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Abstract
We study the dynamics of billiard models with a modified collision rule: the
outgoing angle from a collision is a uniform contraction, by a factor λ, of the
incident angle. These pinball billiards interpolate between a one-dimensional
map when λ = 0 and the classical Hamiltonian case of elastic collisions when
λ = 1. For all λ < 1, the dynamics is dissipative, and thus gives rise to
attractors, which may be periodic or chaotic. Motivated by recent rigorous
results of Markarian et al (http://premat.fing.edu.uy/papers/2008/110.pdf and
http://www.preprint.impa.br/Shadows/SERIE A/2008/614.html), we numeri-
cally investigate and characterize the bifurcations of the resulting attractors
as the contraction parameter is varied. Some billiards exhibit only periodic
attractors, some only chaotic attractors and others have coexistence of the two
types.

Mathematics Subject Classification: 37D45, 37D50, 37M25, 65P20

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Billiard models have played an important role in mathematical physics for 40 years, since their
introduction by Sinai [Sin70], motivated by the Boltzmann ergodic hypothesis on fluids of hard
spheres. They are a class of models which are accessible and of interest both to mathematicians
[CM06] and to physicists [Gas98]. In particular, they have attracted much attention as simple
models of physical systems which exhibit strong chaotic properties (hyperbolicity, ergodicity
and mixing).
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In classical billiards, particles travel freely between collisions with hard, fixed boundaries.
They then collide elastically, i.e. without friction, so that the kinetic energy is conserved. Such
billiards can thus be considered as a type of Hamiltonian system with discontinuities.

Our objective is to investigate, mainly numerically, the different types of dynamics which
occur in billiard tables with a modified collision rule: we consider pinball billiards, where the
reflection rule at collisions is no longer elastic. Rather, the angle (with respect to the normal) of
reflection is smaller than the angle of incidence, by a constant factor. The dynamics is then no
longer conservative; rather, there is contraction in phase space, which gives rise to attractors.
Two types of attractors are found to occur: they are either (i) periodic points whose stability
matrix has eigenvalues with a modulus not greater than one or (ii) non-trivial invariant sets
that exhibit dominated splitting (defined below). Both types of attractors can coexist, and we
study examples where all possible cases occur.

Rather than attempt to model a particular physical scenario, we consider a model that
interpolates between a one-dimensional dynamics, where reflection is always normal to the
boundary, and a Hamiltonian one (elastic reflection). A related modified billiard collision
rule, which was motivated by physical considerations, was studied recently in [ADMH08].
Other Hamiltonian systems with dissipation have been studied from a similar point of view,
for example, the kicked rotor map [FGHY96, MG08].

We are interested in the dynamical properties of orbits in the forward limit set of the system,
that is, the union of all ω-limit sets of points in the space, which describes the dynamics of
the system as the time goes to +∞. Markarian et al [MPS08] proved that, under certain
circumstances, case (ii), that is the occurrence of non-trivial invariant sets with dominated
splitting, appears in many common billiard tables. In our context, an invariant subset � of the
limit set has dominated splitting if the tangent bundle continuously splits into two non-trivial
invariant sub-bundles under the derivative, say T� = E⊕F , and there are C > 0 and ν ∈ (0, 1)

such that

‖Df n|E(x)‖ · ‖Df −n|F(f n(x))‖ � Cνn (1)

for any x ∈ � and n � 0. In these circumstances one can expect [MPS08] that the limit
set can be decomposed into the union of three subsets: (1) a finite union of disjoint invariant
curves formed by periodic points with finite period, (2) a finite union of simple closed curves
where the dynamic is conjugate to an irrational rotation and (3) a disjoint union of finitely
many compact invariant hyperbolic sets.

In this paper we restrict attention to tables with focusing boundaries. A focusing boundary
(which has negative curvature under our convention) has the property that a beam of parallel
trajectories which hits it focuses after the collision. Bunimovich [Bun79] showed that if there
is ‘enough space’ in the billiard table, then after it has focused, the beam can then defocus,
before it collides again. This defocusing mechanism can give rise to strong chaotic properties,
in particular hyperbolicity [Woj86, Mar88] and to systems which are ergodic and mixing, see
for instance [Szá92, Mar93].

One of the motivations of this work is to study pinball billiard maps defined on tables
which in some sense are close to the limit of validity of the hypotheses assumed in [MPS08]
for which rigorous results could be obtained. We consider cases in which either the attractor
is not contained in a compact region of the phase space, or certain geometrical properties used
in that reference do not hold. In this way, we shed light on the interesting types of behaviour
which pinball billiards can exhibit.

We begin by formally defining the dynamical system, and then proceed to study
numerically the dynamics in several different types of billiard table with focusing (and in
one case neutral) boundaries. The aim of the paper is to characterize the types of attractor that
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can be expected to occur in pinball billiards, and relate them to the geometric features of the
billiard table. In particular, there is a competition between the defocusing mechanism and the
angle contraction in the pinball dynamics.

The tables we consider are the family of ellipses, the cardioid, a modified, convex version
of the cardioid with a discontinuity in the curvature and a smooth family of perturbations of
the circle. In the ellipse, it is found that the limit set is always periodic and it can either have
dominated splitting or not, depending on whether certain eigenvalues are real or complex. In
the cardioid, the limit set always consists of a chaotic attractor which accumulates on the vertex.
We then introduce a modified, convex version of the cardioid, in which the vertex is removed.
There we find that the limit set consists of periodic or chaotic attractors, and for some values of
the contraction parameter these two phenomena coexist. Here there are two points where the
curvature is discontinuous, and the chaotic attractor contains trajectories which include these
points. Finally, in a smooth family of perturbations of the circle we observe coexistence of
periodic and chaotic attractors, which undergo bifurcations when the contraction parameter is
varied.

2. Pinball billiards

Let Q be an open, bounded, simply connected subset of the plane, whose boundary � consists
of a finite number of compact C3 curves �i . Billiard dynamics in Q is the dynamical system
describing the free motion of a point mass particle inside Q with reflections at the boundary
�:= ∪i �i . Each �i is called a (smooth) component of �. Let n(q) be the unit normal vector
at the point q ∈ �i which points towards the interior of Q. The configuration space of this
dynamical system is Q, and its phase space M is given by

M:={(q, v) : q ∈ �, |v| = 1, 〈v, n(q)〉 � 0}, (2)

where 〈·〉 denotes the Euclidean inner product.
We introduce coordinates (s, ϕ) on the phase space M , where s is the arc length parameter

along � and ϕ is the angle between the reflected vector v and the normal n(q), satisfying
〈v, n(q)〉 = cos ϕ. In classical billiards the angle of incidence is equal to the angle of reflection
(elastic reflection) [CM06]; in this case, the billiard map is area-preserving in terms of the
coordinates (s, sin(ϕ)), known as Birkhoff coordinates.

Recently, Markarian et al [MPS08] introduced pinball billiards, which are billiard maps
with a modified reflection rule. Let η ∈ [−π/2, π/2] be the angle from the incidence vector to
the outward normal −n(q) at the point q where the ball hits the boundary. In pinball billiards
we no longer restrict to the elastic case; rather, we allow the outgoing angle ϕ to depend on the
incidence angle η. In principle, a dependence could be allowed on the position of the collision,
as in [ADMH08], but we suppose that the exit angle ϕ depends only on the incidence angle η.
Then ϕ = −η + f (η), where f : [−π/2, π/2] → R is a C2 function.

In [MPS08], section 3.2 which gives more details on these topics, two perturbations on
the angle of reflection were studied. In this paper, we restrict our attention to one of them: we
assume that f (η) = (1 − λ)η, with constant λ < 1; thus ϕ = −λη, that is the outgoing angle
is given by a uniform contraction of the angle of incidence. For simplicity we rescale the speed
of the particle after each collision so that it is always 1. Physically this corresponds to a sticky
boundary which gives exactly the right amount of ‘kick’ to the particle; this can be thought of
as a caricature of what happens in a real pinball table, hence the term ‘pinball billiard’.

The pinball billiard map Tλ with a given contraction parameter λ ∈ [0, 1] is then defined
as follows: we leave the point q0 ∈ � with direction v0 until we intersect the boundary again
at the point q1 ∈ �. If the unit normal n(q1) at the new position is well defined, then the new
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velocity vector v1 is given by the above collision rule. The pinbilliard map Tλ is then defined
by Tλ(q0, v0):=(q1, v1). If n(q1) is not uniquely defined, for example if the trajectory lands at
a sharp corner, then the map Tλ is not defined at (q0, v0). Tλ is also undefined at points (q0, v0)

where the trajectory hits tangentially another component of the boundary �. Removing such
points from the domain of definition of the map forces us to work in a non-compact domain.
This is an obstacle for the direct application of results from [MPS08].

Let t be the Euclidean distance between q0 and q1, and Ki be the curvature of � at qi taken
with the following convention: Ki is negative if the component of the boundary is focusing,
zero if it is flat and positive if it is dispersing. Zero curvature is not allowed on focusing
and dispersing components of the boundary. In this paper we will only study billiards with
focusing and flat components, and only for λ � 1. Although it is possible to consider λ > 1, in
this case the trajectories tend to converge to ‘whispering gallery’ modes tangent to the billiard
boundary.

2.1. Derivative matrix

The total derivative of the pinball billiard map Tλ at a point x = (s, ϕ0) ∈ M is, as shown
in [MPS08, section 3.3], given by

DxTλ(s, ϕ0) = −
(

A B

λ (K1A + K0) λ (K1B + 1)

)
, (3)

where

A:= tK0 + cos ϕ0

cos η1
, B:= t

cos η1
. (4)

Again, subscript 0 refers to quantities evaluated at the starting collision point, and subscript 1 to
quantities at the next collision. Thus ϕ0 is the exit angle of the trajectory at the boundary point
from which the trajectory leaves, and η1 is the incidence angle at the next collision, calculated
by the rule described above. The derivative thus involves information from two consecutive
collisions.

The stability matrix of an orbit is the product of the stability matrices of each trajectory
segment. In the case of a periodic orbit, it is sufficient to take the product over a single period.

2.2. Slap billiard map: λ = 0

The pinball billiard map depends on the contraction parameter λ, and one of our goals is to
study the global modifications (bifurcations) of the dynamics of Tλ as λ varies in the interval
[0, 1]. When λ = 1 the outgoing angle is equal to the incidence angle, so that T1 is the classical
elastic billiard map, and the measure dµ = cos ϕ ds dϕ is preserved.

When λ = 0, trajectories leave exactly along the normal vector at each collision, so that
T0 reduces to a one-dimensional map, which was named the slap billiard map in [MPS08];
the derivative of T0 at a point q along the boundary is given by T ′

0(q) = −(tK0 + 1)/ cos η1.
Note that the slap billiard map is in fact a map of the circle, since the arc length is a periodic
variable. We emphasize that in the cases considered in this paper the curvatures Ki are always
non-positive.

We remark that the slap billiard map is related to the geometrical concept of the evolute
of a curve, which is the envelope of the set of all normals to the curve. Since the trajectories
in the slap billiard always follow the normal vectors, the evolute is generated in configuration
space. Nonetheless, this seems not to be particularly relevant for the dynamical properties of
the map.
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Figure 1. Single trajectories in configuration space for pinball billiard dynamics with contraction
parameter λ = 0.99 in (a) circular table and (b) elliptical table with a = 1.5. Colours (or shades
of grey) indicate the number of bounces, with lighter colours/shades corresponding to later times,
exhibiting the asymptotic convergence to period-2 orbits. The initial condition in (a) is a random
one; that in (b) was taken close to the unstable period-2 orbit along the major axis, from which
it rapidly diverges. Remnants of the structure of caustics which is found for the integrable case
(λ = 1) are visible in (b).

3. Circular and elliptical tables

The simplest smooth, convex tables with focusing boundaries are elliptical tables, which are
classical examples in the case of elastic billiards [CM06, chapter 1]. In this section we study
pinball billiards in elliptical tables, beginning with the special case of circular tables. The
tables have elliptical boundaries, parametrized as �a(t) = (a cos t, sin t), where t ∈ [0, 2π)

and the shape parameter a satisfies a � 1 without loss of generality.

3.1. Circular table

The simplest case of pinball billiard dynamics occurs in a circular table, for a = 1. When
λ = 1, that is for elastic collisions, the incident and outgoing angles are constant along each
trajectory, due to conservation of angular momentum, and the phase space is foliated by parallel
lines corresponding to constant angles. This system is thus completely regular (integrable).

For λ < 1, however, at each collision the exit angle ϕ′ = λϕ decreases, so that the outgoing
trajectory is closer to the diameter which corresponds to the normal direction at the point of
collision. This continues at each collision; since there is no counter-effect, the trajectory from
any initial condition converges to some period-2 diametrical orbit, as shown in figure 1(a).
Any diameter is a limit set, and the exact limiting behaviour depends on the initial conditions.

In [MPS08] it is proved that for 0 < λ < 1 the limit set of the pinball billiard in a circular
table has dominated splitting. This limit set consists of the line [ϕ = 0], the set of all period-2
orbits.

The slap billiard map of a circular table corresponds to a translation by π on the circle:
T0(s) = s + π (mod 2π), that is each point s is mapped to the diametrically opposed point
s + π and then back, so that each point is periodic with period 2.

3.2. Elliptical table

New dynamical features appear when we break the circular symmetry and consider an ellipse
with non-zero eccentricity. An ellipse has exactly two periodic orbits of period 2, lying along
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its major and minor axes. However, these two periodic orbits are found to have different
stability properties under the pinbilliard dynamics: the orbit lying along the minor axis is
stable, whereas the orbit lying along the major axis is unstable: an initial condition pointing
along the major axis stays there forever, whereas an initial condition starting arbitrarily close
to it leaves the neighbourhood of the major axis and eventually converges to the stable orbit,
as shown in figure 1(b).

The complete description of the dynamics is that there is one stable and one unstable period-
2 orbit and they form the limit set of the pinball billiard transformation for all λ ∈ (0, 1). With
the exception of the unstable orbit, all other trajectories are attracted by the stable one.

3.3. Stability of period-2 orbits

To confirm the results on the stability of the period-2 orbits, we calculate explicitly their
stability matrices. The curvature of the ellipse boundary at the point �a(t) is given by

κ(t) = −a[
a2 sin2(t) + cos2(t)

]3/2 . (5)

Thus the curvature at the points of the ellipse lying on the major axis is κ(0) = −a and on the
minor axis is κ(π/2) = −1/a2.

The stability matrix of the periodic orbit of period 2 along the minor axis, for contraction
parameter λ, is the product of the stability matrices for the two flights of the orbit, and is found
to be( [

4(1 + λ)(1 − a2) + a4
]
/a4 2(1 + λ)(a2 − 2)/a2

−2λ(1 + λ)(a2 − 1)(a2 − 2)/a6 λ
[
4(1 − a2)(1 + λ) + λa4

]
/a4

)
. (6)

The stability of the orbit is determined by the eigenvalues of equation (6), which are given by

µ±(a, λ) = P1(a, λ) ± √
P2(a, λ)

2a4
, (7)

where

P1 = (a2 − 2)2λ2 − 8(a2 − 1)λ + (a2 − 2)2,

P2 = [(1 + λ)(a2 − 2)]2[(a2 − 2)2λ2 − 2(a4 + 4a2 − 4)λ + (a2 − 2)2]. (8)

The eigenvalues are complex conjugates satisfying |µ±(λ)| < 1 for λ close to 1 and any a � 1,
so that the minor axis is then a stable focus. Furthermore, |µ±(λ)| → 1 when λ → 1, since
the orbit is elliptic in the elastic case λ = 1.

The eigenvalues change type from complex to real when P2(a, λ) crosses 0. This occurs
when a = √

2, for any λ ∈ [0, 1]. For a �= √
2, we also have the following solutions:

λ±(a) = a4 + 4a2 − 4 ± 4a2
√

a2 − 1

(a2 − 2)2
. (9)

We find that λ+ is always outside the region of λ of interest, but λ−(a) ∈ [0, 1] for all a � 1,
with λ−(a) → 0 when a → √

2 and λ−(a) → 1 when a → ∞. For pairs (a, λ) below the
graph of λ−(a), both µ±(a, λ) are real and the dynamics is then that of a stable node; above
this graph, both eigenvalues have non-trivial imaginary part. These eigenvalues are shown for
the case a = 5 in figure 2(a).

The stability of the other period-2 orbit, along the major axis, can be found by inverting the
geometry. A computation shows that both eigenvalues µ± are real, with 0 < µ− < 1 < µ+.
Hence the major axis is always an unstable period-2 orbit for λ < 1.
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Figure 2. (a) Absolute values of the eigenvalues µ± of the stability matrix for the period-2 orbit
lying along the minor axis in the ellipse with a = 5. For λ > λ−(5) � 0.44, the eigenvalues are
complex conjugates; for smaller values of λ, they are real. (b) The slap billiard map T0 and its
second iterate T 2

0 for an elliptical table with a = 1.2.

In our two-dimensional setting, the first requirement to have a set with dominated splitting
is the existence of two different non-trivial invariant directions for DTλ. Thus, if the limit
set contains a periodic point with non-real eigenvalues, then this set cannot have dominated
splitting. On the other hand, if the limit set consists of only a finite number of hyperbolic
periodic orbits with real eigenvalues, then the limit set does have dominated splitting. Hence,
for any a � 1 there is a number λa such that the limit set of Tλ has dominated splitting if
λ ∈ (0, λa] and does not have dominated splitting for λ ∈ (λa, 1).

3.4. Slap billiard map of an elliptical table

The slap billiard map T0 for an elliptical table with a = 1.2 is shown in figure 2(b), together
with its second iterate. We use the polar angle θ of the collision point instead of the arc length
along the ellipse, since it is simpler to calculate. In the configuration space (not shown), all
trajectories of the slap billiard map are tangent to the evolute of the ellipse, which is a stretched
astroid (the Lamé curve).

On the graph of T 2
0 can be seen the two unstable period-2 points lying on the major axis

(θ = 0 and θ = π ), and the two stable period-2 orbits on the minor axis. The slap billiard
map of any elliptic table is not an expanding map, which agrees with the absence of chaotic
behaviour in the dynamics.

4. Cardioid

The results of [MPS08] suggest that pinball billiards may have much more complicated limit
sets than just attracting periodic orbits, in particular non-trivial invariant sets with hyperbolic
dynamics. From here on we search for more complicated dynamics.

In this section we study pinball billiards in the cardioid, parametrized by the equation
ρ(θ) = 1+cos(θ) in polar coordinates (ρ, θ), with −π � θ < π . The standard, elastic billiard
dynamics in a cardioid has been studied extensively [Woj86, Mar93, Szá92, BD97, DB01],
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Figure 3. The chaotic attractor in phase space for the cardioid, for (a) λ = 0.3 and (b) λ = 0.8.
The inset of (a) shows the attractor in configuration space. The coordinates are arc length s and
sin(ϕ), where ϕ is the exit angle at each collision. The cusp of the cardioid is at s = ±4.

and in particular has been proved to be hyperbolic, ergodic and mixing. Robnik [Robn83]
studied the existence, stability and bifurcations of periodic orbits in a class of billiards which
includes the cardioid, with the focus being the transition from regular dynamics in the circle to
stochastic dynamics in the cardioid. Here we rather study the dynamics in this single table when
we vary the contraction parameter λ between the one-dimensional map and area-preserving
cases.

For the cardioid, the arc length s(θ) up to an angle θ , measured from the positive x-axis,
can be evaluated exactly as s(θ) = 4 sin(θ/2) for 0 � θ � π . Thus s = 0 is the rightmost
(flattest) point of the cardioid, positive values of s correspond to the top half of the cardioid,
and the cusp is at s = ±4. This s is used as the abscissa in the phase space plots below. Some
details of the numerical algorithm used to follow the dynamics are given in the appendix A. The
curvature of the boundary may be evaluated using the standard expression in polar coordinates:

κ(θ) = −ρ(θ)2 + 2ρ ′(θ)2 − ρ(θ)ρ ′′(θ)[
ρ(θ)2 + ρ ′(θ)2

]3/2 . (10)

The negative sign here corresponds to our convention that focusing boundaries have κ < 0.
The curvature of the cardioid is then κ(θ) = −3/

√
8(1 + cos θ).

4.1. Chaotic attractor

Numerical evidence shows the existence of a non-trivial chaotic attractor for any λ ∈ [0, 1), as
shown in figure 3. The attractor grows in phase space as λ increases, until it fills the whole of
phase space uniformly when λ = 1. Here, and in the rest of the paper, the angular coordinate
in phase space is shown as sin(ϕ).

We remark that points which are arbitrarily close to the singularity θ = ±π at the cusp
of the cardioid (corresponding to s = ±4) seem to belong to the attractor. However, since the
cusp does not belong to the domain of the pinball billiard map, since the normal vector is not
uniquely defined there, the attractor does not lie in a compact region of phase space. Thus
theorem 5 of [MPS08] cannot be automatically applied. However, the dominated splitting
behaviour foreseen by theorem 4 of that reference is suggested by the following computations.

The trajectory emanating from (almost) any initial condition is numerically found to have
two Lyapunov exponents ν±, with ν+ > 0 > ν−, i.e. they are uniformly bounded away from
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Figure 4. (a) The two Lyapunov exponents ν± for the cardioid, as a function of λ. Their sum,
which is the logarithm of the area contraction in phase space under the map, is also shown. It
converges to −∞ when λ → 0, since the map reduces to a one-dimensional map in this case, and
to 0 when λ → 1, the elastic case. (b) The slap billiard map T0 for the cardioid and its second
iterate. T0 itself has regions where the derivative T ′

0 is less than one in modulus, near the cusp
at s = 0. Nonetheless, its second iterate is expanding, with

∣∣T ′
0(s)

∣∣ > 1 everywhere, and thus
the dynamics of the map are strongly chaotic. The two unstable fixed points of the second iterate
correspond to an unstable vertical period-2 orbit joining the top and bottom points of the cardioid
at θ = ±π/3, i.e. at s = ±2.

zero for any λ ∈ (0, 1]. The numerical calculation of these Lyapunov exponents is summarized
in appendix A, and the results are shown in figure 4(a). Due to the dissipative nature of the
dynamics, there is contraction in phase space, which implies that ν++ν− < 0. Each point on the
graph, for a fixed value of λ, is an average over 100 initial conditions. The Lyapunov exponents
evaluated along the different trajectories are found to vary little—error bars are of the size of
the symbols. This, together with visualizations of the attractor for different initial conditions,
suggests that there is transitive behaviour on the attractor, i.e. that any initial condition on the
attractor visits the whole attractor. These numerical results lead us to conjecture that the system
is in fact non-uniformly hyperbolic in the sense of Pesin, i.e. almost every point has non-zero
Lyapunov exponents [Robi99, section 9.2]. However, rigorous proofs of such conjectures are
notoriously difficult [Robi99].

4.2. Slap billiard map of the cardioid

In configuration space, all trajectories of T0 are tangent to the evolute of the cardioid, which is
a mirror image of the cardioid scaled by a factor of 1/3 (not shown). The slap billiard map of
the cardioid is interesting in that it has regions, close to the point s = 0 of minimal curvature,
where the derivative T ′

0 is less than one, and other parts where it is greater than one, as shown
in figure 4(b). Nonetheless, as the figure shows, the second iterate T 2

0 of this map is piecewise
expanding, i.e. its derivative is uniformly bounded away from 1, with (T 2

0 )′(s) > 1 everywhere.
This confirms the strong chaotic properties of the dynamics, and suggests a situation analogous
to that in theorem 12 of [MPS08] with focusing walls, which states that under these conditions
there should be a finite number of expansive attractors. In fact, numerically we find that the
dynamics of the map seems to be ergodic.
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5. Cuspless cardioid

In the previous two sections, we have studied tables which show completely regular and
completely chaotic behaviour, both for elastic and pinball billiard dynamics. In this section
and the following one, we consider two convex tables which exhibit a complicated mixture
of phenomena. Here we begin with a convexified version of the cardioid, obtained by
flattening the cusp of the cardioid. To do so, we remove the part of the cardioid with
θ ∈ [−π, −2π/3] ∪ [2π/3, π ], and replace it by a vertical line at x = − 1

4 between
y = ± 1

4

√
3. This procedure gives a convex table which is smooth at all points except for

these two points joining the curved and flat parts of the boundary, where the curve is only C1

and has discontinuous curvature.
Again the arc length can be evaluated exactly. We now take s = 0 as corresponding to

the centre of the vertical line at the left of the table, and the rightmost point being at s = ±C,
where C:=4 sin(π/3) +

√
3/4 = 9

√
3/4. The discontinuities are then at s = ±√

3/4.
By unfolding this ‘cuspless cardioid’ by reflection in the vertical line, we obtain an

equivalent table which satisfies Wojtkowski’s defocusing condition [Woj86, Mar88], and is
thus hyperbolic and ergodic in the classical case of elastic collisions [Szá92, Mar93]. However,
this unfolding process is no longer valid in the case of pinball billiards, since the outgoing angle
is modified at each collision with the vertical line.

From the point of view of pinball dynamics, the dynamics always has dominated splitting
[MPS08, theorem 4]. This is verified later, by computing Lyapunov exponents. However, once
again the phase space is not compact. Thus the results of [PS09] can be immediately applied
only if the attractor is contained in a compact subset of the phase space. This is the case for λ

close to zero. However, a non-trivial attractor is observed only for larger values of λ. In fact,
it is related to the existence of points of the boundary which are not C2: generic orbits in the
chaotic attractor seem to accumulate on these non-smooth points.

Numerical experiments show that for λ close to 0, the period-2 orbit lying in y = 0 attracts
almost all initial conditions, except for the unstable vertical period-2 orbit which is the same
as in the unmodified cardioid. For λ close to 1, however, we observe a globally attracting
chaotic attractor, as in the unmodified cardioid, although rather different in structure from that
case. Careful simulations show that in fact there is a region where the period-2 and chaotic
attractors coexist: some initial conditions are attracted to the periodic orbit, and others to the
chaotic attractor. Figures 5 and 6 show the evolution of the numerically determined attractors
as λ is varied, in configuration space and in phase space, respectively. In the following we
shall explain these phenomena.

5.1. Period-2 orbit

We start by studying the horizontal period-2 orbit which runs along the symmetry axis y = 0,
shown in figure 5(a). This orbit exists for any λ ∈ [0, 1], but its stability depends on the
eigenvalues of the stability matrix, i.e. the derivative of T 2

λ at the point x = (0, 0), which in
turn depend on λ. The stability matrix is obtained by composing the stability matrices at the
points x and Tλ(x) = (C, 0), where C is the arc length to the point opposite 0. We find that

DxT
2
λ = 1

64

( −4(27λ + 11) 144(λ + 1)

33λ(λ + 1) −4λ(11λ + 27)

)
. (11)

The eigenvalues µ of this matrix are

µ±(λ) = 1

32

(
−11 − 54λ − 11λ2 ±

√
11 (1 + λ)

√
11 + 86λ + 11λ2

)
. (12)
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(a) (b) (c) (d)

Figure 5. Evolution of numerically observed attractors in configuration space with increasing λ.
For λ < λ∗ � 0.0712, there is just a period-2 attractor. This periodic attractor coexists with a
chaotic attractor for λ ∈ [λ∗, λc], where λc � 0.093. The period-2 attractor then becomes unstable,
leaving just the chaotic attractor, which expands for increasing λ. (a) λ = 0.02, (b) λ = 0.072,
(c) λ = 0.2 and (d) λ = 0.5.
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Figure 6. Evolution of the chaotic attractor of the cuspless cardioid in phase space, as a function
of λ. The attractor is depicted for λ between 0.1 and 0.9 in intervals of 0.1, with three values of λ

shown in different colours (or shades of grey) in each figure (red, blue and cyan in increasing order
of λ). Vertical lines mark the centre of the vertical section of the boundary at s = 0 and the two
curvature discontinuities at s = ±√

3/4. The attractors are also seen to be non-smooth here; they
expand in phase space as λ increases. (a) λ ∈ [0.1, 0.3], (b) λ ∈ [0.4, 0.6] and (c) λ ∈ [0.7, 0.9].

Both eigenvalues are real and satisfy µ±(λ) � 0, for any λ ∈ [0, 1]. Moreover, µ±(λ) > −1
for any λ ∈ (0, λc), where λc:= 1

5 (27 − 8
√

11) � 0.0934 is the value such that µ−(λc) = −1,
i.e. for which this eigenvalue becomes unstable. The stable orbit is visualized later for the slap
map T0 (see figure 8(b)).

When an eigenvalue crosses −1, a period-doubling bifurcation is expected [Robi99,
chapter 7]. However, in this case no stable period-4 orbit emerges, which would be observed
as an attractor. We expect that an unstable period-4 orbit is created in this bifurcation;
presumably it could be rendered stable if the billiard table were modified to have smaller
curvature around s = 0.

5.2. Birth of chaotic attractor

In numerical experiments, a globally attracting chaotic attractor is observed for λ � 0.1 where
the period-2 orbit is no longer stable. However, this chaotic attractor is also observed to persist
for λ > λ∗ � 0.0712 in coexistence with the attracting period-2 orbit discussed above.

How and why does this chaotic attractor arise? For λ just above λ∗ it is observed to be
very thin, and is concentrated around what appears to be a periodic orbit of period 4 joining
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Figure 7. (a) Arc length s4 of the fourth collision point, starting from initial conditionsx0 = (s0, ϕ0)

at the upper discontinuity s0:= − √
3/4 in the cuspless cardioid, as a function of the initial angle

ϕ0. The dotted horizontal lines show the two discontinuities s = ±√
3/4 and s = 0 (the centre

of the vertical line). (b) Basin of attraction of the chaotic attractor for the cuspless cardioid with
λ = 0.09, shown in phase space with coordinates s and sin(ϕ), where ϕ is the exit angle. The
points which are not attracted to the chaotic attractor (shown in blank) are attracted to the stable
period-2 orbit. The basins appear to be intermingled in some parts of phase space.

the two points of discontinuity in the curvature (figure 5(b)). We search for such a period-4
orbit as follows. Starting exactly at the upper discontinuity, we shoot trajectories with different
initial angles ϕ, and follow them for four collisions. Plotting the arc length s of the collision
point at the fourth collision gives figure 7(a), for angles close to ϕ = 0, which are those for
which the attractor appears.

We see that for λ < λ∗, the fourth collision occurs for values of arc length greater than s∗,
that is, the collisions occur on the vertical line joining the two discontinuities. The trajectory
then converges towards the attracting period-2 orbit. For λ > λ∗, the trajectory returns to
locations with s < s∗, that is it collides on the curved surface just above the discontinuity.
Nonetheless, due to the focusing nature of the boundary, the trajectory is then reinjected into
the same region, and in this case we observe that the subsequent dynamics converges to a
chaotic attractor for any λ > λ∗.

For λ = λ∗, the trajectory returns exactly to the same discontinuity on the fourth collision,
and there is indeed a period-4 orbit joining the two discontinuities exactly at this value of λ.
By searching for the pair (λ, ϕ) for which the curve of figure 7(a) just touches s∗, we estimate
the critical values as λ∗ � 0.071 217 3 and ϕ∗ � −0.028 979 6 (see figure 7(a)). Simulations
confirm the existence of the orbit and its instability.

Since the period-2 and chaotic attractors coexist in the interval λ ∈ [λ∗, λc], it is of interest
to examine their respective basins of attraction in phase space, i.e. the sets of initial conditions
in phase space which converge to each attractor. These basins are shown in figure 7(b) for the
case λ = 0.09. In certain regions the basins appear to be intermingled arbitrarily closely.

5.3. Chaotic attractor

As mentioned above, a chaotic attractor is found for all λ > λ∗, and for all λ > λc this is
the only attractor. Numerical results again indicate that here is one positive and one negative
Lyapunov exponent which are both constant almost everywhere, so that the chaotic attractor
again appears to be non-uniformly hyperbolic.



Bifurcations of periodic and chaotic attractors in pinball billiards 1511

-3.0

(a) (b)

-2.0

-1.0

0.0

1.0

0.0 0.2 0.4 0.6 0.8 1.0

L
ya

pu
no

v 
ex

po
ne

nt
s

λ

ν
ν

ν ν

-4

-3

-2

-1

0

1

2

3

4

-4 -3 -2 -1 0 1 2

T 0
s

T
2 0

s
T

4 0
s

s

T0
T 2

0
T 4

0

Figure 8. (a) Lyapunov exponents for the cuspless cardioid, averaged over 100 independent
trajectories. Note that ν+ crosses 0 when the chaotic attractor appears, and has a jump where
the period-2 orbit becomes unstable, since then there are no longer attracting periodic orbits with
ν+ < 0. (b) Slap billiard map, together with its second and fourth iterates, for the cuspless cardioid.

As λ increases, the attractor expands in phase space, as shown in figure 6, until it fills
the whole of phase space when λ = 1. In particular, it visits a larger and larger part of the
boundary. Note that the ‘corners’ which are visible in plots of the attractors correspond to
the positions of the discontinuities. Thus the non-differentiability of the map gives rise to
a non-smooth shape of the attractor. The form of the attractor is reminiscent of the Hénon
attractor [Hén76] and its linear counterpart, the Lozi map [Loz78]. This gives an example
where the conclusion of [MPS08] on the existence of complicated dynamics holds, but with
singularities which are not accounted for in that reference.

5.4. Slap billiard map for the cuspless cardioid

Figure 8(b) shows the slap billiard map and its second and fourth iterates for the cuspless
billiard. The graph of the 4th iterate confirms that there are no period-4 orbits.

6. Smooth deformations of the circle: three-pointed egg

The last example of focusing pinball billiards that we consider is a family of smooth
deformations of the circle, given by the equation

ρ(θ) = 1 + α cos(3θ) (13)

in polar coordinates (ρ, θ) with θ ∈ [−π, π); they are related to a class of billiards studied
by Robnik in the case of elastic collisions [Robn83]. The shape parameter α determines the
exact shape of the table: α = 0 gives a circular table, while small values of α give smooth
perturbations of the circle with three-fold rotational symmetry, a shape which we call a ‘three-
pointed egg’, shown in figure 11(a). However, when α > 1/10 the table becomes non-convex
and non-focusing, since ‘waist’ regions develop; we thus consider only α ∈ [0, 1/10] in this
paper. An important feature of this class of tables is that the boundary is analytic, and hence
contains no singular points. The domain of the pinball billiard map is thus compact.

As in the ellipse, the arc length is difficult to calculate, and we again replace it by the
angle θ of collision with respect to the positive x-axis. The curvature may be evaluated using



1512 A Arroyo et al

q q q

(a) (b) (c)

Figure 9. Phase space of the three-pointed egg in the Hamiltonian case λ = 1 (elastic collisions), for
three values of the shape parameter α as indicated. Different colours (or shades of grey) indicate
trajectories from different initial conditions. The phase spaces are of mixed type, consisting of
elliptic islands surrounding periodic orbits, together with a chaotic sea in (b) and (c). The elliptic
period-3 orbits can be clearly seen in all three cases along the lines sin(ϕ) = ±0.5, and the
hyperbolic ones can be seen in (a) on the same line. In (a) and (b), the elliptic period-2 orbits
can also be observed on the line ϕ = 0; these have become unstable for the value of α in (c). (a)
α = 0.02, (b) α = 0.05 and (c) α = 0.08.

equation (10). The minimum curvature occurs for θ̌0:=π/3 and its symmetric counterparts
θ̌1:=π and θ̌2:= − π/3; it is

κ(θ̌i) = − 1 − 10α

(1 − α)2
for i = 0, 1, 2. (14)

We denote by θ̂i :=θ̌i + π (mod 2π) the boundary positions diametrically opposite the θ̌i ; these
are the points of maximal curvature, with κ(θ̂i) = −(1 + 10α)/(1 + α)2.

6.1. Hamiltonian case, λ = 1

It is informative to first study the Hamiltonian case, when λ = 1 and the collisions are elastic.
In this case, for any α ∈ [0, 1/10] the system exhibits a generic mixed-type phase space,
consisting of elliptic islands and a chaotic sea, as shown in figure 9 for three values of the
parameter α in the allowed range.

For α = 0, the dynamics is completely integrable, and the phase space is foliated by
horizontal invariant curves. As α increases, alternating elliptic and hyperbolic periodic points
appear [LL92, section 3.2]. Due to the three-fold symmetry of the tables, there is a bias towards
period-3 orbits: the figures exhibit elliptic points of period 3, with their associated islands, and
for small enough α also islands around elliptic period-2 points. For larger values of α, there
is a transition towards Hamiltonian chaos with a chaotic sea [LL92, chapter 4], although here
full chaos is never reached.

6.2. Slap billiard map

To understand the dynamics of this class of billiards, we next study the slap billiard map T0,
which gives information on the periodic orbits which occur when λ = 0. T0 is shown in
figure 10, as a function of the angle θ around the origin, together with its iterates up to the
fourth. When the shape parameter α tends to zero, T0 converges to the translation x + π , while
for α larger than a critical value, three critical points arise, i.e. θ for which T ′

0(θ) = 0. This
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Figure 10. Iterates up to the fourth of the slap billiard map (λ = 0) for the three-pointed egg,
for (a) α = 0.05 and (b) α = 0.08. In (b), critical points have developed, and the previously
stable period-2 orbits have become unstable in a period-doubling bifurcation, giving rise to stable
period-4 orbits nearby. There are no period-3 orbits.

implies that there are pairs of boundary points whose normals have the same intersection point
on the opposite side of the table.

The graph of T 3
0 shows that there are no period-3 orbits when λ = 0. Thus the period-3

orbits which are found for λ = 1 are created at some non-trivial value of λ ∈ (0, 1). For
α = 0.05 there are stable period-2 orbits joining the vertices of the billiard with their opposite
flat regions. These have become unstable by α = 0.08, and so are no longer visible. There
are also additional period-2 orbits, which are always unstable—these join parts of the billiard
at which the tangents are parallel. The following sections study all of these classes of orbits
in more detail.

6.3. Period-2 orbits

Each vertex θ̂i of the three-pointed egg is joined to its diametrically opposite point of minimum
curvature θ̌i by a periodic orbit of period 2, with outgoing angle zero; these orbits are depicted
in figure 11(a). They exist for any α, but can become unstable. Their stability matrix, which
depends on α and λ, is given by


1 + α4 − 2α2 (163 + 162λ)(
α2 − 1

)2

2(α2 + 18α − 1)(1 + λ)

(α − 1)2

−162α2(α2 − 18α − 1)λ(λ + 1)

(α − 1)2(α + 1)4

λ (λ2 + α4λ2 − 2α2λ(162 + 163λ))(
α2 − 1

)2


 . (15)

Let µ±(α, λ) denote the eigenvalues of the stability matrix. For (α, λ) ∈ [0, 0.1] × [0, 1]
we have µ±(α, λ) �= 1. However, defining

α̃(λ):=
[

82 + 162λ + 82λ2 − 9(1 + λ)
√

83 + 162λ + 83λ2

1 + λ2

]1/2

, (16)

we have µ−(α̃(λ), λ) = −1, i.e. one of the eigenvalues crosses −1, giving rise to a period-
doubling bifurcation: the period-2 orbits become unstable for α > α̃(λ), and a stable period-4
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θ0(a) (b)

Figure 11. (a) Change in position of one of the attracting period-3 orbits as λ is varied,
with the shape parameter α = 0.08. For λ = 1 (thick black line) the orbit is elliptic; for
λ < 1 it is attracting. The values of λ shown are, in an anti-clockwise direction, λ =
1.0, 0.9, 0.8, 0.7, 0.6, 0.5, 0.45, 0.41, 0.40. The latter value is close to the numerically determined
limit of existence of the period-3 orbits, which is λ � 0.39. For this value of α, the period-2 orbits
are unstable; they are shown as dotted lines. (b) Third iterate of the perturbed slap map for the
three-pointed egg with α = 0.08, for λ = 0.0 (slap map; solid line), λ = 0.2 (red dots), λ = 0.3
(green +) and λ = 0.4 (blue ×). The fact that there is no intersection with the diagonal for λ < 0.4
shows that there are no period-3 orbits in those cases.

orbit is created nearby in phase space. If α > α̃(0) � 0.0781, then the period-2 orbit is
unstable for all λ. The curve α̃(λ) is shown in figure 12.

On the other hand, for α < α̃(λ), both eigenvalues have modulus less than one, so the
period-2 orbits are stable. Moreover, for pairs (α, λ) such that α < α̃(1) � 0.0554 and

α > α̂(λ):=9(1 + λ) −
√

82 + 160λ + 82λ2

λ − 1
, (17)

the eigenvalues are complex conjugates.

6.4. Period-3 orbits

For elastic collisions (λ = 1), there are two elliptic period-3 orbits of non-zero angle which join
the flat parts of the boundary, {θ̌i}, as can be seen in figure 9. These orbits come in pairs, with
the same points on the boundary but opposite angles, and by symmetry they form equilateral
triangles in configuration space. It can be verified that they are elliptic (i.e. the eigenvalues of
the stability matrix lie on the unit circle) for any α.

When λ is decreased away from 1, these period-3 orbits persist, but they become attracting,
a phenomenon which is well known for weak dissipative perturbations of Hamiltonian systems
[LT85, FGHY96, MG08]. Higher order periodic attractors are also expected for very weak
dissipation [FGHY96], and these are indeed also found in our system, although we have not
investigated this point in detail.

The symmetry of the table implies that the orbits remain equilateral triangles, but they
must rotate away from their initial position in order to accommodate the altered reflection
angles. Figure 11(a) shows the change in position of one of these period-3 orbits as λ varies
in the case α = 0.08.

Below a value λ = λc(α), which depends on α, these orbits cease to exist. To show this
we use the following argument. Recall that the graph of T 3

0 does not intersect the graph of the
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Figure 12. Parameter space of the three-pointed egg, showing the regions of parameters where
some (red ×) or no (green +) chaotic behaviour is found. This was calculated by taking 100 random
initial conditions for each (α, λ) pair and calculating the corresponding Lyapunov exponents. If
any of the trajectories has a positive Lyapunov exponent, then (α, λ) is assigned to the region with
chaotic behaviour. No chaotic attractors were found for α < 0.06, except for the elastic case λ = 1,
where there is always some chaotic behaviour for any α > 0. Any attractors whose basins occupy
only a very small fraction of phase space are not seen in this calculation, and thus do not appear in
the figure. The black curve represents the function α̃(λ) calculated in section 6.3, which gives the
limit of stability of the period-2 orbits: above the curve, the period-2 orbits are unstable; below it
they are stable.

identity, proving that there are no periodic orbits of period 3 for the slap map. This argument
extends to T 3

λ for small values of λ > 0, as follows. Consider the projection π(θ, ϕ) = θ to the
space of positions only, and study the set {(θ0, π ◦ T 3

λ (θ0, ϕ) : (θ0, ϕ) ∈ M}. This consists of
all pairs (θ0, θ3), where θ0 is an initial position and θ3 is the position of the third iterate of the
initial point, chosen with any initial angle. If the graph of this set does not intersect the graph
of the identity map {(θ, θ)}, then we can conclude that there are no periodic orbits of period 3.
Of course, if there is such an intersection, then we can conclude nothing—in particular, this
does not imply that there are such period-3 orbits.

Figure 11(b) shows this map for α = 0.08 and small values of λ, from which we indeed
conclude that Tλ has no periodic orbits of period 3 below some λc, with λc � 0.39 in this case.
For λ > λc, there are intersections, but we reiterate that no firm conclusions can be drawn
from this; nonetheless, attracting period-3 orbits are found numerically for all λ � λc.

These results suggest that the period-3 orbits disappear in a saddle–node bifurcation at
λ = λc, by annihilating with another class of period-3 orbits. This latter class of orbits
joins the vertices θ̂i of the three-pointed egg when λ = 1, and are always unstable. They
also rotate upon changing λ. We conjecture that these orbits collide with the stable period-3
orbits at λ = λc. Further evidence for this is obtained by calculating the maximal Lyapunov
exponent of the stable period-3 orbits as λ → λc. The Lyapunov exponent converges to 0,
suggesting an eigenvalue 1 of the stability matrix, which indeed corresponds to a saddle–node
bifurcation [Robi99, chapter 7].

6.5. Global picture of parameter space

As we vary the parameters (α, λ) in the two-dimensional parameter space [0, 0.1] × [0, 1], we
numerically observe a variety of different types and combinations of attractors. Roughly, for
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α close to 0 there are only periodic attractors, while for α close to 0.1 there is a range of λ

for which chaotic attractors are observed to coexist with periodic ones, in particular with the
period-3 attractors described above.

In order to begin to understand this phenomenology, we first give in figure 12 a global
picture of parameter space, which depicts only the most gross level of information: whether
or not chaotic behaviour is found for a given (α, λ) pair, that is whether there are any initial
conditions which lie in the basin of attraction of some chaotic attractor, characterized by having
a positive Lyapunov exponent. We can conclude from the figure, coupled with the analysis of
the stability of period-2 orbits, that increasing α tends to destabilize the dynamics, as could be
expected.

We remark that for λ = 1 and any α > 0 there are always some chaotic orbits, namely
those which wander in the chaotic sea exhibited in figure 9 (or those which stay confined to a
stochastic layer for smaller values of α, which is the reason why λ = 1 is indicated as showing
chaotic behaviour in figure 12). The red crosses at λ = 1 should thus extend over the whole
range of allowed α.

Since the billiard table, and hence the pinball billiard map Tλ, are smooth, we can invoke
the implicit function theorem to show that periodic orbits, both attracting and hyperbolic,
should usually be expected to persist under small enough variations both of α and of λ. We are
thus especially interested in the situations where this does not hold, that is when bifurcations
occur. The persistence of chaotic attractors under perturbation is less clear, since these can
undergo different types of crisis, where they suddenly change their extent or indeed disappear
completely due to the interaction with other features of the dynamics [Ott93, chapter 8].

6.6. Period-doubling cascade

The main feature visible in figure 12 is the ‘tongue’ region for large α where chaotic attractors
occur. To understand this, we consider a cut across parameter space by fixing α = 0.08
and studying the evolution of the numerically observed attractors as λ is varied. This gives
representative results for other values of α in this region.

As discussed above, for this value of α, there are attracting period-4 orbits for λ = 0, and
numerically these are found also for small λ. For λ > 0.39, there are attracting period-3 orbits,
as shown above. But figure 12 shows that there is also a region of values of λ, approximately
the interval [0.42, 0.66], which overlaps the region of existence of attracting period-3 orbits,
where chaotic attractors are also found. It is thus of interest to investigate the route by which
the chaotic behaviour is first created and then destroyed.

Numerically we find that this chaotic behaviour arises by the well-known period-doubling
route [Ott93, chapter 8], where a cascade of an infinite number of successive period doublings
at increasing values of λ accumulates at a certain value λ∞. For λ > λ∞, there is a chaotic
attractor with a positive Lyapunov exponent, except in windows where periodic behaviour is
observed, similar to the periodic windows observed in the logistic map [Ott93, chapter 2]. The
development of the observed attractors is shown in configuration space in figure 13 and in
phase space in figure 14.

For small values of λ, there are only stable period-4 orbits. At a critical value of λ,
these become unstable via a period-doubling bifurcation, giving stable period-8 orbits. As λ

increases, we observe a repeated doubling of the period of the attracting orbits, giving orbits
with period 2n at λn, where λ3 � 0.372, λ4 � 0.389, λ5 � 0.393 and λ6 � 0.3935. These
values are slightly sensitive to the tolerance used in the Newton–Raphson algorithm, and to
the precision of the calculation. To obtain these orbits numerically, it is useful to note that
they can be distinguished from the coexisting period-3 orbits by the respective values of their
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(a) (b) (c) (d)

Figure 13. Attractors in configuration space for the three-pointed egg with α = 0.08: (a) period-4
orbit which persists from the stable period-4 orbit of the slap map (λ = 0), (b) period-8,
after undergoing a single period-doubling bifurcation, (c) localized chaotic attractor, after the
accumulation of period doublings and (d) delocalized chaotic attractor, after the merging crisis.
Here, the trajectories tend to remain for a long time in each part of the attractor that was previously
localized, before jumping to a different part, as shown by the colours (or shades of grey) in the
figure. In each of (c) and (d), a coexisting period-3 orbit is also shown in black. Note that for this
value of α, the horizontal period-2 orbit is unstable even for λ = 0.1, and thus does not attract
generic initial conditions. (a) λ = 0.1, (b) λ = 0.39, (c) λ = 0.43 and (d) λ = 0.45.

q q

(a) (b)

Figure 14. (a) Attractors in phase space for the three-pointed egg with α = 0.08 and λ = 0.43
(red/heavy points), λ = 0.45 (green/light points). The coexisting period-3 attractors are also shown
(black ×). (b) Enlargement of the attractor for λ = 0.45.

maximal Lyapunov exponent. Although this is always negative for periodic orbits, its value is
around −0.3 for the attracting period-3 orbits, and around −0.01 for period-32, for example.

By λ = 0.3937 a chaotic attractor (i.e. one with a positive Lyapunov exponent) is obtained.
This chaotic attractor has features which appear visually similar to the type of structure found
in the Hénon attractor [Hén76]. Part of the bifurcation diagram is shown in figure 15 for
α = 0.08, where the period-doubling cascade and the subsequent merging crisis (see below)
can be seen.

Also visible on figure 12 are what appear to be isolated regions with chaotic attractors.
The fact that they appear isolated is apparently due to the resolution of the plot. These chaotic
attractors also appear to be created by period-doubling cascades, starting from periodic orbits
of higher period, as is visible as what initially appears to be ‘noise’ in figure 15. In this work
we have not attempted to exhaustively characterize the structure of attractors, which are known
to exhibit very complicated coexistence phenomena in other models [FGHY96, MG08].
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Figure 15. Part of the bifurcation diagram of the three-pointed egg with α = 0.08, for a range
of λ including the periodic-doubling cascade, and the subsequent crisis of the chaotic attractors
when three spatially distinct attractors combine into a single one. For each horizontal slice with
fixed λ, attractors in phase space obtained from different initial conditions are shown, indicating
the range of possible behaviour for each value of λ. The ‘noise’ visible for smaller values of λ

are period-doubling cascades of other orbits, which also reach a crisis when they are absorbed into
other attractors.

6.7. Crises of chaotic attractor

We continue to fix α = 0.08. Above λc � 0.42, the attractor has behaviour reminiscent of
the logistic map, with alternating chaotic and periodic windows. As λ increases, the chaotic
attractor expands in phase space, and has an appearance somewhat similar to that of the Hénon
attractor.

Initially there are three separate attractors, each concentrated near one of the diametric
period-2 orbits. However, at around λ = 0.4435, there is a first crisis [Ott93, chapter 8] in the
chaotic attractor: the previously separate three symmetric parts of the attractor abruptly join
together into a single attractor.

This single attractor then continues to expand in phase space until another crisis occurs: the
chaotic attractor abruptly vanishes when λ � 0.66. The reason for this is found in figure 16(a),
which shows the basins of attraction of the chaotic and period-3 attractors for λ = 0.66, just
below the crisis. As λ increases, both the chaotic attractor and the basins of the periodic
attractors grow. For a slightly larger value of λ, the chaotic attractor touches the basins of the
period-3 attractors. After a chaotic transient which resembles the previously existing attractor,
all initial conditions are then attracted to the period-3 orbits, and the chaotic attractor thus
disappears.

In figure 16(a), the basins of the two distinct period-3 orbits are not distinguished. In fact,
they are completely separate: the points close to each orbit are attracted to it, and the basins
are divided by that of the chaotic attractor. Once the chaotic attractor has vanished, however,
the region that was occupied by its basin is now attracted to one of the two period-3 orbits.
Their individual basins are shown in figure 16(b). We find that their basins are apparently
completely intermingled in this intermediate region.

We remark that the chaotic attractor found in the three-pointed egg is interesting since it
is the only case that we have studied of a billiard table having a smooth boundary (that is, with
no points at which the boundary is not C3) which exhibits a chaotic attractor.
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q q

(a) (b)

Figure 16. Basins of attraction in phase space for the three-pointed egg with α = 0.08 and (a)
λ = 0.66 and (b) λ = 0.7. In (a), the chaotic attractor is shown with (blue) points and its basin
of attraction with (green) +, the period-3 attracting orbits are shown as black × and their basins
of attraction in white. The individual basins of the two period-3 orbits are disjoint, with one lying
above and the other below the chaotic attractor. In (b), the chaotic attractor has disappeared in a
crisis, leaving just two attracting period-3 orbits, shown as black ×. The basins of each of these
orbits are distinguished, one in (red) dots and the other blank. The region in (a) that was occupied
by the basin of the chaotic attractor is now a region where the basins of the two periodic orbits
intermingle, apparently arbitrarily closely in the whole region.

7. Discussion and conclusions

We have shown that there is a large variety of interesting phenomena in dissipative pinball
billiards. Generically, a mixture of periodic and chaotic attractors is found, with only the
former in the ellipse and only the latter in the cardioid.

In the cuspless cardioid, we showed that discontinuities in the curvature of the table
boundary can lead to the sudden creation of a chaotic attractor. These discontinuities are also
reflected in the existence of a kink structure in the resulting attractor in phase space.

Smooth tables, such as the three-pointed egg, can exhibit complicated sequences of
bifurcations, including period-doubling cascades from periodic orbits of different periods.
These can lead to chaotic attractors which then collapse by means of crises when they touch a
different basin of attraction.

In [MPS08], it was shown that in systems with dominated splitting there is another
possibility in addition to periodic and chaotic attractors, namely the existence of sets
diffeomorphic to a circle where the dynamics is conjugate to an irrational rotation (for details,
see [MPS08, section 2]). We have not observed such behaviour in the models we have studied.
One of the possible reasons for the absence of such behaviour is the fact that we have only used
uniform contraction of the angle at collisions; other types of collision rule are under study. This
kind of behaviour could, however, perhaps be found on the boundaries which divide different
basins of attraction, which are often found to be smooth one-dimensional curves, as depicted
in several of the figures in this paper.

We found that weakly dissipative pinball billiards, i.e. with λ close to 1, give some
information on the existence of elliptic periodic orbits in the elastic case. Furthermore, we
studied two cases, the cardioid and the cuspless cardioid, for which the dynamics is fully
chaotic when λ = 1, and in this case weak dissipation leads instead to a chaotic attractor. We
suggest that adding weak dissipation could thus possibly be useful as a means of detecting
small elliptic islands in the phase space of Hamiltonian billiards. An interesting alternative
method for doing this was proposed in [TK07].
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An open question is whether a similar dynamical portrait in parameter space occurs
for similar billiards, for example a K-pointed egg given by the polar equation ρ(θ) =
1 + α cos(Kθ), for other values of K > 3 ∈ N.

The study of pinball billiard dynamics in other types of billiard table, including dispersing
billiards, is a work in progress.
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Appendix A. Numerical methods

In this appendix we summarize the numerical methods used to calculate the figures shown in
the paper.

Appendix A.1. Trajectories and attractors

Initial conditions for the simulations are generally chosen uniformly in the interior of the
billiard table, with initial velocities chosen with uniform directions ϕ ∈ [0, 2π), and are then
mapped to the first intersection with the table boundary. The subsequent dynamics is followed
by finding each consecutive intersection with the boundary and implementing the pinball-type
collisions. Cartesian coordinates are used whenever possible.

The distance (or equivalently time) t until the next intersection with the table boundary is
found using techniques specific to each type of table. For the ellipse, the intersection is given
by solving a quadratic equation which is a generalization of that used for intersections with
a circle [Gas98]. In the cardioid, a Newton–Raphson step is used to find the first boundary
collision, and thereafter a cubic equation is solved, following [BD97]. In the cuspless cardioid,
this is adapted so that if the proposed root lies in the forbidden region then the particle instead
collides with the plane. In the three-pointed egg, a Newton–Raphson method is used to find
the intersections.

Once the collision point q on the boundary has been found, the pinball billiard dynamics is
implemented as follows. The normal vector n(q) at the point q of collision is calculated based
on the equation describing the table boundary, and a tangent vector t(q) there is constructed
orthogonal to n. The incoming angle η at the collision is found as η = cos−1(v · n), and the
outgoing angle is then given by ϕ = λη. The outgoing velocity in Cartesian coordinates is
finally given by v′ = n cos ϕ + t d sin ϕ, where d = ±1 ensures that the component of the
outgoing velocity is in the same direction with respect to the tangent vector as the incoming
velocity was, as determined by the sign of v · t. Note that in the case of elastic collisions,
the dynamics may be implemented completely in Cartesian coordinates [Gas98]; however, the
definition of pinball billiard dynamics makes the use of trigonometric functions unavoidable.

To find attractors of the dynamics, the first several thousand collisions in the trajectory
emanating from each initial collision are discarded. Assuming that transients have already
decayed by that point, and that the dynamics is transitive on the attractor, the result is an
approximate picture of the attractor.
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Appendix A.2. Lyapunov exponents

The Lyapunov exponents of an orbit of the pinball billiard map Tλ are calculated using the
algorithm of [DPH96]. This involves derivative equation (3) of the map of the pinball billiard
transformation. For completeness we summarize the main steps of the procedure.

Given an initial point x in the two-dimensional phase space, several thousand collisions
in its trajectory are discarded to remove transients. Then the trajectory is extended to the next
collision, and two orthonormal two-dimensional vectors v1 and v2, which are thought of as
tangent vectors at the point x, are manipulated in parallel. Each tangent vector is acted on by
the derivative matrix DxTλ, to give two new vectors v′

1 and v′
2, which are then reorthogonalized

using a Gram–Schmidt procedure. This process is repeated at each collision. The Lyapunov
exponents ν1 and ν2 are given by the average growth rates of the normalizing factors. In
particular, their sum ν1 + ν2 gives the logarithm of the mean rate of volume contraction of the
dynamics on the attractor in phase space.

Appendix A.3. Basins of attraction

To determine basins of attraction in phase space, initial conditions are chosen uniformly in
phase space as above (with the initial boundary collision being an elastic one, to allow all initial
directions to be produced). For each initial condition (s, ϕ), the two Lyapunov exponents are
calculated. If the maximal Lyapunov exponent is positive, then the trajectory converges to a
chaotic attractor; if it is negative or 0 then it converges to a periodic attractor. A symbol is
plotted at (s, ϕ) according to the type of attractor found there. For the correspondence between
negative Lyapunov exponents and periodic orbits, and between positive Lyapunov exponents
and chaotic behaviour on strange attractors, we refer to [ER85, section III].
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