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Abstract

We study, by numerical simulations and semi-rigorous arguments, a two-
parameter family of convex, two-dimensional billiard tables, generalizing the
one-parameter class of oval billiards of Benettin—Strelcyn (1978 Phys. Rev. A17
773-85). We observe interesting dynamical phenomena when the billiard tables
are continuously deformed from the integrable circular billiard to different
versions of completely chaotic stadia. In particular, we conjecture that a
new class of ergodic billiard tables is obtained in certain regions of the two-
dimensional parameter space, when the billiards are close to skewed stadia.
We provide heuristic arguments supporting this conjecture, and give numerical
confirmation using the powerful method of Lyapunov-weighted dynamics.
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(Some figures in this article are in colour only in the electronic version)

1. Introduction

Billiard models are a class of Hamiltonian dynamical systems which exhibit the full range of
behaviour from completely integrable to completely chaotic dynamics [2]. They consist of
a point particle which collides elastically with the walls of a bounded region, the billiard table;
the shape of the table determines the type of dynamics which is observed.

3 This paper is dedicated to the memory of Jorge Alejandro Hernandez Tahuildn, who died tragically shortly after this
paper was submitted. This work formed part of his Master’s thesis, and was to be his first published paper.
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Several classes of two-dimensional billiard tables have been studied which interpolate
between completely integrable and completely chaotic dynamics, including both one-
parameter [1-6] and two-parameter [7] families. These allow us to observe the transitions
by which the typical phase space, which is a mixture of ergodic, chaotic components, and
regular KAM islands, evolves from one extreme behaviour to the other.

The chaotic limit is often represented by the Bunimovich stadium billiard, which consists
of two semicircular arcs connected by two parallel line segments. When these two segments
are non-parallel and one of the arcs is shorter, with the other being longer than a semicircle,
we instead obtain the skewed stadium or squash billiard table. Such stadia are known to be
ergodic and hyperbolic; however, as a consequence of so-called ‘quasi-integrable’ phenomena,
the hyperbolicity is non-uniform, and the dynamical behaviour is very sensitive to perturbations
of the boundary. There is an abundance of literature on stadium billiards; some works that are
relevant to our discussion are [8—12]; see also section 2.1 for a more detailed description of
stadia.

In this paper, we study a two-parameter set of two-dimensional billiard tables which
generalizes the one-parameter family of oval billiards studied in [1, 3] in a particular way; see
section 2.2 for an explicit description. Our models constitute a subcase of a rather general class
of billiards introduced, but not studied in detail, by Hayli and Dumont [13]. Our class is of
particular interest since it includes as limiting cases an entire family of ergodic skewed stadium
billiards. Here these are generalized by deforming the sides of the stadia to circular arcs.

As in previous works on billiards formed from piecewise-smooth components
[1,3,7,13-18], for a large set of parameter values, we find coexistence of stability islands
and chaotic components in phase space. However, we also find numerically that billiards
which are sufficiently close to the limiting skewed stadia appear to have no remaining stability
islands—the phase space is completely filled by a single chaotic, ergodic component. This
motivates us to conjecture a new class of ergodic billiard tables. Similar conjectures have been
suggested for other billiard models of similar type—see, e.g. [7].

Our case is, however, different from previous studies in several respects. Firstly, the new
class introduced in this paper, and conjectured (for an open set of parameter values) to be
ergodic, consists of convex planar billiards. The issue of ergodicity versus KAM islands in
convex billiards has been the focus of continued interest for several decades. On the one hand,
Lazutkin’s fundamental theorem [19] and its strengthening by Douady [20] show that a convex
planar billiard with at least C® boundary cannot be ergodic, due to the existence of caustics near
the boundary of the billiard. Furthermore, recent results by Bunimovich and Grigo [21, 22]
show that elliptic islands arise in C? stadium-like billiards (billiard tables constructed from
stadia by replacing the discontinuity of the curvature with a C>-smoothening).

On the other hand, several classes of convex planar billiards (with some discontinuity
points of the curvature) are proved to be ergodic (see section 2.1 for a partial list of references).
A common feature of these examples is the defocusing mechanism, which requires that
whenever a narrow beam of (initially) parallel rays completes a series of consecutive reflections
on one of the smooth focusing components of the billiard boundary, it must pass through a
conjugate point and become divergent before the next collision with the curved (non-flat) part
of the boundary; see [2,21] for a more detailed description.

Defocusing (in this sense) cannot take place in our examples: since all boundary
components are curved, it would require that the discs which complete each circular arc
be contained inside the billiard table, which is prevented by the construction. Hence the
mechanism which produces the (conjectured) ergodic behaviour must be different. We are
aware of two other examples of ergodic planar billiards with focusing boundary components
where defocusing is violated [23, 24]; however, non-convexity of the billiard domain plays an
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important role in both cases. Similarly, numerical studies in [7,25] suggest ergodicity only
for certain non-convex domains.

Secondly, even though arigorous proofis currently not available, we give, in addition to the
simulated phase portraits, further evidence which strongly supports our conjecture. Heuristic
arguments are provided in section 4, which rely on the similarity of the dynamics with those
of skewed stadia, and on the explicit analysis of sliding trajectories. The absence of islands is
then tested numerically by the powerful method of Lyapunov-weighted dynamics (LWD) in
section 5. Before these arguments are given, the two-parameter family of generalized squashes
is defined in section 2, and some numerical results on the dependence of the dynamics on the
two geometrical parameters are presented in section 3.

2. The model

We begin by defining the class of generalized squash billiard models.

2.1. Convex billiard tables

Consider a convex, compact domain Q C R? bounded by a closed, piecewise-smooth curve
I' = Q. The motion of a point particle that travels along straight lines with constant speed
in the interior of Q, and bounces off elastically (angle of reflection equals angle of incidence)
when reaching the boundary I, is referred to as billiard dynamics.

We investigate these dynamics in discrete time, that is, from collision to collision. The
phase space is then the cylinder M = I' x [0, 7], with M > x = (k, ), where the
configurational coordinate is the arc length k along the boundary, which satisfies 0 < k < |I|
and describes the point of the closed curve I'" at which the collision takes place, while the
velocity coordinate 0 < ¢ < m describes the angle that the outgoing velocity makes with the
(positively oriented) tangent line to I" at the point k.

Given x € M, the position and velocity at the next collision are uniquely determined,
so that the billiard map 7 : M — M is well defined (provided that the boundary of the
table is C'-smooth). It is usual to visualize M as a rectangular domain in the plane, and
the consecutive points along a trajectory of 7 as points in this domain. 7 has a natural
invariant measure p, which is absolutely continuous with respect to Lebesgue measure on M,
given by

du = const - sin ¢ dk de.

For further material on billiards in general we refer to the monographs [2, 26].

The billiard map may show a surprisingly wide variety of dynamical phenomena for
different choices of the billiard table I". The best known case is the billiard in a circle: for this
geometry the dynamics are integrable: the angle of incidence ¢ is an integral of motion, the
values of which label the invariant curves [2].

If T is a C>*3-smooth closed curve, then for trajectories in the vicinity of the boundary
the dynamics resemble, to some extent, those of the circular billiard: Lazutkin showed that a
positive-measure set of the phase space in a neighbourhood of the boundaries ¢ = Oandg = =
is foliated by invariant curves [19], and Douady later lowered the requirement to C%-smooth
boundaries [20].

However, if I has less smoothness, then the billiard can be completely chaotic and ergodic.
The first examples of such billiard tables are the celebrated stadia:

o the straight stadium is formed by two identical semicircles, joined at their endpoints by
two parallel lines along their common tangents;
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o the skewed stadium, or squash table, is formed by two circular arcs of differentradiir < R,
joined at their endpoints by non-parallel straight lines along their common tangents.

Stadia were introduced and their chaotic character first studied by Bunimovich in his
famous paper [8]. It is known that for these tables the billiard map T is completely hyperbolic,
i.e. there is one strictly positive and one strictly negative Lyapunov exponent for p-a.e.
x € M, and T is ergodic with respect to u; see [2,10,27] for a detailed description of
stadia.

Stadia have three important characteristic features:

e The table boundary I' is only piecewise smooth: at the intersection points of the
circular arcs and straight lines, the curvature of the boundary (the second derivative)
is discontinuous. The resulting singularities play a crucial role in the dynamics of the
billiard map, both for the stadia and for the tables investigated below.

e The map 7 has many periodic points, all of which are either hyperbolic or parabolic. In
the case of the circular billiard, all periodic points are parabolic. We will see below that
in the generalized squash tables, the third class, elliptic periodic points, may also arise,
typically giving rise to KAM islands in their vicinity.

e The billiard map T in stadia is only non-uniformly hyperbolic. The reason for this is
the presence of so-called quasi-integrable—sliding, bouncing and diametrical—trajectory
segments of arbitrary length (see figure 8). When the geometry is perturbed, these quasi-
integrable phenomena may (or may not) create islands of integrability.

The mechanism responsible for the chaotic behaviour in stadium-shaped tables, known
as the defocusing mechanism, has also been observed and studied in other classes of billiard
tables in works of Bunimovich, Donnay, Markarian, Szasz and Wojtkowski [28-33]. However,
the geometry of the billiards studied in this paper is quite different from the geometry of any
of these classes.

2.2. The two-parameter family of generalized squashes

The family of convex billiard tables studied in this paper is described by two parameters,
b and c. The table is built on a trapezium, whose geometry is specified by the parameter
0 < b < 1. On each side of the trapezium is placed a circular arc joining its endpoints, with
adjacent arcs constrained to meet with common tangents; the parameter 1 < ¢ < oo specifies
the ratio of the radii of the arcs.

More precisely, the base and the two sides of the trapezium are fixed to have unit length,
and b is the length of the top, which is parallel to the base. The two extreme cases b = 0 and
b = 1 correspond to the equilateral triangle and the square, respectively; see figure 1(a).

The table is left-right symmetric, with the circular arcs on the two sides having the same
radius. The radii of the arcs on the base, sides and top are denoted by R, R, and r, respectively.
As adjacent arcs are required to have a common tangent line where they meet, the shape of
the table is determined by the value of any one of the radii—for a given trapezium (value
of b), the geometry is parametrized by a single quantity, chosen for convenience to be the ratio
¢ := Ry /R; see figure 1. For brevity, throughout the paper the arcs corresponding to the base,
the sides and the top are referred to as the bottom arc, the ‘almost-flat’ arcs and the top arc,
respectively. The construction of the tables is detailed in the appendices; they can be viewed
as a subfamily of a general class of billiards introduced in [13].

The case ¢ = 1 gives a circle for any value of b; the case b = 1 and ¢ = oo corresponds to
the straight stadium; and the case b < 1 and ¢ = oo gives a skewed stadium, with the amount
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c=1 c=3 c=5 c = 1000

(a) Trapezia for b =0, 0.2, 0.4, (b) Effect of the parameter ¢, with b = 0.4 fixed.
0.6 and 1.0 (inside to outside).

Figure 1. Variation of the geometry of the generalized squash billiards as a function of the two
parameters b and c.

of skewness depending on the value of b. Thus, by changing ¢, we may continuously deform
the integrable dynamics of the circular billiard into a completely chaotic billiard.

The transition for the case b = 1 (oval billiards based on a square) has previously been
studied [1, 3], although with a different parametrization. In this paper, we concentrate instead
on the role of the parameter b, which determines the relative width of the top and bottom
sections of the billiard, and which leads to distinct phenomena for finite, but large enough, c.
We remark that an important role is played by so-called ‘quasi-integrable’ phenomena, which
are common to all stadium-type billiards. These include arbitrarily long sequences of collisions
which do not contribute to hyperbolic behaviour; details are given in section 4.

3. Parameter dependence of dynamics

In this section, we survey the types of dynamical behaviour observed in numerical experiments
in the two-dimensional (b, ¢) parameter space. The numerical methods used are briefly
described in the appendix B. Numerical results for other billiard models formed by piecewise-
smooth curves can be found in [1, 3,7, 13-18].

3.1. Parameter space

It is useful to start from the known behaviour [1, 3] of the oval billiards obtained when b = 1.
In this case, when ¢ = oo, the table is an ergodic straight stadium. As soon as c is decreased to a
finite value, however, ergodicity of the billiard map is ruined. More precisely, elliptic islands—
regions of positive Lebesgue measure which are foliated by invariant curves and concentrated
around elliptic periodic points—appear in the phase space. For ¢ > 1, coexistence of such
elliptic islands and ergodic components of positive measure (‘chaotic sea’) is observed. For
large enough c, there is a single chaotic component (still coexisting with elliptic islands), while
the number of chaotic components increases once c¢ is decreased below certain thresholds.
References [1, 3] concentrate on this phenomenon of splitting of chaotic components.

The phenomenology is initially similar when we introduce b < 1. For ¢ close to the
limiting integrable case ¢ = 1, the phase space is dominated by elliptic islands. For ¢ = 1.2 it
is already possible to observe a finite number of ergodic components, each of positive Lebesgue
measure (‘chaotic seas’) which fill most of the phase space, while for ¢ 2 1.5 we observe a
single, dominant ergodic component. The splitting of ergodic components studied in [1, 3]
occurs at ¢ >~ 1.35 when b = 1, while for b < 1 we observe similar phenomena, but restricted
to a smaller range of c.
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Figure 2. The period-2 orbit and the corresponding island in phase space for ¢ = 100 with b = 1
(a)and b = 0.99 (b).

As we increase ¢ further, the proportion of phase space occupied by elliptic islands has
a tendency to decrease, and beyond a certain threshold, no remaining islands are numerically
observed. This leads to our main conjecture (section 3.4) that the system is ergodic in a certain
region of parameter space.

3.2. Existence and stability regions of periodic orbits

Elliptic islands are concentrated around elliptic periodic orbits, so studying the existence and
stability properties of such orbits is critical [7]. For the b = 1 case, an important feature of
the dynamics is a period-2 orbit which is present for any finite value of ¢, and which bounces
perpendicularly between the midpoints of the almost-flat arcs. Its stability properties—in
particular, the stability parameter s (cf appendix B)—can easily be calculated: when ¢ < oo
(that is, Ro, < 00), itis elliptic, and gives rise to an island. As shown in figure 2(a), the island
around this orbit extends across the whole range of k along the almost-flat arcs, while its width
in the ¢ direction decreases as c is increased.

For b < 1, however, the width of the island shrinks both in the k and in the ¢ directions as
c is increased, as shown in figure 2(b), and finally disappears for large enough c. The reason
is that the almost-flat arcs are now placed along two non-parallel sides of the trapezium, so
that for large enough c there no longer exist points on these two arcs with mutually parallel
tangent lines, and hence there is no such period-2 orbit. In this case, the bottom arc is forced
to be longer than a semicircle, due to the orientation of the tangent lines at the points where
the bottom and almost-flat arcs join. The limit of existence of this period-2 orbit is thus when
the bottom arc is exactly a semicircle, which occurs at ¢ = ¢o(b) := ﬁ.

For ¢ > ¢y (b), the period-2 orbit and its corresponding island disappear, but other islands,
corresponding to periodic orbits of higher periods, appear in certain regions of the (b, c) plane.
These islands generally appear in a certain window of values of ¢ for a given, fixed b. Such
stability regions for certain orbits of low period are shown in figure 3. For example, in the
(blue) B region in the parameter space of figure 3, there exists an island around the period-4
orbit shown at the top right, for which the bounces on the bottom and left arcs are perpendicular
(see also figure 4(a)).

3.3. Geometric destruction and period doubling of periodic orbits

A detailed study of the bifurcations occurring in the system is beyond the scope of this paper,
and not our main goal here; instead, we give a short description of the main features that we
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Figure 3. Regions of stability of certain types of periodic orbit. Each shaded region depicts the
numerically determined region of parameter space in which the corresponding labelled orbit type
(with the same topology, or coding) is stable.

have observed (see also [7]). We remark that bifurcation phenomena in piecewise-smooth
systems are currently the subject of intensive studies—see e.g. [34, 35] and references therein.

Based on our observations, there are two kinds of dynamical phenomena that mainly
determine whether an island of stability is formed around a periodic orbit. Firstly, the
singularities of the boundary play an important role, since they influence the very existence
of periodic orbits. To categorize such orbits, we use a coding of four symbols {B, R, T, L},
denoting bounces on the bottom, right, top and left arcs, respectively, and describe periodic
orbits according to a finite code (in general non-unique) of length equal to the orbit’s period.

For example, consider again the period-2 orbit with code (R, L), which consists of
consecutive perpendicular bounces on the two almost-flat arcs, and which exists for ¢ < co(b).
As c tends to c¢o(b) from below, the locations of the collision points on the sides move closer
to the ends of the almost-flat arcs, finally reaching the lower corner points (singularities) when
¢ = co(b). For larger values of c, this period-2 orbit with code (R, L) ceases to exist, since
there are no points on the almost-flat arcs with mutually parallel tangent lines. We refer to this
as geometric destruction of the periodic orbit.

However, geometric destruction is not the only mechanism by which an island
corresponding to a periodic orbit may disappear. For example, figure 4(a) shows a period-4
orbit, around which an island of stability exists in the range 6.7 < ¢ < 8.7 for b = 0.4. When
¢ ~ 8.7, the orbit loses stability, even though its collision points are still located far from
the singularities. In this case, the disappearance of the island is rather related to the stability
properties of the periodic orbit.

In the setting of smooth dynamical systems, it is known that when a periodic orbit
loses stability (the stability parameter |s| increases above 2, cf appendix B), period-doubling
bifurcations may be observed; see e.g. [36]. As observed in [7], this can also occur in billiards,
provided the periodic orbit stays away from the singularities.

Consider again the period-4 orbit studied above for b = 0.4. As c increases from ¢ >~ 6.7
to ¢ >~ 8.7, the stability parameter s decreases from 2 to —2; see figure 6. When c reaches
the critical value 8.7, the shape of the island changes and it splits into two components, the
centres of which are consecutive points of a period-8 orbit, shown in figure 4(b). The changes
in shape of the corresponding islands which surround the periodic orbits is shown in figure 5.
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(a) Period-4 orbit with ¢ = 8.59. (b) Period-8 orbit with ¢ = 8.61.

Figure 4. Period-doubling bifurcation of a period-4 orbit for b = 0.4 as c is varied. The (red) thin
straight lines indicate the singularities in the boundary of the squash, where the circular arcs are
joined. The arrows indicate the direction in which the trajectory moves as ¢ increases.

cos(y)

0.482 O.iSG 0.490 0.482 D.iBB 0.490 0.482 O.ﬂSG 0.490 0.482 O.iBS 0.490

Figure 5. Phase space structures for the period-doubling bifurcation of the elliptic periodic orbit
shown in figure 4(a), highlighting the splitting of the corresponding island. Parameter values
b =0.4 and c = 8.59, 8.61, 8.63 and 8.69 from left to right.

The period-4 orbit indeed undergoes a period-doubling bifurcation, becoming hyperbolic and
giving rise to an elliptic period-8 orbit, around which the island forms. As c is increased
further, the geometry of the period-8 orbit is deformed, and soon a collision point reaches a
corner, resulting in geometric destruction of the island.

Similar period-doubling bifurcations occur for other periodic orbits when their
disappearance is not due to geometric destruction. However, the presence of the singularities
modifies the picture significantly, so that islands are subject to the combination of two effects,
geometric destruction caused by the singularities of the table, combined with the generic
features characteristic of smooth systems with mixed phase space; see also [7, 37] for similar
phenomena.

3.4. Main conjecture: a class of ergodic convex billiards

We now focus on the case of large ¢ for some b < 1 fixed. The tendency is that as ¢ increases,
stability islands form around orbits of higher period. Typically, orbits of higher period are
more sensitive to geometric destruction, since the presence of more bounces leads to more
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Figure 6. Dependence of the stability on ¢ for the period-4 and period-8 orbits shown in figure 4.

possibilities for one of the collision points to collide with a singularity when the parameters
are varied. Thus the area in phase space of higher period islands tends to decrease with
increasing period. For this reason, the region in the parameter space where period-doubling
bifurcation phenomena can actually be observed is quite limited.

Furthermore, as the parameter c¢ is increased even further, it appears that all islands
disappear, and that the system thus becomes ergodic. These numerical observations motivate
the following conjecture:

Main conjecture. For any b < 1, there exists ¢(b) such that for any pair of parameters (b, ¢)
with ¢ > ¢(b) the billiard dynamics are ergodic.

That is, once the generalized squash billiards are close enough to skewed stadia, we
conjecture that they are ergodic. There is an obvious lower bound ¢(b) > ¢((b) on the region
of ergodicity in parameter space (cf section 3.2); both quantities tend to co as b tends to 1, i.e.
in the limit of oval billiards, for which there is never ergodicity for ¢ < co.

Similar conjectures have been made for certain regions of parameter space in other billiards
with piecewise-smooth boundaries [7]. Here, however, we provide heuristic arguments, and
confirmation using a more powerful numerical method, in the next two sections.

4. Heuristic support for the conjecture

In this section, we support our conjecture with heuristic arguments. Even though a rigorous
proof, which appears to be a technically challenging task, is currently not available, we believe
that we capture the key phenomena.

Our heuristic argument relies on a comparison of the dynamics of the model for large ¢
with the limiting case ¢ = 00, i.e. the skewed stadia, which have been extensively studied. We
first summarize the key characteristics of the dynamical behaviour of these stadia (¢ = 00);
for more details, see in particular [10, 11, 38].

4.1. Dynamics of skewed stadia (¢ = 00)

On a large part of phase space, the billiard dynamics for stadia are strongly hyperbolic. It
is, on the other hand, possible to locate precisely the places where hyperbolicity can be
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arbitrarily weak: these correspond to quasi-integrable (bouncing, diametrical or sliding)
trajectory segments, which can be analysed by direct geometrical arguments. Roughly, if one
considers a smooth curve in the phase space that has completed a quasi-integrable segment of
length n; > 1, then the points along this curve will begin another quasi-integrable segment
of length n, > 1, and, assuming that the curve is sufficiently stretched out, it is possible to
calculate the transition probabilities for the allowed n; — n, transitions. By this analysis
one observes that, on the average, n, is smaller than n;. This results in escaping from the
quasi-integrable region: almost every point leaves this part of the phase space after a finite
number of consecutive quasi-integrable segments.

The above behaviour plays a crucial role in the analysis of stadia; it resulted, for example,
in the proof of finer statistical properties like correlation decay rates and statistical limit
laws [2, 10, 11] and in the investigation of survival probabilities [12]. As already mentioned
above, a mathematically rigorous proof of our main conjecture is beyond the scope of this
paper. Instead, we argue that generalized squashes show a dynamical behaviour very similar
to the one sketched above. More precisely, on a large part of the phase space—in particular,
apart from sliding trajectory segments—the dynamics for the ¢ = oo and the finite ¢ > 1
cases are directly comparable. On the other hand, sliding trajectory segments can again be
analysed by direct geometrical arguments, and we observe escape from the quasi-integrable
region in the sense described above.

4.2. Notation and phase spaces

A key ingredient of our argument is the comparison of the billiard maps forc = coand ¢ > 1,
for the same value of b < 1. To compare the two maps, their phase spaces are identified by
amap x : M — M®, which is defined below. Throughout, upper indices refer to the value
of ¢ (¢ = oo or ¢ > 1 finite), which we omit if the description applies to both cases; later, we
will also need to compare maps for different b, in which case the two upper indices (b, ¢) of
the map will be given.

Forx = (k,p) e M, withO0 < o < mand0 <k < [T',let0 =ky < k) <k, < k3 <
ks = |I'| denote the arclength coordinates of the corner points separating consecutive arcs.
We denote by My, Mg, M7 and M, the sets of points (k, ¢) with k € [ko, k1], k € [k, k2],
k € [ky, k3] and k € [k3, k4], respectively—that is, phase points on the bottom, right, top and
left arcs. We also denote the angles of the bottom and top arcs by 2« g and 2«7, respectively,
so that kj = 2Rap and k3 — k; = 2ray, where R and r are the radii of the bottom and top
arcs, respectively. The set M = Mg U M7, where

k k
Mp = {(k,(ﬂ) eMBl(n_aB)k_ Swé(n—aB)E+aB}’
1

— ( ) M |( )k—kz < <( )k—k2
Mr = k,(p (S 7| (T —Or IR (T —«o + o ,
g k3—k2 Tk3—k2 g

a union of two parallelograms, plays a special role in our discussion. Note that x € M if
and only if x is on the bottom arc and its image, T x, is not on the bottom arc, and a similar
characterization applies to My with respect to the top arc. See figure 7 for the geometry of these
sets. As M is of positive measure, the first-return map 7 : M — M is naturally defined, and
for the case of ¢ = 0o, T® : M® — M is known to have strong hyperbolic properties—see
e.g. [10]. To exploit this fact, it is not so much the billiard maps 7¢ and T, but rather the
first-return maps T> and T°¢, that we would like to compare.

This motivates the definition of the identification map x : M ¢ > M, as follows. Note
that both Mp \ Mp and M7 \ M7 are unions of two triangles, hence the phase space M can be
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Figure 7. The sets Mp and M7. The phase space is partitioned into eight pieces on each of which
the identification map y is linear.

regarded as a union of eight polygonal pieces—two rectangles, two parallelograms and four
triangles; see figure 7. The map x : M¢ — M™ is piecewise linear: it rescales linearly each
of the eight polygonal pieces of M¢ onto the corresponding polygonal pieces of M>. Note
that x matches the complete arcs of M¢ with the complete arcs of M*°, and it matches M°¢
with M. Furthermore, the singularity set of x and x ! is contained in the singularity set of
T¢ and T, respectively. These properties ensure that 7> and T°¢ can be compared on a large
part of M, specified precisely below. It is also worth noting that the identification map can be
defined if the values of b are not equal in the cases ¢ = ¢ and ¢ = oo.

4.3. First-return maps

To proceed, we recall the notion of symbolic collision sequence (or code) from section 3.3: the
symbolic sequence for the trajectory segment (x, T'x, ..., TVx)is Ay (x) = (ag, ai, ..., an),
where a; € {B, R, T, L} specifies the arc (bottom, left, top or right) on which Tix is located.
Note that the tangent map DT at x € M is well defined if and only if Ay (x) is unique, that
is, none of the points Tix (i =0,...,N) collides exactly at a corner (in other words, TV is
not singular at x). If x is singular, i.e. 7' x lies at the corner point of two consecutive arcs for
somei € {0, ..., N}, then a; can take two possible values, hence several collision sequences,
and, correspondingly, several tangent maps DT can be defined.

Now let us turn back to the investigation of the first-return map 7 : M — M. We recall
an important property of the skewed stadium from [10]: 7% is uniformly hyperbolic, in the
following sense; there exists some A > 1 and cone fields C, C¥ (stable and unstable cones)
in the tangent bundle of M, such that

(1) forv € Cy, we have DY_‘X°°v € Cj, and |DY_‘X°°v| > Alv|; and
(i) for w € C%_, , we have (DT®)"'w € C? and [(DT®)"'w| > Alw|.

T>ox’

If T is singular at x (i.e. the trajectory of x € M hits at least one corner before returning
to M), then properties (i) and (ii) above hold for the tangent map corresponding to any of its
symbolic collision sequences.

Now, using the identification map yx, we argue that 7°¢ is also uniformly hyperbolic in the
above sense, on a ‘large part’ (specified below) of M. First observe that the billiard tables for
¢ = oo and ¢ = ¢ are piecewise C 2_close—that is, the bottom, right, top and left arcs forc = ¢
are C-close to their ¢ = oo counterparts, as curves in the plane. We recall some properties of
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(a) Bouncing and sliding orbits. (b) Diametrical orbits.

Figure 8. Quasi-integrable phenomena present in stadia.

the billiard map from [2]; see also formula (B.1) in appendix B. C 2_closeness of the billiard
tables would imply that the maps T¢ and T™ are C'-close; however, the billiard map is only
piecewise smooth and may have unbounded derivatives corresponding to tangential collisions.
Thus, 7¢ and T are C'-close unless ¢ >~ 0 or ¢ =~ 7, in the following sense. For any & > 0
there exists ¢ such that if ¢ > ¢, then given any (k,¢) = x € M, withe < ¢ <7 —¢
and symbolic collision sequence (ag, a;), then there exists x’ € M with the same collision
sequence (ag, ay), for which d(x’, x (x)) < € and d(T*°x’, x(T“x)) < ¢, and the tangent
maps DT and DT are e-close. If x is singular, then it is possible to find such x" € M for
both of its collision sequences.

We would like to conclude that (apart from tangencies) T¢is also C'-close to T, and thus,
T°¢ is also uniformly hyperbolic (as uniform hyperbolicity is a C'-open property). However,
closeness of the 7”s implies closeness of the T’s only if phase points x € M are considered for
which Tx = T"®yx, such that n(x), the number of iterates needed to return to M, is uniformly
bounded. Thus, we need to consider the complement of this set: points with unbounded
return time, which are exactly the points from which the quasi-integrable trajectory segments
originate. At this point the differences between the b < 1 and b = 1 cases play an important
role, as follows.

4.4. Quasi-integrable phenomena

For bouncing points x = (k, ¢) € M (see figure 8(a)), returns to M consist of a large number
of consecutive collisions on the almost-flat arcs. If b = 1, then such orbits may spend an
unbounded number of iterations bouncing close-to-perpendicularly on the almost-flat arcs.
However, if b < 1, then the number of such bounces, and thus the time needed to return to M,
is uniformly bounded (the bound, of course, depends on the actual value of b, which affects
the value of ¢(b) in conjecture 3.4).

Diametrical quasi-integrable motion, when the trajectory bounces back and forth between
two diametrically opposite points of a circle (figure 8(b)) may also correspond to unbounded
return time. This phenomenon is dominated by the bottom arc of the b < 1 case: returns to M
consist of a diametrical trajectory segment (that can be arbitrarily long) and a single bounce
on one of the almost-flat arcs. To see this, note that a long series of diametrical bounces is
necessarily followed by a close-to-perpendicular bounce on one of the almost-flat arcs, close
to the join of the boundary. Since the bottom arc is longer than a semicircle, the trajectory then
returns immediately to the bottom arc almost parallel to a diameter, and a new quasi-integrable
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segment begins. (See also [10] for a description of the dynamics of consecutive diametrical
segments.) As a consequence, the derivatives of the return maps 7°° and 7 can be directly
compared at such points. In fact, here it is more useful to compare the maps 7€ and 7> with
different values of the parameter b, where b ~ b is chosen in such a way that the bottom arc of
the skewed stadium for (b, o) is identical to the bottom arc of the generalized squash for (b, ¢)
(the two arcs have equal radii and equal lengths)—the identification map x : M»¢ — M>>®
can be easily generalized to this case. The advantage of this choice is that now it is possible
to find x’ € M>> close to x (x) such that the diametrical trajectory segments of x and x’ are
identical.

To compare the tangent maps for x and x’, we use the local orthogonal section (cf
appendix B). Consider x € M” with return time 7(x) = N + 1 performing diametrical quasi-
integrable motion, and let us denote the derivatives of the return maps by Dy := D, (T>*)
and Dy := D, (T?%). Let us introduce, furthermore, the matrix By, the tangent map
corresponding to N consecutive diametrical bounces on the bottom arc (our choice of b ensures
that this part of the trajectory is identical in the two cases). Then Dy = By-A and Dy = By-A,
where the matrices A and A are the tangent maps corresponding to the single bounce on the
flat arc of the ¢ = oo case and on the almost-flat arc of the ¢ = ¢ case, respectively. We have
the following results:

e Dy is strongly hyperbolic, and expands unstable vectors at least by a factor x| - N for
some numerical constant k1 > 0 (see [10]).

o All elements of the matrix By have absolute value less than «, - N for some numerical
constant k, > 0 (this can be easily checked by direct computation based on formula (B.1)).

e Choosing ¢ big enough, the difference of the matrices A and A can be made arbitrarily
small: that is, for any ¢ > 0, there exists some finite ¢’ such that whenever ¢ > ¢/, we
have ||A — A|| < & (again from direct computation).

The above three facts imply that, choosing ¢ big enough, Dy expands unstable vectors at
least by a factor k3 - N for some positive constant 3. In particular, at points that give rise to
diametrical motion, uniform hyperbolicity of the return map persists for finite, big enough c.

4.5. Analysis of sliding trajectories

For the third type of quasi-integrable motion, sliding points (figure 8(a)), the ¢ = co and the
finite c = ¢ > 1 cases cease to be comparable, hence these points need to be analysed directly
for finite c. Note also that sliding can occur only if ¢ ~ 0 or ¢ ~ 7.

The above arguments can be summarized as follows: fix the parameters (b, c¢) where b < 1
and ¢ > ¢(b). Then there exists ¢, . such that 7%¢ is uniformly hyperbolic for any x € M*¢
for which ¢, . < ¢ < — @ .. Furthermore, for any fixed b < 1, ¢ . = O as ¢ — oo.

In other words, the dynamics is strongly chaotic unless ¢ or w — ¢ is very small, that
is, unless the trajectory ‘slides along the boundary’ of phase space (see, e.g., [10] or [8] for
this terminology). Below, we give a direct geometrical description of the dynamics within this
sliding region. This is a delicate issue, as it is exactly in this part of phase space where Lazutkin
constructed caustics, and, correspondingly, a positive-measure set foliated by invariant curves.
The crucial difference here from Lazutkin’s setting is that the curvature of the boundary is
discontinuous at the corner points which separate consecutive circular arcs. We will argue
below that it is exactly these discontinuities that create ‘repulsion’ from the sliding region.

In the rest of this section we fix b < 1 and 1 < ¢ < 00, and omit upper indices. For
concreteness, we describe the case when ¢ ~ 0; the case when ¢ >~ 7 is completely analogous.
In this region it is slightly more convenient to use, instead of the usual arclength &, the angular
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Figure 9. Geometry of switches between consecutive arcs.

distance 8 = k/ R, along the arc of radius R,.. Throughout, we will refer to the 8 coordinate
as horizontal and the ¢ coordinate as vertical.

Since ¢ is small, the trajectory experiences a long series of consecutive collisions on the
same circular arc. Provided this happens, evolution in the coordinates (8, ¢) is given by

(B.¢):=T(B.p) = (B+2¢.9); ¢))
in particular, ¢ is an integral of motion. Then, after some time, the trajectory bypasses a corner
point and switches to the neighbouring arc, followed by another long series of consecutive
bounces on that arc. Thus there is an alternation of long series of sliding along the same arc
and ‘switches’ from one arc to another. Below we argue that as an overall effect of switching
transitions, the value of ¢ increases, which means that the trajectory escapes from the sliding
region.

More precisely, instead of a single phase point, we investigate the evolution of a one-
parameter family of phase points. We will say that a curve is good if in the (8, ¢) coordinates
it has either non-negative slope, or its slope is negative but bounded away from the horizontal
direction (it is enough to require that either j—g >0, or g—ﬁ < —%). We consider a family of
phase points smoothly distributed along a good curve, and show that the value of ¢ increases
strongly on the average when this family evolves under the dynamics. Before investigating
switches a little closer, let us remark that the twist map (1) tilts curves towards the horizontal
direction. In particular, if a good curve (as defined above) is evolved by a high number of
iterates of (1), then it is subject to horizontal stretching, and we get a curve of very small
positive slope.

There are two types of transitions to be considered: switching from the bottom (or top)
arc to an almost-flat arc, an R — R, transition, or from an almost-flat arc to the bottom
(or top) arc, an Ry, — R transition. We first consider an R,, — R transition, and denote
the coordinates by (8, ¢) just before the transition (last bounce on the bottom/top arc) and
(B, ¢') = T(B, @) just after the transition (first bounce on the almost-flat arc). We normalize
B such that 8 = 0 corresponds to the corner point of the two arcs. Then —2¢ < 8 < 0, and
0 < B’ < 2¢ (see figure 9 for a sketch of the geometry). It is also convenient to introduce
o = B+ and w = B’'—¢’. Note also that since the curve under consideration has experienced
a long series of consecutive bounces on the almost-flat arc, its direction is close to horizontal,
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hence for fixed ¢, w may be regarded as evenly distributed on the interval [—¢, ¢]. It is also
apparent from figure 9 that the angles Q BA< and P BC<{ sum up to 7, hence ' = w. To
express ¢’ in terms of ¢ and w we use sine theorems for the triangles QAB and PBC in
figure 9, giving

R —R+a |OB| _sin(n/2—¢) cosg

Reo [OA| sin(w+7m/2) cosw’

a |PB| sin(r/2—¢/) cosg/

R |PC| sin(m/2—0w) cosw’

where a denotes the length of the segment P B, eliminating which we obtain
ccosp = (c — 1) cosw + cos ¢’ (recall c = R/ R).

Approximating the cosines by second-order Taylor polynomials, we arrive at the following
equations for R,, — R transitions:

o =w, 0% = ce* — (c — Do’ 2)
Now let us take into account that ¢ >> 1. We have that, for fixed ¢, ¢’ is essentially evenly
distributed on the interval [, £/c¢], hence typically it is is much larger than ¢. To see this, let
us apply the map (2) to the almost-horizontal curve that has completed a series of consecutive
collisions on the almost-flat arc (for fixed ¢, @ may be regarded as evenly distributed on the
interval [—¢, ¢]). Then the image is a curve in the (o', ¢’) coordinates that is much more
extended vertically than horizontally: it consists of a sharply increasing part (connecting the
points (—¢, @) and (0, /cg)) and a sharply decreasing part (connecting the points (0, /c¢)
and (¢, ¢)). For later reference, let us denote this curve by y.

Note that the map (1) is expressed in terms of the (8, ¢) coordinates, while the map (2)
is expressed in terms of the (w, ¢) coordinates. Hence, before applying (2), the change of
coordinates (8, ¢) — (w, ¢) = (B + ¢, @), and after applying (2), the change of coordinates
(', @) > (B, ¢)) = (' +¢', ¢') are to be taken into account. However, as far as the geometry
of curves is concerned, these coordinate changes can be regarded as additional applications
of (1). In particular, it is enough to check that both parts of y are good curves in the (', ¢')
coordinates. On the other hand, y is far from being almost-horizontal. However, just after
bypassing the corner point, the points of the curve start a long series of consecutive (sliding)
bounces on the bottom (or top) arc. That is, the map (1) is applied many times, and as a result,
the curve is strongly stretched along the horizontal direction. As a consequence, it can be
partitioned into a large number of subcurves, the points of which reach the endpoint of the
bottom arc simultaneously. Just before the R — R, transition, all of these subcurves are
almost-horizontal.

Wenow turnto R — R transitions. Let us introduce the pre- and post-corner coordinates
(w, ¢) and (o', ¢’), respectively. This time the quantities without primes correspond to the
bottom (or top) arc, while the primed quantities correspond to the almost-flat arc. We obtain
the same equations as above, with the role of ¢ and ¢’ interchanged:

1 1
o =w, ? = ;gﬂ + (1 — Z) . 3)

Note that this time, for fixed ¢, ¢’ is essentially evenly distributed on the interval [%(p, ¢].
Hence, even though ¢’ is smaller than ¢, typically they are of the same order of magnitude.
To see this, let us apply the map (3) to the curve that has just completed a long series of
consecutive bounces on the bottom (or the top) arc; that is, for fixed ¢, @ may be regarded
as evenly distributed on the interval [—¢, ¢]. The image is a curve in the (', ¢’) coordinates
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that has a decreasing and an increasing part: the former connects the points (—¢, ¢) and
(0, \%(p) with slope >~ —1, while the latter connects the points (0, %(p) and (¢, ¢) with
slope >~ 1; in particular, both parts are good curves. Now the points of this curve again
start a series of consecutive bounces, this time on the almost-flat arc. By the time the next
transition (this time an R., — R transition) takes place, the curve has been subject to several
applications of (1), which have stretched it in the horizontal direction, hence it consists of
close-to-horizontal subcurves, the points of which bypass the corner point simultaneously.
Then the whole argument can be iterated.

Let us make one more remark to avoid confusion. Of course, if we ran the dynamics
backwards, we would need to apply the map (3) to the curve y described above to obtain its
preimage by an Ro, — R transition. As (3) is the inverse of (2), we would obtain that the value
of ¢ decreases by a factor % for most points of y. However, y is far from horizontal (actually,
it is close to vertical) and the value of w is far from being evenly distributed (actually, we have
|w| < ¢ for most points of y). When investigating the forward dynamics, it is important that
we apply both maps (3) and (2) to almost-horizontal curves.

4.6. Summary

Summarizing, for an overwhelming probability of phase points in our family (distributed
smoothly along a good curve), the value of ¢ increases by a factor close to 4/c at Roc — R
transitions, and does not change drastically at R — R, transitions. Overall, the value of ¢
thus increases on the average. Moreover, this increase is exponential in terms of the number
of consecutive quasi-integrable (sliding) trajectory segments. Equivalently, we could say that
the increase is exponential in terms of flow time, or in terms of the number of applications of
the return map T°¢. (Of course, the rate of increase in terms of the number of applications of
the original map T°¢ can be arbitrarily slow, as a single quasi-integrable segment may consist
of an arbitrarily high number of bounces on the same arc).

Our argument above thus provides the following phenomenological description of the
dynamics in generalized squashes with b < 1 and finite, but sufficiently large, c. The trajectory
is subject to a strongly mixing dynamics in a large part of the phase space, away from the sliding
region. From time to time, it makes excursions into the sliding region; however, on the average,
it escapes from that region at an exponential speed. Note that these phenomena are completely
analogous to what has been observed concerning consecutive bouncing trajectory segments in
straight stadia, or consecutive diametrical segments of skewed stadia [10-12,38]. Thus our
observations provide strong support for our main conjecture.

These phenomena have been tested by convincing simulations, which can be reproduced
by the reader using the program available in [39]. Note that on the phase portraits produced
by this program, the configurational (horizontal) coordinate shown is k, rather than 8, which
should be kept in mind when comparing simulated trajectories with the above calculations.

5. Numerical evidence using Lyapunov-weighted dynamics

In this section, we look to support further our conjecture, by applying the powerful numerical
method of Lyapunov-weighted dynamics (LWD) to perform a more stringent search for elliptic
islands in the two-dimensional (b, c) parameter space. The conjectured ergodic behaviour
corresponds to the absence of such islands. Although no numerical method of this type can
prove the absence of islands, we feel that the results presented here do provide support for the
conjecture.
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Figure 10. Results of applying LWD to a squash billiard with parameters » = 0.6 and ¢ = 1.6,
searching for both (a) regular and (b) chaotic regions. The thin (blue) points represent the evolution
of randomly chosen initial conditions that evolve with the normal dynamics of the squash billiard,
thus giving the standard representation of the phase space of the system. The (red) darker points
show the superposition of the phase space locations during the last 100 collisions of 1000 walkers
evolved under LWD for 10000 collisions.

The simplest method to search for islands consists of sampling from a grid of initial
conditions in phase space and estimating the Lyapunov exponent or an equivalent indicator [40]
for each one. However, this is unreliable and time-consuming, since the number of initial
conditions needed to locate an island is inversely proportional to the area of the island in phase
space, and we are interested in small islands.

A more powerful approach to locate regions of phase space with regular (i.e. non-chaotic)
dynamics is the Lyapunov-weighted dynamics method (LWD), introduced in [41] (see also
the Supplementary Information available at stacks.iop.org/Non/24/1499/mmedia). The idea
of this method is to evolve a population of walkers under a modified version of the dynamics,
chosen so that the cloud of walkers spontaneously concentrates in regions of phase space which
have a large (respectively small) Lyapunov exponent, according to whether a parameter « of
the method is positive (respectively negative) [41].

To do so, each walker follows the underlying deterministic dynamics of the system under
study, but perturbed by a small random noise of strength €. Each walker also carries a tangent
vector, which evolves under the tangent dynamics of the map. The local stretching factor
of this tangent vector is calculated, as in the standard calculation of Lyapunov exponents,
and walkers are killed or copied (‘cloned’) at a rate which is proportional to (o times) the
stretching of their tangent vector [41]. This process can be shown to lead to the desired
effect of the cloud of walkers ‘highlighting’ the regions of chaotic or regular behaviour,
depending on the value of o chosen [41] (see also the Supplementary Information (available
at stacks.iop.org/Non/24/1499/mmedia)). Details of how the LWD method may be applied to
billiard models will be discussed elsewhere.

Figure 10 illustrates the results of applying the LWD method to a generalized squash
billiard, searching for both regular (« = —1) and chaotic (¢ = +1) dynamics. When o = —1,
the walkers concentrate in one of the elliptic islands of the phase space, whereas when o = 1,
the walkers instead stay in part of a chaotic component of the phase space, as shown in
figure 10(d). In this case, there is in fact a partial barrier to transport in the phase space, visible
around cos(¢) =~ 0.7 in figure 10. The LWD dynamics with ¢« = +1 nonetheless only sees
part of this chaotic component.
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Figure 11. Results of applying LWD with « = —1 to two squash billiards. The superposition of

the last 100 collisions of 10 000 walkers evolved under LWD for 10 000 collisions is shown in (red)
darker points on top of the phase space.
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Figure 12. Results of applying LWD to a squash billiard with parameters » = 0.1 and ¢ = 13. The
superposition of the last 100 collisions of 1000 walkers evolved under LWD for 10 000 collisions
is shown in (red) darker points on top of the phase space.

Our approach is thus to exhaustively explore the (b, c¢) parameter space, looking for elliptic
islands using LWD with o < 0, in which case the walkers have a tendency to concentrate in
the part of phase space which is ‘most stable’, and thus to highlight any elliptic islands present.
To exemplify the findings, figure 11(a) shows the results of applying LWD to a squash billiard
with parameters b = 0.1 and ¢ = 4. For these parameter values, there is an elliptic periodic
trajectory of period 6, around which there is an elliptic island, but there is also a set of parabolic
periodic orbits, corresponding to diametrical bouncing, since the lower circular arc is longer
than a semicircle, as discussed in section 2.2. When LWD is applied, the walkers concentrate
exclusively around the elliptic island, with none trapped near the parabolic orbits, as shown in
figure 11(a). This preference for the more stable islands is independent of both the size and
the period of the island, as indicated in figure 11(b), where there are two islands of period 18,
as well as parabolic bouncing orbits, for ¢ = 6.

If, however, we now increase ¢ further, to ¢ = 13, then all of the walkers concentrate
around the parabolic orbits, as shown in figure 12(a). This strongly suggests that there are no



Chaos and stability in convex billiard tables 1517

1.0
0.5
S
@ 0.0 _ R
(@]
[&]
-0.5
-1.0 1.0 i Y f ey
0.0 0.2 0.4 0.6 0.8 1.0 . 0.2 0.4 0.6 0.8 1.0
k k
(a) ¢ =—1 b)) a=+1

Figure 13. Results of applying LWD to an ergodic Bunimovich stadium. The superposition of
the last 100 collisions of 1000 walkers evolved under LWD for 10 000 collisions is shown in (red)
darker points on top of the phase space.
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Figure 14. Parameter space of the generalized squash billiard. LWD with 1000 walkers evolving
during 2000 collisions is applied to find regular regions (« = —1). Pairs (b, c) that have elliptic
islands found in this way are shown with (red) diamonds; pairs that do not have them are shown
with (blue) points. The black continuous curve corresponds to co(b).

longer any elliptic islands in phase space, which would be more stable, and that the system is
thus ergodic.

Applying LWD with o > 0, that is, searching for the chaotic region, instead shows a
complicated fractal structure, as shown in figure 12(b). This corresponds to the region of
phase space where the rate of expansion is maximized. This region appears to fill phase space
in a non-uniform way, avoiding the parabolic orbits. For comparison, figure 13 shows the
results of applying LWD to a known ergodic system, the Bunimovich stadium. A similar
behaviour is found as for the squash billiard, reinforcing ergodicity for the squash.

Nonetheless, it is possible that for the squash billiard, tiny elliptic islands in phase space
remain, whose area is below the threshold which may be detected using the LWD method. This
threshold is the consequence of the noisy nature of the method, which we intend to explore in
more detail elsewhere.
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Figure 14 shows the qualitative behaviour observed over the two-dimensional (b, ¢)
parameter space for ¢ < 50, i.e. whether or not any elliptic islands were found with LWD
for each pair (b, ¢). This picture provides strong evidence for our main conjecture, confirming
that no islands are found by the method for ¢ above a certain curve which is a function of b. The
disappearance and reappearance of islands observed in the figure as c is increased for certain
values of b are presumably related to the interplay of geometric destruction and complex series
of period-doubling bifurcations [36] (see also section 3.3).

We have also sampled even larger values of ¢ at random, observing the same behaviour
shown in figure 12, where the walkers concentrate around the parabolic orbits. As far as the
LWD method allows us to exclude the existence of elliptic islands, we thus obtain further
evidence pointing towards our main conjecture that the system is ergodic for ¢ > ¢(b).

6. Conclusions

We have studied the dynamics of a two-parameter class of generalized squash billiards, which
interpolates between completely integrable and completely chaotic dynamics. We have shown
that the dynamical properties in the two-dimensional parameter plane are rather rich, involving
a mixture of period-doubling behaviour reminiscent of smooth dynamics, and destruction of
orbits caused by collisions with corners of the billiard table.

We have conjectured, based on heuristic arguments which we hope can be made rigorous,
and extensive numerical simulations with both standard and Lyapunov-weighted methods,
that all elliptic periodic points and their associated islands disappear for tables which are close
enough to skewed stadia, thus giving a previously unknown class of ergodic convex billiards.
It remains to characterize the parameter space in more detail, and prove the conjecture.
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Appendix A. Construction of generalized squash billiards

In this appendix, we sketch the geometric construction of generalized squash billiards. For
fixed values of the parameters b and ¢, we must determine the radii and centres of the circular
arcs that make up the table so that they satisfy the conditions of having common tangents at
their points of intersection. To determine these quantities, we use the notation of figure Al.

Fixing the parameter b determines the length of the top of the trapezium and the points
Py, P,, P; and P4. Since the table is symmetric about the vertical axis, it is only necessary to
satisfy the tangent conditions for three arcs, since the right and left arcs have the same radii
and their centres are reflected in the vertical axis.

The upper circular arc has radius r and centre C,, the lower arc has radius R and centre
Cp, and the right arc has radius R, and centre Crn,. Denote by M the midpoint of the segment
joining P; and P,, and by g a vector perpendicular to this segment.
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Figure Al. Geometry of generalized squash billiards. The trapezium is shown in (blue) dashed
lines for a generic value of b. The different circular arcs are shown in different grey scales (colours).

By symmetry, C, is on the y-axis, taking a suitable Cartesian coordinate system. Since
| P, — C,|| = r, we have

C = <0, Py —\/r?2 — PZZX) : (A1)

This allows us to calculate the tangent to the upper circular arc 7, at P,, obtaining 7, =
(C, — Py)1, where v, denotes a vector perpendicular to a given vector v.

Let us denote, furthermore, by n, the unit vector perpendicular to 7,. Since Cg 6 =
Py +sny, withs € R, we have 75 - Cg,, = T» - P,. Moreover, since Cg_, is on the line through
M with direction g, we find

Cr. =M +tygq, where 1, = w . (A2)
* T;-q

With this we can calculate the tangent to the lower arc at the point Pj, obtaining
T = (Cr, — P1)1.

Finally, 7| - Cg = T; - Py and Cy is on the vertical axis, so

T, - P

Cr=0(00,1), where t; =
Tiy

(A3)

These equations give us Cr and Cg_, as a function of r, since 75 is a function of r and 77 is
a function of Cg_, which is also a function of r. Substituting these equations in the definition
of the parameter c, we obtain

_Rx _ [Cr. =P (Ad)
R |Cr=Pa| " '
giving an implicit equation for r in terms of b and c:

0= f(r,b,c) =|Cr, — P1ll = c|Cr — P2l (A.5)
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This equation may be solved numerically, for example by bisection, to find the value of r
corresponding to given values of b and c¢. This can then be substituted back into equations
(A.2) and (A.3) to get Cg_, and Cp, and with this we obtain the radii of the other arcs:

R =||Cr. — P, (A.6)

R=|Cr— Pl (A7)

Appendix B. Numerical methods

The dynamics of generalized squashes may be simulated by standard methods, namely
finding the intersection of the particle trajectory with the circular arcs forming the boundary.
Periodic orbits may then be found by searching for iterates whose coordinates lie in a small
neighbourhood of a given initial condition.

The stability properties of a periodic orbit may be calculated using the tangent map of the
dynamics, for which it is useful to take the (outgoing) local orthogonal section of the billiard
map [2], rather than phase space coordinates. Coordinates just after collision are taken as the
position r € Q and the velocity v € S'; perturbations, up to linear order, are given by the
coordinates (dr, dv), with both dr and dv perpendicular to the velocity v. Fix a phase point
x = (k,9) € M, and denote its image under the dynamics as x' = Tx = (k',¢') € M.
Denote by K’ the curvature of " at k’, and by 7 the free path (distance between k and k"). Then
the image of a tangent vector (dr, dv) at x is the tangent vector (dr’, dv’) at x’, given by [2]

1 T
dr’ dr , , dr
<dv/> =D (dv) =1 2K s 2K't (dv) . (B.1)

sin ¢’ sin ¢’

The tangent map for a higher iterate may be calculated as the product of several such
matrices. In particular if x is a periodic point of period p, i.e. T”x = x, then it is possible to
consider D, = D,(T?). In the local orthogonal section coordinates, the billiard map is area
preserving, i.e. it has determinant 1. Thus the eigenvalue spectrum of D, is characterized by
the trace s of D,: the orbit is hyperbolic, parabolic or elliptic, according as |s| > 2, |s| = 2 or
|s| < 2, respectively. Hence s may be regarded as the stability parameter of the periodic orbit.
Similarly, Lyapunov exponents of orbits may be estimated as the exponential growth rate with
n of the trace of the product matrix giving the tangent map of the nth iterate.
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