Publications: David P. Sanders

Click on paper titles for abstracts and PDFs; preprints often have higher quality figures.

Also available from arXiv.
Citation data from Google Scholar.

Submitted

  1. Ergodicity of one-dimensional systems coupled to the logistic thermostat
    Diego Tapias, Alessandro Bravetti and David P. Sanders
    Submitted for publication   |   [arXiv:1611.05090]

Published

2016

  1. Geometric integrator for simulations in the canonical ensemble
    Diego Tapias, David P. Sanders, Alessandro Bravetti
    J. Chem. Phys. 145(08), 084113 (2016)   |   [arXiv:1605.01654]

  2. Efficient algorithms for the periodic Lorentz gas in two and three dimensions
    Atahualpa S. Kraemer, Nikolay Kryukov, David P. Sanders
    J. Phys. A: Math. Theor. 49(02), 025001 (2016)   |   [arXiv:1511.00236]

2015

  1. Horizons and free path distributions in quasiperiodic Lorentz gases
    Atahualpa S. Kraemer, Michael Schmiedeberg, David P. Sanders
    Phys. Rev. E 92(05), 052131 (2015)   |   [arXiv:1511.00340]

  2. Lévy walks on lattices as multi-state processes
    Giampaolo Cristadoro, Thomas Gilbert, Marco Lenci, David P. Sanders
    J. Stat. Mech. 2015(05), P05012 (2015)   |   [arXiv:1501.05216]

2014

  1. Machta-Zwanzig regime of anomalous diffusion in infinite-horizon billiards
    Giampaolo Cristadoro, Thomas Gilbert, Marco Lenci, David P. Sanders
    Phys. Rev. E 90(05), 050102(R) (2014)   |   [arXiv:arXiv:1408.0349]

  2. Transport properties of Léy walks: an analysis in terms of multistate processes
    Giampaolo Cristadoro, Thomas Gilbert, Marco Lenci, David P. Sanders
    Europhys. Lett. 108(5), 50002 (2014)   |   [arXiv:1407.0227]

  3. Measuring logarithmic corrections to normal diffusion in infinite-horizon billiards
    Giampaolo Cristadoro, Thomas Gilbert, Marco Lenci & David P. Sanders
    Phys. Rev. E 90(02), 022106 (2014)   |   [arXiv:1405.0975]

  4. Sustained currents in coupled diffusive systems
    Hernán Larralde and David P. Sanders
    J. Phys. A: Math. Theor. 47(34), 345001 (2014)   |   [arXiv:1401.5526]

2013

  1. Embedding quasicrystals in a periodic cell: Dynamics in quasiperiodic structures
    Atahualpa S. Kraemer and David P. Sanders
    Phys. Rev. Lett. 111(12), 125501 (2013)   |   [arXiv:1206.1103]

2014

  1. Zero density of open paths in the Lorentz mirror model for arbitrary mirror probability
    Atahualpa S. Kraemer & David P. Sanders
    J. Stat. Phys. 156(5), 908 (2014)   |   [arXiv:1406.4796]

2013

  1. Encounter times in overlapping domains: application to epidemic spread in a population of territorial animals
    Luca Giuggioli, Sebastian Pérez-Becker and David P. Sanders
    Phys. Rev. Lett. 110(5), 058103 (2013)   |   [arXiv:1207.2427]

2012

  1. Diffusion coefficients for periodically induced multi-step persistent walks on regular lattices
    Thomas Gilbert and David P. Sanders
    J. Phys. A 45(25), 255003 (2012)   |   [arXiv:]

  2. Structure and evolution of strange attractors in non-elastic triangular billiards
    Aubin Arroyo, Roberto Markarian and David P. Sanders
    Chaos 22(2), 026107 (2012)   |   [arXiv:1112.1255]

2011

  1. Chaos and stability in a two-parameter family of convex billiard tables
    Péter Bálint, Miklós Halász, Jorge A. Hernández-Tahuilán and David P. Sanders
    Nonlinearity 24(5), 1499 (2011)   |   [arXiv:1009.3922]

  2. Stable and unstable regimes in higher-dimensional convex billiards with cylindrical shape
    Thomas Gilbert and David P. Sanders
    New J. Phys. 13(2), 023040 (2011)   |   [arXiv:1009.0337]

  3. Diffusive properties of persistent walks on cubic lattices with application to periodic Lorentz gases
    Thomas Gilbert, Huu Chuong Nguyen and David P. Sanders
    J. Phys. A: Math. Theor. 44(6), 065001 (2011)   |   [arXiv:1009.3922]

2010

  1. Diffusion coefficients for multi-step persistent random walks on lattices
    T. Gilbert and David P. Sanders
    J. Phys. A: Math. Theor. 43(3), 035001 (2010)   |   [arXiv:0908.1271]

2009

  1. Persistence effects in deterministic diffusion
    T. Gilbert and David P. Sanders
    Phys. Rev. E 80(4), 041121 (2009)   |   [arXiv: 0908.0600]

  2. Exact encounter times for many random walkers on regular and complex networks
    David P. Sanders
    Phys. Rev. E 80(3), 036119 (2009)   |   [arXiv:0906.0810]

  3. Long-range correlations in a simple stochastic model of coupled transport
    H. Larralde and David P. Sanders
    J. Phys. A: Math. Theor. 42(33), 335002 (2009)   |   [arXiv:0903.3166]

  4. Bifurcations of periodic and chaotic attractors in pinball billiards with focusing boundaries
    A. Arroyo, R. Markarian and David P. Sanders
    Nonlinearity 22(7), 1499 (2009)   |   [arXiv:0902.1563]

2008

  1. Normal diffusion in crystal structures and higher-dimensional billiard models with gaps
    David P. Sanders
    Phys. Rev. E 78(6), 060101R (2008)   |   [arXiv:0808.2235]

  2. How rare are diffusive rare events?
    David P. Sanders and H. Larralde
    Europhys. Lett. 82(4), 40005 (2008)   |   [arXiv:0804.1165]

2007

  1. Competitive nucleation and the Ostwald rule in a generalized Potts model with multiple metastable phases
    David P. Sanders, H. Larralde and F. Leyvraz
    Phys. Rev. B. 75(13), 132101 (2007)   |   [arXiv:0704.0472]

2006

  1. Metastability in Markov processes
    H. Larralde, F. Leyvraz and David P. Sanders
    J. Stat. Mech. 2006(08), P08013 (2006)   |   [arXiv:cond-mat/0608439]

  2. Occurrence of normal and anomalous diffusion in polygonal billiard channels
    David P. Sanders and H. Larralde
    Phys. Rev. E 73(2), 026205 (2006)   |   [arXiv:cond-mat/0510654]

2005

  1. Fine structure of distributions and central limit theorem in diffusive billiards
    David P. Sanders
    Phys. Rev. E 71(1), 016220 (2005)   |   [arXiv:nlin.CD/0411012]

Conference proceedings

2012

PhD thesis

Lecture notes / notas de curso


Back to my homepage.
David P. Sanders
Last modified: 13 December 2016