Competitive nucleation and the Ostwald rule
in a generalized Potts model with multiple metastable phases
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We introduce a simple nearest-neighbor spin model with ipialimetastable phases, the number and decay
pathways of which are explicitly controlled by the parameief the system. With this model we can construct,
for example, a system which evolves through an arbitraolygl succession of metastable phases. We also
construct systems in which different phases may nucleatgettively from a single initial phase. For such a
system, we present a general method to extract from nunheimalations the individual nucleation rates of the
nucleating phases. The results show that the Ostwald rdiefvpredicts which phase will nucleate, must be
modified probabilistically when the new phases are almosalygstable. Finally, we show that the nucleation
rate of a phase depends, among other things, on the numb#resfphases accessible from it.

PACS numbers: 64.60.My, 64.60.Qb, 05.10.Ln, 05.50.+q

Metastability is a ubiquitous phenomenon in nature.phase. Animportant question in this context is to undetstan
Broadly speaking, it occurs when a system is “trapped” inwhich phases nucleate under which conditions. The Ostwald
a phase different from equilibrium. This non-equilibrium rule states that the nucleating phase is the one with thd-smal
phase, the metastable state, can last for extremely lorggtim est free energy barrier from the initial phase: see Ref. [10]
Thus, it is not surprising that metastable states play a cruand references therein. Previous results have supporigd th
cial role in many physical processes and are at the center gfrediction [11].
much current research. For example, recently an intermedi- We show that in general the Ostwald rule must be modified
ate metastable phase was shown to provide an easier pathwggobabilistically when the new phases are of similar stabil
for the growth of crystal nuclei from fluidsi(icleatior), with  ity, using an argument based on individual nucleation rafes
implications for the crystallization of proteins [1, 2].d®eins each phase. We give a method by which these rates can be
themselves are known to get stuck in misfolded metastabltheasured in simulations or experiments, and show that there
structures [3], preventing them from reaching their edmili is a parameter regime in which any of the new phases may
rium configuration. The phenomenology observed in thes@ucleate—only the nucleation probability of each phase can
and in many other systems can be thought of as arising from e established, with the outcome in any given run being un-
complicated energy landscape, with several local “meltdesta predictable. We finally show that the nucleation probapiit
minima” where the trapping occurs [4]. The extreme situatio a phase depends on the phases accessible from it.
is that of glasses, in which the energy landscape can have ex- Model details:- Our model is based on the Potts model, in
temely many local minima hindering relaxation of the systemyhich each spin has one gfstates [12] and each phase has a
to a thermodynamically stable crystal [5]. majority of spins in one state; the Ising model corresponds t

The above systems present at least several metastabte staig= 2. The relative stability of each phase is controlled by ex-
These states and the transitions between them usually arisernal fields, and the interplay of these fields with intamatd
from the microscopic interactions in a complicated way.between different spin states allows us to obtain any desire
When this is the case, the study of phenomena such as compeansition pathways between phases.
tition between nucleating phases and specific nucleatitim pa  Viewing the fields as chemical potentials, we can recast the
ways may be obscured. In view of this, in this work we model as a multi-component lattice gas which describes ad-
present a simple spin model with nearest-neighbour interagsorption on a lattice substrate (e.g., a crystal plane) df mu
tions, where the number of metastable phases and the decdigle chemical species with lateral interactions [13]. Muc
pathways between them can be explicitly specified by varyingxperimental work has been done on the thermodynamics of
the model parameters. It thus serves as a test-bed for theoresuch systems, but little on the kinetics—see [14] and refer-
cal results relating to systems with multiple metastabiesgs  ences therein; nonetheless, our results should be testable
[6-8], just as the kinetic Ising model, a special case of outhat context. A more complicated system where the kinetics
model, has been central in the study of systems with a sirhas been characterized is a colloid—polymer system [15, 16]
gle metastable phase [9]. As discussed below, the model alsghere possible pathways were found from considerations of
describes the adsorption of multiple chemical species anto the free energy landscape [17]. Our approach is complemen-
surface, an interesting physical problemin its own right. tary in that specific pathways result from microscopic iater

After presenting the model, as an illustration of a possibletions.
application, we construct a system with arbitrarily long-su We work on arL x L square lattice witiN := L? spins and
cessions of metastable states. We then focus on competitigreriodic boundary conditions, although the results arditijua
between phases nucleating from a single initial metastableavely unaffected by lattice type. Each lattice siteas a spin
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Here,Mq := 3 9« is the magnetisation{number of spins) k|G, 1. Metastable transition graphs: (a) kinetic Ising @lo¢b) suc-
of the spin typena; dqsy =1 if a =y, and O otherwise. The cession of 3 phases; (c) single metastable phase decayimg tom-
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To evolve the system we choose discrete-time Metropolis 0 10000 20000 30000
dynamics [18]: at each time step, a spin and its new value time (Monte Carlo steps per site)

are chosen at random, the incremAht of the Hamiltonian
(1) for this change is calculated, and the update is acceptddG. 2: (Color online) Time dependence of magnetisationsiter
with probability min{1,exp(—BAH)}, wheref := 1/T is the Ma /N of each phase, in a single run of the model with transition

inverse temperature. This gives a Markov chain on the spac@@Ph 12— 3 —4— 5 (a succession of phases). Parameters are
of all possible configurations. L=50,8=1.25hg =0.1(a — 1), Ky = 0.1, andK, = 1.0. Labels

. ; . I s denote the dominant phase. Configuration snapshots depétt p
This Markov chain has a unique equilibrium distribution, critical nuclei of each new phase embedded in the previoasgh

concentrated on the phase(s) with the lardgst The other  These grow to fill the system, producing the next phase inesezp
phases armetastablgthat is, when started in such a phase

the system stays there for some time, before a transition to a

more stable phasgis nucleatedby the appearance of a crit- assign a fieldhy, with hy, > hg if y is belowa in the graph.

ical droplet of they phase. At sufficiently low temperatures, The off-diagonal interactions are given By, := Ky > 0 (at-

the relative stability is determined by, > hq. The reverse tractive)ifa — y, andJy y := —Kz < 0 (repulsive) otherwise.

transition is exponentially unlikely. K> must be large enough to inhibit immediate formation of
In the standard Potts model, the equilibrium phase (almost)on-adjacent phases with large fields.

always nucleates. To obtain non-trivial transition patihsya As an illustration, we construct a model exhibiting a lin-

nucleation of other phases must be promoted. This we achievear succession of metastable phases with transition graph

using non-diagonal interactions between distinct spiretyp 1 — 2 — --- — g. We impose fields 8= h; < hy < --- < hq

a # y. settingJy,, > 0 favors nucleation of droplets inside  and attractive interactiond, ¢+1 := K1 > 0 between neigh-

the o phase by lowering the surface tension betweeamdy  bouring states, and set all other non-diagonal interastion

regions, and hence decreasing the droplet free energy -of fo-K; < 0. With suitable, moderately robust, parameters, we

mation fucleation barriej, whereas formation of droplets  observe the desired behavior, showndgct 5 in Fig. 2.

inthea phase is suppressedlj y < 0. A three-phase succession was previously observed in a ki-
We can now construct models whose phases obey arbitramyetic Blume—Capel model [19, 20], corresponding to a specia

metastable transition graph§ hese are directed graphs with case of our model withp = 3 [21]. The physical reason for the

the restriction that no loops returning to a previouslytedi  observed transitions is, however, much more transpardht wi

phase are allowed. Each vertex corresponds to one phase, e Hamiltonian in the form (1), with its intuitive intergee

beled by its dominant spin state, and each arrow to a desirdibn in terms of attractive and repulsive interactions.

transition: a — y means that phasg can nucleate directly Competitive nucleation:- We now turn to the decay of one

from phasen. Fig. 1 shows example transition graphs. metastable phase into two competing phases (Fig. 1(c)). Sea
To construct a model corresponding to a given transitiorstudied competitive heterogeneous nucleation (occumimg

graph, we proceed as follows. The number of spin types,  impurities) in the 3-state standard Potts model [11]. In-con

the number of vertices in the graph. To each spin typge  trast, all behaviors discussed in this work arelogenousob-
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(hs—hg)/he FIG. 4: (Color online) (a) Comparison of nucleation rateghs) of

] B phases = 2,3 from phase 1 in the model of Fig. 1(c) wikh fixed,
FIG. 3: (Color online) Probability (hs) that phase 2 nucleates be- cqjcylated directly from simulations and using forwardfisam-
fore phase 3 as a function ah/hy, with h; = 0.1, K3 =0.1 and  pjing. (b) Nucleation probability,(hy) for hg = 0.1 andhy = 0.2
Kz =1, andB = 1.25,L = 50 unless otherwise noted. Uprte=10"  yarving h,, with and without phase 4, in the model of Fig. 1(d).
trials were used for each data point; statistical errorsadrne or-  paghed lines show positions of equal nucleation probgbditd

der of the symbol size. Inset: system-size dependengs fifr two  gqual field of the two phases. In both subfigures parameterasin
values ofhz with fixed parameter values. Fig. 3, withL = 50 andB = 1.25.

served transitions are not caused by external influences, bycleates first i, = Prob{T, < Tz}, whereT;, the time for

rather arise spontaneously from within the system itself. ~ phasei to nucleate, is an exponentially distributed random
We fix 0=ty <hy <hg, h2=Jd3>0andh3<0. Let variable with mean 1A;. This givesp, = Ap/(A2+A3) = AT.

Ah:= hz — hy be the field difference between the new phases, |ndividual nucleation rates of the two phases, whiem-

2 and 3. Whemh = 0, these phases are symmetrical, eachot be obtained directly, can now be calculated as: =

nucleating half of the time, while foth > 0, we expectthe p,/r andA3 = (1— p2)/1. This generalizes t® compet-

1-3 free energy barrier to be lower than the 1-2 one, so thghg phases, where the measurable quantities are the mean nu-

according to the Ostwald rule, only phase 3 should nucleatgsleation timer = 1/ ; A; and the nucleation probabilities

To test this, we perform simulations starting from phase 1 p, — Ai/3iAj = Wi/ 3K of each phasé. The nucleation

for eachAh, in ny of which phase 2 nucleates before phase 3;ate of phaséis thenA; = p;/T.

The ration/n is then an estimate of the probabilifg(Ah)  Figure 4(a) showa, andA3 calculated in this way. To con-
that phase 2 nucleates first. For efficiency, we use a rejectio firm the validity of such calculations, we use the “forwardxl
free version of the Metropolis method [21, 22]. sampling” method [24, 25], which directly calculates thantr

Fig. 3 plotsp; as a function of a non-dimensionalis&t.  sition rate between two phases in a stochastic system. This
For Ah sufficiently close to 0, phase 2 can still nucleate first,has previously been used to study nucleation rates in thg Isi
contrary to the simple Ostwald rule. The probability that it model [26, 27]. In our case, the possibility of escape to an
does so rapidly decreases for lardgr, until a point beyond  additional new phase must be taken into account [21]. Fig-
which phase 3 effectively always nucleates. ure 4(a) shows that the results indeed coincide with those of

To explain these results in a general context, we assume, @ise direct method, within statistical errors. We remark tha
in classical nucleation theory [23], that there are welistE=d  are unaware of any analytical prediction giving the observe
nucleation rated; (L) of phase$ = 2,3, giving the number of variation of nucleation rates.
critical nuclei which form per unit time in a system of size The above considerations used “in reverse” confirm that
The nucleation rates per site guglL) := Ai(L)/N. the Ostwald rule must in general be modified when the new

A nucleation rate is the inverse of a mean nucleation timephases have similar stabilities, as follows. Consider phas
which can be measured in experiments or simulations by avewhich are equally stable for given parameter values. We ex-
aging over many nucleation events in independent runs.eln thpect nucleation barriers, and hence nucleation rates, o va
case of competitive nucleation, however, we can only measurcontinuously with the parameters, so that the nucleatiobpr
the mean timer for the first phase to nucleate, after which abilities p; also vary continuously. Hence there is a region,
this phase invades the entire system. The rate of this firsvhere the phases have similar stabilities, in which all eucl
nucleation isAz + Ag, since the total number of nucleation ation probabilities are non-zero—only the probability ath
events per unit time is the sum of those for each type, so thathase nucleating is well-defined, with the outcome in any
T =1/(A2+ A3). For convenience, in simulatiortsis taken  given run being stochastic, as in Fig. 3. The definite présfict
to be the time until the new phase occupies half the system. given by the Ostwald rule is thus invalid in this region.

Under the same assumptions, the probability that phase 2 To see how our results depend on system kizere note
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rable stabilities. In future work [21], we will study the meld
in detail and compare its properties with theoretical ressd]
on systems with multiple metastable phases.
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