE + o(At), j=1
) 1-xAt+oal, j=0
= o( At), iz2
0, j <0.

Because there are only births, the population size increases in size by one or
stays the same size during a small increment of time At; it cannot decrease.
This simple birth process is also referred to as a pure birth process (Bailey,
1990).

The state probabilities p;(t) = Prob{ X (t) = i} also satisfy the forward
Kolmogorov differential equations, dp/dt = Qp:

dp;f) = Ai=Dpiaa(t) = Mpi(t), i=N+1,...,
M = 0: 'i:[)?]_!_“,N__l’
dt

with initial condition p;{0) = §;y. These differential equations can be
solved in a sequential fashion as was done for the Poisson process in Chap-
ter 5. For example, note that p;(t) = 0 for ¢ < N; then dpy/dt = ~ANpp
so that the solution is pn{t} = e~ *Vt. However, the generating function
technique will be used to find the solutions p;(t). This technique has wider
applicability and is sometimes simpler to apply than solving the differential
equations sequentially.

Before applying the generating function technique, we make some ob-
servations about the simple birth process. Because the only event is a birth
and X{0) = N, the state space for this process is {N, N +1,...}. In addi-
tion, it can be shown from the generator matrix and the transition matrix
of the embedded Markov chain {with state space {N, N +1,...}} that all of
the states are transient and there is no stationary probability distribution
{(see the Exercises). It will be shown that the p.g.f. and the m.g.f. for the
simple birth process correspond to a negative binomial distribution.

To derive the partial differential equation for the p.g.f., multiply the
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differential equations by z? and sum over i, Then

IP(z,t) e _ PN
57 A D pali- 12 =Xy piiz

i=N+1 i=N
= Az’ Z ipizt T - Az z ipszt Tt
=N =N
ar
= Az{z-1)— 52

because the terms on the right-hand side are the partial derivatives of P
with respect to z. The initial condition is P(z,0) = zV.

The partial differential equatlon for the m.g.f. can be derived by a
change of variable. Let z = €. Then P(¢®,¢) = M{8,t). Because

oP _oMd _ 10M
dz ~ 989 dxr  z 08’
the m.g.f satisfies the following partial differential equation:

oM o oM
o =M Do
with corresponding initial condition, M (8,0) = &"°.

The solutions P(z,t} and M{8,¢t) to the first-order partial differential
equations are found by applying the method of characteristics. We demon-
strate this method by solving the partial differential equation for M (9, t).
Rewrite the differential equation for M (8, ) as follows:

M 31’:’1
w + A(l - )

Along characteristic curves, s and 7, £(s, 1), 6(s,7), and M(s, 1), and, in
addition,
dt . db dM

—_— _— = _B e
o 1, o A1l —€"), and o =0,

with initial conditions
t(s,0) =0, 0(s,0) =5, and M(s,0)=e"*
Separating variables and simplifying leads to

-8
a9 = Adr or edf

e per = Adr.

Integrating yields the relations

t=T, ln{e_e ~1)=-Ar+¢, and M(s,1)= eV,
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Applying the initial condition #{s,0) = s, the middle expression can be
written as
e f—1=(e* —1)e .

The solution Af must be expressed in terms of @ and ¢. Using the preceding
formulas, e—* can be expressed in terms of 8 and t, 7 = 1 — *(1 — ¢~¥).

Since eV° = [e‘SIFN, the m.g.f. for the simple birth process, expressed in

terms of & and ¢, is
M(8,t) = [1 —eM(1 —e )7V,

The p.g.f can be found direcily from the m.g.f. by making the change of
variable, # = In z,

P(z,t) = [l—eMi-z"H"
zNe——,\Nt[ze—x\é‘, _ (z _ 1)]-—N
zNe-ANt

[1—2(1—eA)N"
Hence, y
P(z,t) = H%ﬁ (6.7)

where p = ¢™*" and ¢ = 1 — ¢~ *. From this latter expression (6.7) for

the p.g.f. it can be seen that the p.g.f. corresponds to a negative binomial
distribution {see Chapter 1).

The probabilities p;(¢) from a negative binomial distribution with p.g.f.
given by {6.7) satisfy

N+i-1
)

pian(t) = ( )qu", i=0,1,....

A A

Let i + N = n and replace p and g by e and 1 — e™*, respectively,

pa(t) = (:?__';[) e ML — M N = NN 41, ...

Notice that py(t) = e *¥*, which agrees with the solution computed
directly from the forward Kolmogorov differential equations, dpy/di =
—)\NpN‘

The mean and variance for the simple birth process can be obtained
directly from the formulas for mean and variance of a negative binomial
distribution. They are

m(t) = j\"'/p= Ne/\f. and Jg(t) — Nq/pZ = N62A£(1 -—e_)”),

These moments can also be calculated directly from one of the generating
functions.
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Figure 6.2. Probability distributions for the simple birth process X (1), X(2),
X(3), and X (4), and three sample paths when ) = 0.5 and X (0) = 5.

The mean of the simple birth process corresponds to the solution of a
deterministic exponential growth model with X (0) = N. However, for large
¢ it does not follow the exponential model very closely because the variance
increases exponentially with .

Example 6.3 Suppose A = 0.5 and N = 5. Then m(t) = 5¢%%, ¢2{t) =
5(et — e®%), and

{n— 1)
(n— 514
The probability distributions for the simple birth process are graphed in

Figure 6.2 for times ¢ = 1,2, 3,4 and, in addition, three sample paths are
graphed for ¢ € [0, 8]. »

pn(t) = 6—2.5):(1 _ e—-D.St)n—S, n= 51 6, o

6.4.2 Simple Death Process

Let X (1) for £ > 0 be a continuous timme Markov chain, where the random
variable X (#) denotes the total population size at time £. Let the initial
population size be N, X{0) = N, p;(0) = &n. In the simple death process,
it is assumed that the only event is a death. For At sufficiently small, the
transition probabilities satisfy

pi+;i(At) = Prob{AX(F) = jlX(t) =1}
pidt + o(At), j=-1
) 1—nt+oan, j=0
a of At}, 7= -2
0, i>0.

In a sufficiently small period of time At, either the population size decreases
by 1 or stays the same size. Since the process starts in state V, the state
space is given by {0,1,2,...,N}.
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The transition probabilities lead to the forward Kolmogorov equations,
dP/dt = QP, and the state probabilities also satisfy this system of differ-
ential equations, dp/dt = Qp:

dpétf_‘) = i+ Dpirr(8) — pipi(t)
dpgt(” = —uNpn(t),

for i = 0,1,2,...,N — 1 with initial conditions p;{0) = ;. From the
generator matrix @ and the transition matrix of the embedded Markov
chain, it can be shown easily that zero is an absorbing state and the unique
stationary probability distribution is # = (1,0,0,...,0).

The probabilities p;(t) can be calculated sequentially from the forward
Kolmegorov differential equations. For example, it is easy to see that
prn(t) = e7#Nt, However, the generating function method is applied. It
is shown that the probability distribution for the simple death process is a
binomial distribution.

Multiplying the forward Kolmogorov equations by z* and summing over
i, the partial differential equation for the p.g.f. is

orP oP N
E-,u(l—-z)a—, P{z,0) = 2".

Substituting z = €?, the partial differential for the m.g.f. is
oM _
=

The solutions to these equations can be found by the method of character-
istics. They yield the following solutions for the p.g.f. and m.g.f.

oM
-0 _ _ N¢
ule 1} 50 A(8,0) =e™".

P(zt) = [1 = e {1 - )] = [1 - ™4 4 et

and
M(6,8) =1 — e (1 -V,

Let p=e~# and ¢ = 1 — e #'. Then the p.g.f. has the form P(z,t) =
(g + pz)™, which is the p.g.f. for a binomial distribution, b(N,p). The
probabilities, p;{t}, can now be defined {see Chapter 1}):

pilt) - (‘T) pg i = (T) €] — gTHN

for ¢ =0,1,..., N. The mean and variance of binomial distribution b(N, p)
are m = Np and 0% = Npq, but expressed in terms of the original variables
they are

m(t) = Ne ™', o%(t) = Ne Pl — e~ #),
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Figure 6.3. Probability distributions for the simple death procéss X{1), X(2),
X (3), and X(4) and three sample paths when p = 0.5 and X{0) = 20.

Notice that the mean of the distribution corresponds to the solution of
a deterministic model with exponential decay. The variance decreases ex-
ponentially with time. The differences in the variances between the simple
birth and simple death models can be seen in the sample paths graphed in
Figures 6.2 and 6.3.

Example 6.4 Consider the sirnple death process with p = 0.5 and N = 20.
The mean and variance satisfy

m{t) = 20e7%% and o%(t) = 20(e™> — 7,

respectively. Probability distributions for the simple death process are
graphed in Figure 6.3 at times { = 1,2,3,4. It is evident as time increases
that the mean and variance of the distributions decrease. |

- 6.4.3 Simple Birth and Death Process

Let {X(f)} for t = 0 be a continuous time Markov chain with X({t) the
random variable for the total population size at time {. Let the initial
population size he N, X(0) = N, p;(0) = &;. In the simple birth and
death process, an event can be a birth or a death. For At sufficiently small,
the transition probabilities satisfy

PuaiilAt) = Prob{AX() = jIX(t) = i)

PIAL + o Al), j=-

AAL + o{ At), i=1

- (A +piAt+o(At), j=0

o At), J#-1,0, 1
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- The state probabilities satisfy the forward Kolmogorov differential equa-
tions, dp/df =

WA N pims &) + i+ Dpia(®) = O+ whimi(®)
d—-——?t(t) = pp(t)

for ¢ = 1,2,... with initial conditions p;(0) = &;5. Since As = 0, zero is
an absorbing state. It can be shown that 7 = (1,0,0,...)7 is the unique
stationary probability distribution.

Using the generating function technique, first- order partial differential
equations for the m.g.f. and the p.g.f. can be derived. The p.g.f. satisfies

%}: [l = 2) + Az{z — 1)] , P(z,0) =2V
and the m.g.f. satisfies
oM BM _ en

Application of the method of characteristics to the m.g.f. equation leads to

dt dé aM
& —dr, and o =
b eI ane -y - A and o =0

with initial conditions
t(5,0) =0, 6(s,0)=s, and M(s,0) = eV

We omit the mathematical details for soiving this equation (please consult
the Appendix for Chapter 6). Two cases must be considered A = ¢ and
A# . The mgf. M is

etle—2) [Aee ) - ,u(e‘? -1 N ‘
M, t) = (etw;:){,\e?)(;L)_)/\(e;_l}) , i A#Fp

1-(At—1}e" -1 ‘

( 1 - At(e? — 1) ) ' if A=p.

Making the change of variable 8 = In z, the p.g.f. Pis

e~y pz - DY
(Fmpeoaien) » A

1- (- Dz — YY" ey
( 1- Mz - 1) ) i A= p

Pz, t) =
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Obtaining formulas for the probabilities p;{t) is not as straightforward

as it was for the simple birth and simplé death processes because the p.g.f.

cannot be associated with a well-known probability distribution. However,
recall that

1 &P

Plz,t) = ;pi(t)z and p{t) = B

=0

A computer algebra system may be helpful in finding the terms in the series
expansion. The first term in the expansion of P(z,t) is po(t) = P{0,¢):

~ getrnen N :
p— pe ) . :
(———-—— , i A#p
_ (= A)E
po{t} = A ne N
At .
T+ x) A= p

The mean and variance of the sitaple birth and death process can be
derived from either the p.g.f. or the m.gf. For A # g,

m(t) = Ne*~#* and o*(t) = N(_)lif_)eu—n)t(eu—mf -

(A—u)
The mean correspends to an exponential growth model if A > u and an
exponential decay model if A < 4. For the case A = pu, the mean and
variance satisfy
m{t) = N and o?(t) = 2N L.

The probability of extinction, po(t), has a simple expression when t —
o0. Taking the limit,

1, A<

(E)N . ifA>p (6.8)
A

This latter result is reminiscent of a semi-infinite random walk with an
absorbing barrier at # = {(~that is, the gambler’s ruin problem, where the
probability of losing a game is g and the probability of winning a game
is . When the probability of losing (death) is greater than or equal to
the probability of winning (birth), then, in the long run { — ), the
probability of losing all of the initial capital N {probability of absorption)
approaches 1. However, if the probability of winning is greater than the
probability of losing, then, in the long run, the probability of losing all of
the initial capital is (z/A)V.

Three sample paths for the simple birth and death process are graphed
in Figure 6.4 for parameter values A = 1 = p and initial population size
X(0) = 50.

The mean, variance, and p.g.f. for the simple birth, simple death and
simple birth and death processes are summarized in Table 6.1.

po(0) = lim pq(t) = {
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Figure 6.4. Three sample paths for the simple birth and death
process when A = 1 = g and X{0) = 50.

Simple Simple Simple
Birth Death Birth and Death
m(t) NeM Ne st Neld—at
o2(t) || Ne?M{(1—e ) | Nem# (1~ e™#t) N;\—-’_-—E (p—1)
(=)
(1 - 2(1 —p}\N t=p+pal”
S Negative Binomial P Az =) — w(z - 1) N
’ binomial b(N.p) o7z =) = Az~ 1)
p= e-,\t p= e—,u,f

Table 8.1. The mean, variance, and p.g.f. for the simple birth, simple
death, and simple birth and death processes, where X(0) = ¥V and p =
eA=ult ) # 1
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6.4.4 Simple Birth and Death Process with
Immigration

Suppose immigration is included in the simple birth and death process at
a constant rate v. For At sufficiently small, the transition probabilities for
a simple birth and death process with immigration satisfy

pgj.i.j’i(At) = PI‘Ob{AX(t) = le(t) = t}

piAt + of At), j=-1

(v + M)At + o( At} j=

IL—[v+ A+ pli] At +o{At), =0

o(At), i#£-1,0, 1

Due to the immigration, Ag = # > 0.
Let X(0) = N. Then the state probabilities p;{t) satisfy the forward
Kolmogorov equations, dp/di = Qp:

dp; , . S

d_i = [Mi— D+ vipi—1 + pli + Dpig1 ~ [N+ pd + vlp;
d

% = —vpo +pp,

for i = 1,2,... with initial conditions p;{0} = §;5. This system of differ-
ential equations cannot be solved sequentially. Therefore, we employ the
generating function technique.

The m.g.f. M(?,1) satisfies

%‘; =[Me? =D +u(e? - 1) % +u(e? - )M, M(9,0) =N°.

Note that the form of this equation is the same as for the birth and death
process if v = 0. We apply the method of characteristics to solve for M {8, t),

= 1, 7= Al-€)+p{l —e™), and — =v(e” — 1)M.

dr
The initial conditions satisfy
t(s,0) =0, #(s,0) =35, and M{s,0) ="’

Note that the solution for & is the same as for the simple death process,
and M can be solved in terms of @ {separation of variables):

dM _ vie? - 1M
a9~ A1-e®)+u(l —e-?)

which leads to (Bailey, 1990):

pa(, 1y = OB B0 - 1) = e — W]




6.4. Simple Birth and Death Processes 229

The moments of the probability distribution X () can be computed
from the m.g.f. A computer algebra system was used to calculate the mean

(m(t) = OM/98s=0).

eANy — NA—v] + v

mit) = T

if A#p (6.9)
For the case A = u, I'Hopital’s rule is applied. Let « = A — s. Then

ut _
m{t) = lim e (Nutv)—v

=t + N. (6.10}
u—0 i) )

The mean increases exponentially in ¢ when A > u and linearly when A = p.
However, in the case A < g, the mean approaches a constant:

mioo) = A<

1

Y
Thus, for the case A < pu, we should expect that as time progress the
process settles down to a stationary probability distribution with mean
v/{e - X). The stationary probability distribution is independent of the
initial distribution and is the limiting distribution,

Theorem 6.1 can be used to determine conditions for the existence of a

positive stationary distribution. A stationary probability distribution exists
for the birth, death, and immigration process if

<< 00,

i)\o/\l"‘/\i—l _iv(v+/\)--v(v+[i——l)/\)
i=1 USRS i=1 ?!,U“
It can be verified easily that the birth and death process with immigration
satisfies the preceding condition. There exists a constant ¢ > O such that
v = cA. Using this identity for v, the preceding summation simplifies to

[=.4]

ch+1) (e+z-1)(,\)" (6.11)

=1 #

It is left as an exercise to show that the series converges iff A < y. Thus, a
unique positive stationary distribution exists iff A < u. In addition, because
fiv1 > 0and X; > 0for i =0,1,2,..., the stationary distribution is the
limiting distribution.

Example 6.5 Suppose ¢ = 1, A = 0.5 = v, and o = 1 so that A; =
Me+1) = 0.5(( + 1) and g; = ui = 4. To find the stationary probability
distribution 7, apply Theorem 6.1:

A Aoht - A 2
Wil — —i—ﬂ'ﬁ my = L-—llﬂ‘o, and Z’ﬂ',‘ =1.
Hit1 Papz ..y ;
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Figure 6.5. Stationary probability distributions for the birth,
death and immigration process with A = 0.5, p = 1, and v =
0.5, 1.0, 1.5, or 5.

Thus,
_05(i+1) _ ; .
Mgl = t'_—}—l_ﬂ-‘ = 0.5m; and m; = (0.5)"ng.
Also,
[av) o0 1 i
Sm=m3(3) =m0
i=0 t={)

This implies mp = 1/2. The stationary distribution is given by

1 i1
?T,',Z('i) f ?::0,1,2,....

The mean of the stationary distribution is m = > o, i/2**!. It can be
shown that the mean equals 1. This follows from calculating the derivative
of (1 —x)~! =372, which is absolutely convergent for |z{ < 1. The
first and second derivatives satisfy

(1-z)%= iz‘m"'l and 2(1~z)73 = i i(i — L'~ (6.12)
i=1 =2

for |zf < 1. Substitution of = 1/2 in the first derivative and multiplying
by (1/2)? yields m = {1/2)2(1 — 1/2)~2 = 1. The second derivative can
be used to find the variance, 02 = 2. The value of the mean agrees with
the formula m = v/(g — A), which was derived previously. The stationary
probability distribution for this example is graphed in Figure 6.5. |
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When the stationary probability distribution exists, A < g, it is also the
limiting distribution. The p.g.f. for this stationary distribution 7 can be
found by taking the limit of the p.g.f.,

[= o] e}
— 1 . . 1 Lh
FP(z,00) = tl_l.l'& P(z,t) = tli)rgo _Eopt(t)z = Eoﬂ-‘z )
i= i=

Let z = e in M(8,t) and let t — oco. It follows that

1 A I//r\
_(2=eN | s
P(z’oo)"(/\z—ﬂ) o2,
I

This is a p.g.f. of a negative binomial distribution provided v/ is a positive
integer. The parameters are p=1—-X/p, ¢=1—p = A/p, and n =v/A
The mean, variance, and probability distribution of a negative binomial
distribution satisfy

n v n
me= 2 = and o? =4 K

e ? o (p= N

r+n—1 P
7rg,=( nel )p“(l—p)‘, 1=0,1,2,....

For the parameter values in Example 6.5, where v = 0.5 and A = 0.5, n =
v/ A =1, the stationary probability distribution is a negative binomial. We
can verify that the mean and variance satisfy the formulas given previously.

Figure 6.5 graphs the stationary probability distributions for four dif-
ferent sets of parameter values. In each case, the distributions are negative
binomial. The four graphs in Figure 6.5 have parameter values A = 0.5,
4 = 1 and the immigration rates are v = 0.5, 1, 1.5, and 5. The mean values
for the stationary probability distributions corresponding to each of these
values of »# are m = 1, 2, 3, and 10, respectively. Four sample paths for each
set of parameter values are graphed in Figure 6.6. It can be seen at about
time ¢ = 25 that the sample paths appear to vary around the respective
mean values of the stationary probability distribution.

In practice, we may not be able to find closed form solutions for the
stationary distribution. It may be necessary to approximate them. Because
m; — 0 as i — og, for sufficiently large ¢, m; = 0. In Example 6.5, the first
15 terms provide a good estimate of the stationary distribution,

i m; = mp(0.5)F i(o.z»)"' = mp(0.5)'* < (0.5)'%.
=0

=15
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Figure 6.6. Four sample paths corresponding to the birth, death, and immi-
gration process when X(0) = 20, A = 0.5, p = 1, and v = 0.5, 1.0, 1.5, 5; the
respective mean values of the stationary distribution are m = 1, 2, 3, 10.

Using just the first 15 values of the stationary probability distribution in
Example 6.5,

mo(1+1/24+1/2% + -+ + 1/2M) = 10 (2 - (0.5)"*) &~ 70(1.99994) = 1,

gives a value of mg = 1/1.99994, which is close to its exact value of 1/2.
The mean, variance, and p.g.f. are summarized for the simple birth and
death process with immigration in Table 6.2,

6.5 Queueing Processes

An important. application related to birth and death processes is queueing
processes, processes that involve waiting in queues or lines. The arrival and
departure processes are similar to birth and death processes. The formal
study of queueing processes began during the early part of the twentieth
century with the work of the Danish engineer A. K. Erlang. The field of
queueing theory has expanded tremendously because of the diversity of ap-
plications, which include scheduling of patients, traffic regulation, telephone
routing, aircraft landing, and restaurant service. Here, we give a very brief
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Simple Birth and
Death with Immigration

pANA—p) +v]—v

mit)

A-u

A2 — y®)ple -1 (Ao — i — A)
o(t) N( (Aﬂ_)i[)pz ] + o p(/\‘(iu;;
PR SV k7B

Ao — i — Alp— 1)z V72

Table 6.2. The mean, variance, and p.g.f. for the simple birth and death
with immigration process, where X(0) = N and p = e #)2 X £

Arrivals . Departures
— Service —LP

Figure 6.7. A simple queueing system.

introduction to some simple queuneing processes. For a more thorough but
elementary introduction to queueing systems, please consult Bharucha-Reid
{1997}, Hsu (1997}, or Taylor and Karlin (1998). A more in-depth treat-
ment of queueing processes and networks can be found in Kleinrock (1975)
and Chao, Miyazawa, and Pinedo (1999).

A queueing process involves three components: (1) arrival process, (2)
queue discipline, and (3} service mechanism (see Figure 6.7). The arrival
process involves the arrival of customers for service and specifies the se-
quence of arrival times for the customers. The queue discipline is a rule
specifying how customers form a queue and how they hehave while wait-
ing (e.g., first-come, first-serve basis). The service mechanism involves how
customers are serviced and specifies the sequence of service times. The
notation A/ B/s/K is used to denote the type of queue. The variables 4 =
arrival process, B = service time distribution, s = number of servers, and
K = capacity of the system. If the queue has unlimited capacity, then it
is denoted as A/B/s. We shall consider a Poisson arrival process so that
the interarrival time is exponential (Markov process) and the service-time
distribution is exponential (Markov process). In this case, the queue is
denoted as M /A /s or M/M/s/K.

Consider a queueing system of type M /M /1. Assume the arrival process
is Poisson with parameter A {inean arrival or birth rate). The service time is
exponentially distributed with parameter x4 (mean departure or death rate).
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After being serviced, individuals leave the system. Let X (¢) = number of
individuals in the queue at time ¢. If X{1) = 0, then there are arrivals
(births) but no departures {deaths). If A and x are constant, then X(2) is
a birth and death process as described in Example 6.2 (¢ = ¢ and A = p).
The probabilities Prob{X(t) = i} = pi(t) satisfy the forward Kolmogorov
equations, dp/dt = Qp, where the generator matrix '

—-A Lt 0
A =A-p p

7
0 Adp [-J:

1 0 XLF

T = A T
6 -— 0

For this queuneing system, there exists a unique stationary probability dis-
tribution iff A < ;. The ratio A/ u is referred to as the traffic intensity. The
stationary probability distribution is a geometric probability distribution,

m=(1-3) (ﬁ) =002
1 It

If X > u, then the queue length will tend to infinity. The mean of the sta-
tionary probability distribution represents the average number of customers
' in the system {at equilibrium},

=3 /\ [=<] /\ i
C= im:(l——) a(_)
g; # é; 7
This summation can be simplified by applying the identity (6.12):

Co M Y

T 1-XMp op- A

The average amount of time W a customer spends in the system (at equi-
librinm) is the average number of customers divided by the average arrival
Tate \:

C 1
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Example 6.6 Suppose in an M/M/1 queueing system customer arrival
rate is 3 per minute, A = 3. The goal is to find the average service time u
so that 95% of the queue contains less than 10 customers. First,

[= w3
Prob{> 10 customers} = Z s
=10

(-6
()"

Then (A/p)'® = 0.05. Substituting the value of A = 3 leads to

il

i = 4.048 customers per minute. [ ]

Next, we consider a queueing system of the type M/M/1/K. The queue
is imited to K customers. Therefore, there are no arrivals after the number
of customers has reached K:

A = A, i=0,1,.. ., K ~1.
Tl 0, i=KHK+1,....
The mean departure or death rate is 4. For the M /M /1/K queueing system
there exists a unique stationary probability distribution given by

N 1-Me
Tl't—(;) I—W, %—0,1,...,K (613)

(see Exercise 14).

For the last example, consider a queueing system of type M/M/s. The
mean arrival or birth rate is A. Each of the s servers has an exponential
service time with parameter g. Therefore, the mean departure or death
rate is

i, i=12,...,8—1,
B = { s, i=ws8,8+1 ...,

In this case, there exists a unique stationary probability distribution iff
A < sp. The stationary probability distribution is given by

A u)?

Ml i=es-1,
7= i!

/\ iss—-i

'(‘ﬁsll-——ﬂ'o, i=s85s8+1,...,

where 7 is determined from 377 m; = 1.
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6.6 Probability of Population Extinction

In the simple birth, simple death, and simple birth and death processes,
Ag = 0 = iy, the set of states does not form an irreducible set and a pos-
itive stationary probability distribution does not exist. The zero state is
absorbing. For many realistic birth and death processes, the zero state is
absorbing. Eventually, the distribution for the total population size is con-
centrated at zero, lim;_.oo po(£) = 1. The following theorem gives necessary
and sufficient conditions for total population extinction as ¢t — oq.

Theorem 6.2. Let pg = 0 = Ay in a general birth and death chein with
X0)=m2>1.
{i) Suppose p; >0 and A; >0 fori=1,2.... If

o~ 12
—_— = 6.14
o M = (614
then lim, oo poft) =1 and if
= fiftz - fi
= < 6.1
izl AIAQ"‘A,J: m’ ( 5)
then
Y R
2 e A
lim poft) = —=2 . (6.16)
t—oo 1+Zlil,u2'“m
=1 MAze A

(i) Suppose (t; > 0 fori=1,2,.., A >0 fori=1,2,...,N—1 end
M=0fori=NN+1IN+2,.... Thenlimy_. o pp(f) = 1.

A proof of Theorem 6.2 is given in the Appendix. Case (ii) is stated
separately since the ratio in (i) is undefined if A; = 0. However, formally,
the surmn in case (i) is infinite if A; = 0 for any ¢ > 1. Case (i) of Theorem 6.2
applies to an infinite Markov chain with state space {0,1,2,...}, and case
(ii) applies to a finite Markov chain with state space {0,1,..., N} when
X(0) = m £ N. Note that in case (ii), the birth rate, A;, is zero for states
i greater than or equal to the maximum size N. If X(0) = m > N, there is
a simple death process occurring until size IV is reached. Theorem 6.2(ii)
alzso holds if the death and birth rates are zero, g; =0 = X; for i > N and
Xi0j=m<N,

Theorem 6.2 is applied to the simple birth and death process in the
next example. In a later section, Theorem 6.2 will be applied to the logistic
growth model.



6.7. Expected Time to Extinction and First Passage Time 237
Example 6.7 In the simple birth and death process, A; = Af and g; = pi.
Then - -
#1#2'“,&@:2(&)’: oa, if g2z,
- AtAg o N 1 A < 00, if < A

According to Theorem 6.2, if 1 > A, then limy_oe po(t) = 1 and if p < A,
then

= (4)"

This result was shown in the simple birth and death process, equation
(6.8). ]

6.7 Expected Time to Extinction and First
Passage Time

In this section, the time until the process reaches a certain stage is studied.
Suppose a population size is @ and we want to find the time it takes until it
reaches a size equal to b. The time spent going from state a to b is referred
to as the first passage time. Two cases are considered, @ < b and a > b.
Let T;11,; be the random variable for the time it takes to go from state i
to i + 1. From the derivation of the interevent time, we know the p.d.f. for
the interevent {ime has an exponential distribution with parameter A; + p;
Filt) = (M pa)em utmt,
Thus, the expected time to go from state i to either £ + 1 or i — 1 is the
mean of the exponential distribution, 1/(A; + z;). The process jumps to
state ¢ + 1 if there is a birth {probability A;/(X; + i)} and jumps to state
1 — 1 if there is a death (probability p;/(X; + ). Thus, if @ < b, the time
it takes to go from state a to b is

Too =Tor1e + Tag2ar1 + -+ Thp1.
Similarly, if @ > b, the time it takes to go from state ¢ to b is
Do =Tac1a+ Tac2g-1+ +Tpps1.
Now, if a < b, the expected tine to go from state a to b satisfies
E(Ty.) = E(Tuv1,0) + E{(Turo,001) + -+ E(Tpp-1 )

Similarly, an expression can be derived for @ > b These are mean first
passage times.

General expressions for F(T;,+1) and E(T;y1 ;) are derived for a birth
and death process. Suppose the process is in state 7. After an exponential
amount of time the process jumps from i to i+1 with probability A, /{A;+14)
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and to state ¢ + 1 with probability p; /{A; + p;). To find the expected time
of going from state ¢ to ¢ + 1, we must consider that the process may jump
to 1 — 1; then the expected time it takes to go back to ¢ must be added to
this time,

A 1
E(T‘H‘l-‘é) - A+ o (/\"i‘#‘)

i 1
E(T; - E(Ti.
+/\s+auz' ()\§+Ns+ (Thimn) + B +1’})

1 fi
= B(Tii ) + E(Toyy s
/\i+ui+)\i+m[ (Tii—1) + E(Tirr,0))

{see Schinazi, 1999; Renshaw, 1993). The preceding relation can be simpli-
fied to obtain

1 i
E(ﬂ-l-l,i}:_‘i'u E( fi= 1) (617)
AN
A similar derivation can be obtained for E(T;_) ;):
i 1
E(Ti1:) =
(Tima) Ag + ()\H-Pu;)
A 1
+ /\1_ + (’\ + 1 + E(Tt,ﬂ-l) + E(Ts-ln))
Simplifying, \
1 ;
E(Ti_l‘g) = E + j.TgE(‘I‘i’H-l)‘ (618)

The two identities {6.17) and {6.18) will be applied to the simple birth and
simple death processes.

Example 6.8 Consider a simple birth process beginning in state a. Recall
that A; = Af and p; = 0. The expected time E(T;; ;) = 1/A;. Therefore,
the expected time to go from state g to state b, @ < b is

171 1 1
Tl -+ . 19
/\(a+a+l+ +b—~1) (6-19)

The summation can be bounded by logarithms as follows:

n(2) <3S ien(t2),

In particular,

1
lim [Z - ln(n):( =y = 0.57721566490. ..,

T+ O
i=1
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where the constant -+ is known as Euler’s constant. Thus, for large values
of @ and b, the expression in (6.19) can be approximated by

1 b
E{Tb,a) w2 X In (E) .

We can compare this estimate with the deterministic exponential growth
model, n(t) = ae**. The time it takes to go from state @ to state b is found
by solving the equation b = ae* for ¢,

t—lllE
ﬁ/\l =)

This estimate agrees with the approximation obtained from the stochastic
simple birth process. It is left as an exercise to show that for the simple
death process the expected time it takes to go from state a to state b, a > b,
is E(Tap) ~ (1/u)In(a/b). [ |

Example 8.9 Consider a general birth and death process, where Ay > 0,
po =0,and A; > O0and u; > 0fori=1,2,.... Then the mean time it takes
to go from state O to state 3 is calculated. Note that E(T} o) = 1/Ag; then

1
E(Ty,) = o A‘:;U,

3 1 2 _ 1 M Mtz
Elso) = 3+ 5,000 = £+ 50 3o

50 that

E(Ts50) = E(Ty0) + E(Ty1) + E(T3,2)

b 1 1 om 2 K2h1
Ao A1 Az /\1/\0 /\2/\1 )«2/\1/\0‘

(6.20)

The expression for E(T3 ), equation {6.20}, can be extended to E(T},0)
(see Taylor and Karlin, 1998). This latter expression is related to a non-
explosive process. If the expected time to extinction approaches infinity,
as b — oc, then the process is nonexplosive; that is, lmy—.. E{Tp0) =
(Taylor and Karlin, 1998).

Suppose Ag = 0 = pp and lim;_, o, po(t) = 1, so that ultimate extinction
is certain. In this case, it is possible to derive a formula for E(Tp ), the
expected time to extinction beginning from state i. Notice that E(Tp o) = 0.
For simplicity, denote 7; = E(Tp ;). For a small interval of time At,

7 = MAHT 1+ AD + At (Tioy + At + [ — (A + ) At){m + AL) + o At).
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Simplifying this expression, dividing by At, and letting At — 0 leads to
the following difference equation:

Ti = 1 4+ /\i Tiv1 + M T
A m At " Aitp Y
These equations can be expressed as
HiTi1 — (/\g + ,U-'Q,)T@, + /\,‘TH.] = —1, i = 132, Cees (621)

If the Markov chain is finite, with states {0.1,2,..., N}, so that Ay = 0,
then for i = 1,2,..., N, the system of equations given in {6.21) can be
expressed in matrix form. The matrix equation satisfies D7 = d, where D
is an NV x N matrix,

—/\1 — A] 0 . D 0
2 —Az — pi2 Az e (]
D= 0 #a —Az—py -+ 0 01,
0 {0 0 e BN —UN ..
7= (11,72,..,7n)F and d = (-1,-1,..., -7, Matrix D is irreducibly

diagonally dominant and thus, nonsingular. The expected time to extinc-
tion 7 satisfies

r=D"1d.

This same systern is derived for general birth and death discrete time Mar-
kov chains in Chapter 3, Section 3.5.1.

A recursive formula for higher-order moments can be derived. For ex-
ample, E{T5,), ¢ =1,2,..., N, the second moment of the extinction time,
can he expressed in terms of the (r — 1)st moments, E(TJ;I) {(Goel and
Richter-Dyn, 1972; Norden, 1982; Richter-Dyn and Goel, 1974). If 7" de-
notes the vector of rth moments for the extinction time and the Markov
chain is finite, then

D77 = —pr L
Goel and Richter-Dyn {1972}, Karlin and Taylor (1975), Nisbet and Gurney
(1982), and Richter-Dyn and Goel (1974} give an explicit solution for the
first moment, 7;, ¢ = 1,2,..., in a general birth and death chain. This
result is stated next; the proof is given in the Appendix for Chapter 6.
Also see Chapter 3, Theorem 3.2.

Theorem 6.3. Suppose {X{t)}, t > 0, is a continuous time birth and
death chain with X(0) = m > 1 satisfying \g = 0 = po and X > 0 and
pi > 0 fori=1,2,.... In addition, assume lim,_,, po(t) = 1. The ezpected



6.7. Expected Time to Extinction and First Passage Time 241

time until extinction, 7, = E{Tym), satisfies

1 o e A
LA m=1
HL o =2 H1-H
Tm = (6.22)

T1+Z [t S o/ m , m=223,....
AL s ietl ML M

The condition lim_, . po(t) = 1 is required in Theorem 6.3 (i.e., the
condition (6.14) given in Theorem 6.2), since if lim,—_ ., po(t) < 1, there is
a positive probability that the population size will approach infinity and,
thus, 7, = o0. Note that there is no positive stationary distribution since

do =0, I

i At Ao o

@ DRRRS
then 7, = oo. When the Markov chain is finite with maximal population
size N, then automatically , < oc and the solution for m = 1,2,..., N,
7 = (11, 72,...,7n)7, can be calculated numerically from 7 = D~1d. How-
ever, equation (6.22) applies to the finite case as well. The summation to
oo is replaced by N,

1 i\f_‘ Y
— + —_——, m=1
H1 =2 H1°H4

LD VPR Yl
T+ Z [/\ l/—\‘fs 1 1-1
1 s i=a4+l M1 Hy

Tm =

], m=2,3...,N.

The formulas (6.22) and {6.20) show that the expressions E(T} ) and
E(Ton,0) are very different. In the expression (6.22), Ay = 0, the origin is
absorbing, and in expression (6.20), Ap > 0, the origin is not absorbing.
For example, the expression in (6.22) for the case m = 3 is

1 A AiA 1 A Ao
E(Tps) = [—+ e e +~-]+[—+—2+A
Hi1 Hijtz  phfofis H2  Haliy  Hofizfig

[ 1 Az A3y ]
+ =+ .
M3 Hafg Hapiylls

The reason for this difference is that before reaching 0, the chain may visit

states i, where 1 < ¢ < o0, but when moving from 0 to m, the chain may
only visit states 7, 0 < i < m.

Example 6.10 Formula {6.22) is applied to the simple birth and death
process, where A; = A and u; = gi. The extinction time 7, < oc if A < p.
Suppose the initial size is m = 1. Then

=§§ ( )i:igw

1 /a\i*
(i)



242 Chapter 6. Continuous Time Birth and Death Chains

Let u = A/p. Then

1 e
utl = w dw.
t+1 0
Substituting this expression into the sum and interchanging summation and
integration yields

| A - 1 /7 1 1 pt
TI_X</(; (‘z::ow)dw—xﬁ (m)dw——'xhl(l—a)

(Karlin and Taylor, 1975). ) ]

6.8 Logistic Growth Process

To formulate a stochastic logistic model, recail that the deterministic logis-
tic model satisfies the differential equation

where . = n(t) equals the population size at time ¢, 7 is the intrinsic growth
rate, and K is the carrying capacity. Solutions n(t) to this differential
equation with nonnegative initial conditions approach the carrying capacity
K, imy ... n{t) = K. The derivative, dn/dt, equals the birth rate minus
the death rate. Thus, in a stochastic logistic model, the birth and death
rates, A, and i, should satisfy
An = P =TR— %nz,

Ao =0 = g, and Ag = px. It is reasonable to assume that the birth and
death rates are quadratic functions of the population size. The state space
could be finite or infinite. In the case of ant infinite state space {0,1,...},
assume that for each state ¢ € {0,1,...}, the birth and death rates satisfy

A= bii+bai? >0 and p; = dii+ dai® >0, (6.23)

where the coefficients b; and dj, j = 1,2 are constants. In the case of a
finite state space {0,1,2..., N}, assume for each state i € {0.1,2,..., N},
b bit >0, ifi=12,....N-1

A= { 0, ifi=N (6.24)

and
i = dyi + dad® > 0.
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The initial population size X (0} can be greater than N, but the process acts
as a death process until state N is reached and then the process remains in
the state space {0,1,2,..., N}. Returning to the differential equation,

d T
Ei; = (b —di)n+ (b —da)n® =rn - Enzv
so that
. b —dy
T‘:bl—d-1>0 and K = = 0. (625)
dz — by

Notice that there are four constants to be specified in the stochastic
logistic model, b1, ba, dy, and d», but only two constants in the deterministic
model, r and K. There is an infinite number of values that can be chosen
for the four constants that give the same values for r and K. Hence, there
is an infinite number of stochastic logistic models that correspond to the
same deterministic logistic model. Suppose, for example, b = r, by = ¢,
dy =0, and d3 = ¢+ v/K, where ¢ is a constant. Then the relations {6.25)
are satisfied for an infinite number of possible choices for the constant ¢:

Ap = i = (rn + cen?) — (cn2 + %nz) =rn— %n?

If the coefficients b, and ds are not zero, then the per capita rates of birth
and death depend on the population size (i.e., A, /n and gy, /n depend on n}.
For example, if by < { {or dy < 0), the number of births {deaths) decreases
as the population size increases, but if the reverse inequality holds, bs > 0
(d2 > 0), the number of births {(deaths} increases as the population size
increases. A reasonable assumption for many populations is that ds > 0,
meaning that the death rate is density dependent. Ultimately, the choice
of the coefficients b, and d; depends on the dynamics of the particular
population being modeled.

Example 6.11 Two stochastic logistic models are defined that have the
same deterministic logistic model. Define the birth and death rates, A; and
s, as follows:

2

, 1 .
{(a) )\,-—zandp,—ﬁ,z—(),l,?,‘..

;2

(b) /\i= Q—E, '320,1,.H.20 andm:
ad, > 20 :

3"2

—, i=0,1,2,...
201 i' 0, ’2’

In both cases the deterministic model is

&=

where + = 1 and K = 10. In the deterministic model, solutions approach
the carrying capacity K = 10; it is a globally stable equilibrium for positive
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Figure 8.8. Three sample paths of the stochastic logistic model for cases (a)
and (b} with X (0} = 10.

initial conditions. In the stochastic models, for population sizes greater
.than K = 10, the death rate exceeds the birth rate, and for population sizes
less than K = 10, the birth rate exceeds the death rate. When n = 10,
A1o = 10, and the probability of a birth or a death is equal to 1/2,

Mo 1 o
Mo+ pwe 20 At

Three sample paths for models (a) and (b) are graphed in Figure 6.3. H

The assumptions (6.23) or (6.24) and application of Theorems 6.2 and
6.3 imply that in the stochastic logistic model, extinction occurs with prob-
ability 1, lim,_ o, po(f) = 1, and the expected time to extinction is fnite.

Corollary 6.1. Assume the stochastic logistic model satisfies (6.25) and
either (6.23) or (6.24). Then
lim pof{i} =1 (6.26)

t—co
and the expected time until extinction 7, = E(Tp ) < .

Proof. Suppose (6.24) is satisfied. Then (6.26) follows directly from Theo-
rem 6.2 part (ii) and 7,,, < oc.

Suppose {6.23) is satisfied. We will show that (6.14) is satisfied. The
ratio of two successive terms, a;/a;_, in the summation of (6.14), equals
i/ Ai, where

fi  di+dait

Ad - b + bgi.
Because A; and u; are positive for all ¢ and from the assumptions in (6.25),
it follows that ds > by > 0. Thus,

lim B _
o0 i

B, if by >0
by
00, if b2 = 0.
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In either case, by the ratio test, it follows that (6.14} is satisfied and Theo-
rem 6.2 (i) implies lim,_.o; po{t) = 1. In addition, it is easy to show by the

o Ap - Ape
ratio test that 3 = = oo
i=1 M1
b
A 2 <l ifb>0
lim =<{ dy
e i 0, if b = 0.
Hence, by Theorem 6.3 part (ii), ., < 0. O

The expected time to extinction is calculated using the techniques from
the previous section in the next two examples.

Example 6.12 Suppose the stochastic logistic model has the following
birth and death rates:

i2 2
PR i = t .
/\i= ' N‘ 5_0‘1,.”‘N and Hi = <7y 3:031:21--"
0, i>N N

The intrinsic growth rate r = 1 and the carrying capacity K = N/2.
The expected time to extinction can be calculated for X{0} = m, m =
1,2,...,N by solving the linear systemn Dr = d. The expected time to
extinction 7 = (r,...,7n)7 is graphed in Figure 6.9 in two cases, N = 10
and N = 20. When N = 10, the carrying capacity is K = 5, and when
N = 20, the carrying capacity is K = 10. The expected time to extinction
for a carrying capacity of K = 5 ranges from approximately 234 (= 71) to
269 (= T10), whereas for K = 10, the expected time to extinction is on the
order of 10°. [ |

[

h
g
P

g

P
g
=
||

[a,]
=
=

Expecled ime o extinglion

Expecled lime to extinction

[+
g
5

e 2 4 & 8 10 1

& 10 15 20
Inilial population size Initial population siza

Figure 6.9. Expected time until extinction in the stochastic logistic model with
K =5and K =10.
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Example 6.13 Assume the stochastic logistic model satisfies
: i
;\,; =i and i = ‘1—0._.

In this case, the carrying capacity is K = 10. Formula (6.22) can be used to
compute 1 = F(Tp 1), a lower bound for the expected time to extinction,

Tm 2 T1, M 2 1,
_ i Arces iy
i—1 H1 B

An estimate for 71 is 7, = 2489.35. ’ | |

The mean and variance can be computed from the forward Kolmogorov
differential equations, dp/dt = Qp, or from the partial differential equation
satisfied by the m.g.f. Applying the generating function technique to the
forward Kolmogorov equations, it can be shown that the partial differential
equation satisfied by the mn.g.f. for the stochastic logistic model is

oM _
at

M
= [bi(ef =1 +di(e? - 1)] 9
32M
992’

where M(8,0) = eN® if X(0) = N. This differential equation can be
used to derive differential equations satisfied by the mean and higher-order
moments. Differentiating (6.27) with respect to @ and interchanging the
order of the differentiation yields

+ [ba(e® — 1) + do(e™ — 1)] - (6.27)

PM o g0 OM Lo M
oigs = [ne —die™ ae [bl( =D +die™ - 1)]—33,2—
+ [623 - dge-B] ()92 [b2(e - ]') “+ d2 - I)] 363 '

Evaluating this differential equation at 8 = 0 and using the fact that
" M /96* evaluated at @ = 0 is E{X*(t)) gives the identity

dm(t)

= (b1 — di]m{t) + [by — do] E(X?(1))

rmt) — %,—E(X?(t)}. (6.28)

The differential equation for m{t} cannot be solved since it depends on
E(X2(t)}, but m{t) can be compared the to the solution of the deterministic
model. In the simple birth and death processes, the mean agrees with
the solution of the deterministic model. This is not the case for more
complicated models. In particular, for the stochastic logistic model, it will
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be shown that the mean of the stochastic process is less than the solution
of the deterministic model (Tognetti and Winley, 1980},

The variance a2(t) = E(X?(t)) — m?(t) > 0 so that E{X?(t}) > m2(¢).
Because m(t) > 0, it follows from equation {6.28) that

dmit) m(¢)
dt K

< rmit) [1 - ] ., t€[0,00).

Suppose n(t) is the solution of the logistic differential equation dn/dt =
rn(l — n/K) satisfying 0 < #(0) = m(0). By comparing the differential
equations for m(t) and n(t), it can be shown that

m(t) < nft) for t€[0,00)

(see the comparison theorem in the Appendix for Chapter 6). The solution
to the deterministic logistic differential equation is greater than the mean of
the stochastic logistic model. This result seems plausible because ultimate
extinction is certain in the stochastic logistic model, lim; ... po(t} = 1. As
t — o0, the probability distribution becomes concentrated at zero, so that

A differential equation for E(X?(t)) can be derived in a manner sim-
ilar to the mean. Use the partial differential equation for the m.g.f. and
differentiate twice with respect to #; then evaluate at 8 = (:

%}:(t)) (61 + di]m(t) + (2(b) — di) + (ba + da2)| E(X2())
+ 2[by — do] E{(X (1)) {6.29)

The variance increases if b; + d; and b2 + dy are large and positive. This
can be seen in the stochastic simulations of the logistic model, Figure 6.8.
In(a), b +d; =1land bo+d2 = 1/10 and in (b) by +d; = 1 and by +ds = 0
for ¢ < 20 and 1/20 for ¢ > 20. Both models have the same deterministic
logistic model, but model (b) has a smaller variance.

6.9 Quasistationary Probability Distribution

In birth and death models, when the origin is absorbing, there is no station-
ary probability distribution. However, even when lim;_, . po(t) = 1, prior
to extinction, the probability distribution of X () can be approximately
stationary for a long period of time. This is especially true if the expected
time to extinction s very long. This approximate stationary distribution
is known as the quasistationary probebility distribution or quasiequilibrium
provability distribution.

Denote the probability distribution associated with X () conditioned on
nonextinction as ¢;(t}). Then

pi(t)

q(t) = = ()’ 1=

1,2,....
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The quasistationary probabilities satisfy a system of differential equations
sitnilar to the forward Kolmogorov differential equations,
dgi _ dpi/dt | pi  dpo/di
dt 1-py  (1—po){1-po)
= Aim1@i1 ~ (N + g+ pirrdin + Glpaa),

where it is assumed that Ay = 0 = uq.
The quasistationary probability distribution can be approximated by
making the assumption p; = 0. Then dg/dt = (g, where

-2 1 0
- Ay A — ta
Q= ] Ay —A3 — o3

This system will have a unique positive stationary probability distribution
given by # = (#,%2,...)T if the assumptions of Theorem 6.1 are satisfied.
The stationary probability distribution must satisfy

RSP r Y = .
Fo=22 H1la and Zm =1
H2pLg 0t fy £

Therefore, a unique positive stationary probability distribution exists to
the system dg/dt = Qq if

[ o]
ArAg - Ay
Z 1A2 4 .1 < oo,
ioa M3k
The sclution 7 approximates the quasistationary probability distribution.

Example 6.14 Cousider the two stochastic logistic models discussed pre-
viously, where the birth and death rates, A; and pu; satisfy

.2

{a) Mi=tand 4, = 30 i=0,1,2,.
. 3‘2 . 1 9 i2

) =4 P55 F=OL20 g =L i=0,1,2..
0, i > 20, 20

In both cases the deterministic mode} is

@ (- ).

so that the intrinsic growth rate is » = 1 and the carrying capacity is
K = 10. The approximate quasistationary probabilities 7, are calculated
for each model and graphed in Figure 6.10. [ ]
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Figure 6.10. Approximate quasistationary probability distri-
bution # for cases (a} and (b). The mean and standard devi-
ation for case {a) are fit &~ 8.848, & ~ 3.193 and for case (b),
7 /= 9.435 and & = 2,309.

Notice that the means of the guasistationary distributions are less than
the equilibrium of the deterministic model, K = 10, and that the variance
in model (a) is greater than model (b). Recall that it was shown in the
last section that the mean m(t) of the stochastic logistic model is always
less than the solution of the deterministic model, m(t) < n{t). In the
deterministic model, n(t) — K, and in the stochastic model, m(t) ~ s, so
that it is reasonable to expect m < K. In addition, the variance is large
when & +d; and by + dz are large. These parameter values are larger for
case (a) than for case (b), implying that the variance is larger for case {a)
than for case {b). This is evident in Figure 6.10.

For a discussion of generalized stochastic logistic models with immigra-
tion, see Matis and Kiffe {1999). In their models, a stationary probability
distribution exists and the cumulant generating function for this station-
ary distribution is obtained. In addition, it is shown that the stationary
probability distribution is approximately normal. See also Nisell (2001)
for a discussion of the quasistationary probability distribution in stochastic
logistic models.

In the next section, an explosive hirth process is discussed. Necessary
and sufficient conditions are stated for a birth process to be explosive.

6.10 An Explosive Birth Process

We shall expand on the definition of an explosive process. Norris (1999)
defines an explosive process in terms of the jump times or waiting times
{W;}2, and the interevent times {7;}32,. Recall that W; is the time
at which the process jumps to a new state and T; = W;,; — W,. Let
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W =sup,{W;}.i€{1,2,...}, and T = Y72, T;. Ii, for some state i,
Prob{W < oc[X(0) =i} >0 or Prob{T < oo|X{0) =i} >0, ({6.30)

then the process is said to be ezplosive; otherwise it is nonexplosive. In an
explosive process, it follows that given X{0) = 1, the probability distribu-
tion {p;i(£)}52, corresponding to X(t) has the property that there exists a
time t* < o0, where T = ¢* such that

(e a)
> opdtt) < L.
$ =)

Therefore, a birth process is not explosive if

Zpa'(t) =1 forall ¢>0.

i=0
Necessary and sufficient conditions for a birth process to be explosive
are given in the next theorem (Feller, 1968; Norris, 1999). Recall that in a
birth process, A; > 0and g, =0fori=1,2,....
Theorem 6.4. 4 birth process is explosive or satisfies (6.30} iff

o

> 1w (6.31)
i=} Ai
Proof. Suppose X{0) = m or p;(0) = d,,;. Let Si{t) = Zf:u p;(t). The
forward Kolmogorov differential equations dp/dt = @Qp for a birth process
satisfy
dpy
dt
dpy
dt
From the forward Kolmogorov differential equations it follows that

ﬁ%@_ = —Aepx(t).

If k > m, then 5;(0) = 1. Integrating from 0 to ¢ leads to

Aimapiol — /\ips

1l

—/\(}pg.

'
Sp(t) 1= -/ Mepp{Tidr, k> m.
0
The sequence {Si(t)}:2,, is increasing. Therefore, the sequence {1 —

Sk{t)}2,, is decreasing for & > m and is bounded below by zero. The
sequence must have a limit. Call this limit L(#):

4
j‘lim /\kf prelT)dr = L(t) > 0.
— o
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Also, fut pelrydr > L(t)/A for & > m. It follows from the definition of
Si(t) that for k > m,

f Se(r)dr > Z / pilr)dr > L(t)z 1 (6.32)

=

Suppose the process is explosive given X(0) = m. Then there exists a
time £* such that

e
klim Se(t™) <1 and klim /\kf pelridr > 0,
—_— — 0 i)

so that L{#*) > 0. This fact, together with t* > fo Sk(T)dr in (6.32),
implies that the summation {6.31) is convergent.

To show the converse, concepts presented by Norris {1999} are applied.
Suppose the summation (6.31) is convergent and X (0) = m. The probabil-
ity of a birth given the population size is ¢ has an exponential distribution
with parameter A;. Hence, the expectation

k k m+k+11 oo 1

Because 3 .-, E(T;) < oo it follows from the dominated convergence the-
orem (Rudin, 1987} that the limit of the left side as k& -— oo is also finite,
E(T|X(0) = m) = B3 2, T.|X(0) = m) < co. Because m is arbitrary
and the expectation of T’ is finite,

Prob {T = oojX(0) =m} =0

Thus, for any initial state m, Prob{T < oo|X{0} = m} = 1; the process is
explosive. 0

The following example describes a birth process that is explosive.

Example 6.15 Suppose a birth process satisfies \; = 5i* > 0,1=1,2,...,
where £ > 1. Note that

O-||-&

=1 =1
S i

is a multiple of a convergent p-series with p = k > 1. According to The-
orem 6.4, the birth process is explosive. A deterministic analogue of this
model is the differential equation

dn
— = bn*.
a0
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Integration of n with initial condition n{0} = N leads to the solution

n(t) = [N1=F — (k — 1ype] 7/ *7Y

Ast — N1=*/[b(k — 1)), then n(t) — oo. Hence, the deterministic solution
approaches infinity or “explodes” at a finite time. B

6.11 Nonhomogeneous Birth and Death
Process

In all of the birth and death processes discussed thus far the transition
probabilities have been homogeneous with respect to time; that is, time
independent. Suppose the birth and death rate parameters A; and y; satisfy

Ai = A(4,t) and gy = pit).

Then the transition probabilities are nonhomogeneous. The forward Kol-
mogorov equation is

dp;(t)

pra Al — Lt)p—1 (8) + plé + L, )pisa (t) — (A, 8) + pu(e, t))pi(E).

Multiply by 2* and sum from i = 0 to oo to obtain a partial differential
equation for the probability generating function P(z,):

i ZA(z—l Opia (B + 3l + 1L 0pr (03
i=0
— Z[A(i,t] + p(i, 8)]p;(£)2

=0

The right-hand side depends on the form of A{4,t) and p(i, ). One example
is discussed next.

Example 6.16 Suppose A(r,t) = A{t)i and u(7,t) = p(t)i (Bailey, 1990).
Then the partial differential equation for the probability generating function
satisfies

apP
3 = [A)(2® —z]—l—p(t)l-z]a , P(z,0) =2V,
Along characterjstic curves, r and s,
dt dz dP
&:::0, d—T=(1'-Z)[/\(t)z-—j.£(t)], &Ild d—T-—O
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with initial conditions
t(s,0) =0, z(s,0)=3s, and Pis.0) = M.

The differential equation for z can be soived by letting ¢ = 7 and making
the change of variable 1 — z = 1/y so that ¥ = 1/(1 ~ 2)? and dz/dr =
(1/5?)dy/dr. The differential equation for » can be transformed into a
linear differential equation in y:

Y = () = iy - A,

Use of an integrating factor,
eJ (@) —Ma]da _ galr).
leads to .
y@“>-ywxn=-1£ X(B)e"® dg.
Now, y(5,0) = 1/(1 — s) and y = 1/(1 — z), so that

1 erlr)

_ _ ff A(ﬁ)e"(m da.

s—1 z2-1 J

Solving for s,
1

+ . .
ef—'("')z -1 - fD ,\(6)39(6) dﬁ
The solution to the p.g.f. is

1 n
Piz,t)= |1+ — )
(=0 [ 2~ o A(r)eﬂ(ﬂdf}

s=1

where p(t) = fot [1(7) = A(7)] d7 and T represents a dummy variable.
An expression for py{t}, the probability of extinction, can be found by
evaluating P{z,}at z =

. N
H=]1- :
() [ er(t) + f(: AlT)est?) dr]

Because

t: t t
ep(t)+/ AMre?Ddr = ep(t)_/ p(f)e"(T)df+[ ﬂ(f)ep(f) dr
0 0 o

k4
= ¢t -—e"”)lé+/ p(r)e”™ dr
0

t
1+/ u(r)e”™ dr,
0
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the probability of extinction shmplifies to

fy wryervar 1"
1+ f w{r)es™) dr

poft) = [
Note that if lim;_ 5 fcf i#(m)ePl " dr = oo, then limy, o, py{t} = 1. But

t ¢ ¢
f,u('r)ep(”)d‘r = /p(?)ep(T}dT+/ AMr)e?") dr
o

1] 0
> et -1,

Thus, if limy .~ p(£) = 00, it follows that lim,—_ ., po(t) = 1.
The analogous deterministic model satisfies the differential equation,

T~ A - ule)in, n(0) 0.

The solution to this differential equation is
n(t) = n(0)e~ folkmI=Mrldr _ pgye=rlt),

For the deterministic model population extinction occurs, limg— . n{#) = 0,
if and only if limy— ., p(t} = co. This result differs from the stochastic model
in that population extinction is still possible in the stochastic mode] even
if the limit of p(t) is not infinite. [ ]

6.12 Exercises for Chapter 6

1. Suppose a contimons time Markov chain, {X(#)}, t > 0, is defined
by the following mnfinitesimal transition probabilities:

Piria(At) = Prob{AX(f) = jIX(t) = i}

WAL + o(At), j=-1
MAL + o(At), j=1
= vAt + o At), ji=2
V- {v+ A+ pui)At +o(Ag), j=0
o(At), j#-10,1,2

The initial distribution satisfies Prob{X(0) = N} = 1.

{a) Find the differential equations satisfied by each of the state prob-
abilities

pi(t) = Prob{X{t) =i} for i=0,1,2,....

(b) Find the generator matrix Q.
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2. Let X(¢) be the random variable for the total population size for
a birth-death-emigration process and p;(t) = Prob{X(¢) = i}. The
infinitesimal transition probabilities satisfy:

pi4;a(At) = Prob{AX(t) = j1X(t) =}
(i + V)AL + o(At), j=-1
B MZAL + o(At), i=1
1 — (M2 + pi+ o)At +o(A2), j=0
of At), i#-1,0,1.

The initial probability distribution satisfies Prob{X(0) = N} = 1.

(a) Show that the differential equations satisfied by p.(¢f) for i =
1,2,... are
@, [(ME = 1)7] + pig [p(d + 1) + V] = pe[ A% + i +
E—Pz—l - Di1 [ + v -'}Js[ 5+ V]-
{b) Assume A = 0. In addition, assume v = 0 when i = O (i.e,
there is no emigration when the population size is zero). No-
tice that the state space comsists of {0,1,..., N}, since it is &
death-emigration process. Write the first-order partial differ-
ential equation satisfied by the probability generating function,

Pz, t) = zi\;o pi{t)t.

3. Suppose a general birth and death process satisfies A; = b(¢ + 1) and
p,=difori=0,1,2,..., 5,d > 0.

{a) Determine conditions on b and 4 such that a unique positive
stationary probability distribution exists.
(b) Find the unique stationary probability distribution.
4, Consider the simple birth process.
(a) Find the generator matrix @ and the transition matrix T for the
embedded Markov chain based on the state space {N, N+1,.. .}.
(b) Show that all states are transient and there does not exist a
stationary probability distribution.
5. Consider the simple death process.
(a) Find the generator matrix ¢ and the transition matrix T for the
embedded Markov chain based on the state space {0.1,..., N}.

{b} Show that zero is an absorbing state, the remaining states are
transient, and the unique stationary probability distribution is
7 =(1,0,0,...,0)T.
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6. Consider the simple birth and death process with immigration such
that » =1 = A Find the stationary probability distribution = when
[T

7. Consider the simple birth and death process with immigration.

(a) Use the m.g.f. M(6,¢) to find an expression for o2{t).
(b) Find lim,— ¢(f) when A < gx. Does o%(o0) agree with the
variance of the stationary distribution in Example 6.57

8. Suppose a general birth and death process has birth and death rates
given by

N =bo+ b+ byi®, and gy = dii +dyi%, for i=0,1,2,....

{a) Find the forward Kolmogorov equations; then use the generating
function technique to find the differential equations satisfied by
the p.g.f. and m.g.f. In particular, show that

aM
—51— = ( ~-1) |:f)o+bl 52692] "
- d a°
+ (e 7 1) ]:dlgé +d;‘;a—9—2j1 A

(b) Compare the partial differential equation for A with that for
the stochastic logistic model and find the form for the partial
differential equation for A{(#,¢} in the more general case where

Ay o= ZE:D bk_ik and Wi = 22:1 dk’ik.
9. Consider a death and immigration process, where A; = v and y; = pi.
{2) Show that the m.g.f. satisfies

%—I——p[ _9-1)ﬂ+ve -1M.

{(b) Use the method of characteristics to solve for Af(6,+). Show that
M(0,t) = [1+ (e — 1)e™*[V exp (E [1 + e—m(e‘*—l)]]) ‘

{ Hint: Express the characteristic equation for M in terms of &;
solve dM/d8.)

{c¢} Use the expression for M (8, ¢} to find the mean, m(f), and vari-
ance, o2(t), of the process.
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10. For the simple death process, show that the expected time to go from
state @ to state b can be approximated if @ and b are large. Show that

1 a
o) = —1 (—) .
F(Tha) p niy
11. For the birth and death process with immigration, show that the
series (6.11) converges iff A < g iff there exists a unique stationary
probability distribution.

12. Consider the simple birth and death process with immigration.

(a) Assume A = 0.5 and v = 1 = u. Show that the stationary
probability distribution satisfies
i+1

:W, 3‘=0,1,2,‘...

Ty
Find the mean of this distribution. This probability distribution
is graphed in Figure 6.5.
{b) Assume X = 0.5, x4 =1 and v = 1.5. Show that the stationary
probability distribution satisfies

i+ 2)i+1y
i = __?"4__, 3—»0,1,2,.”.
Find the mean. This probability distribution is graphed in Fig-
ure 6.5.

13. In the simple birth and death process with immigration, the corre-
sponding deterministic model satisfies

d
&= =(A—pmn+v, v(D)=N.
dt
Show that the solution to the deterministic model n(t) agrees with
the mean of the stochastic model, equation (6.9), when A # u and
equation (6.10), when A = p.

14. In a queueing system of type M/M/1/K, derive the stationary prob-
ability distribution given in equation {6.13):

TSy o
m_(u) 1= (A kD i=0,1,...,K.

Then find the average number of customers in the system, ¢ =

Zi}il i’:ﬂ'g.



15.

16.

17.

18.
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In a queueing system of type M /M /oo, there is an infinite number of
servers, The arrival and departure rates satisfy

Ai=A and py=dp, 1=0,1,2,....

(a) Find the stationary probability distribution.

{b) What is the average number of customers C in the system?

(c¢) What is the average amount of time W each customer spends in
the system?

Assume the random variable X({t} represents the total population
size for the stochastic logistic model, where the birth and death rates
satisfy either

22
. (3 .
(i),\ . .?._‘lm, ?=0,1:...._100, &nd;ég':'z_“i:1,2,‘..
0, i > 100 100
(i) A =dand g = &5, =0,1,2, ...

Note that in the deterministic model, r = 1 and K = 50. Assume
X(0) = 50.

(a) Write a computer program to simulate sample paths for the
stochastic logistic models in (i) and (ii} up to time ¢ = 10. Graph
three sample paths for (i) and (ii}.

{b) Calculate the mean and variance of 1000 satnple paths at £ = 10,
m(10}, and 52(10), for (i) and (ii).

{¢} Calculate the guasistationary distributions {#;};2, for the logis-
tic models (i} and (ii) and graph them.

(d) Caleunlate the mean and variance of the quasistationary distri-
butions in (i} and (it}). How do they compare?

Consider a general birth and death process with
Ai=bii+boi+ bgﬁz and p; =d; +doi + d3’.":2

for i =0,1,2,..., where d3 # 0 and dz > b3. Asstume A;, g; > 0 for
i=12,....

(a) Show that dz > 0 and limy_—o po(t) = 1.

{b) Show that the expected time until population extinction is finite.

Consider the stochastic logistic model with m.g.f. A{(8, t) satisfying
equation (6.27).

{a) Find the differential equation satisfied by the c.g.f., K(8,1).
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(b} Use the differential equation satisfied by K'(4.#) in part (a) to
find a differential equation satisfied by the mean m{t} and vari-
ance g2(t).

19. The partial differential equation satisfied by the m.g.f. for the simple
birth process satisfies

oM ., M
B =AM D5

{a) Differentiate the partial differential equation with respect to @
and evaluate at @ = 0 to find the differential equation satisfied
by the mean, m(t). Solve for m(t).

M(6,0) = M.

(b) Differentiate the partial differential equation twice with respect
to # and evaluate at § = 0 to find the differential equation sat-
isfied by E(X?(t)). Solve for E(X2(#)).

(c) Find the differential equation satisfied by ¢*(¢). Then solve for
a?(t).

20. The following birth and death process is known as a Prendiwlle pro-
cess (named after B. J. Prendiville} (Tosifescu and Tautu, 1973). The
birth and death rates are

7
An = a(-z—l), 0<n <n<ng

1

Hr = ﬁ(l_%): 0<ﬂ15ﬂ-fﬂ2s

where a and (3 are positive constants. Outside of the interval [ry, nsj,
the birth and death raies are zero, that is, A, = 0 = u, for n < ny
or 1 > na. The p.gf. P(z,t) for this process satisfies the following
partial differential equation:

%—}; =(1- z){az +,6)%§ +(z-1) (a«ng + E?—l) P

-

with initial condition P(z,0) = 2™ (Tosifescu and Tautu, 1973).

(a) Show that the solution of this first-order partial differential equa-
tion is
_ 2™ [a(l = p{t))z + aplt) + B
(o B)ma="1 [{a 4 Bplt))z + B(L — p(t))™ ™

where p{t) = e—{ati)t,

(b} Find lim;_... P{z,t) and denote this limit as P(z.c0). This limit
is the p.g.f. for the stable stationary probability distribution.
Use P{z,00) to find the mean of this stationary distribution.

P{z,t)
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21. The deterministic model of the Prendiville process discussed in Exer-
cise 20 is given by the differential equation

dn

dt

ans + fn
/\n—ﬂn=———n———1*(@+ﬁ)-

{a) Show that the equilibrium solution A {where dn/dt = 0) to this
differential equation is

_ ang 4+ fing
ft= —
o+ 3

Then show that dn/dt > 0 for 0 < n < @ and dn/dt < 0 for
n > f. Conclude that lim,_,o n{t) = 7.

(b) Compare the behavior of this deterministic model to the stochas-
tic Prendiville process discussed in Exercise 20.

22. Consider the birth process with immigration, where X; = by + b;é*,
bo > 0,0 >0, fori=1,2,.... Show that the process is not explosive
if £ =1 and is explosive if £ = 2,3,....

23. Suppose a nonhomogeneous birth and death process satisfies A(i, ) =
Alt)d and p(i,2) = u()é with u(t) = % and A(t) = 2¢2. Find Jim po(t).
—00

24. Consider a nonhomogenecus birth and death process, where u(t) and
A(t) are linear functions of ¢,

p{t) = ot and A(t) = Bt

(a) Show that if &« > # > 0, then limy ., #{t) = oc, and if o =
B > 0, lims_ fg p{r)ef M dr = lime_oo fé ardr = co. Find
limy — o0 po(£).

{(b) Show that if 0 < & < 3 (births exceed deaths), then

04

(@ - B)%

¢
lim u(r)e?) dr =
t—o0 Jg

Find Ym0 polt)-

26. A birth and death process with immigration was developed by Alonso
and McKane (2002) based on a spatially implicit patch model. Let
p{t} be the fraction of patches occupied by a particular species. Empty
patches can be colonized from occupied patches or via migration from
the mainland. The deterministic model is expressed in terms of the
following differential equation:

% = (m+ep)(l —p)—ep, ©<p(0)< 1. (6.33)



6.13. References for Chapter 6 261

The positive constants m, ¢, and e are the rates of immigration from
the mainland, colonization, and extinction, respectively. Model {6.33)
was first discussed by Hanski (1999} in the context of metapopulation
models. In the original model, studied by Levins (1969, 1970), there
was no migration (m = 0).

6.13

(a)

(b}

(©

Show that model (6.33} has a unique positive equilibrium given
by

£ c—m—e+/{c—m—e)?+4cm
1:
2c

{when dp/dt = 0) and lim,_ p{t) = E;.

In the stochastic formulation by Alonso and McKane (2002), it
is assumed that X (%) is the random variable for the number of
patches occupied at time ¢{. The maximal number of patches
occupied is M, X(t) € {0,1,2,...,M}. The birth rate of new
patches occupied is

;
M=ci|l——=—]+m(M -1
T
for i =0,1,2,..., M, where the first term in the preceding ex-
pression represents a colonization event and the second term
represents an iminigration event from the mainland. The death
rate satisfies

pi=ei, i=0,1,2,.... M,
where death means population extinction on one of the patches.
To relate this model to equation (6.33), note that if p = {/Ad,
then

dp (e —p)

dt M
For the birth, death, and immigration process, find a formula
for the stationary probability distribution.

Compare the equilibrium value E; to the stationary probability
distribution when M =40, ¢=2,e =1, and m = 0.1.
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6.14 Appendix for Chapter 6

6.14.1 Generating Functions for the Simple Birth and
Death Process

The m.g.f. and the p.g.f. for the simple birth and death process are found
by solving the following first-order partial differential equations. The p.g.f.
satisfies

C:;E: [,u(l—z)—I—)\zz—l]a , P(z,0)=
and the m.g.f. satisfies
aM g oM
— 1= A _ 8N
y = [ule™” = 1) + Ae ] 50 M(8,0)=c¢
Application of the method of characteristics to the m.g.f. equation leads to
dt de dM
g = -dr, and — =0,
- et D1 o oad g =0

with initial conditions

t(s.0) =0, 8(s,0)=s, and M(s,0) ="
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The solutions satisfy
t=1 and M(s,T)=e",

Integrating the differential equation in # (integration is made easier by a
change of variable & = €?),

1 e -1 .
Y In pYE— +In(r) ), if A£p
T =

1
Mef — 1)

+ 72, if A=p,

where 1, and 7, are constants. The two cases, A = p and A # u, must
be solved separately. The initial condition for # is used to solve for the
constants,

L[, (7 =1 —p)
p=A T (e —p)es - 1))
1 1 . ..
Mef = 1) Aes—1)' ’

T =

Because M(s,7) = [¢*]"V, these relations are solved for e*,

eI — ) = (e = 1)

if
e = 67(“"’\)(/\69 - p)— Ale? —1)° if A#pu
1— (A —1{e? - 1) ‘
f = .
1-Ar(e® - 1) it A=

Now the m.g.f. M can be expressed in terms of 8 and ¢,

P=AV (308 _ o ifef N
(e (Ae” — p) — ule 1)) O Au
M@0, 0 = \EEIOL — 1)~ A - 1)
1-(—1ef — 1D\ N
1— At(e? — 1) : =
Making the change of variable @ = In z, the p.g.f. P is
He-N gy — ) — (2 — DN
(Bt _M(/\z ) — )) i At
P(z,t) = et=MN(Az —p} — Az = 1)

1- (- DE-1\" ey
( 1= Mz -1) ) it A=
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6.14.2 Proofs of Theorems 6.2 and 6.3
Proof of Theorem 6.2. Note that in a general birth and death chain

dpo(t)

= t).
dt #1}'31( )

Since § < p;(t) < 1, it follows that po(t) is an increasing function that is
bounded above. Thus, lim; .o poft) exists.

For part (i) of the theorem, let E; be the probability of extinetion given
the population size is ¢ {see Karlin and Taylor, 1975; Renshaw, 1993}. The
ratio A;/(p; + A) is the probability of a birth and the ratio g;/(g; + A)
is the probability of a death given that an event has occurred (transition
probabilities in the embedded Markov chain). Then

E; = Prob{first event is a birth}E;;, + Prob{first event is a death} E;_,
Ai i
= —F ————
it A +1+m+/\a‘ '

Because Ay = 00 = yg, Ey = L. Rewriting the preceding expression,

B+ A 4t
B = B4\ p Ei_
* Ag { pit A
Hi Hi
= ]. E,; - "-_E.i_ .
(+&) 5,
For i = 1 and 2,
Ey = (1 + /\—1) E; — /\1
= B +(F - l)—
Ey = 1 Ey — E
3 ( + )‘2) 2 o 1

e fad! 2
1 1) - =
( +/\)(E1+(E1 1)/\) A2E1

e (2 122)

By induction it follows that

E,,:E1+(E1—1)( il ‘:) (6.34)
i=1 17

for alln =2,3,.... Also, 0 < E,, <lforn=12,.... Let n — oc. If
the factor multiplied by (E; — 1) approaches infinity, then £y = 1. But
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if £y = 1, then E, = F{, for n > 1, so that £, = 1, the probability of
extinction is 1, given the population size is n. Hence, if (6.14) holds, then
tllm polt) = 1.

Suppose (6.15) holds so that a solution 0 < Ey < 1 of (6.34) exists.
Then F, is a decreasing function of n. According to Karlin and Taylor
(1975) and Nisbet and Gurney (1982), lim,, . F, = 0. Let n — oo in
(6.34). Then

) ,u"l'.

§ X
Hapz - i ki
§ A /\2 A

Substitution of E; into {6.34) with n = m yields (6.16).

For part (ii) of the theorem, if the initial population size m > N, there
will be only deaths until the population size reaches N. The states {N +
1, N +2,...} are transient. Once the population size reaches N, the popu-
lation size will remain less than or equal to NV for all time; {0,1,2,... N}
is a closed set. Thus, to find the probability of extinction, we need only
consider population sizes {0,1,...,N}. Assume p,(t} = 0 for n > N and
t > T, T sufficiently large. The system of differential equations satisfied by
p(t) = (po(t),...,pn(E)T for t > T is

dpo(t)
dt

dpy (t}
dt

dpy{t)
dt

for n = 1,2,...,N — 1, where 0 < p(T) < 1 and N po(T) =

E]_:

= p1poft)
= Ap—1Pn-1{t} — (/\n + fn)Pn (t) + Brt1Pn1 (t)

= Ay_1pn—1{t) — unpn(t),

Note that for this system of differential equations, d{Zf?;O pil(t)]/dt = 0,
so that Zfi_@ pi(t) = constant. Because N po(T) = 1, it follows that
2?;0 pi(t) = 1. The forward Kolmogorov differential equations satisfy
dp/di = Q)p, where matrix @ is

1] I 0 0 0

0 “/\1 — 1 2 - 0 0
Q= 0 A —da—pa - 0 0

0 0 0 oo AN-1 —HN

The solution is p(#) = ¢“'p(0}). The limit as ¢ — oo depends on the eigen-
values and eigenvectors of . Matrix ¢ has one zero eigenvalue with cor-
responding eigenvector e; = (1,0,0,...,0)T. Matrix @ also has N other
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eigenvalues that have negative real part. To show this latter assertion, we
can apply Gershgorin’s circle theorem and irreducible diagonal dominance
to the submatrix of @ formed by deleting the first row and column (Or-
tega, 1987). Thus, the solution p(t) satisfies lim;_, o, p(t) = cpe;. Because
Z?;o pi(t) = 1, it follows that ¢ = 1 and, hence,

Jim po(t) = 1. 0

Proof of Theorem 6.3. Let 7 = 1, — Ty41 < 0 and subtract = fromn both
sides of equation (6.21). Then

1 Ay pi
0 = + T — T3+ Ti—1 — T,
As + pi )\H'#i(gﬂ o /\¢+M(11 )
Ti—Tir1 = x+;§(Tn—1—Ta)
1 .
Z = /\—i+§—:zi_1.
By induction, it follows that
1 Hom H o fim T
& = T+ + + 2
" Am Am~1Am ’\1’\2"'/\m Al"')‘m 0
1 A AL A
— H1 - Hm [_+ 1 +o- 1 m 1+Z0]
AL Am Li gz B1
mn
VIS W
_ M ﬂmzl i1
Mo Am (S
since 2 =7 — 1 = —71. Then
A A 1 L
s . S R (6.35)
H1o o e o B
Suppose
i/\l"'/\f-l_
— =00
= ome

Then 7, = oo, But since {5;}32, is a nondecreasing sequence, it follows
that r, = oo.
Suppose

Then, for large m, deaths are much greater than births, so that z, —
Tm = Tmal & 1/fims1 a8 m — oo, which is the mean time for a death to
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occur when the population size is m + 1 (see Nisbet and Gurney, 1982).
Then let m — oo so that the left side of {6.35) is

A A M Am

— -0

Zm
B fm B1 e o1

(Karlin and Taylor, 1975; Nisbet and Gurney, 1982). Since the expression
on the left of (6.35) approaches zero,

e

and -
Zm _ﬁ;l"‘ﬁ;m { Z A ‘Aiwl]
1 mo{itmyy P
Now,
m—1
Tm—T1 = - Z Zg
s=1 .
- S e 8 e
= 1 s Tarq M b
The value of ,,, is given by (6.22). O

6.14.3 Comparison Theorem

Theorem 6.5 (Comparison Theorem). Suppose that m{t) and n(t) are
continuous with continuous derivatives on (0,00) and 0 < m(0) = n(0). If

T < fmo) and B = g, for e o,00)

then
m(t) < n(¢) for te (0,00}

Proof. At t =0, dim(t) ~ n{t)]/dt < 0. By continuity of the derivatives,
it follows that d[m(t) — n(t)]/dt < 0 on some interval [0,T), T > 0, so that
m(t) < n(t) for t € [0,T). We show T = co. Suppose the interval [0,7) is
the largest possible such that m(t) < n(f) for t € [0, T). Thus, m(T) = n(T)
and m(t) > n(t) for some interval (T, T + €1), €1 > 0. However, at t = T,
F(m(T)) = f(n{T)), so that d[m(t) - n(t)]/dt < 0. Therefore, m(t) < n(t)
for some interval (T, T + €2), 0 < €3 < €1, a contradiction. O

Consult Corduneanu (1977) for a discussion of comparison results for
scalar differential equations.



Chapter 7

Epidemic, Competition,
Predation and Population
(Genetics Processes

7.1 Introduction

In this chapter, continuous time Markov chain models for a variety of biolog-
ical processes are discussed—in particular, epidemic, competition, predation,
and population genetics processes. These models are based on determin-
istic models, which can be expressed as systems of ordinary differential
equations. First the deterministic model will be introduced and discussed.
Then the stochastic model will be formulated and discussed.

We begin by defining a continuous time branching process, an extension
of a discrete time branching process discussed in Chapter 4. There are
many recent biological applications of branching processes, especially in
the fields of cellular and molecular biology (see, for example, Kimmel and
Axelrod, 2002). Branching processes are introduced in Section 7.2, and
several biological examples are presented.

In Section 7.3, we discuss Sl and SIS epidemic models. These mod-
els involve two random variables, but since the total population size is
assumed constant, they can be reduced to a single random variable and
the techniques from Chapter 6 can be applied. The SI epidemic model
is a birth process, and the SIS epidemic model is a birth and death pro-
cess. Stochastic models for many biclogical applications are multivariate
processes. Some notation and terminclogy associated with multivariate
processes are reviewed. Then, in Sections 7.5, 7.6, 7.7 and 7.8, multivari-
ate processes for epidemic, competition, predation, and other population
processes are presented. :
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7.2 Continuous Time Branching Processes

The study of continuous time branching processes is an active field of re-
search and has many biological applications related to population, cellu-
lar, molecular, and gene dynamics (Jagers, 1975; Kimmel and Axelrod,
2002). Continuous time branching processes are an extension of discrete
time branching processes discussed in Chapter 4. In the Galton-Watson
process discussed in Chapter 4, an individunal’s lifetime is a fixed length of
time, which for convenience is denoted as one unit of time or one genera-
tion, 7 = 1. At the end of that time interval, the individual is replaced by
his progeny (if we are speaking of male heirs). However, in-the continuous
time process, an individual’s lifetime is not fixed but may have an arbitrary
distribution. This process is known as an age-dependent branching process.
In the case of an exponentially distributed lifetime, the branching process
is Markovian and, if not, it is a general age-dependent process known as
a Bellman-Harris branching process (Bharucha-Reid, 1997; Harris, 1963;
Kimmel and Axelrod, 2002}. Here, we shall briefly discuss these two types
of centinuous time branching processes.

First, consider a Markov branching process, where the age of an individ-
ual hag an exponential distribution with parameter A, Let 7 be the random
variable for the lifetime of an individual. Then the cumulative distribution
function for 7 is

G{t)=Prob{r <t} =1-eM

and the p.d.f. is g(t) = G'{t) = Ae~**. Assume a single individual is born
at time ¢+ = 0 and lives for a period of time 7. Prior to death, the individual
produces a random number of progeny according to the p.g.f. f{z), where

HOED P IE1N
k=0

Each of the progeny behaves independently, lives for an exponential period
of time, and produces a random number of progeny, following the same dis-
tributions as the original individual. The process continues with subsequent
generations behaving in the same manner. See Figure 7.1,

Let X(t) be the total population size at time ¢; then X (¢} fort > 0isa
continuous time Markov process. Assume at t = 0, X(0) = 1. Let P(z,¢)
be the p.g.f. for X(t). We shall derive a differential equation satisfied by P.
Let At be sufficiently small. Then, as in discrete time branching processes,
the p.g.f. P{z,t + At) is a composition of p.g.f.’s; that is, it can be shown
that

P(z,t + At) = P(P(z,t), At). (7.1)

(Kimmel and Axelrod, 2002). At time ¢ = 0, P{z,0) = z. For a small



7.2. Continuous Time Branching Processes 271

Figure 7.1. A sample path of a continuous time branching
process. At time 7, an individual gives birth to two individuals
and these individuals give birth to two and three individuals,
respectively.

period of time At,

P(z,At) = zProb{r > At} + f(z)Prob{r < At} + o{At)
= ze7* 4 f(2)(1 ~ e + o(AL), (7.2)

Subtracting P(z,t) from (7.1) and applying the identity in {7.2)},

Pz, t+ At) — P(z,t) = P(P{z1t},At) — Piz,1)
= Plz,0)e 2 4 f(P(z,1))(1 — e 21
—P(z,t) + o{At)
= [=P(z,t) + F(P(z,))](1 — e7 ") + o(Al).

Dividing by At and letting At — 0, the following differential equation is

obtained:
OPED NPt~ FPG1) (7.3)

We can treat the ordinary derivative as a partial derivative because there
is no explicit dependence on z in the right-hand side of (7.3). Equation
(7.3) with initial condition P(z,0) = z has a unique solution provided
lim, ;- P(z,t) =1 for all times [i.e., the process does not explode] (Kim-
mel and Axelrod, 2002).

As was the case for discrete time branching processes, the mean num-
ber of births determines the asymptotic behavior. Let mn = f/(1}. The
asymptotic behavior depends on whether m < 1 or m > 1. Theorem 4.1
in Chapter 4 can be extended to the continuous time process when the
process is nonexplosive. This is stated in the next theorem. For a proof of
this result, please see Harris (1963).
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Theorem 7.1. Suppose X(t), t > 0, is a nonexplosive, continuous time,
Markov branching process with X(0) = 1. Assume f(z) is the p.g.f. of the
birth process, where m = f'(1) and P(z,t) is the p.g.f. of X(t). If m <1,
then

tl_lglc Prob{X{t) =0} = tli)r&po(t) =1

and if m > 1, there exists a ¢ satisfying f(q) = q such that
tlim Prob{X(t) =0} = islim polt) =g < L.
— 00 — o0

The next example expresses the simple birth and death process as a
continuous time Markov branching process.

Example 7.1 Suppose the cumulative distribution for the lifetime distri-
bution is G(t) = 1 — e” 4 and the p.g.f. for the birth process is

# A
= —— —I— —_2
where A > 0 is the birth rate and ¢ > 0 is the death rate. Either an
individual dies or survives and gives birth. The lifetime distribution is
exponential with parameter A + p. The differential equation satisfied by
P(z,t) takes the form
dP(z,t) b A o
—t = Pzt A — + —— P (2,1)].
7 A+ Pt + At p) |t 5 P
We have used the notation for an ordinary derivative with respect to ¢
rather than a partial derivative because the problem can be treated as an
ordinary differential equation. Simplifying,

dP

Egzﬁ—u+mp+wﬁ

with initial condition P(z,0) = z. This differential equation can be solved
by separation of variables, yielding the solution

=N Az — ) — p(z — 1)

Pl =] SR = A - o i AFp -
L] - At(z — ]_) — =z .f A - .
W’ i = p.

See Chapter 6, Section 6.4.3. It follows that

7

Eooifa
hmmwz{A’l s
t—00 1,

if A<,
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In addition, a multitype branching process can be defined. Assume there
are k types of individuals, X;(t) is the random variable for the number of
individuals of type i, i = 1,....k, and X(t) = {X1{},..., Xu(t))T. Let
filz1,...,2) denote the birth p.g.f. and Fi(zy,..., 2. t) denote the p.g.f.
for an individual of type ¢, ¢ = 1,..., k. Assume the cumulative lifetime
distribution for an individual is exponential with parameter A, G(t) = 1 —
e~ It can be shown that each of the P; sat¥fy a differential equation of
the following form:

dF;

it =—)\Pi+)\fi(P1,...,Pk), t=1,...,k.

A multitype process imvolving the development of drug resistance in
cancer cells is discussed in the next example (Kimmel and Axelrod, 2002).

Example 7.2 Assume there are two types of cells. Type 1 cells are sensi-
tive to a particular drug and type 2 cells are resistant to that drug. Assume
a population of cancer cells begins with a single type 1 cell. The time it
takes for a cell to divide is a random variable 7 with an exponential distri-
bution having parameter A. At each division of a type 1 sensitive cell, with
probability p, one of the two daughter cells mutates and becomes resistant
to the drug (type 2). A type 2 resistant cell produces two daughter cells
that are both resistant (type 2) (i.e., mutations are irreversible). Then the
birth p.g.f.’s satisfy :

filz,2) = (1 —p)zf + prizo, and fo(2r,22) = 75

The differential equations satisfied by X (¢) = (X, {t), X(2))* are

ap

d_tl = AP 41— p)P? + pP, P;]
sz 2

— 2 = AP+ \PZ,

0 2+ Ay

The initial conditions are Py(z1,22,0) = 2; and Py(z1,2,0) = z5. The
differential equation for P2 can be solved by separation of variables (this is a
logistic-type differential equation). Then the solution P, can be substituted
into the differential equation for P, to find the solution for P;. It can be
shown that the solutions satisfy

216" M[zgem M 41— 2] P
1+ z{feMzp + 1 — 2)1-2 — 1)25!
22
22+ (1 — z3)eM

P (z1,22,8) =

(7.5)
Pg(ZI, Zg,t) (76)

(Kimmel and Axelrod, 2002}. When the tumor is first identified, it is
important to find out what proportion of the cells are resistant. Of course,
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it is hoped that there are no resistant celis. The probability there are no
resistant cells at time ¢ can be computed as follows:

1
lim lim Py(z,20,8) = ——— .
21— 1 22 —0 1( bz ) 1—p+Pe)“
Eventually, as ¢ — oo, all cells will be resistant. Therefore, it is important
to discover the tumor very early, that is, when ¢ is small. |

The general age-dependent branching process is known as a Bellman-
Harris process, named after Richard Bellman and Theodore Harris, the
first investigators of this type of process (Harris, 1963). In the Bellman-
Harris process, the cumulative lifetime distribution, G(f) = Prob{r < #},
has a general distribution. Age-dependent branching processes belong to a
general class of stochastic processes known as regenerative processes (see,
e.g., Beichelt and Fatti, 2002; Ross, 1983}.

An integral equation can be derived for the p.gf. P(z,¢). Note that
P{z,t) satisfies

A b<T
P("‘*””{ JPat—1), toT

Then the integral equation for P{z,t) is
¢
P(z,t) = 2(1 - G{t}) +/ F(P(z,t —u)) dG{u). (7.7)
o :
In the special case where the lifetime distribution is exponential (Markov

branching process), it can be shown that the integral equation (7.7) reduces
to the differential equation (7.3). Let G{¢{) =1 — e *. Then

Pz, t) = ze M + /t F(P(z,t — u))Ae™ " du.
0

Multiplying the preceding equation by e* and then making a change of
variable v =t — u in the integral leads to

eMP{z,t) =z + A /t flo(z,v))e™ do.
[N

Differentiating the last equation with respect to ¢ leads to

e [AP{z,t) + %] = M(P(z,1))eM.

Finally, solving for dP/dt leads to the differential equation (7.3).

We end this section by presenting an example of a multitype Bellman-
Harris process applied to brain cell differentiation. Since there are two
types of cells in this process, the integral equation {7.7) is extended to a
system of two integral equations.



7.3. S8I and SIS Epidemic Processes 275

Example 7.3 This example is based on a paper by Yakovlev et al. {1998).
Brain cell development begins with precursor cells. A precursor cell divides
and proliferates into daughter cells or transforgas into another type of cell
that does not divide and proliferate. Brain cell differentiation can be de-
scribed simply by two types of cells in the central nervous system, the
precursor cell, known as the progenitor cell (type 1 cell), which may be
transformed into oligodendrocyte cells (type 2 cells). The progenitor cell
is a stem cell, whereas an oligodendrocyte cell is a cell responsible for pro-
ducing a fatty protein known as myelin, which insulates nerve cell axons.
Mpyelinated axons are able to transmit nerve signals faster than unmyeli-
nated ones. For example, in multiple sclerosis, a disease of the central
- nervous system characterized by neurological dysfunction, oligodendrocyte
cells are often destroyed.

In the model of Yakovlev et al. (1998), it is assumed that the process
begins with a single type 1 cell. The type 1 cell divides and produces
two daughter cells of the same type with probability p or transforms into
& single type 2 cell with probability 1 —p. A type 2 cell neither divides
nor proliferates. Let G(#) denote the cumulative lifetime distribution for
a type 1 cell. Based on these assumptions, the birth p.g.f’s f1{z, z2) and
fz(z1, 22) can be expressed as follows:

filzr,z0) =pzi + (1 —p)zo and fo(z1,22) = 2.
The p.g.f.’s for the number of type 1 and type 2 cells, X;(t) and Xa(t),
satisfy the following integral equations:

t
Pi(zy,2at) = zl(l—c(tmpfo P2 (24, 22,1 — ) dG(u)

t
+(1—P)f Py(z1, 29, — u) dG(u)
0
Py(zy,20,8) = 2.

This process can be studied further by assuming G(t) has a gamma distri-
bution { Yakovlev et al., 1998). a

Extensive biological applications and more thorough discussions about
continuous time branching processes can be found in the books by Harris
{1963), Jagers (1975), Kimmel and Axelrod (2002), and Mode {1971).

7.3 SI and SIS Epidemic Processes

First, the dynamics of the deterministic SI and SIS epidemic model are
reviewed. Recall that S{¢) = number of susceptible individuals, I(t) =
number of individuals infected, and N =the total population size, where
N = S5(t) + I(t) is constant. It is assumed that infected individuals are
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infections (no latent period). Therefore, an infected individual will also be
referred to as infective. The S1 epidemic model has been applied to diseases
such as influenza or the common cold, where generally no one is immune
and over the course of the epidemic everyone eventually hecomes infected.
The SIS epidemic model has been applied to sexually transmitted diseases,
where there is recovery but no immunity; individuals can become infected
immediately following recovery (see discussion of the SIS epidemic model
in Chapter 3).
The differential equations for the SI epidemic model satisty

ds a

x - Wt
dar 3

> - Zgr
dt NS’

S(0) + I(0) = N. The parameter 3 = contact rate, the number of contacts
that result in an infection of a susceptible by one infectious individual. The
SIS epidemic model has an additional parameter for recovery, . Sometimes
a birth and death rate is included, b. Since the population size is constant
the birth rate equals the death rate. The differential equations for the SIS

epidemic model are ) .
ds 3
di Fei
d_i = ESI - (’Y + b)I,

S(0) + I(0) = N. It is easy to see that adding the differential equations
gives d(S + I)/dt = 0 so that S(¢) + I(t) = N.

For the S epidemic model, substitution of & = N —1 into the differential
equation for S yields a logistic differential equation for I. This differential
equation can be solved directly via separation of variables; the solution f ()
satisfies

~ NI(0)
1) = Ty (v = Tionese-

Eventually, everyone becomes infected, limy o I(t) = N.
The SIS epidemic model has an endemic equilibrium given by
Ytby e NBoy -
8 B

The endemic equilibrium is positive if the basic reproduction number,

B
b+’

(7.8)

Sll
Ro = (7.9)

satisfies Ry > 1. If Ry > 1, then solutions approach the endemic equilib-
rium and if Rg < 1 solutions approach the disease-free state.
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N -]
3 10 100 1000 10000
1 4.605 9.210 13.816. 18.421
10 0.461 0.921 1.382 1.842
100 || 0.046 0.092 0.138  0.184 |

Table 7.1. Approximate duration, T', until the entire population is infected
in the deterministic SI epidemic model for various population sizes /V and
contact rates 3 when I{0) =1

The contact rate J may be a function of population size. If, for example,
3 = eN, then the expression cNST/N = ¢57 in the Sl or SIS epidemic
models is referred to as mass action incidence rate, and when 3 does not
depend on N, the expression is referred to as the standard incidence rate.
In models where the population size is constant, this distinction makes little
difference because 3 is constant in either case. However, the formm of 3 can
have a significant impact on the population dynamics when the population
gize i3 not constant.

For both medels, the infected population size satisfies 0 < I(#) < N. In
the stochastic models, it will be shown that / = N is the unique absorbing
state for the SI epidemic model and I = 0 is the unique absorbing state
for the SIS epidemic model. The expected duration until absorption is
calculated. For comparison purposes, the duration of time until the infected
population size reaches N is approximated in the deterministic model. The
time 7 until I(T) = N is actually infinite in the deterministic model because
N is approached asymptotically. However, to obtain a realistic estimate of
the time to absorption, solve for T in the identity, I{T") = N — 1. Using
the formula (7.8) for I{i} and solving the following equation for T,

NI(0)

N1~ mo N = Tne 7T

vields

r WOV IOWob

Table 7.1 gives the approximate duration until the entire population is
infected for various values of N and 3 when the initial population size is
one, I{0) =1.

7.3.1 Stochastic SI Epidemic Model

The stochastic SI epidemic model is a birth process. Let I{t) denote the
random variable for the number of individuals infected at time t. The state
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space for I{t) is {0,1,2..., N}. The transition probabilities satisfy

j%i(N — )AL+ o(At), =1

Prob{AI{t) = jl(t) =i} = ¢ | _ %i(N —~1)At+o(At), j=0

o At), i#0,1.

The forward Kolmogerov equations, dp/dt = (Jp, have generator matrix

—A(N - 1)/N 0 0 0
B(N-1)/N —B2AN-2)/N --. o 0

0 BAN — 2N ... 0 0

Q= : : : :
0 0 . —BN=1)/N D

0 0 o BN=1/N 0

It is easy to see that the transition matrix of the embedded Markov chain
satisfies

000 00

1 0 0 0 0 ’ "
7={0 10 00

000 - 1 1

State N is absorbing. The unique stationary probability distribution is
7= (0,0,...,0,1)T. The stationary probability distribution is the limiting
distribution, lim p(t) = Jim e?tp(0) = (0,0,...,1)%.
— 0 — 00
The time until absorption beginning from state 1 satisfies

N—1
Ty = Z Tit1a
g=1
The expected duration until absorption or until the entire population is

infected is given by

E(Ty1) = Tii1

M‘Mz

The time between events 1 — ¢ + 1 is exponentlaﬂy distributed with pa-
rameter 3i(N — {)/N. Therefore, the mean time between events ¢ and
i+ 1is E(Ti11,) = N/{Bi(N —4)}. The expected duration until the entire
population is infected satisfies

N-1 N (N1 5
E(TNI)_Z@ N —i) B { —z]:ﬁ

i=1 i=1

N-1

HFD—'
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The variance of this distribution also has a simple expression:

N-1

Var(Tn,1) Z Var(Tz-H i)
i=1

since the random variables for the time T;4; ; are independent {the states
at each jump are known). Recall that the variance of an exponentially
distributed random variable with parameter X is 1/)%; in this case, A =
Bi(N — i}/N. It follows that

N-1 2
Var(Tw.1) = Zl i (NN— i)]?

lN1[2/N 1 2/N 1 ]

+3+ +

i N_i T (N-0z

N-1
1 41 2
= @Zz [m*@]'

For large N, the mean and variance can be approximated using the following
two identities:

N 1 N 1 11.2
1\}1_{1100 [;;*IH(N}] = and A}E;ncozt_Z=—6_’

where ~ is Euler’s constant, v = 0.5772156649.... Thus, for large N,
approximations for the mean and variance satisfy

E(Twi) =~ %[7+ln(N)]"~v%1n(N—1)

1[4 e
VarlTyy) & |5 (0 - 0)+ T
xR 3200

For a large population size, the variance does not depend on N. Notice
that the approximate mean duration equals the approximate duration de-
rived from the deterministic model when I{0} = 1. Table 7.2 compares the
approximate mean duration to the exact mean duration and also gives the
exact variance for the distribution for the time until the entire population
is infected. For the parameter 8 = 1, Var(Tn ;) = 3.290. We can see that
the approximations are closer to the exact values as NV increases.

The time units for an epidemic depend on the particular disease and the
population being modeled. For humans, the time units are on the order of
of days, weeks, or months. For example, if 3 = 1 successful contact/day,
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Mean and N

Variance 10 100 1000 10000
Approx. E(Tn} || 4.6056  9.210 13.816 18.421
Exact F(Tn 1) 5.658 10.355 14.96% 19.579
| Exact Var{Tnq) || 4.211 3477 3318 3.294

Table 7.2. Approximate and exact mean durations E(Ty,;} and the exact
variance Var(Tw,1) of the distribution for the time until absorption in the
SI stochastic epidemic model, J(0) =1 and 3 =1

then if J(0) = 1 and N = 1000, the approximate duration until all 1000
individuals are infected would be, on the average, 15 days. We must realize
that the SI epidemic model is oversimplified. We have not included, for
example, a latent period where individuals have been exposed to the disease
but are not yet infectious nor the possibility of recovery or immunity.

7.3.2 Stochastic SIS Epidemic Model

In this section, we assume that individuals can recover from the disease
but do not develop immunity. They immediately become susceptible again.
The SIS epidemic model discussed here is the continuous analogue of the
discrete time epidemic model discussed in Chapter 3. Let the transition
probabilities satisfy

Prob{AI(t) = jlI{t) =i}

AN ~ ) At + o(a), j=1
(b + 7)i At + o(At), j= =1
= 9§ 1- [%i(N—i)+(b+7)] At
+o{At), ji=0
o{At), j#-1,0,1,

where ¢ € {0,1,...,N}. The SIS epidemic model is a birth and death
process with

A; = max {0, %i(N—z’)} and p; = (v + b)i,

fori =0,1,..., N. There is a single absorbing state at zerq, lim;_, o po(t) =
1.

If Ry > 1, then the SIS epidemic model is a special case of the logistic
model considered in Chapter 6. In this case, A\, = byn + byn? and u, =
din+dyn?, where by = 3, ba = —3/N, d; = b+~ and dy = 0. In order that
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the requirement A, — u,, = rn{l —n/K) in the logistic model be satisfied,
r=8—-(b+7v)>0 and —-r/K =w58/N <0

The expression r > 0 is equivalent to Rg > 1. A generator matrix ¢) and
transition matrix T can be defined easily.

When Ry and N are large, the time until absorption can be very
long. The expected duration until extinction satisfies D7 = d, where
r=1{m,... .7n)¥ and 7; is the expected duration given I(0) = i, Matrix
D and vector d are defined in Chapter 6 and are given here for reference
purposes, d = (—1,-1,...,—1)7 and

A — i Al 0 0 0

15 —Az — po Az e 0 0

p=| o0 ws —da-ps - 00
0 0 . 0 e BN —UN

Matrix D is nonsingular (irreducibly diagonally dominant) and, hence, 1 =
D~1d. See also Theorem 6.3 for an explicit expression for 7.

Prior to extinction, the probability distribution for the infected pop-
ulation has a quasistationary distribution. Recall that the approximate

quasistationary distribution, 7 = {#1,...,7x)7, satisfies
M
Fip1 = ——F;, i=1,2,...,N—1.
Hit1

Example 7.4 Let 8 =2, N =100, and v+ b = 1. Then Ry = 2. Graphs
of 7 and & are given in Figure 7.2. The expected time until population
extinction when N = 100 is on the order of 10%. The mean and standard
deviation of the approximate quasistationary probability distribution 7 are
approximately 48.9 and 7.2, respectively. Notice that the mean of 7 is close
to the value of the deterministic endemic equilibrium, I* = N(1-1/Rq} =
50. In addition, the distribution of 7 is approximately normal. n

7.4 Multivariate Processes

In all of the continuous time Markov chains discussed thus far, the processes
have been univariate, concerned only with a single random variable X {¢}.
In this section, the notation for multivariate processes will be introduced,
processes for which there are two or more dependent random variables. (See
also Chapter 1.)

For competition and predation processes, where there is more than one
population, models need to be formulated with several random variables,
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Figure 7.2. Expected duration until absorption at I = 0 and the guasistation-
ary distribution of the stochastic SIS model, 3 =2, b+~ = 1, and N = 100.

one random variable corresponding to each of the populations. For simplic-
ity, consider a bivariate process. Let (X (2), Y (¢£}) for ¢t > 0 denote a contin-
uous time, bivariate Markov process, where X(¢) and Y (?) € {0,1,2,...}.
The joint probability mass function (ot joint p.d.f.) is

Pim,n) (t) = PI‘Ob{X(t) =m,Y(t) = n}

Be careful not to confuse this notation with the notation used in previous
sections for the transition from state n to state m in a univariate process.
The transition probability for the bivariate process is denoted as

Pem,n) i,y (AF) = Prob{X (¢ + At) = m, Y+ At =n|X(t)=4,Y(t) =3}

The process is assumed to be homogeneous in time {i.e., the transition
probabilities only depend on the length of time hetween transitions and do
not depend on the time at which they occur).

The probability generating function satisfies

Plw,z,t) = Z Z'p{m,n) (t)w

m=0n=0

and the moment and cumulant generating functions satisfy M(0,¢,t) =
P(e?,e?,t) and K(f,$,t) = In M (8, 4,t). The marginal probability distri-
butions of X {t) and Y (¢) are

e o] =9}
Zp(m,n)(t) and Z p(m,n)(t)s
n=0 m=0

respectively. Their means and variances are

= W (®), my (D) = Z Z nP(m.m) (L),

m=0n=0
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0’3( (t) = Z Z mzp(m,n} (t) - m%( (t)1

m=0n=0
and -
0‘12/('6) = Z Z nzp(m,n) (t) — m%;(t).
n=0m=0

The means and higher order moments can be obtained from the generating
functions; for example,

oM aM

-y =mx{t), —=- = my (),
M ) M )
W b0 = E(X (t)), and W b = E(Y (t))

Forward Kolmogorov differential equations can be derived from the tran-
sition probabilities in a manner similar to the univariate process. Let §
be a finite subset of Z x Z, AX [t} = X(t + At) — X(¢) and AY () =
Y(t+ At) ~ Y(t), where Z = {0,£1,£2,...} is the set of integers. Then

Prob{AX(t) = k AY(t) =X, Y(®)}
hi(X(2), Y (1)) At = o(At), (k)€ S
= {1— S ki {X(E), Y(8) At +o(AL), (k1) ¢S
(1,7)€5

For (X (t).Y(t)) = (i, 7), the preceding transition probability is denoted
88 Pim,n),(i,5)(At), where m = i+ k and »n = j + 1. Thus, the joint p.d.f.
satisfies

p(’m,n)(t + At) = Z p(m—j,n-—k}(t)hjk(m - j? n-— k) At
(4.k)ES

+ Py () (1= D hjx(m,n) At| + o(At).
(. k)ES

Subtract pim n)(t) and divide by At to obtain the forward Kolmogorov
differential equation for the bivariate process,

dp _
(dﬂzgn) = —P(m,n) Z hjk(ln,ﬂ) + Z p(m—j,n—k)hjk(m - j,n— k)
(3.k)es (i.k)es

Differential equations for the probability or moment generating functions
can be derived using the generating function technique.
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Example 7.5 Suppose § = {(1,0),(0,1),(—1,0}, (0, —1)}; that is, for At
small, the bivariate process can increase or decrease by one in each of
its components. In addition, let Ap(X,Y) = M X, hn(X,Y) = AY,
ho1o(X.Y) = X, and hg 1 {X,Y) = p2Y (Bailey, 1990). Then the
forward Keolmogorov differential equation has the form

dD¢m )

dt = —Pimn) Mm+ Agn+ pym + fran)]

+p(m—1,n)Al(m N 1) +p(m,n—1)/\2(n - 1)
+ Plmt 1w (M + 1) + Pinenyfiz(n + 1), (7.10)

In addition, the moment generating function has the form

%’I = [ -0+ me™? -1)] %’;
Pl = D+l -] B ()

where M(0,¢,0) = eM#V2¢ X(0) = Ny, and Y{0) = N;. Using the
differential equation for the m.g.f., it can be shown that the mean of X (¢)
and Y (¢) satisfy

dmx (1)
dt

dmy{t)
dt

= (M —m)mx(t), and (A2 — pa)my (t). (7.12)
[

Numerical simulations of multivariate Markov chain processes can be
performed in a manner similar to univariate processes. The interevent
time is exponential. Suppose the process is in state (¢, ) at time {; then,
assuming the process can jump to at most a finite number of states, the
time unti! the next event has an exponential distribution with parameter
E(k,i)e g hi(i, 7). For example, the bivariate process in Example 7.5 has
an exponential interevent time distribution with parameter {A; + p;)i +
(Az + pi2)F when the process is in state {4, j).

7.5 SIR Epidemic Process

First, the deterministic Susceptible-Infected-Removed (SIR) model is re-
viewed. In the SIR epidemic model, individuals recover and develop perma-
nent immunity. The class R represents the individuals that are permanently
immune. Such types of models have been applied to childhood diseases such
as measles, mumps, and chickenpox (see, e.g., Allen and Thrasher, 1998;
Allen, Jones, and Martin, 1991; Anderson and May, 1992; Hethcote, 2000
and references therein). The differential equations for the SIR epidemic
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model are given hy

das A
2 L
dt N
a8
dR

k) &
dt i

where §(0), I{0), R(0) = 0, and S{0)+1{0)+R(0) = N. It can be shown that

lim, o I(t) = 0. Also, lim;—o S(£) = 5{00) and lim;—,o R(t) = R{co) are

finite but depend on initial conditions. The effective reproduction number
" or replacement number is defined as

5(0)8

N v

{Anderson and May, 1992; Hethcote, 2000). Hethcote {2000) defines the
replacement number, R, as the average number of secondary infections
produced by a typical infective during the entire period of infectiousness.
Recall that Ry is the average number of secondary infections that occur
when one infective is introduced into a completely susceptible population
(Hetheote, 2000). Notice that R = ReS(0)/N. If R < 1, then in the SIR
model there is no epidemic; solutions (t) decrease monotonically to zero.
But if R > 1; then I{#) increases first before decreasing to zero; an epidemic
oceurs.

Although the epidemic eventually ends, the severity of the epidemic can
be determined by the total number of cases or the final size of the epidemic.
If we assume R{(0) = 0, then R(o¢) represents the total number of cases or
final size. Suppese I(0) = 1; then the number of cases equals the initial
case plus all others infected during the course of the epidemic. The value
of R{oo]} can be obtained from the differential equations df/dt and dS/dt,

dl  (B/N)SI—~I Ny

dS ~  —(8/N)ST =17 55

Separating variables, integrating, and applying the initial conditions;
S(0y=N-1 and I{0)=1,

the foliowing solution is obtained:

I(t) + S(t) = % InS(t) + N — % In(N - 1).

Letting t — oo and using the fact that I{co} = 0 yields

S(o0) = % In (%) LN (7.13)
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N

J5] 20 100 1000
0.5 || 1.87 1.97 2.00
1 574 1352 4407
16.26 20.02 797.15
3 19.87 9931  993.03
10 [ 20.00 100.00 999.95

Table 7.3. The final size of an SIR epidemic, R(oc), when v = 1, $(0) =
N-1l,and I{0) =1 ,

Equation (7.13) gives an implicit solution for S(oc), which can be used to
find the value of R(oc) = N — S§(oc). The next example uses this formula
to calculate the final size R{o0) for particular parameter values.

Example 7.6 Let N =100, 4 = 2, and v = 1. Also, 5(0) =99, I{0) =1,
and R(0) ={0. Then S(c0) = 501n (S(00)/99) + 100. The solution S{oc) ~
19.98 so that the final size satisfies B(o0) = 80.02. Table 7.3 gives the final
size for the SIR epidemic model for various parameter values. [ |

As the replacement number R increases, the number of cases increases
until the entire population is infected. When R <1 (7 < 1 in Table 7.3},
there is no epidemic, so the total number of cases is relatively small. The
data in Table 7.3 will be compared to the stochastic SIR model.

7.5.1 Stochastic SIR Epidemic Model

Let S(t), I(t), and R(t) denote random variables for the number of suscep-
tible, infected, and immune individuals, respectively, where S(t) + I(¢) +
R(t) = N. There is no latent period so that infected individuals are also
infectious. Only two of the random variables are independent. Assume the
transition probabilities satisfy

Prob{AS(t) = 4, AI(t) = jI(S(t), 1{t)}})

%S{t)f{t) At + o(Atb), {(i,5) =(-1,1)
v1(t) At + o{At), (i, 7) = (6, -1)
= 1- [%S(t)I(t) +4I(t)| At
+o(At), (7,7) = (0,0)
L o(&t), otherwise.

For example, when AI(t) = —1, then AR(t) = 1.
Assume the initial distribution is {S(0), I(0)) = {sg, {9), where sg +ip =
N, 8o > 0and iy > 0. Let p ;,(t) = Prob{S(t) = ¢,1(t) = j}; then the
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state probabilities satisfy the forward Kolmogorov equations:

dp [t . . .
_.(_d«ltlg = j—%( + 1) — Uptr1-1)) + 7 + Dpg 1) (1)

_ [%z_} +w’] Py (1),

where 1 = 0,1,2,...,N,7=10,1,2,...,N—i¢,and i +7 < N. If (i, ) lies
outside of this range, the probabilities are agsumed to be zero. For example,
for j =0,
o) dwo _
dt dt
fori=0,1,2,...,N — 1. The N + 1 states (,0}, where i = 0,1,2,..., N,
represent a set of closed states. There are no transitions out of any one of
these states.
It was found in the deterministic SIR epidemic model that the occur-
rence of an epidemic depends on the replacement number

= 9Py, and 0

When S(0) = N — j = N and I{0) = j is small, the replacement number
R ~ 3/v = Ro. The model can be related to the simple birth and death
process. Death of an infected individual corresponds to recovery, p = v,
and birth of an infected individual corresponds to a new infection, A ~ 3.
At the beginning of an epidemic, when S(0) =N —j~= N and I(0) =~ j is
small, then the probability that the epidemic ends quickly or that there is
no epidemic can be approximated by a simple birth and death process,

1, Ro <1
- . . g
probability no epidemic = (i) CRy> L
Ro
[See also Daley and Gani {1999) and Whittle (1955).) If, for example,
N =100, Rg = 2, and I{0) = 2, an epidemic occurs with probability
3/4 =1~ (1/Ry)? and no epidemic with probability 1/4 = (1/Rg)?.

Even though the process is bivariate, an expression for the generator
matrix @ and transition matrix T corresponding to the embedded Markov
chain can be obtained. The form of matrices @ and T depends on how the
states are ordered. There are (N + 1)(N + 2)/2 pairs of states in the SIR
epidemic process. Order these pairs of states as follows:

(N,0),(N —1,0),...,(0,0), (N = 1,1),(N — 2,1),...,(0, 1),
(N-12,2),(¥N—-3,2),...,(0,2),...,{(0, N). (7.14)

Then p(t) = (D(w,0),- - - Pro,ny)7 and the generator matrix @ of dp/dt = Qp
depend on this particular ordering of the states. Matrix () is a (N +1}(N +
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2)/2x (N +1)(N +2)/2 matrix with the elements in the first N +1 columns
zero because there are no transitions out of any states with zero infectives;
they are absorbing states. This, in turn, means that the transition matrix
T corresponding to the embedded Markov chain, T = (#;), satisfies #; = 1
for I = 1,2,...,N + 1, the first NV + 1 states corresponding to (4,0), i =
0,1,2,...,N + 1. The transition matrix T of the embedded Markov chain
is useful in calculating the distribution for the final size of the epidemic.

7.5.2 Final Size of the Epidemic

Explicit formulas for calculating the elements of the transition matrix T
of the embedded Markov chain are given. In the embedded Markov chain,
there are transitions from state (i, j} to either state (i+1, j—1) representing
a susceptible that becomes infected or to (4,7 — 1) representing a recovery
of an infected individual. The probability of recovery is

_ vi _ v
i+ {B/NYij v+ (8/N}i
The probability that a susceptible becomes infected is
BNy (B/N) ®
Pi = — — = -
i+ {B/NYij v+ {(8/N)i
In addition, it can be seen that the embedded Markov chain satisfies

3 (7.15)

Diisy = { Bilii5+1) i=0,1
(.5) PilG g+ + (= Pip )Pl -1, §=2,..., N,
with the restriction that 0 < i+ 7 < N; otherwise the probabilities are zero
(Daley and Gani, 1999).

Example 7.7 A stochastic SIR epidemic model with population size N =
4 has 15 states. The states and the directed digraph corresponding to the
embedded Markov chain are graphed in Figure 7.3. Group the states into
five sets corresponding to the ordering in {7.14}:

I: (4,0), (3,0}, (2,0), {1,0}, (0,0)
I {(3,1), (2,1), (L,1), (0, 1)
I (2,23, (1,2), (0,2)

IV: (1,3), (0,3)
V:(0,4).

The transition matrix of the embedded chain has the following block
form:

I 4 0 0 0

0 0 A, 0 0
T=10 B, 0 Ay 0|,

0 0 By 0 Ay

0 0 0 By 0
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\

i}

" Figure 7.3. Directed graph of the embedded Markov chain
of the SIR epidemic model with N = 4. The maximum path
length beginning from state (3,1) is indicated by the thick ar-
TOWS.

corresponding to the grouping into the five sets. The state probability vec-
tor can also be divided into the five sets p = (pi ;) = (pr. P11, o piv. ov) 7,
where, for example, pr = (P(4,0): (3,05, P(2,0) P(1,0)» p(g,o)}T. Each of the
block matrices in T has different dimensions and represents different tran-
sitions between these sets. Matrix [ is a 5 x 5 identity matrix, which means
this set is absorbing. Matrix A; represents recovery, transitions from j in-
fected individuals to 7 —1 infected individuals, j = 1,2, 3,4, and matrix B;
represents infection, transitions from j infected individuals to j+ 1 infected
individuals. For example, matrices A; and B; have the following forms:

¢ 0 0 0

3 0 0 0

Al = 0 P2 0 0

0 0 p O

0 0 0 p

and

l—pg 0 0 0
Bi={ 0 1-p 0 0
0 0 1 - 0

If the initial state is (3,1), then the maximal number of transitions until
absorption is 7. If we follow the path of the thick arrows represented in the
digraph, it is easy to see that there are 7 transitions. In general, for any
population of size N, beginning with one infective or pix_1,1)(0) =1, the
maximal number of transitions until absorption is 2N — 1.
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Suppose, initially, the number of infected individuals is 1 and there
are no immune individuals, S(0) = N -1, I{0} = 1, and R(0) = 0.
The probabilities associated with the final size of the epidemic {pje Y=
1,2,..., N, can be determined by computing the absorption probabilities,
Because the states with no infecied individuals are absorbing and I{0) = 1,

N-1
t1im > pio(t) = 1. Thus, the probabilities for the final size distribution
=00 =0

satisfy
Jm pi 0(t) = Ph_s
fori=0,1,2,..., N—1. If there are ¢ susceptible individuals when the num-

ber of infected individuals has reached zero, the final size of the epidemic
is N — i. Beginning with one infected individual, the maximal number of
time steps until absorption is 2N — 1. Hence, the absorption probabilities
can be found using the transition matrix T of the embedded Markov chain

(Daley and Gani, 1999). In particular,
lim p(t) = p(2N — 1) = T2Y-15(0). {7.16)

Example 7.8 Let I(0) = 1 and 5(0) = N —1. The distribution for the final
size of the epidemic is computed for N = 20 and N = 100 for Ry = 0.5,
2, and 5, where v = 1 using formula (7.16). A MATLAB program for
computing the final size is given in the Appendix for Chapter 7. The largest
probabilities are confined to the tails of the distribution, either near 1 or
N (see Figure 7.4). The largest part of the distribution is near 0 when Ry
ig less than 1 and near N when Ry is greater than 1 and sufficiently large.
This distribution agrees with the conclusion derived from the preceding
approximation; that is, when Rg < 1, there are no epidemics, so the final
size of the epidemic should be small. When Rq > 1, the probability no

— R =05 H
0 i g
L R-2 . 6.6 )
;
T R0—5 : 0.5 "
! L
. : g !
i ! ]
A P £0s 1
2r N %] b
B + '
gk 5 / 01 :
-, -t "
R T 3 mma ]
‘ . o™ e .t
10 15 20 0 20 40 60 80 100

Final size Final size

Figure 7.4. Probability distribution for the final size of a stochastic SIR epi-
demic model when I(0) = 1, 5(0) = N -1, v =1, and 8 = 0.5, 2, and 5
(Ro = 0.5, 2, and 5). In {a), N = 20 and in (b), N = 100.
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N
3 20 100
05 1.76 1.93
1 334 6.10
812 38.34
5 | 15.66 79.28
10 || 17.98 89.98

Table 7.4. The mean of the final size of a stochastic SIR epidemic with
v =1,8{0) =N -1, and {0} = 1. Compare with Table 7.3.

epidemic occurs is approximately 1/Rq, so approximately 1 — 1/Rg of the
epidemics should be of large size. ]

The mean values of the final size distributions are given in Table 7.4.
Notice that the mean values for the stochastic SIR epidemic model do naot
agree with the final size calculated for the deterministic model in Exam-
ple 7.6, Table 7.3, especially for R > 1. This difference is due to the fact
that there is a positive probability of no epidemic (1/Rg) in the stochas-
tic model, but, in the deterministic model, solutions always approach an
endemic equilibrium.

7.5.3 Expected Duration of an SIR Epidemic

The expected duration of an SIR epidemic can be calculated in a manner
similar to the SI epidemic. Let 7(;,, be the expected duration of an SIR
epidemic given that there are i susceptible individuals and j infectives.
Notice that 7(; 0y = 0. It can be seen that 7 ;) satisfies

Ty = Ty + PiTa -1y + (1= Pi)Ta-1441),

where 1;; = 1/[vj +(5/N)ij] is the mean interevent time given the state of
the process is {¢,7), ¢t = 0,1,2,...,N and 5 = 1,2,..., N — i. Reordering
terms,

i+ BN irs, 1) = Ty + 3 = DT 54 = —1

The system of equations is linear, D7 = d, where matrix Disa (N+1)(N+
2)/2 x (N + 1)(N + 2}/2 nonsingular matrix. (The form of D2 depends on
the specific ordering of the states.) The solution for the expected duration
satisfies 7 = D~ 1d.

The last example illustrates several sample paths of the stochastic SIR
epidemic model, the approximate duration of an epidemic and the expecta-
tion and standard deviation of the duration for different parameter values
and initial conditions. A MATLAB program that generated the three sample
paths in Figure 7.5 is given in the Appendix for Chapter 7.
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20
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() 2 4 6 8 10 12 14
Time

Figure 7.5. Three sample paths of a stochastic SIR epidemic
mode! with N =100, 8 = 2, v = 1, S(0) = 99, and I(0) = 1
are graphed; Ro = 2.
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Figute 7.6. The probability distribution for the duration of an SIR epidemic,
N =100, 8 = 2, and v = 1 (estimated from 1000 sample paths). In (a), I(0) =1
and S(0) = 99 and in (b}, I{0) = 5 and 5(0) = 95.

Example 7.9 Let N =100, # =2,y = 1, §{(0) = 99, and I(0) = 1. Three
sample paths are graphed in Figure 7.5. The durations of the three sample
paths are 0.65, 8.49, and 12.49; two of the sample paths represent large
epidernics. Since the probability of no epidemic is approximately (1/Ro) =
1/2, approximately half of the sample paths will be large epidemics. In
addition, the distribution for the duration of the epidemic is estimated from
1000 sample paths for two cases I{0) = 1 and S(0) = 99, and I(0) = 5 and
S5(0) = 95 in Figure 7.6. Finally, the expected duration of an SIR epidemic
and the corresponding standard deviation are graphed as a function of the
initial number of infectives, I(0) = i and S{0} = 100 -4, i = 1,2,...,100
in Figure 7.7 N
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R " a ,
0 20 40 60 80 108 20 40 B0 80 100
Initial number of infectives Initial number of infectivas

Figure 7.7. The mean and standard deviation of the distribution for the dura-
tion of an SIR epidemic as a function of the initial number of infected individuals,
HO)=d4and 8(0) =N —¢,1=1,2,...,100, N = 100, when 3 = 2, and v = 1,
(a)} mean and (b) standard deviation (estimated from 1000 sample paths).

The expected duration increases to a maximum, then decreases as the
initial number of infected individuals decreases. The standard deviation
is a decreasing function of the initial number of infectives. This behavior
is not unusual given the bimodal distribution of the duration and the fact
that for a large number of infected individuals, the number of cases will
not increase very much before the epidemic ends. But note that the mean
duration of the SIR epidemic in Figure 7.7 is much less than that of the
518 epidemic. The SIR epidemic always ends quickly as compared to the
SIS epidemic, where a quasistationary distribution may be established. See
Example 7.4 and Figure 7.2,

Numerous other multivariate epidemic processes can be studied. An
interesting application to schistosomiagis is a paper by Chan and Isham
(1998). For the spread of an epidemic among a population comprising a
large number of small households, please consult the work of Ball (1949)
and Bali et al. (1997). For discussions about other deterministic and
stochastic epidemic models, please consult Anderson and May (1992), Bai-
ley (1975), Brauer and Castillo-Chivez (2001), Daley and Gani (1999),
Gabriel, Lefevre, and Picard (1990), Goel and Richter-Dyn (1974), Heth-
cote (2000) and the citations in these works.

7.6 Competition Processes

One of the most well-known competition model is the Lotka-Volterra com-
petition mode] for two species. The deterministic Lotka-Volterra competi-
tion model is reviewed first; then an analogous stochastic model is formu-
lated. In Lotka-Volterra competition, two species compete either directly
or indirectly for the same resource; an increase in the density of one species
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results in a decrease in the other species that is proportional to the product
of both species. The deterministic model has the following form:

dx
—Et—l- = zilae — 41121 — 81232) (7.17)
dz
_Etz = $2{a20 — az1x1 — G22372)7 (7-18)

where z;(0) > 0, a;; > 0 fori = 1,2 and j = 0,1,2. The coefficients a,g
are intrinsic growth rates for species 4, a;; are the intraspecific competition
coefficients, and o, @ # j are the interspecific competition coeflicients,
i,J = 1,2, the effect species j has on species i. If the interspecific com-
petition coeflicients are zero, a;; = 0, © # j, then the models are just the
logistic growth equation. In this case, each species grows to its carrying
capacity,

lim z,(f) = =2, i=1,2,

l—o0 L]
Competition between the species, a;; > 0, ¢ # §, changes the dynamics.

The isoclines (dz;/dt = Q) are straight lines, and the asymptotic behav-

jor depends on how the isoclines cross. There are four different cases:

1. If @ < 410 and 420 < aﬂ, then tliIﬂ ($1(t),1.‘2(t)) = (0,&10/&11).
— 00

G2z 12 azy Q11

IL If 220 > 28 opd 22 5> 210 hen lim (21(2), 22(1)) = (azo/az2,0).
2 G412 az) Q11 t—o0

@290 210 20 a0 .
L If °2° 5 219 4nd 220 o 19 then lim (w1(6), 22(f)) = (0, are/ay) or
02z 012 g1 a1 € tim(m( ) 22(t)) = (0, are/au1)

Jim (21 (2), 22(t)) = {a20/ a2, 0)-

dz2e 410 220 _ 010 ;
IV. If = « — and —= > ——, then lim (z;(t), z2(t)) = (=3, 3).
2 < B and 2225 20 then Jim (an (8), (1)) = (a7, 3)
In these cases, 7 and ¢} represent positive solutions of the following linear

equations {isoclines):

ale = 01T+ a1l

20 = G21%1 t+ G22%2.

At least. one of the inequalities in cases [ and II must be a strict inequality
otherwise there exists an infinite number of equilibria and the asymptotic
behavior depends on initial conditions. Generally, survival of both species
(case IV) requires that the interspecific competition coefficients, a;4, £ # 7,
be less than intraspecific competition coeflicients, a;;. For more information
about other types of competition models, please consult Waltman (1983)
or Smith and Waltman {1995).
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7.6.1 Stochastic Competition Model

Let X;(¢) and X5(t) be random variables for the population size of two
competing species, Xq, X2 € {0,1,2,...} and ¢ € [0,00). Let py ;(t) =
Prob{X,{¢) =i, X3(t) = j}. The competition model is a birth and death
process for two species in which births and deaths depend on the population
sizes of one or both of the species. As in the case of logistic growth, there
is a multitude of stochastic models corresponding to the one deterministic
model.

Suppose for two competing species, the stochastic birth rates are de-
noted A;(X1, X2) and death rates u; (X3, X3). A general competition model
assumes the birth and death rates satisfy

A( Xy, Xa) = max{0, X;(bjo + b1 X1 + bz X2)}
and
(X1, X2) = max{0, X;(dio + din X1 + di2 X2)},
where
bio — dio = a0, b —di1 = —aun, and by —dig = —a,

for i = 1,2. The max in the definitions of A; and p; are to ensure that
the expressions are nonnegative, and the assumptions on the coeflicients
are to ensure that the deterministic model is of the form (7.17) and (7.18},
dz;/dt = A;(x1,12) — p;{x1,72), 1= 1,2. For example, one form for the
birth and death rates is

Ai(X]_,Xg) = G@{]Xz' and [.bi(.Xl,Xz) = Xi(ﬂ.ile —+ Q;,;QX2). {719)
The distributions resulting from various birth and death rate assumptions
can differ markedly. Here, we only consider case (7.19), where per capita
birth rates are constant and per capita death rates depend linearly on the

density of both species. Another example is discussed in the Exercises.
Assume the transition probabilities satisfy

Prob{AX;(t) = i, AXy(t) = j|(X1(t}, Xa(t))}

ayoX1{t)At + o( At), (i,7) = (1,0)

az X2{t)At + o{ At), (i,7) = (0,1)

X ()i X (1) + o3 Xa(O A +0(AT),  (ivg) = (1,0)
= { Xo(t)[aaXa(t) + 02 Xo(t)| At + o(At), (i,7) =(0,-1)

1-— Xl(t){aqu (t) + G.lzXz(t)]At
— Xg(t)[ﬂ.ngl(t) + a22X2(t)}At + O(At), (E,_}) = (0,0)

ol At), otherwise.
The forward Kolmogorov equations satisfy
dp i,j . . ..
cét]) = Mfi— Li)pg g+ Aeld, § — Do -1y

+ i+ 1, §)pgra gy + (i, + Dpegan
- [/\1(1"15.7) + A2(""9.7) + .u’l(?’sj) + MZ(EJJ)] Py
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Using the generating function technique, the partial differential equation
for the m.g.f. can be obtained,

oM OM OM
B T aele’ - Uiy tealet -~ D5s
_ 2N M
+(e ¢ 1) [au GYZ -+ alzag 8(?]
- M &M
+He® 1) [azl 5090 + ang 542 } ) (7.20)

where M(#,$,0) = 10428} ¥ (0) = N; and X2(0) = Na. Using the
differential equation for the m.g.f., differential equations for the means of
X, and X3 can be derived. For simplicity, the notation of Bailey (1990) is
used for the higher order moments of the distribution,

my(t) = B(XF () X5(0)).
The means satisfy

dmw(t)

o = aomp(t) — arymao(t) — aygmas(t) (7.21)
dmg (T
;:5( ) = agomgl(t) — aglmog(t) — aggmn(t). (722)

The two differential equations for the means depend on five unknown
variables, m,;(t}, and cannot be solved explicitly. However, note that the
form of these equations is similar to the deterministic differential equations.
Sometimes specific assumptions about E{X*(¢)X}(t)) are made to approx-
imate the higher-order moments of the distribution [moment closure; see,
e.g., Chan and Isham (1998)].

Example 7.10 Let aylp = 2, oy = 1.5, a1 = 0.03, Qys = 0.02, an] = 0.01,
and ass = 0.04. Case IV holds; a positive equilibrium exists and is stable
(zf,z35) = (50,25). A sample path is graphed in Figure 7.8 when the initial
sizes are the equilibrium values, X;(0) = 50 and X,(0) = 25. The MATLAB
program that generated Figure 7.8 is given in the Appendix for Chapter 7.

At t = 5, the means and varlances for each of the populations are
calculated from 1000 sample paths,

mx, (5) = mm(S) = 49.9, mx, (5) = m01(5) = 23.2,
ox,(5) =94, and ox,(5) =86.8.
The means are close to their equilibrium values. n

It is possible, in principle, to determine the expected duration until
total population extinction or absorption if both population sizes are finite.
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© Figure 7.8. A sample path of the Lotka-Volterra competition model graphed
as a function of time and in the phase plane with birth and death rates given
by (7.19), a0 = 2, azo0 = 1.5, a11 = 0.03, a12 = 0.02, a2;1 = 0.01, azz = 0.04,
X1(0) =50, and X2(0) = 25. The dotted lines indicate the equilibrium values.

Suppose the random variables for two competing populations have state
space X;(t) € {0,1,...,N1} and Xz € {0,1,...,N3}. If the expected
duration until extinction from state (4,7) is denoted as 7(; ;), then 7 =
(7¢i,5) 18 a vector of length (V)4 1}(Na+1) with a particular order specified.
The vector 7 is the unique nonnegative solution to a linear system Dt = d,
where matrix D is nonsingular (see Allen, 1999}. For example,

Tag) = i T PG4, T+ T Pa-15), 6.0 TG-1.5)
T PEH G T+ T PES-1),65 (-1
where 7;; is the mean interevent time given that the state is (%, 7),
L 1
NG )+ (i) + ua(ing) + (i)

P(k.,1y,(i,5) 18 the transition probability from state (i, j) to state (k,!) calcu-
lated from the embedded Markov chain, and

> [Be+aii 6+ Pasranan] = 1
{Ad, A5 e{1,-1}

Matrix D is a sparse, banded matrix. Efficient numerical methods can be
used to solve the linear system.

7.7 Predator-Prey Processes
The Lotka-Volterra predator-prey model has the form

dz
i z{ai — aizy) (7-23)

d .
d—?; = ylanr —az), (7.24)
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where a;; > 0. The equilibrium {(as0/a91,a10/a12) is neutrally stable; that
is, for any initial condition there exists a unique periodic solution (z(t), y{t))
encircling the equilibrium. If a density-dependent factor is added to the
prey equation,
dx
di

then selutions converge to predator extinction or to a positive equilibrium:

— m(am — a1 — (112y),

LoIf 220 > 210 then lim (2(1), 9(t)} = (aro/ary, 0).
az1 411 t—s00
a 7} . )

IL If =2 < 2 then lim (x(t), y(t)) = (azo/az1, [aro—ariazo/asi]/012).
g1 a11 t—oo

Numerous other formulation for predator-prey models exist in the litera-
ture (Edelstein-Keshet, 1988; Hassell, 1978; Murray, 1993). The functional
response of the predator {prey eaten per predator per unit of time), corre-
sponding to the terms as;x, generally has a saturation effect. For example,
some well-known forms for the functional response include

Ivlev, a(l — exp{—bz)), h

Holling Type II or Michaelis Menten, ﬂ—,
z+d
and
ar
tio d dent, ——
ratio dependent, .
(see, for example, May, 1976; Hassell, 1978; Kuang and Beretta, 1998).
Here, we have only considered the dynamics of the simple Lotka-Volterra
predator-prey system.

7.7.1 Stochastic Predator-Prey Model

Let X (t) and Y (t) denote random variables for the size of the prey and
predator populations respectively, in a stochastic Lotka-Volterra model.
Assume the transition probabilities satisfy

Prob{AX(Q =i, AY () = jI(X (1), Y (¢)}

ﬂloX(t}At + O(At), (Z!j) - (l’ 0)

an X ()Y (1) At + o{At), (i.7) = (0,1)

a1 X (1Y (£) At + o( At), (i,5) = (-1,0)
= ¢ axnY(t)At + o(At), (4,7) =(0,-1)

1- X(t)[all] + Q12Y(t)}at
+Y(t)azo + an X (1)L +o(At),  {i,5) = (0,0)
o(At), otherwise.




7.7. Predator-Prey Processes 299

It is straightforward to write the forward Kolmogorov differential equations.
Let p(,j)(t) = Prob{X () = i, Y(#) = j}. Then

dpi, s - i( 3
ét” = @il — 1)pp-ry) +a21ilf — 1)pe -1y
+ ay2(i + 1)jpi1,y) + a20(f + 1)pg 1)

— [a1et + a21ij + a12i7 + az0f]pe,g)-

From these equations, differential equations for higher-order moments or
the moment generating function can be obtained. The next example illus-
trates the dynamics for the stochastic model.

Example 7.11 Let a9 = 1, azg = 1, a2 = 0.02, a3 = 0.01 in the
simple predator-prey model. For the initial conditions, X(0) = 120 and
Y(0) = 40, graphs of the deterministic and stochastic models are compared
in Figure 7.9. It can be seen that the stochastic model jumps between
cycles. For this single realization, extinction did not occur. But extinction
will occur as time is increased and is even more likely if the equilibrium

values are smaller. ]
300 129
250 100
B200 80
a
H g
3180 g a0
| £
B
a 100 40
50F 4 20
0 [}
o 5 10 18 20 [4] 50 100 150 200 250
Time Prey

Figure 7.9. A sample path of the Lotka-Volterra predator-prey model is
graphed with the solution to the deterministic model. Solutions are graphed
over time and in the phase plane., The parameter values and initial conditions
satisfy a0 = 1, azo = 1, a1z = 0.02, an1 = 0.01, X (0} = 120, and Y (0) = 40.
Solutions with the smaller amplitude represent the predator.

Continuous time Markov chain models for predator and prey and com-
peting species can be formulated in terms of queueing networks. Each
species is represented by a node in the network. Arrivals and departures
at each node can be births, deaths, and migration. A queueing network
model for one predator and two prey is described by Chao, Miyazawa, and
Pinedo (1999}.
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7.8 Other Population Processes

There are numerous other population and epidemic models that can be
formulated and analyzed. For example, there are population models with
multiple competitors, predators or prey, models with mutualistic interac-
tions, population models with spatial spread, and epidemic models with
classes for latent individuals or individuals with maternal antiboedy protec-
tion. Please consult some of the references for the many variations on mod-
els for competition, predation, mutualism, and epidemics (e.g., Anderson
and May, 1992; Brauer and Castillo-Chavez, 2001; Edelstein-Keshet, 1988;
Goel and Richter-Dyn, 1974; Hallam and Levin, 1986; Hethcote, 2000; Kot,
2001; Murray, 1993, 2002, 2003; Renshaw, 1993). Three examples will be
discussed here that differ from the models in the previous sections. The first
example is an SEIR epidemic model; the second, a spatial predator-prey
model; and the third, a population genetics model. '

7.8.1 SEIR Epidemic Model

Many variations in the basic deterministic SIS and SIR epidemic models are
presented by Hetheote (2000) and Anderson and May (1992). The model
presented here was developed by Anderson and May {1986, 1992) to model
measles epidemics in different countries. It is an a SEIR model with births
and deaths. There is an additional class of exposed or latent individuals,
F, individuals that are not yet infectious. The differential equations for the
deterministic model are as follows:

% — BN -S)-8SI
% _ ASI—oE—bE
% — GE—bl—~l

% = ~I—#bR,

where S(¢) + E{t) + I(t) + R(t) = N. In this model, a mass action rate
of incidence is assumed, 451, rather than the standard incidence 35T/N.
The birth rate b is the same as the death rate. The new parameter o is
the rate of becoming infectious or 1/ is the average length of the latent
period.

The basic reproductive number for this model is

(2 :5)

The disease-free state, S = N and E = I = R = 0, is locally asymptoti-
cally stable if Ry < 1. Anderson and May (1986, 1992) were interested in
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Figure 7.10. SEIR epidemic model with immigration of infec-
tives; the system exhibits oscillations before convergence to an
endemic equilibrium. Initial conditions satisfy S(0) = 249, 995,
E(0} =0, I{0) =5, and R(D) =0.

recurrent epidemics and added an immigration term A to the differential
equation for the number of infected individuals:

dl

— =cE — bl —~vI + A

ar o i+
With immigration, the disease-free state i3 not possible and the population
size is not constant, N(t) = §(¢} + FE{t) + I(t) + R(t). The dynamics of
the SEIR immigration model are illustrated in Figure 7.10 for parameter
values corresponding to measles in Iceland (Anderson and May, 1992):

0.008
g = )
year
1
— = 7 days,
~
1
- = 7 days,
A =
year
1
and 7 = 70 years. (7.25)

The initial size 18 N = 250,000. The maximum of the first wave of the
epidemic is not shown in Figure 7.10, but the first wave includes more than
90,000 infectives.

Let S(t), E(t), I(t), and R(t) denote random variables for the number
of susceptible, latent, infectious, and immune individuals. The transition
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probabilities in the stochastic model satisfy (Anderson and May, 1992)

Prob{AS(t) = i, AE(t) = j, AI(t) = k, AR(t) = I|(S(£), E(2), I(¢), R(1))}

4

N{(t)At + o(At), (6,4, k. 1) = (1,0,0,0)
bS(t)At + o(At), (z 5 k1) ={-1,0,0,0)
bE(t)At + o{At), ' (4,7,k,1) = {0,-1,0, 0)
bI(t)At + o(At), (i,5,k,1) = (0,0,—1,0)
bE(t)At + o(At), {4, 4,k,1) = (0, 0 0, —1}

. BS(t)I{t)AL + o At), {4, 4,k,1) = (-1,1,0,0)

E(t)At + o(At), (i, 7, k,1) = (0, 1,1,0)
+I(t)At + o( At), (4,3, k,0) = (0,0,-1,1)
AAL +o(Af), (i,7,k,1) = (0 0 1,0)
1—[BSOI) + cE(t) +~I(t) + AlAt
— 2b[N(t)] At + o(At}, (2,7, k., 0} = (0,0,0,0)

L o(At), otherwise.

See Anderson and May (1992) for some stochastic simulations of this model
corresponding to population sizes of N = 230,000 and N = 100,000, In
both cases there are recurrent epidemics, but when the population size is
smaller, they are less frequent. Consult Bailey (1975), Daley and Gani
(1999), Gabriel et al. (1990), Ludwig and Cooke (1975) and references
therein for additional examples of stochastic epidemic models.

7.8.2 Spatial Predator-Prey Model

A stochastic spatial predator-prey model was formulated and studied by
Renshaw (1993}. The prey and predator move among a discrete set of
spatial locations or patches, i = 1,2,...,n. For each spatial location there
is a random variable for the sizes of the prey and predator, X;(#) and Y;(2),
i=1,2,...,n In asmall period of time At, the prey moves from location
i to j with probability u;; X;(¢)At + o(At} and the predator moves from
location 7 to j with probability v;;¥;(t)At + o(At). The prey and predator
dynamics within each spatial location or patch follow the simple Lotka-
Volterra model, where there is cyclic behavior. The model mimics some of
the biological experiments performed by Huffaker in 1958 on mites. These
experiments involved a predatory mite, Typhlodromus occcidentalis, and
another mite that served as the prey, Eofetranychus sezmaculatus. Oranges
served as food for the prey, and the mites could move from one orange to
another (also consult Maynard Smith, 1974).
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In the model of Renshaw (1993) for two patches ¢ = 1,2, the transition
probabhilities satisfy
PI‘Ob{AX@(t) = ki: AY;(t) - J,Z =1, 2I('X'I (t)u Y—l(t)v XZ(t)?Y2(t))}
(a1 X1(8)At + o(At), (k1,11 k2, 12) = (1,0,0,0)
an X1 ()Y (DAL + o(AL), (k1 l, k2, l3) = (0,1,0,0}
l5112-X.1 (t)Yl (t}At + O(At)a (kla {ls k2s ‘!2} = (_1: 0: Oa 0}

a20Y: (L)AL + 0(AL), (ky 1y, ka2, 0) = {0,-1,0,0)
a;_on(t}ﬁt + O(At), (k1,11 k2, l5) =(0,0,1,0)
- a1 Xo(t)Ya(£) At + o(At), (ki 1y, ko la) = (0,0,0 1)
a12Xo(t)Ya(t) At + o(At), (k1,11 ke, l2) = (0,0,-1,0)
aan Yz (£ At + o( At), (ki li, k2, 12) = (0, 0 0,-1)
uz1 X1 (8) AL + o{At), (k1, ko, o) = (~-1,0,1 0)
u12Xa{t)At + o( At), (K1, 01, k2, l2) = (1,0, -1,0)
va1 Y1 ()AL + o(Al), (ky, 1y, ka2, 12) = (0, 1 (] 1)
| v12Ya () At + o(At), {(k1, 1, ka2, 1) = (0,1,0,-1)

In addition, the probability of no change in state is

2 2
3" Xitaro + anVi®lAt — Y Yit)lazo + any Xi{t) At

=1 i=1
Z Z[uﬁ. (1) + v;: (1) At + o{ At).
J=lj#di=1

The corresponding deterministic model with n patches has the following
form:

dx; -
d; = @;{a0 — a12¥) + Z (uT5 — wji%s)
F=1lg%
dy; &
_d?l = yi{—ap +aax:) + Z (vijy; — vyids)
J=1,4#1
fori=1,2,...,n

Renshaw (1993) simulated the dynamics with two different types of
movement patterns, with u = u;; and v = vy;, an equilibrium at (25, 15),
and X;{(0) = 10, Y1(0} = 5, X:(0) = 0 = Y;(0), i = 2,...,n. When there
was no migration, u = 0 = v, extinction of the prey occurred in the range
of 5 to 6 time units. With some spatial movement, the time until extinetion
could be significantly increased and sustained cycles could be maintained.
Renshaw (1993} found that sustained cycles can be maintained if m > 10;
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predator movement is greater than prey movement, v > u; predator move-
ment is sufliciently large to prevent prey explosion; and, finally, u and v are
not so large so that the spatial structure becomes synchronized. Predator
movement. greater than prey movement is in contrast to the results of Huf-
faker. This may be an artifact of the simple predator-prey assumption: In
the absence of predation, the prey grows exponentially. In the Exercises,
the model of Renshaw is modified to include density dependence in the prey
growth rate.

This spatial predator-prey model can be put in the more general context
of spatial population models known as stepping-stone models (Renshaw,
1993). A stepping-stone model for a single population with two patches was
applied to the spread of Africanized honey bees by Matis, Kiffe, and Otis
(1994). Generalizations of this stepping-stone model were studied by Matis,
Zheng, and Kiffe (1995) {see also Matis and Kiffe, 2000). Durrett (1995,
1999) discusses some interesting examples on stochastic spatial models with
examples from genetics, epidemiology, and ecology. In these models space
is represented by a grid of sites.

7.8.3 Population Genetics Model

Suppose the population is diploid; each individual has two copies of every
gene. In the simplest case, suppose a trait is determined by a single gene at
a particular locus or site. In addition, suppose there are only two different
alleles for this gene, denoted as A and a. Therefore, the genotype or the pair
that actually occurs in an individual can be one of three different forms,
either

AA, Aa, or aa.

Let 44(t), Taq(t), and z.,(t) denote the sizes of the population corre-
sponding to the number of individuals with these particular genotypes at
time t and let N(t) be the total population size,

N(t) = xAA(t) + an(t) + maa(t)‘

A deterministic model is formulated for changes in the size of each of these
three genotypes under the assumption of random mating, no selection and
no migration. Suppose § is the per capita population birth rate and d is the
per capita population death rate. In random mating, a single gene from
each parent forms the new gene pair in the next generation.
A model for the change in the genotypic population sizes is
d.r{ (t}

— = bfi —dz,, i€ {AA, Aa,aa}, {7.26)

where under the assumption of random mating,

2
FaalTas, caa) = @EL‘M— (7.27)



7.8. Other Population Processes 305

zaa+Taa/2)(Tee + Taa/2
fAu(mAAawAaawua) = ( A4 Aa/]\)‘r( i Aa/ ) (728)

faa(faaymAa) = Eﬁﬂiﬂ- (729)

For example, the probability two A genes form an 4 A genotype is

(($AA + an/2)> ((JJAA + an/Q}) _

N N

If the population birth rate is N, the birth rate for genotype AA is

BN ((EAA +N$Aa/2)) ((ﬂ?AA -:chAa/?)) — bfas.

Since fa4 + faa + faa = N, 1t follows that

dN
T (b— d)N.

For this model, it can be shown that the size of the allele populations
changes at the rate (b — d) but that the proportion or frequency of the
alleles remains constant over time and equals the initial frequency. Let
the sizes of the allele populations be denoted as 24 = Taa + Taa/2 and
Za = Tan +TAs/2, and the allele frequencies be denoted by p4 = z4/N and
Pa = Za/N, where pa + p, = 1. Thus,

B d)zy palt) = pa(0), and pu(®) = pal0).  (7.30)

dt
The relationships given in (7.30) mean that the population is at a Haerdy-
Wetnberg equilibrium, an equilibrium where the allele frequencies remain
the same over time.
The next example illustrates the dynamics of the deterministic pop-
ulation genetics model when there is not a Hardy-Weinberg equilibrium;
selection acts on the death rate of genotype AA.

Example 7.12 When the equations (7.26), (7.27), (7.28), and (7.29} are
satisfied, the allele frequencies are at a Hardy-Weinberg equilibrium. The
equilibriumn is determined by the initial values. Let # 44 (0) = 300, £4,(0) =
100, and x4, (0) = 200 and in addition, b = 0.1 = d. Then

pa = 0.6875, p, = 0.3125,

and in the limit, each genotype satisfies

L2 2
i (a0, 2a),20o) = (0, 200 20D) - rany

= (378.125, 343.75, 78.125) .
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Figure 7.11. Deterministic population genetics model with either no selection
or AA selection. The initial conditions satisfy z44(0) = 500, 24.{0) = 100,
and z.q(0) = 200. In (a), b = 0.1 = d, and the genotype population sizes
approach a Hardy-Weinberg equilibrium. In (b), daa = 0.1005; the population
size approaches zero and the proportion of genotype AA decreases. In (¢), daa =
0.0995; the population size increases exponentially and the proportion of genotype
AA increases.

The dynamics in this case are illustrated in Figure 7.11(a). Now, suppose
there is selection for or against genotype 4A. When the death rate of
genatype AA, daa > d, genotype AA has a selective disadvantage but if
daa < d, then genotype AA has a selective advantage. In Figure 7.11(b),
daa = 0.1005 > d, and in Figure 7.11(c), daa = 0.0995 < d. It can be seen
that the population size approaches zero when the death rate of genotype
AA is increased, and the population size increases exponentially if the death
rate is decreased. Although not evident from Figures 7.11(b) and (c), the
proportion of genotype AA approaches zero in (b}, and the proportion of
genotype AA approaches one in (c}. [ ]

Next we formulate a stochastic population genetics model. Let X44(2).
Xaa(t), and X4, () denote random variables for the genotypic population
sizes and N (t) denote the random variable for the total population size.
Let the probabilities be dencted py; ; 4 (£} = Prob{X4a(t) = %, X 4.(t) = j.
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Xaoo(t) =k}, 4,5,k € {0,1,2,...}, and

(1) = Prob{N(t) = i}, i€ {0,1,2,...}.
The transition probabilities for this multivariate stochastic process satisfy

PI‘Ob{AXAA(t) =i, AXAa(t} =7 Aqu(t) - k‘(XAA(t)aXAa(t)! Xaa(t))}

4

bfaa{Xaa, Xad)Al 4+ o(At), (¢,4,k) = (1,0,0)

bfaa{Xaa, Xaa, Xaa) At +o(AL), (4,4, k) = (0,1,0}

bfae(Xaas X aa) AL + o{AAE), (i, ) = (0,0,1)
| dXaairt+o(Aw), (4,7 k) ={-1,0,0)
"] dXa.At+o(At), (i,5.k) = (0, —1,0)

dX o At + o{ At), {i, 4, k} = (0,0, ~-1)

1 — (b+d)N (L)AL + ol At), {i,7. k3 = {0,0,0}

L o(Al), otherwise.

The stochastic process for the total population size, {N{¢)}, ¢t > 0, is
a simple birth and death process provided b = A = constant and d = 4 =
constant. In this case, the transition probabilities satisfy

BN ()AL + o(Al), i=1
Prob{AN(t) = i|N(1)} = { VAL (AL, i=-1
L= b+ N (A +0(At), §=0
o{ At), otherwise.

The forward Kolmogorov differential equation has the form

dp¥’
dit

=b(i — Vp, +d(i+ pl, — b+ dlip
and the moment generating function A4(z,¢) satisfies the partial differential
equation

a2
ot

oM

= [d(efﬁ -1+ b(ea — 1)]19?,

M(8,0) = efre

where N(0) = ng. The dynamics of the total population size is well under-
stood in this case. For example, when b = d = constant and the population
size is large, the mean values of the random variables in the multivariate
process, (Xaa(t), Xaa(2), Xaa{t)), ¢ = 0, are close to their equilibrium val-
ues. For small population sizes, extinction may occur rapidly, or fixation at
one of the equilibria Z, =0 or Z4 = 0. Consult Nagylaki (1992) for more
information on theoretical population genetics.
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7.9 Exercises for Chapter 7
1. Consider the simple birth and death process discussed in Example 7.1.

(a) Show that the solutions (7.4) satisfy the differential equation,
dPjdt = p— (A 4+ u}P + AP2.

(b} Find m = f'(1). When m > 1, use the p.g.f. f(2) to compute
lim¢...oo Po(t). Compare this limit with the one obtained for the
simple birth and death process in Chapter 6, Section 6.4.3.

2. Consider the development of drug resistance in cancer cells discussed
in Example 7.2. .

(a) Show that the solutions (7.5} and (7.6) satisfly the differential
equations for P and P».

(b) Find the mean number of sensitive (type 1) and resistant (type 2)
cells produced by type 1 cells; that is, mq1(t) = 8P (1,1,1)/02
and mz;(t) = 8P1(1,1,1)/0z (Kimmel and Axelrod, 2002).

3. Calculate the quasistationary probability distribution and the ex-
pected duration of an epidemic for an SIS epidemic model when
=15 b+v=1and N = 100. Sketch their graphs and com-
pare them to Figure 7.2.

4. For the bivariate birth and death process in Example 7.5, show that
the m.g.f. satisfies (7.11}. Then use the forward Kolmogorov differen-
tial equation (7.10) to show that the mean and varianee of the process
in Example 7.5 satisfy (7.12).

5. Consider the transition matrix 7" corresponding to the embedded Mar-
kov chain of the SIR. epidemic model in Example 7.7.

(a) Identify the remaining submatrices As, A3, A4, Bz, and By of
the transition matrix T

(by et N =4, v =1, and a = 2. Then find T?¥~! = 77 and
show that the final size distribution when I{0} = 1 is py =
(0,0.4,0.15,0.1556,0.2944)7. What is the final size distribution
when I(0) = 27

6. For the Lotka-Volterra competition model given in (7.17) and (7.18},
assume the stochastic birth rates and death rates satisfy

Q4

M (X1, X3) = max {0, X; (a,-g - ?X,)}, i=1,2.

(277 .. . R
ﬂ{(Xl,Xz):.Xi (%X:‘-}—ainj), t,7=1,2, i #j.
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(a)

Write the forward Kolmogorov differential equation for py; (t) =
Prob{X;(t) = 4, X2({) = j} and use it to find the differen-
tial equations satisfied by the means, mio(t) = E(X1(t)) and
mo1(t) = FE(X2(8)).

For the same parameter values and initial conditions as in Exam-
ple 7.10, ayp = 2, aop = 1.5, ay] = 003j a1 = 0.02, a9 = 0.01,
ase = 0.04, X;(0) = 50 and X3(0) = 25. Graph one sample path
in the phase plane. Then generate 1000 sample paths and find
the mean and variance at t = 5 and compare your answers with
those given for Example 7.10.

7. The deterministic predator-prey system,

ARG R

dy cy

5 - n(-2)

dt y x
wag shown by Murray (1993) to have a limit cycle for some parameter
values.
(a) For the parameter values v = 1, K = 100, ¢ = 1, d = 20,

(b)

(d)

b= 0.02, and ¢ = 1, show that a positive equilibrium exists and
that it is unstable. It can be shown that a limit cycle exists.

Assume for the prey x that the birth rate is r& and death rate is
z[r/K+ay/{x+d)] and for the predator y that the birth rate is by
and the death rate is bey?/x. Write the transition probabilities
for the stochastic model and the forward Kolmogorov differential
equations for py; 5y (¢) = Prob{X{#) =i, Y (t) = j}.

For the parameter values in (a) and assumptions in (b), write
a computer program to generate a sample path for the stochas-
tic predator-prey system with initial conditions X {0} = 20 and
Y(0) = 30 and graph the sample path.

Due to the oscillations in the predator-prey model, it is very
likely that the predator or prey become extinet. What happens
in the model if the predator y becomes extinct? Notice that
there is a singularity in the differential equations when £ = (.
When the prey becomes extinct, it is assumed that the predator
also becomes extinct. An illustration of prey extinction is given
in Figure 7.12.
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Figure 7.12. A sample path of the stochastic predator-prey
model is graphed against the solution to the deterministic
model. The parameter values and initial conditions satisfy
r=1K=100,a=1,d=20,b=002 c= 1, X(0) = 20,
and Y(0) = 30. Solutions with the smaller amplitude are the
predator.

8. For the three-species competition model,

%Eti = (@i — 0171 — T2 — ai373), 1 =1,2,3,

define three random variables X;{t), i = 1,2, 3 that correspond to the
sizes of the three competing species. Define possible birth and death
rates, A;(X1, X2, X3) and p;(X1,Xa,X3). Then define transition
probabilities corresponding to a stochastic model and express the cor-
responding forward Kolmogorov differential equations for p; ; 1) (t) =
Prob{X,(t) = i, X2(t) = j, X3(t) = k}. Assume the initial distribu-
tion satisfies X1(0) = a, X2{0) = b, and X3(0) = ¢, where a, b and ¢
are positive constants.

9. Consider the SEIR epidemic model with no immigration, A = 0.

(a) Show that the disease-free equilibrium S =N, E=1=R=0
is locally asymptotically stable if Ry < 1.

{b) Convert the parameters given by Anderson and May (1992) in
(7.25) to units of (year)~!. Then find the minimum value of N
such that the disease-free equilibrium is no longer locally asymp-
totically stable. Anderson and May used the stochastic model
with immigration to illustrate the importance of a sufficiently
large population size to sustain an epidemic.
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10. Consider Renshaw’s spatial predator-prey model with density depen-
dence in the prey population and dispersal between two patches. As-
sume the deterministic model satisfies

dz;

dtt = (e —enzi — aay) +ule; — x),
d .

F?? = yi(—ag0 + aax) +vly; — ),

where i,j = 1,2 and j # . There are n = 2 patches with u,;; = » and
'U-,;j = Y.

Let X;(t) and Y;{t) denote the random variables for the corresponding
continuous time, stochastic process and '

o1 X (O X () + e X (Y (DAL + ol At)

be the transition probahility for death of a prey, AX;(t) = —1. Sup-
pose the parameter values are a9 = 1, a1 = 0.02, g, = 0.1,
asp = 0.15, and ap; = 0.01 and iitial conditions are X;(0) = 15,
¥1(0) =7, and X;3(0) =0=1Y2(0) =0. '

(2) Show that z; =15 and y; = 7, 7 = 1, 2 is an equilibrium of the
deterministic model (i.e., dx;/di = 0 = dy,/dt).

(b) Let u = 0 = v so that there is essentially one patch; no move-
ment. Write a computer program to simulate 50 sample paths,
and record the time when either (i) the prey population size or
predator population size equals zero (extinction of one species)
or (ii} time has reached ¢ = 200 and neither population size is
zero (coexistence). In what proportion of the sample paths are
the prey extinct? predators extinct? both coexist?

{c) For two patches, consider three cases: (i) u = 0.001 = v (prey
and predator movement rates are equal), (i) w = 0.001 and v =
0.01 (predator movement > prey movement), and (iii) » = 0.01
and v = 0.001 (prey movement > predator movement). Write
a computer program to simulate 30 sample paths for each of
these sets of parameter values and record the time when either
the total prey population size or total predator population size
equals zero {extinction of one species in both patches) or time
has reached t = 200 and neither of the population sizes are zero
(coexistence). In what proportion of the sample paths are the
prey extinet? predators extinet? both coexist?

(d) Repeat part (c¢) with three patches, X;(0} = 15, ¥1(0) = 7,
X;(0) = 0, and Y;(0} = 0, j = 2,3. Compare the results of
(b) and (c), (b) and (d), and (¢) and (d). When is extinction
most likely to occur? in one, two, or three patches? When is
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coexistence most likely to occur? when prey movement is greater
than predator movement or when predator movement is greater
than prey movement?

11. Consider the deterministic population genetics model (7.26), (7.27),
{7.28), and (7.29).

{a) Show that the relationships given for the allele population sizes
and frequencies in {7.30) are satisfied.

(b) If b = d, show that the genotypic population sizes x;(4), i €
{AA, Aa,aa} have the Himit specified by {7.31).

{(¢) For the corresponding stochastic population genetics model, find
the forward Kolmogorov differential equations for

Prig k) = PI‘Ob{XAA(t) = i,XAa{t} =7j, XAA(t) = k}

Assume the initial distribution satisfies X 14(0) = a, X 4,(0} =
b, X;e(0) = ¢, where a, b, and c¢ are positive constants.

(d) Write a computer program to simulate sample paths correspond-

ing to the Hardy-Weinberg equilibrium in Example 7.12 with

=0.1 = d, X44{0) = 500, X 4,(0) = 100, and X,,(0) = 200.

Plot X 44, X 44, Xpa, and N. Simulate 100 sample paths. Then

find the mean and standard deviation for each of the random

variables at ¢ = 40 and compare the mean values with the solu-
{ions to the deterministic model.

12. Suppose two competing populations disperse between two patches.
The deterministic model satisfies

dx;
dtﬁ = zila — ez — appys) + ulz; — ),
dy;
EE = yila — anx; — ag2yi) + v{y; — ¥),

where 4,7 = 1,2 and j # i. Select parameter values a;; such that there
exists a positive stable equilibrium (z,7), 5 <z <20 and 5 < y < 20,
when u = 0 = v. Let X;(t) and ¥;(t), © = 1,2 denote the random
variables for the stochastic process with initial conditions X;(0} = 3,
Y:(0) = g and X2(0) = 0 = Y5(0).

{(a) Develop a continuous time Markov chain model based on the
preceding deterministic model.

{b) Let v = 0 = v so that there is essentially one patch; no move-
ment. Write a computer program to simulate 50 sample paths
for a continuous time Markov chain model. Fix a time T > 200.
Then record either (i) the time when either species 1 or species
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2 equals zero (species extinction) or (ii) time has reached T and
neither species is zero (coexistence). In what proportion of the
sample paths are species 1 extinct? species 2 extinet? both
coexist?

(c) For two patches, consider two cases: (i) v = » and (il) u < v.
Write a computer program to simulate 50 sample paths for each
of these sets of parameter values, and record the time when
either species 1 or species 2 equals zero (species extinction in
both patches) or time has reached T and neither species is zero
{(coexistence). In what proportion of the sample paths is species
1 extinet? species 2 extinet? both coexist? Discuss your results
and compare them to part (b).

13. Search the literature and formulate a stochastic model based on a
predator-prey, competition, or a population genetics process that dif-
fers from the ones discussed in this Chapter. In particular,

(a) Define the transition probabilities.

{b) Find the forward Kolmogorov differential equations satisfied by
this process.

{c) Select some parameter values. Write a computer program for
this process. Compute at least 100 sample paths. Analyze and
discuss your results.
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