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The last decade has seen an explosion of interest in the
properties and applications of complex networks with hetero-
geneous structure, due to their importance for modelling ev-
erything from social systems, such as the internet and net-
works of acquaintances, to biological ones, such as genetic
regulatory networks [1, 2].

After much initial work on the structure of these networks,
attention has now turned to dynamical processes which take
place on them, with the aim of understanding the effect that
different types of network structure have on the dynamical
properties of a system [2, 3]. As representative examples in
this direction, we mention studies on epidemics [4], the voter
model [5] and reaction-diffusion processes [6] occurring on
complex networks.

The properties ofrandom walkson networks have also at-
tracted much attention, both for single walkers [7–9] and for
multi-walker systems [10–12]. These are perhaps the simplest
systems involving motion of particles on networks, and hence
are of interest to understand the effect of the network struc-
ture on diffusive properties such as mean transit time from
one node to another, and the mean time to return to a given
node [9].

These results have applications toindividual-basedmod-
els, in which “agents” (particles with internal states) diffuse
in space until theyencountereach other, at which point they
interact following model-specific rules. If the agents neither
die nor reproduce, then one of the key quantities in the sys-
tem is the time between these encounters, which we call the
encounter time.

An example is the Bonabeau model [13], in which agents
represent animals which fight when they meet, with the win-
ner and loser gaining or losing social status. This and sim-
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ilar models [14] undergo a phase transition from a homoge-
neous, non-differentiated society, to a society with two “social
classes”, one successful and one unsuccessful [13, 15, 16].
One of the key features of the analysis in this model is the
timescale given by the mean encounter time [15].

Such models can also be studied on complex networks [17].
Intuitively, for a complex network with highly-connected
hubs, all walkers have a tendency to migrate towards the hubs,
and thus they will encounter other walkers more frequently.
The encounter time provides a quantitative measure of this ef-
fect.

Systems of many particles undergoing random walks on
complex networks are so complicated that there are usually
very few quantities which can be calculated exactly. Nonethe-
less, in this paper, it is shown that the mean encounter time of
a given walker in the system if often amenable toexactcalcu-
lation.

To calculate such mean encounter times, encounters are
viewed in terms ofrecurrences(or returns) to a set of en-
counter configurations, and the Kac recurrence theorem is ap-
plied. This theorem gives the exact recurrence time to a set
in terms of its probability in equilibrium, that is, the proba-
bility (frequency) of occupation of a set after the system has
evolved for a long time and any transients have died away. For
many random walkers on complex networks, even calculat-
ing such equilibrium probabilities already requires some work
[11]. The calculation is also complicated by the necessity
to carefully define when encounters occur. By carrying out
these steps, we calculate equilibrium probabilities and mean
encounter times for many random walkers with and without
exclusion on regular and complex networks.

The paper is structured as follows. In sec. I, some nota-
tion is introduced, and the main idea used in the paper is pre-
sented, namely that encounter times may be expressed as re-
currence times. Sections II–IV treat in turn the cases of in-
dependent walkers on networks (regular or complex); regu-
lar lattices with exclusion; and finally complex networks with
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exclusion, which is the least tractable case. Section VI gives
conclusions.

I. METHOD AND NOTATION

We start by establishing some notation and describing the
main technique to be used throughout this paper.

A. Encounter times and recurrence times

We study a system ofN particles undergoing random walks
on a finite network. The network consists ofV nodes, with
edges joining them in a certain structure (see the next subsec-
tion). We fix a distinguished walker and assign to it the label
“0”. The main question treated in this paper is how often this
distinguished walker “interacts” with other walkers, thatis,
what are itsencounter timesτ. These are defined as the time
intervals between the moments at which the distinguished par-
ticle meets (encounters) other walkers, measured in terms of
steps per particle (a “sweep”).

This random variableτ has a certain distribution, which in
general is quite complicated. In this paper, we consider exclu-
sively its mean〈τ〉, which we call themean encounter timeof
the distinguished walker.

The key idea to calculate mean encounter times is the fol-
lowing: encounters of a given walker correspond exactly to
returns, or recurrences, to a particular set, namely the setE
of configurations of theN walkers for which an encounter of
walker 0 occurs. A similar method was recently applied in a
related context in ref. [12].

The spatial configuration of walkers is given bys :=
(s1, . . . ,sN) specifying the location (site)sj of each walkerj.
To describe encounters, however, the spatial locations arenot
sufficient – we must also specify which walkers are chosen to
interact at a given time. The rule for doing so is part of the
definition of a given model. We call the combination of the
spatial and interaction information anextendedconfiguration.

The mean encounter time〈τ〉 of walker 0 is then given ex-
actly by themean recurrence time〈τ rec

E 〉 to the setE of ex-
tended configurations corresponding to that walker’s encoun-
ters:〈τ〉= 〈τ rec

E 〉. We can thus make use of theKac recurrence
theorem[18–21], which gives anexactresult for the mean re-
currence time

〈

τ rec
A

〉

to a setA in an ergodic, discrete-time
system, namely

〈τ rec
A 〉 =

1
Peq(A)

, (1)

wherePeq(A) is the probability that the system is inA in equi-
librium.

Calculating the mean encounter time thus reduces to the
calculation of the equilibrium probabilityPeq(E) of the en-
counter set. Note that higher moments and other features of
the complete probability distribution of recurrence timesare
in general much harder to calculate [20, 21], and will not be
addressed here.

A special case is that of systems in which the transition
probabilitiesPµ→ν from one configuration,µ , to another,ν,
are symmetric, satisfyingPµ→ν = Pν→µ . The condition of
detailed balance, which holds throughout the paper, statesthat
the flux of probability fromµ to ν in equilibrium is equal to
that in the reverse direction:

pµPµ→ν = pνPν→µ . (2)

Thus, systems with symmetric transition probabilities have
equal equilibrium probability for all (accessible) configura-
tions. In this case, the Kac result thus reduces to

〈

τ rec
A

〉

=
|Ω|/ |A|, whereΩ is the set of all microscopic configurations
of the system, and|·| denotes the cardinality (number of ele-
ments) of its argument.

Note that the encounter time as we have defined it above
is a single-particle quantity. Since all walkers are equivalent,
it may also be calculated by multiplying byN the mean in-
terval between encounters involvinganyof the walkers in the
system.

B. Notation for network structure

Throughout the paper, the fixed number of walkers is de-
noted byN, the finite number of nodes in the undirected net-
work by V, and the mean density of walkers per node by
ρ := N/V. General references for network structure include
refs. [1, 2].

The sites of the network are labelled byi, and thedegree
(number of incident edges) of the sitei is denoted byki . The
total number of sites in the network with degreek is nk :=
∑i δki ,k, and thedegree distributionis thenP(k) := nk/∑k nk,
which is the probability that a randomly-chosen site has de-
greek.

Finally, K := ∑i ki denotes the total number of outward
edges in the network, which is twice the total number of undi-
rected edges, since each is counted twice, and〈k〉 := K/V is
the mean number of incident edges per site, which satisfies
K = V 〈k〉 andN/K = ρ/〈k〉.
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II. INDEPENDENT WALKERS ON REGULAR AND
COMPLEX NETWORKS

The conceputally simplest case is that of manyindependent
random walkers on regular or complex networks, with dynam-
ics given as follows. At each time step, a single one of theN
walkers is selected at random (uniformly). If this walker isat
sitei, then it chooses one of itski neighbouring sites randomly
(uniformly), and jumps to it.

Under these dynamics, each walker is independent, and
thus the known results for single walkers performing ran-
dom walks on complex networks can be applied: each walker
spends a proportion of timeki/K at nodei [7, 21] (i.e., a time
proportional to the degree of the node). Recall thatK = ∑i ki
is the total degree sum.

A. Equilibrium distribution

First let us consider the exact equilibrium distribution of
the occupation number at a site, i.e., the probabilityqi(m) of
having m particles at a given sitei of degreeki . Since the
walkers are independent, and visit sitei with probabilitypi =
ki/K, the probabilityqi(m) that sitei has occupation number
m is given by the following binomial distribution:

qi(m) =

(

N
m

)(

ki

K

)m(

1−
ki

K

)N−m

. (3)

The mean occupation number〈ni〉 of sitei is then given by the
mean of distribution:

〈ni〉 = Npi =
Nki

K
= µki , (4)

where we have definedµ := ρ/〈k〉. Thus〈ni〉 is proportional
to ki .

In the limit of infinite system size,V → ∞ with N → ∞ but
ρ := N/V fixed, we obtain asymptotically a Poisson distribu-
tion:

qi(m) ∼
1
m!

(µki)
mexp(−µki), (5)

which is the approximate result obtained in [11].

B. Mean encounter time

The mean encounter time of a distinguished walker, la-
belled by 0, is calculated using the equilibrium probability
Peq(E) of the walker’s encounter set. When there is no exclu-
sion, and several particles may occupy the same site, there are
several possible definitions of when encounters occur; here,

the following one is chosen. If the walker which moves lands
at an unoccupied site, then no encounter occurs. If, however,
the walker lands at a site containingm other particles, then
the moving walker chooses exactlyoneof thosem particles
and interacts with it, i.e., each particle in this pair of walkers
undergoes an encounter, but no other particle does so. This
allows at most a single encounter at each time step, and forces
the encounter to be a result of movement.

Consider the set of encounter configurations definedafter
the walker has moved, and which contain information about
which walker moved and which other walker (if any) is in-
volved in the interaction, apart from the spatial positionsof
each walker. These encounter configurations are of two types:
(i) those in which the distinguished walker was chosen to
move, and it moved to a site which already contained at least
one walker; and (ii) those in which a walker other than the
distinguished one moved, this walker landed on the site which
contains the distinguished walker, and furthermore the distin-
guished walker was chosen as the interaction partner of the
moving walker.

In each of these two cases, the probability that the dis-
tinguished walker interacts is 1/N times the probability that
there is at least one other walker on the same site as the dis-
tinguished walker after the jump. This is clear in case (i).
For case (ii), suppose that there aremi walkers at the site,
one of which is the distinguished walker 0, but that 0 was
not the moving walker. Then one of the othermi − 1 parti-
cles is the one that was chosen to move, with total probability
(mi − 1)/N, and after arriving at the new site an interaction
was selected with the distinguished walkers 0, with probabil-
ity 1/(mi −1). The total probability is the product of these, so
we regain the same expression.

It remains to calculate the probability that there is at least
one other walker on the same site as the distinguished walker
The equilibrium probability that the distinguished particle is
on a given sitei with a total ofmwalkers at that site (including
the distinguished one) is given by

ki

K

(

N−1
m−1

)(

ki

K

)m−1(

1−
ki

K

)(N−1)−(m−1)

. (6)

The termki/K denotes the probability that the distinguished
walker is at sitei, the second term represents the fact that there
arem−1 other walkers at the same site, and the last term rep-
resents the fact that the remainingN−m walkers are at some
other site. The probability that the distinguished particle in-
teracts is given by the previous expression multiplied by 2/N,
providedm> 1.

The encounter probability if the distinguished particle isat
site i can thus be calculated as 2/N times the probability that
the distinguished particle is not alone at that site:

2ki

NK

[

1−

(

1−
ki

K

)N−1
]

. (7)
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The total encounter probability is then given by a sum over all
sitesi:

Peq(E) =
2V
NK ∑

i
ki

[

1−

(

1−
ki

K

)N−1
]

, (8)

finally giving the exact result for the mean encounter time per
particle:

〈τ〉 =
1

NPeq(E)
=

〈k〉

2
〈

k
[

1−
(

1− k
K

)N−1
]〉

k

. (9)

Here,〈·〉k := ∑k[P(k)·] denotes the mean of its argument over
the degree distribution. We have divided byN to give the
physical time, such that each particle moves on average once
per time step. Asymptotically forN → ∞ with µ fixed, we
obtain

〈τ〉 ∼
〈k〉

2〈k[1−exp(−µk)]〉k
. (10)

For regular networks with constant coordination numberz,
the degree distribution isP(k) = δ (k−z). For such networks,
we thus obtain

〈τ〉 =
1
2

[

1−
(

1−
ρ
N

)N−1
]−1

∼
1

2[1−exp(−ρ)]
, (11)

which is againindependentof the coordination numberz.

III. REGULAR NETWORKS WITH EXCLUSION

We now turn to walkers interacting via an exclusion inter-
action, so that each site can be occupied by at most one walker
[10]. In this section we consider the dynamics on aregu-
lar network, i.e., one in which each site has the same degree
(number of neighbours), denoted byz. The best-known sub-
class of such networks consists of regular lattices; other reg-
ular networks include small-world networks with a constant
number of links per node.

The dynamics are as follows. Initially, the walkers are dis-
tributed uniformly on the lattice, but such that there is at most
one walker at each site. The dynamics maintain this restric-
tion, as for example in the Bonabeau model discussed in the
introduction [13], and are defined as follows. At each time
step, a walker is picked at random. This walker attempts to
move to one of itszneighbouring sites, each with equal prob-
ability. If the trial site is empty, then the walker moves to the
new site. If the trial site is occupied by another walker, how-
ever, then the walkers interact, an encounter occurs, and the
invading particle remains where it is, without moving.

Since the transition probabilities between two configura-
tions are symmetric, all configurationss have the same equi-
librium probability, Peq(s) = 1/ |Ω| = (V − N)!/V!. More

generally, we could allow the two interacting walkers to ex-
change positions with (fixed) probabilitypexch. The equilib-
rium probabilityPeq(s), and hence also the mean encounter
time 〈τ〉, are unaffected by this.

A. Mean encounter time

1. Mean-field argument for encounter time

The following simple mean-field argument has been used to
estimate the mean encounter time in this system, in refs. [13,
15].

At each time step, a single walker moves, each with proba-
bility 1/N, so that the distinguished walker moves on average
once everyN steps. Suppose that the distinguished walker 0
does move. The probability of an encounter is the probability
that the site it jumps to (one of itsz neighbours) is occupied,
which isρ , assuming that all walkers are distributed uniformly
on the lattice (the mean-field assumption). Similarly, another
walker can attempt to move to the site where walker 0 is sit-
ting. The total probability of the distinguished walker inter-
acting is thus 2ρ , giving an estimate

〈τ〉 ≃ 1/(2ρ) = V/(2N) (12)

for the mean encounter time per particle. We can refine this
calculation by taking(N− 1)/(V −1), rather thanρ , as the
probability that the site jumped to is occupied, by condition-
ing on the fact that the departure site is occupied. This gives
〈τ〉 ≃ (V −1)/2(N−1). Note that this mean-field calculation
is also appropriate for the dynamics without exclusion studied
in the last section, in the case of a regular network. Indeed,
expanding (11) for smallρ gives back this mean-field result.

The above argument gives an (uncontrolled) approximation
of the mean encounter time〈τ〉 on a lattice. It is not clear,
however, how good an approximation it is. We now show
that 〈τ〉 can in fact be calculatedexactlyusing the approach
of section I. The result of the (refined) mean-field calculation
turns out to be exactly correct, suggesting that when we aver-
age over all possible configurations of the particles, space“no
longer matters”.

2. Exact calculation of encounter time

For a regular network with exclusion, all microscopic con-
figurations are equally likely, as shown above, so that the Kac
recurrence theorem gives〈τ〉 = |Ω|/ |E| , whereE again de-
notes the encounter set of extended configurations for which
the distinguished walker 0 undergoes an encounter.
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To calculate the mean encounter time〈τ〉 of a distinguished
walker, we must first explicitly define the setE of encounter
configurations. It is not initially clear how to do this, since
two walkers can never occupy the same site.

In fact, an encounter occurs exactly when the walker which
is chosen to move does so towards an occupied site. To in-
dicate this direction of motion, we augment the positional
configuration of the particless (before the move) with an
arrow which sits on top of the moving walker and points
in its chosen direction of motion – one ofz possible direc-
tions. The extended configurations thus take the form(s;w,d),
wherew ∈ {1, . . . ,N} is the label of the moving walker and
d ∈ {1, . . . ,z} is its chosen direction.

The setΩ of all extended configurations is thus given by
assigning to each of theN walkers a distinct site out of the
V possible sites, choosing one of theN occupied sites as the
moving walker, and then choosing one ofzpossible directions
of motion. The total number of extended configurations is thus

|Ω| =
V!

(V −N)!
Nz. (13)

An encounter involves the distinguished walker 0 if either
(i) walker 0 is chosen to move, and it attempts to move towards
an occupied site; or (ii) walker 0 occupies the site towards
which another walker attempts to move. The first requirement
for the setE is thus that the distinguished walker has at least
one neighbouring site occupied.

We split the setE of encounter configurations of the dis-
tinguished walker into disjoint setsEp, in which this walker
has exactlyp out of its z neighbouring sites occupied (with
1 ≤ p ≤ z) and it actually does encounter a neighbouring
walker, i.e., walker 0 moves towards anoccupiedneighbour,
or one of the particles in the neighbouring sites jump towards
walker 0. Note that the setsEp do not fill up the whole ofΩ,
due to these jumping conditions.

The mean encounter time per particle of the distinguished
walker 0 is thus given by

〈τ〉 =
|Ω|

N |E|
=

|Ω|

N∑z
p=1

∣

∣Ep
∣

∣

. (14)

The calculation of the sizes
∣

∣Ep
∣

∣ of the setsEp proceeds via
the following combinatorial arguments.

First considerE1, the configurations in which the distin-
guished walker 0 has a single occupied site and does en-
counter its single neighbouring particle when one of them
moves. Walker 0 can be placed in any of theV sites; the
single neighbour can then be chosen from the other(N− 1)
walkers, and placed in any of thez neighbouring sites. The
(N−2) remaining walkers can be placed in any of the remain-
ing (V − (z+1)) sites. Finally, only two configurations of the
arrow are allowed: one which points from the distinguished

walker to its single occupied neighbour, and another pointing
from the neighbour to the distinguished walker. Thus

|E1| = 2zV(N−1)
[V − (z+1)]!

[V− (z+1)− (N−2)]!
. (15)

Similarly, when the site of the walker 0 hasp occupied
neighbours we obtain

∣

∣Ep
∣

∣ = 2pV

(

z
p

)

(N−1)!
(N−1− p)!

[V − (z+1)]!
[(V −N)− (z− p)]!

. (16)

Here, the binomial coefficient
(z

p

)

counts the number of ways
of choosing thep neighbouring sites out ofz to be occu-
pied, the number of permutations(N−1)!

(N−1−p)! gives the number

of ways of placingp of the remaining(N−1) walkers in those
neighbouring sites, and the arrow can be in any of 2p config-
urations. (These results remain valid forN close to 0 or close
toV if we define the permutations to be 0 when the number to
choose is greater than the number available.)

The expression for
∣

∣Ep
∣

∣ may be rewritten as

∣

∣Ep
∣

∣ = 2Vz(N−1)!

(

z−1
p−1

)(

V − (z+1)

N− (p+1)

)

. (17)

Thus, settingu := p−1, we have

z

∑
p=1

∣

∣Ep
∣

∣ = 2Vz(N−1)!
z−1

∑
u=0

(

z−1
u

)(

V − (z+1)

(N−2)−u

)

(18)

= 2Vz(N−1)!

(

V −2
N−2

)

. (19)

The equality in (19) comes from the interpretation of the sum
in (18) as the number of ways of choosing(N−2) boxes from
a total of(V −2), split into a choice ofu from the firstz−1
boxes, and the remaining(N− 2)− u from theV − (z+ 1)
remaining boxes.

Finally, we obtain theexactresult

〈τ〉 =
V −1

2(N−1)
. (20)

Note that this is independent of the coordination numberz,
and hence is valid foranyregular network.

One might think that the independence under the dynamics
of the Kac result would immediately show that the spatial and
mean-field results are the same. In fact, however, the above
argument shows that the sets ofextendedencounter configu-
rations differ in each case, and so the argument is more in-
volved – despite the simplicity of the final result, there does
not appear to be a simpler derivation.

B. Including a probability of interaction

Within this same framework, we can allow for the possi-
bility that actual encounters occur only a certain fractionp of
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the time, even if particles meet. This could model a repulsion
between agents, so that there is an unwillingess to interact, or
a territory that is large enough so that two animals in the same
coarse-grained cell move past each other without seeing each
other.

To calculate the mean encounter time in this case, the
configurations may be extended further, taking the form
(s;w,d,b), where theb are independent Boolean variables
b∈ {0,1} which indicate whether or not an encounter occurs.

Denoting the new encounter set byE′ := E×{1}, where
{1} denotes when the Boolean variables are true, the result
is Peq(E′) = pPeq(E), and hence〈τ ′〉 = 1

p 〈τ〉, so that the ef-

fect of including the probabilityp is an extra factor1p in the
expression for the mean encounter time, as is intuitively ex-
pected.

IV. COMPLEX NETWORKS WITH EXCLUSION

In this section, we extend the results for many random
walkers with an exclusion interaction to the case of complex
networks, with heterogeneous degree distribution. The dy-
namics is as follows. At each step, a walker is selected uni-
formly. If the walker is at sitei, then it attempts to jump to
one of itski neighbouring sites, with equal probabilities 1/ki .
If the trial site is unoccupied, then the jump is allowed, andthe
particle is moved; if the trial site is occupied, then the jump is
rejected, and the particle remains where it was.

This case was previously studied in ref. [10] by viewing the
system as fermions and relating the equilibrium distribution of
occupation numbers to the Fermi–Dirac distribution. Here we
reconsider these results using a more intuitive method from
ref. [11].

The combination of a heterogeneous network and the exclu-
sion interaction makes the calculation of even the equilibrium
occupation number distribution highly non-trivial; indeed, it
does not appear to be possible to obtain simple, exact results
for this quantity in general [10]. In the next section we show
that exact results can be obtained in the case of simple, struc-
tured networks. In the following section we then give an ap-
proximate argument valid for large networks.

A. Small, structured networks

For complex networks with some structure or which are
small enough, it is possible to obtain exact results for the
complete equilibrium distributionPeq(s) for each microscopic
configurations, and from there obtain coarse-grained quanti-
ties such as the mean occupation number of a given node, by
explicit calculation. Here we give a simple example, which

illustrates the general method.

We consider a star-shaped network, representing a single
hub in a complex network. The network consists of a central
site 0 withL links to sites 1, . . . ,L, each of which has only a
single link back to the hub. We consider two walkers moving
with exclusion on this network, so that the possible configura-
tionss are of the forms = (s1,s2), wheresj is the site occupied
by particle j, although the results are easily extended to more
particles. There are two types of configuration: those with a
particle at the hub, of the forms = (0, i) or (i,0), of which
there are 2L; and those with no particle at the hub, of the form
s = (i, j), with i, j ≥ 1 andi 6= j, of which there areL(L−1).

1. Equilibrium probability

Let p := p(i, j) be the equilibrium probability to be in config-
uration(i, j), with i 6= 0 and j 6= 0, i.e., with no particles at the
hub). All probabilities are symmetric in the two arguments.
The transition probabilities are given by

P[(0, i) → ( j, i)] =
1

2L
; P[( j, i) → (0, i)] =

1
2
. (21)

The second equation follows from the fact that there is a prob-
ability 1/2 to move each particle from a configuration( j, i),
to arrive at the configuration(0, i) or ( j,0). From( j,0), with
probability 1/2 the particle at sitej is chosen, but it is unable
to move due to the exclusion interaction and the presence of
the other particle at the hub 0, which is the only site available.
If the particle at the hub is chosen, then it moves to sitei 6= j
with probability 1/L.

The detailed balance condition

p(0,i)P[(0, i) → ( j, i)] = p( j ,i)P[( j, i) → (0, i)] (22)

then shows thatp(0,i) = Lp. Since the normalisation condition
∑s Peq(s) = 1 must be satisfied, we have

2L2p+L(L−1)p= 1, (23)

and hencep = 1/(3L2−L).

We have thus found the equilibrium probabilityPeq(s) of
each configurations. To find the mean occupation number
〈ni〉 of site i, we must sum over configurations:

〈ni〉 = ∑
s

ni(s)Peq(s) , (24)

whereni(s) is the occupation number of sitei in the configu-
rations. In the case of exclusion,ni can only take the values
0 and 1, so that the mean occupation of the hub is given by a
sum over those configurationss which have a particle in the
hub, giving

〈n0〉 = 2L2p. (25)
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The mean occupation of a sitei 6= 0 is similarly given by a
weighted sum over those configurations which have a particle
in site i:

〈ni〉 = p(i,0) + p(0,i) + ∑
j=1,...,L; j 6=i

[

p(i, j) + p( j ,i)

]

(26)

= 2Lp+2(L−1)p= (4L−2)p. (27)

The normalisation〈n0〉+ ∑L
i=1 〈ni〉 = 2 is then correctly sat-

isfied, and we have also checked these exact results with nu-
merical simulations (not shown).

In such structured networks, we can also proceed to obtain
results for more detailed features of the probability distribu-
tions, such as higher moments.

2. Mean encounter time

Identifying particle 1 as the distinguished walker, the prob-
ability Peq(E) of its encounter set may be calculated in a sim-
ilar way to that in sec. III A, as the sum over all configurations
such that 1 has a neighbour, weighted by the probability that
an encounter occurs, i.e., that 1 interacts with the neighbour.
In this simple system, encounters can occur only with con-
figurations of the form(0, i) or (i,0), for which one of the
particles is at the hub. In this case, the probability that the two
particles interact is 1/2+1/(2L), since the particle not at the
hub always tries to jump towards the hub, whereas the particle
at the hub usually jumps towards an empty node.

Peq(E) = ∑
i

[

p(i,0) + p(0,i)
]

[

1
2

+
1
2L

]

(28)

= p(L2 +L), (29)

giving

〈τ〉 =
1

p(L2 +L)
= 3−

4
L+1

. (30)

For a network with exclusion, the total number of spatial
configurations isV!/(V −N)!, so that for arbitrary networks
this kind of calculation becomes intractable. Nonetheless, for
networks which are small and/or have enough structure it can
be carried out relatively easily.

B. Equilibrium distribution in the large-system approximation

For systems with many nodes, for which the above direct
method is impractical, it is instead necessary to turn to an ap-
proximation in which we assume that the occupation num-
bers of neighbouring sites areindependent[10, 11]. This is
valid when the system is large, or in a grand-canonical situa-
tion, where the number of particles in the system can fluctuate

about a mean value, since in a finite system with a fixed num-
ber of particles, the presence or absence of a particle at a site
i affects the conditional probability to have a particle at site
j 6= i, given the occupation number of sitei.

To derive the equilibrium distribution in this approxima-
tion, the method of ref. [11] can be applied. As shown below,
the results which were first obtained in ref. [10] are recovered,
in a more direct way.

1. Neighbouring sites

Let pi be the probability that sitei is occupied in equilib-
rium. Due to the exclusion interaction, the occupation number
ni of site i is either 0 or 1, so that its mean is〈ni〉 = pi . Thus
∑i pi = N, the total number of particles present in the system.

Suppose that the particle on sitei is chosen to move towards
a neighbouring sitej. The probability that the trial site is un-
occupied is(1− p j) under the independence approximation,
and the probability that the direction towards sitej is chosen is
1/ki. We thus obtainPi→ j =

1
Nki

(1− p j). Here the assumption
of independence of occupation states has already been used.

In equilibrium, the detailed balance conditionpiPi→ j =
p jPj→i gives

1
ki

pi(1− p j) =
1
k j

p j(1− pi). (31)

Rearranging to collect all terms inpi andp j on opposite sides
of the equation we see that

pi

ki(1− pi)
=

p j

k j(1− p j)
, (32)

and hence

pi

ki(1− pi)
= C, (33)

whereC is a site-independent constant. Finally we obtain

pi =
Cki

1+Cki
=

1

1+Ak−1
i

, (34)

where A is another constant, as was found in ref. [10].
The constantA is determined by the normalisation condition
∑ pi = N, and thus depends on the entire set of degrees{ki}.

2. Single site

A single-site variant of the above Markov chain method
gives an alternative derivation. Consider a sitei with degree
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ki . Let p(i)
0 = 1− pi and p(i)

1 = pi be the equilibrium proba-
bility that the site is empty or occupied, respectively. We first
need a mean-field type estimate of the transition probabilities

from empty to occupied,P(i)
0→1, and vice versa,P(i)

1→0.

Due to the way the network is constructed, following a
given link from a given node leads to a new nodej with proba-
bility k j/K which depends onj, since nodej hask j incoming
edges [10]. The particle at nodej then jumps to sitei with
probability 1/k j , giving [11]

P(i)
0→1 =

1
N ∑

j

k j

K
p j

1
k j

=
1
N

ki
ρ
〈k〉

, (35)

The second equality follows since∑ j p j = N and N/K =
ρ/〈k〉.

We calculateP(i)
1→0 by arguing similarly. If the particle at

site i is selected, with probability 1/N, then it can attempt to
move to any of theki neighbours, each with probability 1/ki .
The neighbour is sitej with probability k j/K. The move is
successful only if the neighbour is empty, due to the exclusion,
and occurs with probability 1− p j, giving

P(i)
1→0 =

1
N ∑

j

k j

K
(1− p j). (36)

Note the extra factor(1− p j) compared to the expression for
independent dynamics in ref. [11].

Detailed balance gives(1− pi)P
(i)
0→1 = piP

(i)
1→0, from which

we finally obtain (34) again, but now with an expression for
A:

A =
〈k〉
ρ

(

1−
∑ j k j p j

K

)

=
1
N ∑

j

k j(1− p j). (37)

Although this equation appears to give new information, in
fact it turns out to be equivalent to the normalisation condition.

Unfortunately, it does not seem to be possible to solve this
equation exactly to findA and thepi explicitly. In ref. [10],A
was found numerically by solving the normalisation equation
∑ j p j = N. This gives no insight into the quantityA, however.

An alternative is to find approximations toA. A first ap-
proximation is obtained by taking allki equal to〈k〉 in (37),
giving

A(0) =
1−ρ

ρ
〈k〉 . (38)

As shown below in fig. 2, this already gives a reasonable ap-
proximation to the distributionpi for networks for which the
deviation of theki from their mean is small, although the cor-

respondingp(0)
i calculated using this value forA do not satisfy

the normalisation condition.

Further approximations may be obtained – either analyti-
cally or numerically – by an iterative scheme based on (37)

and with the initial value (38) forA:

A(n+1) :=
1
N ∑

j

k j(1− p(n)
j ); (39)

p(n)
i :=

1

1+A(n)k−1
i

, (40)

giving

A(n+1) =
1
N ∑

j

1

[A(n)]−1 +k−1
j

. (41)

This iteration, which is easily implemented computationally,
quickly converges to a fixed point which gives the numerically
exact value ofA and of thep j for the given degree sequence,
and thus provides an alternative numerical method to that used
in ref. [10].

C. Mean encounter time in the large-system approximation

The calculation of the mean encounter time in the large-
system approximation, supposing that the occupation proba-
bilities of neighbouring sites are independent of each other,
proceeds as follows..

For the distinguished walker 0 to have an encounter, it first
must be at some sitei, which occurs with probabilitypi/N
(giving a total probability 1 to be at some site). There are two
possibilities for such encounters: either walker 0 is chosen
to jump, in which case it has an encounter if the trial site is
occupied, or another walker attempts to jump onto the site
occupied by walker 0.

The probabilities for these two possibilities are calculated
in the same way as the transition probabilities in the previous
section. Again denoting byE the encounter set of the distin-
guished walker, we obtain

Peq(E) = ∑
i

pi

N

[

∑
j

k j

K
p j +ki ∑

j

k j

K
p j

1
k j

]

=
2
K ∑

j

k j p j ,

(42)

and hence

〈τ〉 =
V 〈k〉

2∑ j k j p j
. (43)

We remark that this calculation is basically that of thejam-
ming probabilitystudied in ref. [10], i.e., the probability that
the particle which attempts to move is jammed (blocked) [10]
– that is, that an encounter occurs.

V. NUMERICAL RESULTS

In this section, the analytical results obtained in previous
sections are compared with the results of numerical simula-
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FIG. 1: Mean encounter timeN 〈τ〉 on a linear chain of lengthV =
100, as a function of the number of particlesN, with and without
exclusion. Numerical results, evaluated as a mean over 108 steps,
are compared to the analytical results; lines are shown as a guide
for the eye. Error bars are of the order of the symbol size. There is
excellent agreement in both cases. Dashed lines show the asymptotic
behaviour.

tions on two different types of network, one regular and one
complex.

A. Regular network: linear chain

First consider a regular network, consisting of a linear chain
of V = 100 sites, where each site is connected to its two near-
est neighbours, with periodic boundary conditions.

The mean encounter time of a distinguished walker for dy-
namics both with and without exclusion on this chain are
shown in fig. 1 as a function of the total number of walkers,
N, between 2 andV. To distinguish the two cases, the time is
shown asN 〈τ〉, i.e., as a raw number of steps, rather than as
a number of sweeps. The analytical and numerical results in
both cases agree very well.

The figure shows that the mean encounter time (in sweeps)
depends very little on the dynamics. The mean encounter time
in the case of exclusion dynamics is generally slightly shorter,
which we can attribute to the fact that the particles must be
spread out more uniformly through the system in this case due
to the exclusion interaction.

Note that at first glance the Kac result (20) does not hold for
a one-dimensional dynamics with strict exclusion, since this
result assumes ergodicity, i.e., that it any configuration can be
reached from any other, which is not the case due to the one-
dimensional nature of the system: each walker is always con-
fined between the same two neighbours. However, the result
is in fact valid. This is because the mean encounter time is a
single-particle quantity, which can be calculated by averaging
over all particles in the system. The result for theglobal en-
counter time (taking into account encounters of any particle)
will be the same in the ergodic and non-ergodic cases, since
each time between two encounters is unaffected, but may be
assigned to a different walker. This then implies equality also
for the encounter times of a distinguished walker.

B. Complex networks: random graphs with power-law degree
distributions

The second case is that of random networks with a power-
law degree distributionP(k) ∼ k−α . These are generated ac-

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80 100 120 140 160

〈n
i〉

ki

independent

exclusion

FIG. 2: Mean occupation number〈ni〉 for each sitei, as a function
of the degreeki of the site, for dynamics with and without exclu-
sion, on a single random network with power-law degree distribution
P(k) ∼ k−α with α = 2.5. The network hasV = 1000 nodes and
mean degree〈k〉 = 5.036. The numerical data for each site is shown
as a symbol, and the curves show the analytical results; the lowest
curve is the zeroth-order approximationpi(0) in the exclusion case.
The complete curve in the case of independent dynamics continues
to grow linearly for largerki (not shown).

cording to the prescription in ref. [22]: (i) a degree sequence
(ki)

V
i=1 is generated from the distribution, rejecting eachki if it

does not satisfy 2≤ ki ≤N; (ii) ki “stubs” are generated at each
nodei; and (iii) pairs of stubs are chosen at random to be con-
nected. This method gives networks which in general include
self-links from a given node back to itself, as well as multi-
ple links between nodes [23]. Since both the random-walk
dynamics and our analytical results take these into account,
no attempt was made to remove them from the network, as is
done in ref. [23] for example; rather, this gives a more strin-
gent test of the analytical results. The imposed minimum de-
gree of 2 at each node ensures that the resulting network is
connected with probability one [23].

Power-law networks with smaller values ofα have more
nodes of high degree, and in particular a few very highly-
connected hubs. Particles will concentrate at or near these
hubs, and so intuitively this will lead to shorter mean en-
counter times. For an infinite system, the degree distribution
has a well-defined mean if and only ifα > 2, but for a finite
network we can also considerα < 2. We do, however, impose
the total number of sites as a cutoff for the maximum allowed
degree.

Figure 2 shows a comparison of numerical and analytical
results for the mean occupation number〈ni〉 (which is equal
to pi in the case of exclusion dynamics) in the caseα = 2.5,
for dynamics with and without exclusion. We see that the
zeroth-order approximationpi(0) already provides a good ap-
proximation for exclusion dynamics, even though the values
of ki cover a wide range of values, including far from the mean
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FIG. 3: (a) Mean encounter time〈τ〉 of a distinguished walker on networks with power-law degreedistributionP(k)∼ k−α , for different values
of α with V = 1000 sites and for a chain withV = 100, as a function of the density,ρ. Only data for exclusion dynamics are shown; data for
independent walkers are very close to these. To highlight the differences between the curves, (b) shows 1/〈τ〉 for differentα compared to the
analytical results, drawn with black dotted lines. The lowest dashed line shows the mean-field result for comparison.

〈k〉. The convergedpi agree very well indeed with the numer-
ical values, as was already found in ref. [10].

Figure 3 shows the mean encounter times for networks with
different power-law degree distributions. Part (a) shows〈τ〉,
and part (b) shows 1/〈τ〉 to exhibit more clearly the dif-
ferences between networks with differentα. The main ob-
servation is that networks with smallerα, i.e., with highly-
connected hubs, indeed have lower mean encounter times.
This is highlighted in 4, where the encounter time is plotted
for different values ofρ as a function ofα. We also see that
the exact and numerical results again agree very well. Results
for non-exclusion dynamics on the same graphs are very sim-
ilar, although slightly larger, for the same reason as in regular
networks, and are not shown.

VI. CONCLUSIONS

In conclusion, this paper has shown that it is often possi-
ble to calculate analytically a key quantity in systems con-
sisting of many interacting random walkers, namely the mean
encounter time of a given particle. This was carried out for
the case of independent walkers and for walkers with exclu-
sion on regular and complex networks, and the results were
successfully compared to numerical simulations.

For a given graph, the mean encounter time is very simi-
lar whether dynamics with or without exclusion is used, even
though the mean occupation numbers can be quite different.
This could change with a different choice of interaction rule
in the case of independent walkers.
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FIG. 4: Mean encounter time〈τ〉 as a function of the power-law
exponentα, for different densitiesρ, on networks of sizeV = 1000.
The black dotted lines show the analytical results for comparison.

At first glance, it seems that the results require averages
over a very long time to be valid, namely the time required
for a given walker to explore the whole system. In the case
of a high-density system with exclusion, for example, this
timescale could be very long. In fact, however, the results
are unaffected by considering interacting particles whichex-
change positions, so that the timescale required is more like
that for a single particle to explore the system when no others
are present.

The method employed can be extended to calculate other
mean encounter times of interest. For example, interaction
times between two distinguished walkers can be found. The



11

extension of these results to higher moments and the full prob-
ability distribution of encounter times, and the effect of differ-
ent network structures on those results, are subjects for future
study.
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Appendix A: Intuitive derivation of the Kac recurrence theorem

Rigorous derivations of the Kac recurrence theorem, such
as can be found in refs. [18–20], do not always provide in-
tuition about why the result should be true. Here, a simple,
non-rigorous argument is given which captures the essence of
the result.

To find the mean recurrence time
〈

τ rec
A

〉

to a setA in a

discrete-time, ergodic system, consider a long trajectoryof
the system, of lengthT time steps. If at timet the system is in
A, then write a 1; if it is outsideA, then write a 0, thus coding
the trajectory as a symbol sequence of 0s and 1s.

At long times,T → ∞, the proportion of 1s in the sequence
converges to the equilibrium probabilityPeq(A) that the sys-
tem is insideA. This is the crucial part of the argument. From
a physical point of view, it is a weak version of the Boltzmann
ergodic hypothesis, but in the case of discrete-time stochastic
processes it is made rigorous by the Kac recurrence theorem
[18]. The number of 1s occurring in timeT is thus roughly
TPeq(A). Similarly, the total time spentoutside Ais approxi-
matelyT

[

1−Peq(A)
]

.

Now consider rearranging the list of 1s and 0s so that ap-
proximately the same number of 0s occurs between each pair
of consecutive 1s. The mean recurrence time is then this num-
ber of 0s, plus 1 for the extra step to return to the next 1, giving

〈τ rec
A 〉 = 1+

T
[

1−Peq(A)
]

T Peq(A)
=

1
Peq(A)

, (A1)

which is the Kac result.
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