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Abstract. We calculate the diffusion coefficients of persistent random walks on cubic and
hypercubic lattices, where the direction of a walker at a given step depends on the memory of
one or two previous steps. These results are then applied to study a billiard model, namely a
three-dimensional periodic Lorentz gas. The geometry of the model is studied in order to find
the regimes in which it exhibits normal diffusion. In this regime, we calculate numerically the
transition probabilities between cells to compare the persistent random-walk approximation
with simulation results for the diffusion coefficient.
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1. Introduction

Problems dealing with the persistence of motion of tracer particles – that is, the tendency to
continue or not in the same direction at a scattering event – are encountered in many areas
of physics; see e.g. [1] and references therein. We are specifically interested in the effect of
persistence for the motion of random walkers on regular lattices.

The diffusive properties of persistent random walks on two-dimensional regular lattices
were the subject of a previous paper by two of the present authors [2]. There, we presented
a theory making use of the symmetries of such lattices to derive the transport coefficients of
walks with a two-step memory. In the first part of the present paper, we extend this theory to
hyper-cubic lattices in arbitrary dimensions, which is possible by describing the geometry of
the lattices in a suitable way.

Persistence effects naturally arise in the context of deterministic diffusion [3, 4, 5, 6],
which is concerned with the interplay between dynamical properties at the microscopic scale
and transport properties at the macroscopic scale. A variety of different techniques are now
available, which rely on the chaotic properties of model systems to describe their macroscopic
properties [7], [8, chap. 25]. In particular, periodic Lorentz gases and related models, such as
multi-baker maps, are simple deterministic dynamical systems with strong chaotic properties
which also exhibit diffusive regimes. Although the transport coefficients of these models can
be expressed formally in terms of the microscopic dynamical properties, actually computing
them is usually difficult, with the exception of some of the simplest toy models [9, 10, 11].
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One reason for this is that memory effects can remain important, in spite of the chaotic
character of the underlying dynamics.

The diffusive properties of these models therefore provide ideal applications of the
formalism presented in this paper. An example of this was illustrated in reference [12], for
a class of two-dimensional periodic billiard tables. Extending these results, in this paper we
apply the formalism to model the diffusive properties of higher-dimensional periodic Lorentz
gases.

The diffusive properties of the three-dimensional periodic Lorentz gas, which consists
of the free motion of independent tracer particles in a cubic array of spherical obstacles, are
interesting in their own right. In two spatial dimensions, the existence of diffusive regimes
in such systems has been rigorously established [13, 14]. It relies on the finite-horizon
property, which requires that the system admits no ballistic trajectories, i.e. those which never
collide with any obstacle. In this case, it is possible to change scales from microscopic to
macroscopic, reducing the complicated motion of tracer particles at the microscopic level to
a diffusive equation at the macroscopic level. When the horizon is infinite on the other hand,
there is rather a weakly superdiffusive process, with mean-squared displacement growing like
t log t [15, 16], as recently shown rigorously in [17].

The necessity of finite horizon to have normal diffusion in two dimensions led to the idea
that this was also necessary in three dimensions – see, for example, reference [18]. Recently,
however, it was argued by one of the present authors [19] that in higher-dimensional billiards,
normal diffusion, by which we mean an asymptotically linear growth in time of the mean-
squared displacement, may arise even in the absence of finite horizon. In fact, three different
types of horizon can be identified in the three-dimensional periodic Lorentz gas. The key
observation is that it is only “planar” gaps – those with infinite extension in two dimensions
– which induce anomalous diffusion. If there are only “cylindrical” gaps, whose extension is
limited to a single dimension, then the available space in which particles can move ballistically
is limited. This leads to a decay of correlations which is fast enough to give normal diffusion
at the level of the mean-squared displacement, although higher moments of the displacement
distribution may be non-Gaussian [19].

The paper is organized as follows. Section 2 describes the computation of the transport
coefficient of walks on hypercubic lattices with one and two-step memories. In the second
part of this paper, we apply this formalism to the diffusive regimes of the three-dimensional
periodic Lorentz gas. In section 3, we give a detailed description of the three-dimensional
periodic Lorentz gas introduced in reference [19], in particular delimiting the regimes with
qualitatively different behaviour in parameter space. We then apply the results on persistent
random walks to the diffusive regimes of this model in section 4. Conclusions are drawn in
section 5.

2. Persistent random walks on cubic lattices

In this section, we describe a way to incorporate the specific geometry of cubic and hyper-
cubic lattices in the framework presented in reference [2] for calculating diffusion coefficients
for persistent random walks on lattices.

We start by considering the motion of independent walkers on a regular cubic lattice in
three dimensions. Given their initial position r0 at time t = 0, the walkers’ trajectories are
specified by the sequence {v0, . . . ,vn} of their successive displacements. Here we consider
dynamics in discrete time, so that the time sequences are simply assumed to be incremented by
identical time steps τ as the walkers move from site to site. In the sequel we will loosely refer
to the displacement vectors as velocity vectors; they are in fact dimensionless unit vectors.
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The sequence of successive displacements is determined by the underlying dynamics,
whether deterministic or stochastic. At the coarse level of description of the lattice dynamics,
this is interpreted as a persistent type of random walk, where some memory effects are
accounted for: the probability that the nth step is taken in the direction vn depends on the
past history vn−1,vn−2, . . ..

The quantity of interest here is the diffusion coefficient D of such persistent processes,
which measures the linear growth in time of the mean-squared displacement of walkers. This
can be written in terms of velocity autocorrelations using the Taylor–Green–Kubo expression:

D =
`2

2dτ

[
1+2 lim

k→∞

k

∑
n=1
〈v0 ·vn〉

]
, (2.1)

where d denotes the dimensionality of the lattice, here d = 3, and ` is the lattice spacing. The
(dimensionless) velocity autocorrelations are computed as averages 〈·〉 over the equilibrium
distribution, denoted by µ , of the underlying process, so that the problem reduces to
computing the quantities

〈v0 ·vn〉= ∑
v0,...,vn

v0 ·vn µ({v0, . . . ,vn}) . (2.2)

Following the approach of reference [2], we wish to compute the terms in this sum, and
hence the corresponding diffusion coefficient (2.1), for three different types of random walks,
namely those with zero-step, single-step and two-step memories. These cases all involve
factorisations of the measure µ({v0, . . . ,vn}) into products of probability measures which
depend on a number of velocity vectors, equal to the number of steps of memory of the
walkers. These measures will be denoted by p throughout.

The schemes we outline below allow to write equation (2.2) as a sum of powers of
matrices, so that (2.1) boils down to a geometric series, which can then be resummed to obtain
an expression for the diffusion coefficient that is readily computable given the probabilities
that characterise the allowed transitions in the process.

2.1. Description of geometry of cubic lattices

It is first necessary to find a succinct description of the geometry of the cubic lattices that
we wish to study. The six directions of the three-dimensional cubic lattice and corresponding
displacement vectors are specified in terms of the unit vectors ei of a Cartesian coordinate
system as ±ei, i = 1,2,3.

The crucial property required for the application of our method is that all of these unit
vectors can be obtained by repeated application of a single transformation G, which generates
the cyclic group

G ≡ {Gi ≡ Gi, i = 0, . . . ,5}. (2.3)

One possible choice of G gives the following group elements:

G1 =−G4 = G=

 0 0 −1
1 0 0
0 1 0

 ,

G2 =−G5 = G2 =

 0 −1 0
0 0 −1
1 0 0

 ,

G3 =−G0 = G3 =

 −1 0 0
0 −1 0
0 0 −1

 .

(2.4)
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Figure 1 displays the six possible directions of a walker on this lattice, numbered
according to repeated iterations by G. Thus a walker with incoming direction e1, indicated
by the arrow, can be deflected to any of the six directions Gie1, i = 0, . . . ,5, corresponding
respectively to e1, e2, e3, −e1, −e2, and −e3.

0

1

2

3

4
5

Figure 1. The possible directions of motion on a cubic lattice, labelled from 0 to 5 relative
to the incoming direction shown by the arrow. These directions are obtained by successive
applications of the transformation G given in equation (2.4).

A similar transformation G can easily be identified for a walk on a d-dimensional hyper-
cubic lattice:

G=


0 0 · · · 0 −1
1 0 · · · 0 0
0 1 · · · 0 0
...

. . .
...

0 0 · · · 1 0

 , (2.5)

which maps the unit vectors onto the 2d-cycle e1 7→ e2 7→ · · · 7→ ed 7→ −e1 7→ · · · 7→ −ed .

2.2. No-Memory Approximation (NMA)

We now proceed to calculate the diffusion coefficient (2.1) for random walks with different
memory lengths. The simplest case is that of a Bernoulli process for the velocity trials, so
that the walkers have no memory of their history as they proceed to their next position. The
probability measure µ thus factorises:

µ({v0, . . . ,vn}) =
n

∏
i=0

p(vi) . (2.6)

Given that the lattice is rotation invariant and that p is uniform, the velocity autocorrelation
(2.2) vanishes:

〈v0 ·vn〉= δn,0 . (2.7)
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The diffusion coefficient of the random walk without memory is then given by

DNMA =
`2

2dτ
. (2.8)

2.3. One-Step Memory Approximation (1-SMA)

We now assume that the velocity vectors obey a Markov process, for which vn takes on
different values according to the velocity at the previous step vn−1. We may then write

µ({v0, . . . ,vn}) =
n

∏
i=1

P(vi|vi−1)p(v0) . (2.9)

Here, P(v′|v) denotes the one-step conditional probability that the walker moves with
displacement v′, given that it made a displacement v at the previous step.

Considering for definiteness the three-dimensional lattice and using the elements of the
group G , we express each velocity vector vk in terms of the first one, v0, as vk =Gikv0, where
each ik ∈ {0, . . . ,5}. Substituting this into the expression for the velocity autocorrelation
〈v0 ·vn〉, equation (2.2), we obtain, using the factorisation (2.9),

∑
v0,...,vn

v0 ·vn

n

∏
i=1

P(vi|vi−1)p(v0) =
6

∑
i0,...,in=1

v0 ·Ginv0min,in−1 · · ·mi1,i0pi0 . (2.10)

In this expression,

min,in−1 ≡ P(Ginv0|Gin−1v0) (2.11)

are the elements of the stochastic matrix M of the Markov chain associated to the persistent
random walk, and pi ≡ p(ei) are the elements of its invariant (equilibrium) distribution,
denoted P, evaluated with a velocity in the ith lattice direction. The invariance of P is
expressed as ∑ j mi, jp j = pi. The same notations were used in [2] and will be used throughout
this article.

The terms involving M in (2.10) constitute the matrix product of n copies of M.
Furthermore, since the invariant distribution is uniform over the lattice directions, we can
choose an arbitrary direction for v0, and hence write

〈v0 ·vn〉= v0 ·v0m
(n)
1,1 +v0 ·Gv0m

(n)
2,1 + · · ·+v0 ·G5v0m

(n)
6,1 ,

=m
(n)
1,1−m

(n)
4,1 (2.12)

where m
(n)
i, j denote the elements of Mn.

The actual value of the diffusion coefficient depends on the probabilities P(G jv|v),
which are parameters of the model, subject to the constraints ∑ j P(G jv|v) = 1. To simplify
the notation, we assume rotational invariance of the process, i.e. independence with respect to
the value of v, and we denote the conditional probabilities of these walks by Pj ≡ P(G jv|v),
where j = 0, . . . ,5.

The transition matrix M given by (2.11) is thus the cyclic matrix

M=


P0 P1 P2 P3 P4 P5
P5 P0 P1 P2 P3 P4
P4 P5 P0 P1 P2 P3
P3 P4 P5 P0 P1 P2
P2 P3 P4 P5 P0 P1
P1 P2 P3 P4 P5 P0

 . (2.13)
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The matrix Mn shares the same property of cyclicity, so that it also has only six distinct entries.
It is thus possible to proceed along the lines described in [2] and obtain the recurrence relation m

(n)
1,1−m

(n)
4,1

m
(n)
2,1−m

(n)
5,1

m
(n)
3,1−m

(n)
6,1

 =

 P0−P3 P1−P4 P2−P5
P5−P2 P0−P3 P1−P4
P4−P1 P5−P2 P0−P3


 m

(n−1)
1,1 −m

(n−1)
4,1

m
(n−1)
2,1 −m

(n−1)
5,1

m
(n−1)
3,1 −m

(n−1)
6,1

 ,

=

 P0−P3 P1−P4 P2−P5
P5−P2 P0−P3 P1−P4
P4−P1 P5−P2 P0−P3

n−1 P0−P3
P1−P4
P2−P5

 . (2.14)

[Note that the left-hand side of this equation was chosen to reduce the size of the matrix
involved and to calculate the element required in (2.12).] As a consequence, we can write for
the velocity autocorrelation (2.12)

〈v0 ·vn〉=
(
1 0 0

) P0−P3 P1−P4 P2−P5
P5−P2 P0−P3 P1−P4
P4−P1 P5−P2 P0−P3

n−1 P0−P3
P1−P4
P2−P5

 , (2.15)

and thus obtain the expression of the diffusion coefficient (2.1) as

D1SMA

DNMA
=

1+2
(

1 0 0
) 1+P3−P0 P4−P1 P5−P2

P2−P5 1+P3−P0 P4−P1

P1−P4 P2−P5 1+P3−P0

−1 P0−P3
P1−P4
P2−P5


 , (2.16)

by using the result that ∑
∞
n=0A

n = (I−A)−1, where I is the identity matrix, for a square matrix
A whose eigenvalues are all strictly less than 1 in modulus,

This result easily generalises to a hyper-cubic lattice in any dimension d. Note also that
for a symmetric process, in which P1 = P4 and P2 = P5, we recover the diffusion coefficient

D1SMA = DNMA
1+P0−P3

1−P0 +P3
, (2.17)

in agreement with the result stated in [2].

2.4. Two-Step Memory Approximation (2-SMA)

Let us now suppose that the velocity vectors obey a random process for which the probability
of vn takes on different values according to the velocities at the two previous steps, vn−1 and
vn−2, so that we may write

µ({v0, . . . ,vn}) =
n

∏
i=2

P(vi|vi−1,vi−2)p(v0,v1) . (2.18)

The velocity autocorrelation (2.2) function is then

〈v0 ·vn〉= ∑
{vn,...,v0}

v0 ·vn

n

∏
i=2

P(vi|vi−1,vi−2)p(v0,v1) . (2.19)

Since the probability transitions P(vi|vi−1,vi−2) have symmetries similar to those used
in reference [2], the computation of equation (2.19) reduces to an expression very similar to
that found there for walks on one- and two-dimensional lattices. The details of the derivation
are a bit more involved than the one-step memory persistent walks, so we will limit ourselves
to stating the results.
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Letting z = 2d denote the coordination number of the lattice, and writing‡ Pj,k ≡
P(Gz−kGz− jv|Gz− jv,v), which is the conditional probability of making a displacement v
given that the two preceding displacements were successively G jGkv and Gkv, we define the
z× z matrix

K(φ)≡


P00 P10 ··· Pz−1,0

φP01 φP11 ··· φPz−1,1

...
...

. . .
...

φ z−1P0,z−1 φ z−1P1,z−1 ··· φ z−1Pz−1,z−1

 . (2.20)

The argument φ in this expression is a complex number such that φ z = 1. In the case of
two-dimensional lattices, only two of these roots are relevant, corresponding to the complex
exponential of the smallest angle between two lattice vectors, φ = exp(±2iπ/z). For hyper-
cubic lattices in arbitrary dimensions, however, we must consider a priori all the z possible
roots of unity, φ j ≡ exp(2iπ j/z), j = 0, . . . ,z−1.

A direct calculation of (2.19) shows that the velocity autocorrelation takes the form

〈v0 ·vn〉=
(

1 · · ·1
)[z−1

∑
j=0

a jK(φ j)
n−1diag(1,φ j, . . . ,φ

z−1
j )

] p1
...
pz

 , (2.21)

where diag(1,φ j, . . . ,φ
z−1
j ) denotes the matrix with elements listed on the main diagonal and

0 elsewhere. For the three-dimensional cubic lattice, the coefficients a j are found to be

a0 = a2 = a4 = 0,
a1 = a3 = a5 = 2,

(2.22)

which compares to a1 = a3 = 2 and a0 = a2 = 0 in the case of the two-dimensional square
lattice [2]. In the case of a d-dimensional hyper-cubic lattice, this generalises to

a2 j = 0, j = 0, . . . ,d−1,
a2 j+1 = 2, j = 0, . . . ,d−1,

(2.23)

The diffusion coefficient of a two-step memory persistent random walk on a d-
dimensional hyper-cubic lattice is thus

D2SMA

DNMA
= 1+4

(
1 · · ·1

){ d

∑
j=1

[Iz−K(φ2 j−1)]
−1diag(1,φ2 j−1, . . . ,φ

z−1
2 j−1)

} p1
...
pz

 ,

(2.24)

where Iz denotes the z× z identity matrix.

3. Three-dimensional periodic Lorentz gas

Equations (2.8), (2.16) and (2.24) can be put to the test to probe the diffusive regimes of
periodic Lorentz gases. The diffusive motion of the tracers results from the chaotic nature
of the microscopic dynamics and the fast decay of correlations, which are in turn due to
the convex nature of the obstacles. Taking into consideration the different diffusive regimes
of these models, which, as we argued earlier, depend on the nature of their horizon, we

‡ This expression differs from that given in [2] due to a typographical error in that paper – they are really the same.
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investigate how the microscopic dynamical properties of the system determine the diffusion
coefficient.

Machta and Zwanzig [20] addressed this issue in a particular limiting case, showing that,
in the limit where the obstacles are so close together that a tracer will remain localised on
ekach lattice site for a very long time (compared to the mean time separating two collision
events), the process of diffusion on the Lorentz gas is well approximated by the dimensional
prediction (2.8), where the lattice spacing ` is the distance separating two neighbouring
obstacles and τ is the trapping time, which can be computed in terms of the geometry of
the billiard as a simple consequence of ergodicity. That is to say, when the geometry of the
billiard is such that two neighbouring disks nearly touch, the Lorentz gas is well approximated
by a Bernoulli process, modeling the random hopping of tracers from cell to cell, with time-
and length-scales specified according to the geometry of the billiard.

Different approximation schemes have been proposed to go beyond this zeroth-order
approximation and account for corrections to it [21, 22]; see, in particular, reference [23] for
an overview. A consistent approach to understanding the effect of these corrections in two-
dimensional diffusive billiards was described in [12]. The idea is to approximate the hopping
process of tracer particles by persistent random walks with finite memory, and thus estimate
the diffusion coefficient of the billiard by the two-dimensional lattice equivalents of the one-
or two-step formulas (2.16) and (2.24).

We discuss below the transposition of these results to the diffusive regimes of the three-
dimensional periodic Lorentz gas.

3.1. Geometry of simple three-dimensional periodic Lorentz gas model

We begin with a detailed description of the geometry and the different horizon regimes of the
system studied in reference [19]; additional details are given in reference [24].

The model consists of a three-dimensional (3D) periodic Lorentz gas constructed out of
cubic unit cells of side length `, having eight “outer” spheres of radius ρout` at its corners
and a single “inner” sphere of radius ρin` at its centre – see figure 2. The infinitely-extended
periodic structure formed in this way is symmetric under interchange of ρin and ρout; without
loss of generality, we take ρout ≥ ρin.

Figure 2. Geometry of the obstacles in a single cell of the 3D periodic Lorentz gas model for
ρout = 0.45` and ρin = 0.30`, in the cylindrical-horizon regime.

This model seems to be the simplest one which allows a finite horizon, although this
is possible only when the spheres are permitted to overlap. It is known that finite-horizon
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periodic Lorentz gases with non-overlapping spheres in fact exist in any dimension [25], but
we are not aware of any explicit constructions of such models, even in the case of three
dimensions.

Lattice of outer spheres The spheres of radius ρout` form a simple cubic lattice. This lattice
has the following properties:

• When ρout < 1/2, the spheres are disjoint. In this case, there are free planes [25]
in the structure, that is, infinite planes which do not intersect any of the spheres, in
particular there are free planes centered on the faces of the unit cell. In this case, we
say that there is a planar horizon (PH). When ρout is small, there are additional planes at
different diagonal angles, analogously to the two-dimensional infinite-horizon Lorentz
gas [15, 16, 17].

• When ρout > 1/2, the spheres overlap, thereby automatically blocking all planes. The
overlaps (intersections) of the spheres partially cover the faces of the cubes, leaving a
space in between which acts as an exit towards the adjacent cell.

• When ρout ≥ 1/
√

2, the overlaps completely cover the faces of the unit cell, so that it is
no longer possible to exit the cell.

• When ρout ≥
√

3/2, all of space is covered, and it is no longer possible to define a billiard
dynamics.

Conditions for normal diffusion: cylindrical horizon As shown in reference [19], the
necessary and sufficient condition to have normal diffusion is that all free planes are blocked;
if there are free planes, then the diffusion is weakly anomalous. The conditions to block all
planes are as follows.

• All free planes are automatically blocked for ρout ≥ 1/2, when the ρout-spheres overlap.
• If the ρout-spheres do not overlap, then it is necessary to introduce the ρin-sphere to block

planes which are parallel to the faces of the unit cell. For this blocking to occur, we need
ρin ≥ 1/2−ρout.

• Furthermore, we must also block diagonal planes at 45 degree angles, which requires
that ρout ≥ 1/(2

√
2) or ρin ≥ 1/(2

√
2).

If all of these conditions are satisfied, then we no longer have free planes, but may have free
cylinders (“cylindrical gaps”) in the structure; we then say that there is a cylindrical horizon
(CH).

Conditions for finite horizon Stronger statistical properties – e.g. faster decay of correlations
– may be expected when there is a finite horizon [18, 19], i.e. where the length of free paths
between collisions with obstacles is bounded above. To obtain this, not only all planar gaps,
but also all cylindrical gaps must be blocked, i.e. all holes viewed from any direction must be
blocked. To do so, the following conditions must be fulfilled:

• The ρout-spheres must overlap, ρout ≥ 1/2. Furthermore, the projection of the ρin-
sphere on each face of the unit cell must cover the available exit space, as illustrated
in figure 3(a). Letting d be the maximum width of overlap of the resulting discs of radius
ρout on a face of the unit cell, we have d2 = ρ2

out− 1/4, and we need ρin ≥ 1/2− d to
block the space.
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ρin = 1
2 −d

d

ρout

(a) Face of unit cell

d

ρin

(b) Mid-plane of unit cell

Figure 3. Geometry of the 3D periodic Lorentz gas. (a) Cross-section of the unit cell in one
of its faces. The overlapping outer spheres of radius ρout > 1/2, give rise to four overlapping
discs (shown in green); the maximum width of their overlap is denoted d. The central disc
(red) shows the minimum radius ρin = 1/2− d of the central sphere such that its projection
covers the gap between the ρout-discs on the face. (b) Geometry of the mid-plane of a unit cell
for parameters giving a finite horizon. The outer discs are cross-sections of the overlaps of the
outer ρout-spheres, and have radius d equal to the overlap parameter in (a). The inner disc is
the cross-section of the inner ρin-sphere.

Figure 4. Finite horizon can be achieved in a three-dimensional lattice, provided the spheres
are allowed to overlap. Here the available space for diffusing particles is shown for parameter
values ρout = 0.65` and ρin = 0.15` (in the FH1 region) in an unfolded channel.

• We must block cylindrical corridors which cross the structure at a 45 degree angle at
the level of the mid-plane of a unit cell, which corresponds to the planar cross-section
with most available space in the unit cell. The mid-plane has the geometry shown in
figure 3(b), with four outer discs of radius d, and a central disc of radius ρin; these discs
are the intersection of the ρout-overlaps and of the ρin-sphere, respectively, with the mid-
plane. Free diagonal trajectories in this plane at an angle of 45 degrees give rise to small
cylindrical corridors. These will be blocked if there is no free line in the mid-plane. This
blocking occurs provided either d ≥ 1/(2

√
2), i.e. ρout≥

√
3/(2
√

2, or if ρin≥ 1/(2
√

2),
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thus giving rise to two distinct finite horizon regimes (FH1 and FH2), which are in fact
disjoint.

Figure 4 depicts the space available for tracer particles in a channel of three consecutive cells
for a particular finite-horizon case.

Localisation of trajectories Having fixed ρout, it is also necessary to calculate the value of
ρin above which the trajectories become localised (L) between neighbouring spheres, and
are thus no longer able to diffuse. For ρout < 1/

√
2, when there are still exits available

on the faces of the cubic unit cell, this happens exactly when the discs in the mid-plane
touch, i.e. when ρin +d = 1/

√
2, so that the condition for localised trajectories becomes [19]

ρin ≥ 1/
√

2−
√

ρ2
out−1/4.

Condition to fill space Finally, we calculate when the spheres fill all space (denoted U, for
undefined):

• When ρout < 1/
√

2, this occurs when the ρin-spheres are large enough that their

intersection with each face of the cube, which is a disc of radius
√

ρ2
in−1/4, covers

the exit on a face left open by the ρout-spheres. This gives the condition ρ2
in ≥ ρ2

out +

1/4−
√

ρ2
out−1/4.

• When ρout > 1/
√

2, the condition is that ρin be large enough to cover the space left by
the ρout-spheres inside the unit cell. The condition can again be found by looking at
the mid-plane, where there is most available space: the disc of radius ρin must cover
the space left by the discs of radius d (which are cross-sections of the overlaps of the
ρout-spheres). This occurs when ρin ≥ 1/2−

√
ρ2

out−1/2.

Parameter space The complete parameter space of this model is shown in figure 5,
exhibiting the regions in parameter space corresponding to the regimes of qualitatively
different behaviour discussed above§. Note that if ρin >

√
3/2−ρout, then the ρout- and ρin-

spheres overlap, and if ρin > 0.5 then neighbouring ρin-spheres also overlap. These conditions
are marked by the dotted lines in the figure.

4. Persistence in the diffusive regimes of the three-dimensional Lorentz gas

In this section, we study the dependence of the diffusion coefficient on the geometrical
parameters of the 3D periodic Lorentz gas model in the finite- (FH1) and cylindrical-horizon
(CH) regimes, comparing the numerical results with the finite-memory approximations (2.8),
(2.16) and (2.24).

4.1. Approximation by the NMA process

The computation of the dimensional formula (2.8) relies on that of the residence time τ . An
exact formula is available for this quantity [27]:

τ =
|Q|
|∂Q|

|S2|
|B2| , (4.1)

§ A similar diagram of parameter space for a two-dimensional version of the model was given in reference [26].
However, the symmetry between ρout and ρin was overlooked there; see also reference [19].
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Figure 5. Parameter space of the three-dimensional periodic Lorentz gas as a function of
the geometrical parameters ρout and ρin. Solid lines divide regimes of qualitatively different
behaviour, which are also shaded with different colours and labelled as follows: PH: planar
horizon; CH: cylindrical horizon; FH1 and FH2: finite horizon; L: localised, non-diffusive
motion; U: undefined (all space filled). Note that the FH regime is divided into two disjoint
regions. The dashed lines mark the different conditions referred to in the text. The diagonal
dotted line separates regions where the ρin-spheres do (above) and do not (below) overlap the
ρout-spheres. The diagram is reflection-symmetric in the line ρin = ρout, but for clarity only
the lower half is shown.

where |Q| denotes the volume of the billiard domain outside the obstacles, |∂Q| the surface
area of the available gaps separating neighbouring cells, |S2|= 4π the surface area of the unit
sphere in three dimensions, and |B2|= π the volume (area) of the unit disk in two dimensions,
and we assume unit velocity. The explicit formulas giving the values of |Q| and |∂Q| are rather
lengthy and will not be given here; see reference [28].

The validity of equation (4.1) can be tested by comparison with numerical computation
of the residence time, as shown in figure 6. Here, and in the remainder of the paper, we
restrict attention to values of ρout close to the limiting value 1/

√
2 and ρin close to 0, so that

the geometry is that of a single, cubic unit cell.

4.2. Approximation by the 1SMA and 2SMA processes

Single- and two-step memory processes can be derived as approximations, at the lattice level,
to the dynamics of the Lorentz gas. This is done by computing numerically the statistics
of tracer particles as they jump from cell to cell, so as to estimate the single- and two-step
memory probability transitions.

The results are shown in figure 7 for the single-step memory process, where the six
transition probabilities Pi, i = 0, . . . ,5, are displayed as functions of the outer radius ρout for
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Figure 6. Residence time τ , equation (4.1), compared to direct numerical simulations. The
results are shown for two values of the inner radius, ρin = 0 and ρin = 0.15, as functions of
δ ≡ 1/

√
2− ρout, which is the characteristic size of the gaps separating neighbouring cells.

The curves are very similar since the volume of the inner sphere remains small. In this and the
following results we take `= 1.

different values of the inner radius ρin.
For the two-step process, the computation of the transition probabilities Pi, j is shown in

figure 8 for ρin = 0, that is in the absence of a sphere at the center of the cell. The six different
panels each correspond to a given i = 0, . . . ,5. The same is shown in figure 9 for ρin = 0.15.
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Figure 7. Numerical computations of the probabilities P0, . . . ,P5 of the single step memory
process, appearing in (2.13). The six panels shown correspond to as many different values of
ρin, where the probabilities are shown as functions of δ . The dashed line at Pk = 1/6 indicates
the value for a memoryless (NMA) walk. Here and in figures 8 and 9, the conventions are
as follows: Empty squares (blue), P0; empty upward triangles (cyan), P1; empty downward
triangles (green), P2; filled squares (red) P3; filled upward triangles (magenta), P4; filled
downward triangles (brown), P5. In all cases we verify the symmetry P1 = P2 = P4 = P5,
which also remain close to 1/6.
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Figure 8. Numerical computations of the 36 probabilities Pi, j which appear in (2.20),
corresponding to a cell with no sphere at its center, i.e. the inner radius ρin = 0. The symmetries
of the process are reflected by the similarities between figures 8(b), 8(c), 8(e) and 8(f). The
colour coding is similar to figure 7.
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Figure 9. Numerical computations of the probabilities 36 Pi, j which appear in (2.20),
corresponding to inner radius ρin = 0.15. Here again the symmetries of the process are
reflected by the similarities between figures 9(b), 9(c), 9(e) and 9(f).
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4.3. Diffusion coefficient of the billiard
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Figure 10. Diffusion coefficient normalised with respect to the dimensional prediction DNMA,
equation (2.8), vs. gap size δ = 1/

√
2−ρout, plotted for different values of the inner radius

ρin = 0, . . . ,0.15. The symbols (black) correspond to direct numerical computation of this
quantity, the long dashed (green) lines to the single-step memory diffusion coefficient (2.16),
and the solid (red) lines to the two-step memory diffusion coefficient (2.24). The vertical
dotted lines indicate the separation between the finite and infinite horizon regimes.

Having computed the probability transitions associated to the single and two-step
memory processes, we can compute the invariant distribution P and substitute the results into
equations (2.16) and (2.24) to obtain values of the diffusion coefficients. These are compared
to the diffusion coefficient of the billiard calculated from direct simulations in figure 10.

We can draw several conclusions from the results shown in figure 10. Firstly, we remark
that in the 3D model studied here there is relatively little back-scattering, i.e. motion in
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which the particle reverses its direction between arriving and leaving a given cell. This gives
an important contribution to the diffusion coefficient, and, in particular, corresponds to the
fact that here we find that the diffusion coefficient is larger than the memoryless (NMA)
approximation, while in reference [12] the diffusion coefficient tended to lie below the results
of this approximation. Note, however, that this effect depends strongly on the particular model
used.

It is also interesting to note that in the finite-horizon regime, i.e. left of the dotted vertical
lines in figures 10(b)-10(f), approximating the diffusion coefficient by the one-step memory
process (2.16) is just as good as the two-step process (2.24). In the cylindrical-horizon regime,
however, the two results are different; the single-step approximation gets poorer as ρout
decreases, whereas the two-step process yields more accurate estimates. This corresponds
to the fact that correlations decay more slowly in the cylindrical-horizon regime [19], so that
memory effects persist for longer.

5. Conclusions

The cyclic structures of certain regular lattices underly symmetries of their statistical
properties which can be exploited to greatly simplify their analysis. Examples are two-
dimensional lattices such as the square, the honeycomb and the triangular lattice, which
were studied in reference [2]. Other examples include, in higher dimensions, the hypercubic
lattices studied in this paper. Having exhibited the cyclic structures of these lattices, we were
able to extend our previous results to hypercubic lattices with suitable adaptations, in order to
calculate the diffusion coefficients of persistent random walks with up to two steps of memory.

Our method is especially useful to compute the correlations of persistent walks on such
regular lattices. In particular, the velocity autocorrelations of a two-step persistent walk may
be recast in terms of matrix powers, which can then easily be resummed to obtain a readily-
computable expression for the diffusion coefficient.

Among the many applications of persistent random walks, deterministic diffusive
processes are ideal candidates to apply our method. The three-dimensional periodic Lorentz
gas is particularly interesting as it exhibits two distinct types of diffusive regimes, one with
finite horizon, where memory effects decay fast, and another with cylindrical horizon, where
memory effects can remain important. In this latter case, the approximation of the diffusive
process by a two-step memory walk proves much more accurate than the single-step process.

We remark that the application of our formalism to the diffusive properties of Lorentz
gases relies on the numerical computation of the transition probabilities corresponding to
the persistent process with which we approximate the deterministic process. Since there
are 30 transition probabilities for the two-step memory walk, their analytical calculation is
a daunting task. It relies on knowledge of the statistics of trapped trajectories and involves
contributions from different time scales. Nonetheless, this computation is formally possible,
and is in principle much simpler than that of the actual diffusion coefficient.

Acknowledgments

This research benefited from the joint support of FNRS (Belgium) and CONACYT (Mexico)
through a bilateral collaboration project. The work of TG is financially supported by the
Belgian Federal Government under the Inter-university Attraction Pole project NOSY P06/02.
TG is financially supported by the Fonds de la Recherche Scientifique F.R.S.-FNRS. DPS



Diffusive properties of persistent walks on cubic lattices 17

acknowledges financial support from DGAPA-UNAM grant IN105209 and CONACYT grant
CB101246.

References

[1] Haus J W and Kehr K W 1987 Diffusion in regular and disordered lattices Phys. Rep. 150 263.
[2] Gilbert T and Sanders D P 2010 Diffusion coefficients for multi-step persistent random walks on lattices J.

Phys. A Math. Theor. 43 5001.
[3] Geisel T and Nierwetberg J 1982 Onset of diffusion and universal scaling in chaotic systems Phys. Rev. Lett.

48 7.
[4] Fujisaka H and Grossmann S 1982 Chaos-induced diffusion in nonlinear discrete dynamics Z. Phys. B 48

261.
[5] Schell M, Fraser S and Kapral R 1983 Subharmonic bifurcation in the sine map: An infinite hierarchy of cusp

bistabilities Phys. Rev. A 28 373.
[6] Grassberger P 1983 New mechanism for deterministic diffusion Phys. Rev. A 28 3666.
[7] Gaspard P 1998 Chaos, Scattering and Statistical Mechanics (Cambridge: Cambridge University Press).
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