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We investigate deterministic diffusion in periodic billiard models, in terms of the convergence of rescaled
distributions to the limiting normal distribution required by the central limit theorem; this is stronger than the
usual requirement that the mean-square displacement grow asymptotically linearly in time. The main model
studied is a chaotic Lorentz gas where the central limit theorem has been rigorously proved. We study
one-dimensional position and displacement densities describing the time evolution of statistical ensembles in a
channel geometry, using a more refined method than histograms. We find a pronounced oscillatory fine struc-
ture, and show that this has its origin in the geometry of the billiard domain. This fine structure prevents the
rescaled densities from converging pointwise to Gaussian densities; however, demodulating them by the fine
structure gives new densities which seem to converge uniformly. We give an analytical estimate of the rate of
convergence of the original distributions to the limiting normal distribution, based on the analysis of the fine
structure, which agrees well with simulation results. We show that using a MaxwelliansGaussiand distribution
of velocities in place of unit speed velocities does not affect the growth of the mean-square displacement, but
changes the limiting shape of the distributions to a non-Gaussian one. Using the same methods, we give
numerical evidence that a nonchaotic polygonal channel model also obeys the central limit theorem, but with
a slower convergence rate.
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I. INTRODUCTION

Diffusion, the process by which concentration gradients
are smoothed out, is one of the most fundamental mecha-
nisms in physical systems out of equilibrium. Understanding
the microscopic processes which lead to diffusion on a mac-
roscopic scale is one of the goals of statistical mechanicsf1g.
Since Einstein’s seminal work on Brownian motionf2g, dif-
fusion has been modeled by random processes. However, we
expect the microscopic dynamics to be described bydeter-
ministic equations of motion.

Recently, it has been realized that many simple determin-
istic dynamical systems are diffusive in some sense; we call
this deterministic diffusion. Such systems can be regarded as
toy models to understand transport processes in more realis-
tic systemsf1g. Examples include classes of uniformly hy-
perbolic one-dimensionals1Dd mapsssee, e.g.,f3g and ref-
erences thereind and multibaker modelsf4g. Often rigorous
results are not available, but numerical results and analytical
arguments indicate that diffusion occurs, for example in
Hamiltonian systems such as the standard mapf5g.

Billiard models, where noninteracting point particles in
free motion undergo elastic collisions with an array of fixed
scatterers, have been particularly studied, since they are re-
lated to hard-sphere fluids, while being amenable to rigorous
analysisf4,6,7g. They can also be regarded as the simplest
physical systems in which diffusion, understood as the large-
scale transport of mass through the system, can occurf8g. In
this paper, we study deterministic diffusion in two 2D bil-
liard models: a periodic Lorentz gas, where the scatterers are
disjoint disks, and a polygonal billiard channel.

A definition often used in the physical literature is that a
system is diffusive if the mean-square displacement grows
proportionally to timet, asymptotically ast→`. However,
there are stronger properties which are also characteristic of
diffusion, which a given system may or may not possess:sid
a central limit theoremmay be satisfied, i.e., rescaled distri-
butions converge to a normal distribution ast→`; and sii d
the rescaled dynamics may “look like” Brownian motion.

Two-dimensional s2Dd periodic Lorentz gases were
proved inf6,7g to be diffusive in these stronger senses if they
satisfy a geometricalfinite horizonconditionsSec. II Ad. We
use a square lattice with an additional scatterer in each cell to
satisfy this condition, a geometry previously studied in
f9,10g. This model is of interest since, unlike in the com-
monly studied triangular lattice casessee, e.g.,f4,11,12gd, we
can vary independently two physically relevant quantities:
the available volume in a unit cell, and the size of its exits;
this is possible due to the two-dimensional parameter space
f13,14g.

The main focus of this paper is to investigate the fine
structure occurring in the position and displacement distribu-
tions at finite timet, and the relation with the convergence to
a limiting normal distribution ast→` proved inf6,7g. Those
papers show in what sense we can smooth away the fine
structure to obtain convergence. However, from a physical
point of view it is important to understand how this conver-
gence occurs; our analysis provides this.

This analysis makes explicit the obstruction that prevents
a stronger form of convergence, showing how density func-
tions fail to converge pointwise to Gaussian densities; it also
allows us to conjecture a more refined result which takes the
fine structure into account.

Furthermore, this line of argument suggests how conver-
gence may occur in other models where few rigorous results
are available. As an example, we analyze a recently intro-*Electronic address: dsanders@maths.warwick.ac.uk
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duced polygonal billiard channel model, showing that the
same techniques are still applicable.

Plan of paper

In Sec. II, we present the periodic Lorentz gas model for
which we obtain most of our results. Section III discusses the
definition of diffusion in the context of deterministic dynami-
cal systems. In Sec. IV, we study numerically the fine struc-
ture of distributions in the Lorentz gas, finding good agree-
ment with an analytical calculation in terms of the geometry
of the billiard domain, and showing that when this fine struc-
ture is removed, the demodulated densities are close to
Gaussian. This we apply in Sec. V to investigate the central
limit theorem and the rate of convergence to the limiting
normal distribution, obtaining a simple estimate of this rate
which agrees well with numerical results. In Sec. VI, we
study the effect of imposing a MaxwelliansGaussiand veloc-
ity distribution in place of a unit speed distribution, showing
that this leads to non-Gaussian limiting distributions. Section
VII extends these ideas to a polygonal billiard channel,
where few rigorous results are available. We finish with con-
clusions in Sec. VIII.

II. TWO-DIMENSIONAL PERIODIC LORENTZ GAS

We consider periodic billiard models, where the dynamics
can be studied on the torus. The regionQ exterior to the
scatterers is called thebilliard domain; we denote its area by
uQu. Since the particles are noninteracting, it is usual to set all
velocities to 1 by a geometrical rescaling, although in Sec.
VI we discuss the effect of a Gaussian velocity distribution.

We focus on aperiodic Lorentz gas, where the scatterers
are nonoverlapping disks. Their strictly convex boundaries
make this adispersingbilliard f6g, and hence a chaotic sys-
tem, in the sense that it has a positive Lyapunov exponent
f4,15g and positive Kolmogorov-Sinai entropyf4g.

A. Periodic Lorentz gas model

The model we study, previously considered inf9,10g, con-
sists of two square lattices of disks; they have the same lat-
tice spacingr, and radiia andb, respectively, and are posi-
tioned such that there is ab disk at the center of each unit
cell of thea lattice; see Fig. 1. In analytical calculations we
take the length scale asr =1, as inf9,10g, whereas in numeri-
cal simulations we fixa=1 and scaler andb appropriately,
as in f12g.

Finite horizon condition. Periodic Lorentz gases were
shown inf6,7g to be diffusivesSec. IIId, provided they satisfy
the finite horizoncondition: there is an upper bound on the
free path length between collisions. If this is not the case, so
that a particle can travel infinitely far without collidingsthe
billiard has aninfinite horizond, then corridors exist f16g,
which allow for fast propagating trajectories, leading to
superdiffusive behavior, as was recently rigorously
provedf17g.

We restrict attention to parameter values within the finite
horizon regime by choosingb to block all corridorsf10,13g.

B. Statistical properties

Statistical properties of deterministic dynamical systems
arise from an ensemble of initial conditionssx0,v0d modeling
the imprecision of physical measurements. We always take a
uniform distribution with respect toLiouville measurein one
unit cell: the positionsx0 are uniform with respect to Le-
besgue measure in the billiard domainQ, and the velocities
v0 are uniform in the unit circleS1, i.e., with angles between
0 and 2p, and unit speeds.

We evolvesx0,v0d for a time t under the billiard flowFt

in phase space to(xstd ,vstd). Note that Liouville measure on
the torus is invariant under this flowf15g. In numerical ex-
periments, we take a large samplesx0

sid ,v0
siddi=1

N of size N of
initial conditions chosen uniformly with respect to Liouville
measure using a random number generator. These evolve af-
ter time t to (xsidstd ,vsidstd)i=1

N ; the distribution of this en-
semble then gives an approximation to that of(xstd ,vstd).

We denote averages over the initial conditions, or equiva-
lently expectations with respect to the distribution ofsx0,v0d,
by k·l. Approximations of such averages can be evaluated
using a simple Monte Carlo methodf18g as

kfsx0,v0dl = lim
N→`

1

N
o
i=1

N

fsx0
sid,v0

sidd. s2.1d

The infinite sample size limit, although unobtainable in prac-
tice, reflects the expectation that largerN will give a better
approximation. Averages at timet can be evaluated by using
a function f involving Ft.

C. Channel geometry

Diffusion occurs in the extended system obtained by un-
folding the torus to a 2D infinite lattice: seef6,7g and Sec.
III. The diffusion process is then described by a second-order
diffusion tensor having four componentsDij with respect to a
given orthonormal basis, given by

Dij = lim
t→`

1

2t
kDxiDxjlt. s2.2d

The square symmetry of our model reduces the diffusion
tensor to a constant multipleD of the identity tensor; we can

FIG. 1. sad Part of the infinite system, constructed from two
square lattices of disks shown in different shades of gray; dashed
lines indicate several unit cells and an elastic collision is shown.sbd
A single unit cell, defining the geometrical parameters. The billiard
domain is the areaQ exterior to the disks.
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evaluate thisdiffusion coefficientby restricting attention to
the dynamics in a one-dimensionalchannelextended only in
the x direction; see Fig. 2. Correspondingly, we restrict at-
tention to 1D marginal distributions.

A channel geometry, with hard horizontal boundaries, cor-
responding to the triangular Lorentz gas was studied in
f19,20g fFig. 3sadg. This is equivalent to a channel with twice
the original height andperiodic boundaries, shown in Fig.
3sbd as part of the whole triangular lattice obtained by un-
folding completely in the vertical direction. We can view this
lattice as consisting of rectangular unit cellsfFig. 3sbdg
which are stretched versions of the square unit cell consid-
ered above, with the extra conditiona=b. The results in the
remainder of this paper then extend to this case with minor
changes.

III. DETERMINISTIC DIFFUSION

In this section, we briefly recall how to make precise the
fact that the behavior of certain deterministic dynamical sys-
tems “looks like” that of the diffusion
equation.

A. Diffusion as a stochastic process

Diffusion is described classically by the diffusion equa-
tion

] rst,xd
] t

= D¹2rst,xd, s3.1d

wherer is the density of the diffusing substance. Following
Einstein and Wienerssee, e.g.,f2gd, we can model diffusion
as a stochastic processBt, determined by the probability den-
sity psx ,td of a particle being at positionx at time t given
that it started atx=0 at time t=0.

Imposing conditions on the process determined from

physical requirements gives adiffusion process, wherepsx ,td
satisfies the equation

] p

] t
+

]

] xi
FAip −

1

2o
j

]

] xj
sBij pdG = 0, s3.2d

known asKolmogorov’s forward equationor the Fokker-
Planck equationf2g. Thedrift vectorAsx ,td and thediffusion
tensor Bsx ,td give the mean and variance, respectively, of
infinitesimal displacements at positionx and timet f2g.

If the system is sufficiently symmetric that the drift is zero
and the diffusion tensor is a multiple of the identity tensor,
then the process isBrownian motion, and Eq.s3.2d reduces to
the diffusion equations3.1d. A general diffusion process,
however, can beinhomogeneousin both space and time.

B. Diffusion in dynamical systems via limit theorems

Diffusion in billiards concerns the statistical behavior of
the particle positions. We can write the first componentxt of
the positionxt at time t as

xt =E
0

t

v1ssdds+ x0 =E
0

t

f + Fss·dds+ x0, s3.3d

wheref =v1, the first velocity component and+ denotes com-
position of functions. This expressesxt solely in terms of
functions defined on the torus. In fact, Eq.s3.3d shows that
the displacementDxtªxt−x0 is in some sense a more natural
observable than the positionxt in this context.

We thus wish to study the distribution of accumulation
functions of the formSts·dªe0

t f+Fss·dds, in particular in the
limit as t→` f21g. We remark that other observablesf are
relevant for different transport processesf8g.

We denote byFt :M→M the flow of a dynamical sys-
tem with timet[R. Given a probability measurem describ-
ing the distribution of initial conditions, we can find the
probability of being in certain regions of the phase spaceM
at given times, so that we have a stochastic process. If the
measurem is invariant, so thatm(F−tsAd)=msAd for all times
t and all nice setsA, then the stochastic process isstationary
f21g.

The integral in the definition ofS is then a continuous-
time version of a Birkhoff sumoi=0

n−1f +Fi over the stationary
stochastic process given byF, so that we may be able to
apply limit theorems from the theory of stationary stochastic
processesf21g. For the case of the periodic Lorentz gas with
finite horizon, it was proved inf6,7g that the following limit
theorems hold.

1. Asymptotic linearity of mean-square displacement.

The limit

2D ª lim
t→`

1

t
kDx2lt s3.4d

exists, so that the mean-square displacementkDx2lt

ª kfDxstdg2l sthe variance of the displacement distributiond
grows asymptotically linearly in time,

FIG. 2. 1D channel obtained by unfolding a torus in thex
direction.

FIG. 3. Lorentz channel studied inf19,20g with hard upper and
lower boundaries; dotted lines indicate unit cells.sbd Fully unfolded
triangular Lorentz gas. Dotted lines indicate unit cells forming a
channel with periodic upper and lower boundaries.
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kDx2lt , 2Dt as t → `, s3.5d

where D is the diffusion coefficient. In dù2 dimensions,
settingDxistdªxistd−xis0d, we have

kDxiDxjlt , 2Dij t, s3.6d

where theDij are components of a symmetric diffusion
tensor.

2. Central limit theorem: Convergence to normal distribution.

Scale the displacement distribution byÎt, so that the vari-
ance of the rescaled distribution is bounded. Then this distri-
bution convergesweakly, or in distribution, to a normally
distributed random variablez f21,22g,

xstd − xs0d
Ît

→
D

z as t → `. s3.7d

In the one-dimensional case, this means that

lim
t→`

PSxt − x0

Ît
, uD =

1

sÎ2p
E

s=−`

u

e−s2/2s2
ds, s3.8d

wherePs·d denotes probability with respect to the distribu-
tion of the initial conditions, ands2 is the variance of the
limiting normal distribution. Indù2 dimensions, this is re-
placed by similar statements about probabilities of
d-dimensional sets. This is thecentral limit theoremfor the
random variableDx. From s1d we know that in 1D, the vari-
ance of the limiting normal distribution iss 2=2D; in dù2
dimensions, the covariance matrix ofz is given by the matrix
s2Dijd f6,23g.

3. Functional central limit theorem: Convergence of path
distribution to Brownian motion.

We rescale the pathxt by the scale froms2d, defining x̃t
by f16g

x̃tssd ª
xsstd − xs0d

Ît
, s[ f0,1g. s3.9d

The distribution of these rescaled paths then converges in
distribution to Brownian motion,

x̃t→
D

B as t → `, s3.10d

where the Brownian motionB has a covariance matrix as in
s2d. This is known as afunctional central limit theorem, or
weak invariance principlef21g.

A sufficient condition for this is that the following two
properties holdf24g. sid The multidimensional central limit
theorem, a generalization ofs2d, is satisfied. This says that
the finite-dimensional distributions of the processx̃t con-
verge to those of Brownian motion, so that for anyn, any
timess1,¯,sn, and any reasonable setsD1,… ,Dn in Rd,
we have

P„x̃tss1d [ D1,…,x̃tssnd [ Dn…

→
t→`

P„Bss1d [ D1,…,Bssnd [ Dn…. s3.11d

The right-hand side can be expressed as a multidimensional

integral over Gaussians: see, e.g.,f14,23g. sii d The conver-
gence istight, the definition of which can be found inf24g.

C. Discussion of definitions of diffusion

Propertys3d is the strongest sense in which a dynamical
system can show deterministic diffusion, making precise
how a rescaled dynamical system can look like Brownian
motion. However, few physically relevant systems have been
proved to satisfys3d: interest in the periodic Lorentz gas
comes largely from the fact that it is one; another is the triple
linkage f25g.

The multidimensional central limit theorem part ofs3d
was studied inf23g, where both Lorentz gases and wind-tree
models were found to obey it, tested for certain setsDi and
certain values ofn. However, as stated inf23g, s3d is difficult
to investigate numerically, and the results in that paper seem
to be the best that we can expect.

Propertys2d, the central limit theorem, has been shown
for large classes of observablesf in many dynamical systems
sseef21g and references thereind, but again they are often not
physical. Propertys2d was used inf22g as the definition of a
diffusive system, but does not seem to have been applied in
the physical literature; this is the approach taken in this pa-
per.

Many papers in the physical literature define a system to
be diffusive if only propertys1d is verified snumericallyd,
e.g.,f12,26,27g. Many types of systems are diffusive in this
sense, including 1D mapsf3g, random Lorentz gasesf27g,
and Ehrenfest wind-tree models, both periodicf26g and ran-
dom f27g.

It is possible for the weaker properties to hold when the
stronger ones do not. For example, inf28g a disordered
lattice-gas wind-tree model was reported to have an asymp-
totically linear mean-square displacement, but a non-
Gaussian distribution function, i.e.,s1d but nots2d. However,
disorder can lead to trapping effects which cannot occur in
periodic systemsf26g, and we are not aware of aperiodic
sand hence orderedd billiard-type model with unit-speed ve-
locity distribution which showss1d but not s2d, although in
Sec. VI we show that this can occur with a Maxwellian ve-
locity distribution.

IV. FINE STRUCTURE OF POSITION AND
DISPLACEMENT DISTRIBUTIONS

We now focus on the diffusive properties of the periodic
Lorentz gas model introduced in Sec. II. In this section, we
describe the fine structure of position and displacement dis-
tributions. The displacement distribution occurs naturally in
the central limit theoremsSec. III Bd and in Green-Kubo re-
lations f1,4g, whereas the position distribution is more natu-
ral if we are unable to track the paths of individual particles.
It is possible to show that the asymptotic properties of the
position and displacement distributions are the same, in the
sense that one has an asymptotically linear growth if and
only if the other does, and similarly for the central limit
theoremf14g. It is hence equivalent to consider diffusive
properties by studying either distribution.
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A. Position and displacement distributions

Figure 4 shows scatterplots representing 2D position and
displacement distributions for a representative choice of geo-
metrical parameters. Each dot represents one initial condition
started in the central unit cell and evolved for timet=50;
N=53104 samples are shown. Both distributions show de-
cay away from a maximum in the central cell, an overall
circular shape, and the occurrence of a periodic fine struc-
ture.

These figures are projections to the billiard domainQ of
the density in the phase spaceQ3S1. Since the dynamics on
the torus is mixingf15g, the phase-space density converges
weaklyf29g to a uniform density on phase space correspond-
ing to the invariant Liouville measure. Physically, the phase-
space density develops a complicated layer structure in the

stable direction of the dynamics: see, e.g.,f1g. Projecting
corresponds to integrating over the velocities; we expect this
to eliminate this complicated structure and result in some
degree of smoothness of the projected densities. However,
we are not aware of any rigorous results in this direction,
even for relatively well-understood systems such as the Ar-
nold cat mapf1g.

These 2D distributions are difficult to work with, and we
instead restrict attention to one-dimensional marginal distri-
butions, i.e., projections onto thex axis, which will also have
some degree of smoothness. We denote the 1D position den-
sity at timet and positionx[R by f tsxd and the displacement
density for displacementx by gtsxd. We let their respective
scumulatived distribution functions beFtsxd and Gtsxd, re-
spectively, so that

Ftsxd ª Psxt ø xd =E
−`

x

f tssdds, s4.1d

and similarly forGt. sWhen necessary, we will instead de-
note displacements byj.d The densities show the structure of
the distributions more clearly, while the distribution func-
tions are more directly related to analytical considerations.

B. Numerical estimation of distribution functions and
densities

We wish to estimate numerically the above denstities and
distribution functions at timet from the N data points
xt

s1d ,… ,xt
sNd. The most widely used method in the physics

community for estimating density functions from numerical
data is the histogram; see, e.g.,f26g. However, histograms
are not always appropriate, due to their nonsmoothness and
dependence on bin width and position of bin originf30g. In
f26g, for example, the choice of a coarse bin width obscured
the fine structure of the distributions that we describe in
Sec. VII.

We have chosen the following alternative method, which
seems to work well in our situation, since it is able to deal
with strongly peaked densities more easily, although we do
not have any rigorous results to justify it. We have also
checked that histograms and kernel density estimatessa gen-
eralization of the histogramf30gd give similar results, pro-
vided sufficient care is taken with bin widths.

We first calculate the empirical cumulative distribution
function f30,31g, defined byF t

empsxdªN hi :xt
sidøxj for the

position distribution, and analogously for the displacement
distribution. The estimatorF t

emp is the optimal one for the
distribution functionFt given the data, in the sense that there
are no other unbiased estimators with smaller variancesf31g,
p. 34d. We find that the distribution functions in our models
are smooth on a scale larger that that of individual data
points, where statistical noise dominates.sHere we use
“smooth” in a visual, nontechnical sense; this corresponds to
some degree of differentiability.d We verify that adding more
data does not qualitatively change this larger-scale structure:
with N=107 samples, we seem to capture the fine structure.

We now wish to construct the density functionf t
=]Ft /]x. Since the direct numerical derivative ofF t

emp is

FIG. 4. sad 2D position distribution;sbd 2D displacement distri-
bution. r =2.5; b=0.4; t=50; N=53104 initial conditions.
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useless due to statistical noise, our procedure is to fit an
sinterpolatingd cubic splineto an evenly spread sample of
points fromF t

emp, and differentiate the cubic spline to obtain
the density function at as many points as requiredf14g. Sam-
pling evenly from F t

emp automatically uses more samples
where the data are more highly concentrated, i.e., where the
density is larger.

We must confirmsvisually or in a suitable normd that our
spline approximation reproduces the fine structure of the dis-
tribution function sufficiently well, while ignoring the varia-
tion due to noise on a very small scale. As with any density
estimation method, we have thus made an assumption of
smoothnessf30g. The analysis of the fine structure in Sec. IV
justifies this to some extent.

C. Time evolution of 1D distributions

Figure 5 shows the time evolution of 1D displacement
distribution functions and densities for certain geometrical
parameters, chosen to emphasize the oscillatory structure.
Other parameters within the finite horizon regime give quali-
tatively similar behavior.

The distribution functions are smooth, but have a steplike
structure. Differentiating the spline approximations to these

distribution functions gives densities which have an underly-
ing Gaussian-like shape, modulated by apronounced fine
structure which persists at all timesfFig. 5sbdg. This fine
structure is just noticeable in Figs. 4 and 5 off26g, but oth-
erwise does not seem to have been reported previously, al-
though in the context of iterated 1D maps a fine structure
was found, the origin of which is pruning effects; see, e.g.,
Fig. 3.1 off32g. We will show that in billiards this fine struc-
ture can be understood by considering the geometry of the
billiard domain.

D. Fine structure of position density

Since Liouville measure on the torus is invariant, if the
initial distribution is uniform with respect to Liouville mea-
sure, then the distribution at any timet is still uniform. Inte-
grating over the velocities, the position distribution at timet
is hence always uniform with respect to Lebesgue measure in
the billiard domainQ, which we normalize such that the
measure ofQ is 1. Denote the two-dimensional position den-
sity on the torus atsx,yd[ f0,1d2 by rtorussx,yd. Then

rtorussx,yd =
1

uQu
lQsx,yd =

1

uQu
lHsxdsyd. s4.2d

Here,Hsxdª hy: sx,yd[Qj is the set of allowedy values for
particles with horizontal coordinatex fFig. 5sad, insetg, andlB
is the indicator function of thesone- or two-dimensionald set
B, given by

1Bsbd = H1 if b [ B

0 otherwise.
s4.3d

Thus for fixedx, rtorussx,yd is independent ofy within the
available spaceHsxd.

Now unfold the dynamics onto a one-dimensional channel
in the x direction, as in Fig. 2, and consider the torus as the
distinguished unit cell at the origin. Fix a vertical line with
horizontal coordinatex in this cell, and consider its periodic
translatesx+n along the channel, wheren[Z. Denoting the
density there byrt

channelsx+n,yd, we have that for allt and for
all x andy,

o
n[Z

rt
channelsx + n,yd = rtorussx,yd. s4.4d

We expect that after a sufficiently long time, the distribu-
tion within cell n will look like the distribution on the torus,
modulated by a slowly varying function ofx. In particular,
we expect that the 2D position density will become asymp-
totically uniform iny within Hsxd at long times. We have not
been able to prove this, but we have checked by constructing
2D kernel density estimatesf30g that it seems to be correct.
A “sufficiently long” time would be one which is much
longer than the time required for the diffusion process to
cross one unit cell.

Thus we have approximately

rt
channelsx,yd . rtorussx,ydrtsxd = rtsxd

1

uQu
lHsxdsyd, s4.5d

wherertsxd is theshapeof the two-dimensional density dis-

FIG. 5. sColor onlined sad Time evolution of displacement dis-
tribution functions.sbd Time evolution of displacement densities,
calculated by numerically differentiating a cubic spline approxima-
tions to the distribution functions.r =2.1; b=0.2. The inset insad
shows the definition of the setHsxd required later.
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tribution as a function ofx[R; we expect this to be a slowly
varying function. We use “.” to denote that this relationship
holds in the long-time limit for values ofx which do not lie
in the tails of the distribution. Although this breaks down in
the tails, the density is in any case small there.

The 1D marginal density that we measure will then be
given approximately by

f tsxd =E
y=0

1

rt
channelsx,yddy . rtsxdhsxd, s4.6d

wherehsxdª uHsxdu / uQu is the normalized heightsLebesgue
measured of the setHsxd at positionx fsee the inset of Fig.
5sadg. Note thatHsxd is not necessarily a connected set.

Thus the measured densityf tsxd is given by the shape
rtsxd of the 2D density,modulatedby fine-scale oscillations
due to the geometry of the lattice and described byhsxd,
which we call thefine-structure function.

The above argument motivates thesre)definitionof rtsxd
so that f tsxd=hsxdrtsxd, now with strict equality and for all
times. We can then viewrtsxd as the density with respect to
a new underlying measure hl, wherel is one-dimensional
Lebesgue measure; this new measure takes into account the
available space, and is hence more natural in this problem.
We expect thatrt will now describe the large-scale shape of
the density, at least for long times andx comparatively small.

Figure 6 shows the original and demodulated densitiesf t
andrt for a representative choice of geometrical parameters.
The fine structure inf t is very pronounced, but is eliminated
nearly completely when demodulated by dividing by the fine
structureh, leaving a demodulated densityrt which is close
to the Gaussian density with variance 2Dt salso shownd.

We estimated the diffusion coefficientD as follows. For
r =2.3 and b=0.5, using N=107 particles evolved tot
=1000, the best-fit line for logkDx2lt against logt in the re-
gion t[ f500,1000g gives kDx2l, t1.00003, which we regard
as confirmation of asymptotic linear growth. Followingf12g,

we use the slope of logkDx2lt againstt in that region as an
estimate of 2D, giving D=0.1494±0.0002; seef13,14g for
the error analysis.

sThroughout the paper, we denote bygs2 the Gaussian
density with mean 0 and variances2, and byNs2 the corre-
sponding normal distribution function.d

Note that although the density has nonsmooth points,
which affects the smoothness assumption in our density es-
timation procedure described in Sec. IV B, in practice these
points are still handled reasonably well. If necessary, we
could treat these points more carefully, by suitable choices of
partition points in that method.

E. Fine structure of displacement density

We can treat the displacement density similarly, as fol-
lows. Let htsx,yd be the 2D displacement density at timet,
so that

E
−`

x Èy

htsx,yddxdy = PsDxt ø x,Dyt ø yd, x,y [ R.

s4.7d

sRecall thatDxtªxt−x0d. We define the projected versions
hchannelandhtorus as follows:

ht
channelsx,yd ª o

n[Z
htsx,y + nd, x [ R,y [ f0,1d, s4.8d

ht
torussx,yd ª o

n[Z
ht

channelsx + n,yd, x,y [ f0,1d. s4.9d

Again we view the torus as the unit cell at the origin where
all initial conditions are placed. Note that projecting the dis-
placement distribution onR2 to the channel or torus gives the
same result as first projecting and then obtaining the dis-
placement distribution in the reduced geometry. Hence the
designations as being associated with the channel or torus are
appropriate.

Unlike rtorus in the previous section,ht
torus is not indepen-

dent of t: for example, for small enought, all displacements
increase with time. However, we show thatht

torus rapidly ap-
proaches a distribution which is stationary in time.

Consider a small ball of initial conditions of positive Le-
besgue measure around a pointsx ,vd. Since the system is
mixing on the torus, the position distribution at timet corre-
sponding to those initial conditions converges ast→` to a
distribution which is uniform with respect to Lebesgue mea-
sure in the billiard domainQ. The corresponding limiting
displacement distribution is hence obtained by averaging the
displacement ofx from all points on the torus.

Extending this to an initial distribution which is uniform
with respect to Liouville measure over the whole phase
space, we see that the limiting displacement distribution is
given by averaging displacements of two points inQ, with
both points distributed uniformly with respect to Lebesgue
measure onQ. This limiting distribution we denote by
htorussx,yd, with no t subscript.

As in the previous section, we expect they dependence of
ht

channelsx+n, ·d to be the same, for large enought, as that of

FIG. 6. sColor onlined Position densityf t exhibiting a pro-
nounced fine structure, together with the demodulated slowly vary-
ing functionrt and a Gaussian with variance 2Dt. The inset shows
one period of the demodulating fine-structure functionh. r =2.3; b
=0.5; t=50.
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htorussx, ·d for x[ f0,1d. However,htorussx, ·d is not indepen-
dent of y, as can be seen from a projected version of Fig.
4sbd on the torusf14g. We thus set

ht
channelsx,yd . htorussx,ydhtsxd. s4.10d

To obtain the 1D marginal densitygtsxd, we integrate with
respect toy,

gtsxd =E
y=0

1

ht
channelsx,yddy . fsxdhtsxd, s4.11d

where

fsxd ª E
y=0

1

htorussx,yddy. s4.12d

Again we now redefineh so thatgtsxd=fsxdhtsxd, with the
fine structure ofgtsxd being described byf and the large-
scale variation byhsxd, which can be regarded as the density
with respect to the new measuref l taking account of the
excluded volume. In the next section, we evaluatefsxd ex-
plicitly.

F. Calculation of x-displacement densityf„x… on torus

Let sX1,Y1d and sX2,Y2d be independent random vari-
ables, distributed uniformly with respect to Lebesgue mea-
sure in the billiard domain Q, and let DX
ª hX2−X1j[ f0,1d be their x displacement, whereh·j de-
notes the fractional part of its argument. ThenDX is the sum
of two independent random variables, so that its densityf is
given by the following convolution, which correctly takes
account of the periodicity ofh andf with period 1:

fsjd =E
0

1

hsxdhsx + jddx. s4.13d

This form leads us to expand in Fourier series,

hsxd = o
k[Z

ĥskde2pikx = ĥs0d + 2o
k[N

ĥskdcoss2pkxd,

s4.14d

and similarly for f, where the Fourier coefficients are de-
fined by

ĥskd ª E
0

1

hsxde−2pikxdx =E
0

1

hsxd coss2pkxddx.

s4.15d

The last equality follows from the evenness ofh, and shows

that ĥskd= ĥs−kd, from which the second equality in Eq.
s4.14d follows. Fourier transforming Eq.s4.13d then gives

f̂skd = ĥskdĥs− kd = ĥskd2. s4.16d

Taking the origin in the center of the disk of radiusb ssee
the inset of Fig. 5d, the available space functionh is given by

hsxd =
1

uQu
F1 − 2Îb2 − x2 − 2Îa2 − S1

2
− xD2G

s4.17d

for x[ f0,1/2d, and is even and periodic with period 1. Here
we adopt the convention thatÎa=0 if a,0 to avoid writing
indicator functions explicitly. The evaluation of the Fourier
coefficients ofh thus involves integrals of the form

E
0

a

cossztdÎa2 − t2dt =
pa

2z
J1szad szÞ 0d, s4.18d

whereJ1 is the first-order Bessel function; this equality fol-
lows from Eq.s9.1.20d of f33g after a change of variables.

Hence the Fourier coefficients ofh are ĥs0d=e0
1hsxd=1

and, for integerkÞ0,

ĥskd = −
1

uQuuku
fs− 1dkaJ1s2paukud + bJ1s2pbukudg .

s4.19d

Note thate0
1fsxddx=f̂s0d= ĥs0d2=1, so thatf is correctly

normalized as a density function on the torus.
In Fig. 7, we plot partial sumsfm up to m terms of the

Fourier series forf analogous to Eq.s4.14d. We can deter-
mine the degree of smoothness off, and hence presumably
of gt, as follows. The asymptotic expansion ofJ1szd for large
real z fEq. s9.2.1d of f33gg,

J1szd ,Î 2

pz
cosS3p

4
− zD = Osz−1/2d, s4.20d

shows thatĥskd=Osk−3/2d and hencef̂skd=Osk−3d. From the
theory of Fourier seriesssee, e.g.,f34g, Chap. 1d, we hence
have thatf is at leastC1 sonce continuously differentiabled.
Thus the convolution ofh with itself is smoother thanh is,
as intuitively expected, despite the nondifferentiable points
of h.

We have checked numerically the approach of
eht

torussx,yd dy to fsxd, and it appears to be fast, although the
rate is difficult to evaluate, since a large number of initial

FIG. 7. sColor onlined Partial sumsfm up to m terms of the
Fourier series forf, with r =2.3 andb=0.5.
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conditions is required for the numerically calculated distri-
bution function to approach closely the limiting distribution.

G. Structure of displacement distribution

In Fig. 8, we plot the numerically obtained displacement
densitygtsxd, the fine-structure functionf calculated above,
and their ratiohtsxd, for a certain choice of geometrical pa-
rameters. Again the ratio is approximately Gaussian, which
confirms that the densities can be regarded as a Gaussian
shape modulated by the fine structuref.

However, ifr is close to 2a, thenht itself develops a type
of fine structure: it is nearly constant over each unit cell. This
is shown in Fig. 9 for two different times. We plot bothgt

and ht, rescaled byÎt and compared to a Gaussian of vari-
ance 2D. sThis scaling is discussed in Sec. V.d

This steplike structure ofht is related to the validity of the
Machta-Zwanzig random-walk approximation, which gives
an estimate of the diffusion coefficient in regimes where the
geometrical structure can be regarded as a series of traps

with small exitsf11–13,35g. Having ht constant across each
cell indicates that the distribution of particles within the bil-
liard domain in each cell is uniform, as is needed for the
Machta-Zwanzig approximation to work.

As r increases away from 2a, the exit size of the traps
increases, and the Machta-Zwanzig argument ceases to give
a good approximationf12,13g. The distribution then ceases
to be uniform in each cell; see Fig. 6. This may be related to
the crossover to a Boltzmann regime described inf12g.

V. CENTRAL LIMIT THEOREM AND RATE OF
CONVERGENCE

We now discuss the central limit theorem ast→` in
terms of the fine structure described in the previous section.

A. Central limit theorem: Weak convergence to normal
distribution

The central limit theorem requires us to consider the den-
sities rescaled byÎt, so we define

g̃tsxd ª Ît gtsxÎtd, s5.1d

where the first factor ofÎt normalizes the integral ofg̃t to 1,
giving a probability density. Figure 10 shows the densities of
Fig. 5sad rescaled in this way, compared to a Gaussian den-
sity with mean 0 and variance 2D. We see that the rescaled
densities oscillate within an envelope which remains ap-
proximately constant, but with an increasing frequency ast
→`; they are oscillating around the limiting Gaussian, but
do not converge to it pointwise. See also Fig. 9.

The increasingly rapid oscillations do, however, cancel
out when we consider the rescaled distribution functions,
given by the integral of the rescaled density functions,

G̃tsxd ª E
s=−`

x

g̃tssd ds= GtsxÎtd. s5.2d

Figure 11 shows the difference between the rescaled distri-
bution functions and the limiting normal distribution with
mean 0 and variance 2D. We see that the rescaled distribu-

FIG. 8. sColor onlined Displacement densitygt, with demodu-
lated ht compared to a Gaussian of variance 2D. The inset insad
shows the fine-structure functionf for these geometrical param-
eters.r =2.1; b=0.2; t=50.

FIG. 9. sColor onlined Displacement densitygt and demodulated
ht, both rescaled byÎt, at t=200 andt=1000, compared to a Gauss-
ian of variance 2D. The inset again shows the fine-structure func-
tion f. r =2.01;b=0.1.

FIG. 10. sColor onlined Displacement densities as in Fig. 5sbd
after rescaling byÎt, compared to a Gaussian density with mean 0
and variance 2D. r =2.1; b=0.2.
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tion functions do converge to the limiting normal, in fact
uniformly, ast→`; we thus haveweakconvergence.

Although this is the strongest kind of convergence we can
obtain for the densitiesg̃t with respect to Lebesgue measure,
Fig. 9 provides evidence for the following conjecture: the

rescaled densitiesh̃̄t with respect to the new, modulated mea-
sure convergeuniformly to a Gaussiandensity. This charac-
terizes the asymptotic behavior more precisely than the stan-
dard central limit theorem.

B. Rate of convergence

Since theG̃t converge uniformly to the limiting normal

distribution, we can consider the distanceiG̃t−N2Di`, where
we define theuniform normby

iFi` ª sup
x[R

uFsxdu. s5.3d

We denote byNs2 the normal distribution function with vari-
ances2, given by

Ns2sxd ª
1

sÎ2p
E

s=−`

x

e−s2/2s2
ds. s5.4d

Figure 12 shows a log-log plot of this distance against
time, calculated numerically from the full distribution func-
tions. We see that the convergence follows a power law,

iG̃t − N2Di` , t−a, s5.5d

with a fit to the data forr =2.05 giving a slopea.0.482.
The same decay rate is obtained for a range of other geo-
metrical parameters, although the quality of the data deterio-
rates for largerr, reflecting the fact that diffusion is faster, so
that the distribution spreads further in the same time. Since
we use the same numberN=107 of initial conditions, there is
a lower resolution nearx=0 where, as shown in the next
section, the maximum is obtained.

In f36g it was proved rigorously thataù
1
6 .0.167 forany

Hölder continuous observablef. Here we have considered
only the particular Hölder observablen, but for this function
we see that the rate of convergence is much faster than the
lower bound proved inf36g.

C. Analytical estimate of the rate of convergence

We now obtain a simple analytical estimate of the rate of
convergence using the fine-structure calculations in Sec. IV.

Since the displacement distribution is symmetric, we have

G̃tsx=0d= 1
2 for all t. The maximum deviation ofG̃t from N2D

occurs near tox=0, where the density function is furthest
from a Gaussian, while the fine structure of the densityg̃t

means thatG̃t is increasing theresFig. 11d. Due to the oscil-
latory nature of the fine structure, this maximum thus occurs
at a distance of14 of the period of oscillation fromx=0.

Since the displacement density has the formgtsxd
=fsxdhtsxd, after rescaling we have

g̃tsxd = fsxÎtdh̃̄sxd, s5.6d

whereh̃̄tsxdªÎthtsxÎtd is the rescaled slowly varying part of
gt, and the fine structure at timet is given by

fsxÎtd = 1 + 2o
k[N

f̂skdcoss2pkxÎtd. s5.7d

The maximum deviation occurs at1
4 of the period offsxÎtd,

i.e., atx=1/4Ît, so that

iGt − Ni` . E
0

1/4Ît

o
k[N

f̂skdcoss2pkxÎtddx s5.8d

=
1
Ît

o
k[N, kodd

f̂skd
s− 1dsk−1d/2

2pk
. s5.9d

The correction due to the curvature of the underlying Gauss-
ian converges to 0 ast→`, since this Gaussian is flat atx
=0. HenceiGt−Ni`=Ost−1/2d.

This calculation shows that the fastest possible conver-
gence is a power law with exponenta= 1

2, and provides an

FIG. 11. sColor onlined Difference between rescaled distribution
functions and limiting normal distribution with variance 2D. r
=2.1; b=0.2.

FIG. 12. sColor onlined Distance of rescaled distribution func-

tions G̃t from limiting normal distributionN2D in log-log plot. The
straight line is a fit to the long-time decay of the data forr =2.05.
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intuitive reason why this is the case. If the rescaled shape

function h̃̄t converges to a Gaussian shape at a rate slower
than t−1/2, then the overall rate of convergencea could be
slower than1

2. However, the numerical results in Sec. V B
show that the rate is close to12. We remark that for an ob-
servable which is not so intimately related to the geometrical
structure of the lattice, the fine structure will in general be
more complicated, and the above argument may no longer
hold.

VI. MAXWELLIAN VELOCITY DISTRIBUTION

In this section, we consider the effect of a nonconstant
distribution of particle speedsf45g. A Maxwellian sGaussiand
velocity distribution was used in polygonal and Lorentz
channels inf37g and f20g, respectively, in connection with
heat conduction studies. The mean-square displacement was
observed to grow asymptotically linearly, but the relationship
with the unit speed situation was not discussed. A more com-
plicated Lorentz gas with a Gaussian distribution was studied
in f38g.

We show that the mean-square displacement grows as-
ymptotically linearly in time with the same diffusion coeffi-
cient as for the unit speed case, but that the limiting position
distribution may benon-Gaussian. For brevity, we refer only
to the position distribution throughout this section; the dis-
placement distribution is similar.

A. Mean-square displacement

Consider a particle located initially atsx0,v0d where v0

has unit speed. Changing the speed of the particle does not
change the path it follows, but only the distance along the
path traveled in a given time. Denoting byFv

t sx0,v0d the
billiard flow with speedv starting fromx0 and with initial
velocity in the direction of the unit vectorv0, we have

Fv
t sx0,v0d = Fvtsx0,v0d, s6.1d

where the flow on the right-hand side is the original unit-
speed flow. If all speeds are equal tov, then the radially
symmetric 2D position probability density after a long timet
is

ptsx,yuvd =
1

4pDvt
expS− sx2 + y2d

4Dvt
D , s6.2d

giving a radial density

ptsr uvd =
r

2Dvt
expS − r2

4Dvt
D . s6.3d

sThroughout this calculation, we neglect any fine structure.d
If we now have a distribution of velocities with density

pVsvd, then the radial position density at distancer is

f t
radsrd =E

v=0

`

ptsr uvdpVsvddv. s6.4d

The variance of the position distribution is then given by

kx2lt =E
r=0

`

r2f t
radsrddr s6.5d

=4DtE
0

`

vpVsvddv = 4Dtv, s6.6d

wherev is the mean speed, after interchanging the integrals
over r andv.

We thus see that for any speed distribution having a finite
mean, the variance of the position distribution, and hence the
mean-square displacement, grows asymptotically linearly
with the same diffusion coefficient as for the uniform speed
distribution, having normalized such thatv=1. We have veri-
fied this numerically with a Gaussian velocity distribution:
the mean-square displacement is indistinguishable from the
unit speed case even after very short times.

B. Gaussian velocity distribution

Henceforth attention is restricted to the case of a Gaussian
velocity distribution. For each initial condition, we generate
two independent normally distributed random variablesv1
andv2 with mean 0 and variance 1 using the standard Box-
Muller algorithm f18g, and then multiply bys, which is a
standard deviation calculated below. We usev1 andv2 as the
components of the velocity vectorv, whose probability den-
sity is hence given by

psvd = psv1,v2d =
e−v1

2/2s2

sÎ2p

e−v2
2/2s2

sÎ2p
=

e−v2/2s2

2ps2 , s6.7d

wherevª uvu=Îv1
2+v2

2 is the speed of the particle. The speed
v thus has density

pVsvd =
v
s2e−v2/2s2

s6.8d

and meanv=sÎp /2. To compare with the unit speed distri-
bution, we requirev=1, and hences=Î2/p. As before, we
distribute the initial positions uniformly with respect to Le-
besgue measure in the billiard domainQ.

C. Shape of limiting distribution

The position densitys6.4d is a function of time. However,
the Gaussian assumption used to derive that equation is valid
in the limit whent→`, so the central limit theorem rescaling

f̃ t
radsrd ª Îtf t

radsrÎtd s6.9d

eliminates the time dependence in Eq.s6.4d, giving the fol-
lowing shape for the limiting radial density:

f̃ radsrd =
pr

4D
E

v=0

`

expS−
r2

4Dv
−

pv2

4
D dv =:

pr

4D
I ,

s6.10d

denoting the integral byI. MATHEMATICA f39g can evaluate
this integral explicitly in terms of theMeijer G functionf40g
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I = G0,3
3,0SU pr4

256D2U
−1

2
,0,0

—D . s6.11d

Seef41g and references therein for a review of the use of
such special functions in anomalous diffusion.

We can, however, obtain an asymptotic approximation toI
from its definition as an integral, without using any proper-
ties of special functions, as follows. DefineKsvd
ª sr2/4Dvd+spv2/4d, the negative of the argument of the
exponential in Eq.s6.10d. ThenK has a unique minimum at
vminª fr2/ s2pDdg1/3 and we expect the integral to be domi-
nated by the neighborhood of this minimum. However, the
use of standard asymptotic methods is complicated by the
fact that asr →0, vmin tends to 0, a boundary of the integra-
tion domain.

To overcome this, we change variables to fix the mini-
mum away from the domain boundaries, settingwªv /vmin.
Then

I = vminE
w=0

`

e−aLswddw, s6.12d

whereaªpvmin
2 /2 andLswdª s1/wd+sw2/2d, with a mini-

mum atwmin=1. Laplace’s methodssee, e.g.,f42gd can now
be applied, giving the asymptotic approximation

I , vmin e−aLswmind
Î2p

Îa L9swmind
=

2
Î3

e−3a/2, s6.13d

valid for largea, i.e., for larger.
Hence

f̃ radsrd ,
r→`

Cr e−b r4/3
, s6.14d

where

Cª

p

2DÎ3
, b ª

3

2
S p

32D2D1/3

. s6.15d

D. Comparison with numerical results

Figure 13 shows the numerical radial position density
f̃ t

radsrd for a particular choice of geometrical parameters. We
wish to demodulate this as in Sec. IV to extract the slowly
varying shape function, which we can then compare to the
analytical calculation.

The radial fine-structure functionfradsrd must be calcu-
lated numerically, since no analytical expression is available.
We do this by distributing 105 points uniformly on a circle of
radiusr and calculating the proportion of points not falling
inside any scatterer. This we normalize so thatfradsrd→1 as
r →`, using the fact that whenr is large, the density inside
the circle of radiusr converges to the ratiofr2−psa2

+b2dg / r2 of available area per unit cell to total area per unit

cell. We can then demodulatef̃ t
rad by frad, setting

r̃t
radsrd ª

f̃ t
radsrd

fradsr Îtd
. s6.16d

Figure 14 shows the demodulated radial densityr̃t
radsrd at

two times compared to the exact solutions6.10d and s6.11d,
the asymptotic approximations6.14d and s6.15d, and the ra-
dial Gaussiansr /2Dde−r2/2D. The asymptotic approximation
agrees well with the exact solution except at the peak, while
the numerically determined demodulated densities agree
with the exact long-time solution over the whole range ofr.
All three differ significantly from the Gaussian, even in the
tails. We conclude that the radial position distribution isnon-
Gaussian. A similar calculation could be done for the radial
displacement distribution, but a numerical integration would
be required to evaluate the relevant fine-structure function.

An explanation of the non-Gaussian shape comes by con-
sidering slow particles which remain close to the origin for a
long time, and fast particles which can travel farther than
those with unit speed. The combined effect skews the result-
ing distribution in a way which depends on the relative
weights of slow and fast particles.

E. 1D marginal

The 1D marginal in thex direction is shown in Fig. 15.
Again there is a significant deviation of the demodulated

FIG. 13. sColor onlined The radial density functionf̃ t
rad com-

pared to the numerically calculated radial fine-structure function
frad, rescaled to converge to 1 and then vertically shifted for clarity.
The demodulated radial densityr̃t

rad is also shown.r =2.3; b=0.5;
t=100.

FIG. 14. sColor onlined Comparison of the demodulated radial
density r̃ t

rad with the exact Meijer-G representation, the large-r
asymptotic approximation, and the radial Gaussian with variance
2D.
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density from a Gaussian. From Eq.s6.14d, the 2D density at
sx,yd is asymptotically

f̃sx,yd ,
C

2p
expf− bsx2 + y2d2/3g , s6.17d

from which the 1D marginalf̃sxd is obtained by

f̃sxd ª E
y=−`

`

f̃sx,yd dy. s6.18d

It does not seem to be possible to perform this integration
explicitly for either the asymptotic expressions6.17d or the
corresponding exact solution in terms of the MeijerG func-
tion. Instead we perform another asymptotic approximation
starting from the asymptotic expressions6.17d. Changing
variables in Eq.s6.18d to zªy/x and using the evenness iny
gives

f̃sxd ,
Cuxu
2p

E
z=−`

`

expf− ks1 + z2d2/3g dz, s6.19d

wherekªbuxu4/3. Laplace’s method then gives

f̃sxd ,
CÎ3
Î8pb

uxu1/3e−buxu4/3
, s6.20d

valid for largex. This is also shown in Fig. 15. Due to the
uxu1/3 factor, the behavior nearx=0 is wrong, but in the tails
there is reasonably good agreement with the numerical re-
sults.

VII. POLYGONAL BILLIARD CHANNEL

In this section, we apply the previous ideas to apolygonal
billiard channel. Polygonal models differ from Lorentz gases
in that they are not chaotic in the standard sense, since the
Kolmogorov-Sinai entropy and all Lyapunov exponents are
zero due to the weak nature of the scattering from the po-
lygonal sidesf43g. Other indicators of the complexity of the

dynamics of such systems are required: see, e.g.,f43g and
references therein for a recent example.

As far as we are aware, there are few rigorous results on
ergodic and statistical properties of these modelsf26,44g.
However, certain polygonal channels have been found nu-
merically to shownormal diffusion, in the sense that our
propertys1d is satisfied, i.e., the mean-squared displacement
grows asymptotically linearly: see, e.g.,f26,37g. No convinc-
ing evidence has so far been given, however, that property
s2d, the central limit theorem, can be satisfied, although it
was shown inf23g that s3d is satisfied for some random po-
lygonal billiard models. Here we show that polygonal bil-
liards can satisfy the central limit theorem.

A. Polygonal billiard channel model

We study a polygonal billiard introduced inf26g. The ge-
ometry is shown in Fig. 16sad and the channel in Fig. 16sbd.
We fix the anglesf1 and f2 and choosed such that the
width of the bottom triangles is half that of the top triangle.
This determines the ratio ofh1 to h2 in terms of the angles
f1 and f2. We then require the inward-pointing vertices
of each triangle to lie on the same horizontal line in order
to prevent infinite horizon trajectories, givingh1+h2=h=1
and d=h/ stanf1+ 1

2 tanf2d, with h1=d tanf1 and h2
=sd/2dtanf2. We remark that inf26g it was stated that the
area uQu=dh of the billiard domain is independent off2
whenf1 is fixed, but this is not correct, since the expression
for d shows that it depends onf2, and we have fixedh=1.

In f26g the parametersf1=psÎ5−1d /8 andf2=p /q were
used, withq[N and 3øqø9. For qù5 normal diffusion
was found, whereas forq=3,4 it was found thatkDx2lt, ta

with aÞ1, so that propertysad is no longer satisfied and we
haveanomalousdiffusion. As far as we are aware, there is as
yet no physical or geometrical explanation for this observed
anomalous behavior, although presumably number-theoretic
properties of the angles are relevant.

We use the samef1, but a value off2 which is irratio-
nally related top, namelyf2=p / s2ed.p /5.44 swheree is
the base of natural logarithmsd, since there is evidence that
mixing properties are stronger for such irrational polygons
f44g. In this case we findkDx2lt, t1.008, which we regard as
asymptotically linear, so that propertysad is again satisfied,
with D=0.3796±0.0009.

FIG. 15. sColor onlined Rescaled 1D marginal of the displace-

ment densityg̃t and the demodulated versionh̃̄t compared to the
Gaussian with variance 2D and to the asymptotic expression. The
latter is not shown close tox=0, where it drops to 0.r =2.3; b
=0.5.

FIG. 16. sad The geometry of the polygonal billiard unit cell,
shown to scale withf2=p / s2ed. sbd Part of the polygonal channel
with the same parameters.
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B. Fine structure

The shape of the displacement density was considered in
f26g using histograms, but the results were not conclusive.
Here we use our more refined methods to study the fine
structure of position and displacement distributions and to
show their asymptotic normality.

Figure 17 shows a representative position densityf tsxd.
Following the method of Sec. IV D, we calculate the fine-
structure functionhsxd as the normalized height of available
space at positionx; this is shown in the inset. We demodulate
f t by dividing by h to yield rt, which is again close to the
Gaussian with variance 2Dt.

With the same notation as in Sec. IV F, we can also cal-
culate the fine-structure functionf of the displacement den-
sity. Taking the origin in the center of the unit cell in Fig.
16sad, we have

hsxd =
2d

uQu
Sx tanf1 + ux −

1

2
du tanf2D s7.1d

for 0øxød, with h being an even function and having pe-
riod 2d. fThe factor of 2d in Eq. s7.1d makesh a density per

unit length.g The Fourier coefficients areĥs0d=1 and

ĥskd =
1

2d
E

−d

d

hsxdcosSpkx

d
D =

1

uQu
d2

p2k2lskd s7.2d

for kÞ0, where form[Z we have

lskd = 54tansf1d if k is odd

8tansf2d if k = 4m+ 2

0 if k = 4m.

s7.3d

C. Central limit theorem

As for the Lorentz gas, we rescale the densities and dis-
tribution functions byÎt to study the convergence to a pos-
sible limiting distribution. Again we find oscillation on a
finer and finer scale and weak convergence to a normal dis-
tribution: see Fig. 18. Figure 19 shows the time evolution of

the demodulated densitiesh̃̄t. There is an unexpected peak in

the densities nearx=0 for small times, indicating some kind
of trapping effect; this appears to relax in the long time limit.
Again we conjecture that we have uniform convergence of

the demodulated densitiesh̃̄t to a Gaussian density.
Figure 20 shows the distance of the rescaled distribution

functions from the limiting normal distribution, analogously
to Fig. 12, for several values off2 for which the mean-
square displacement is asymptotically linear. The straight
line fitted to the graph forf2=p / s2ed has slope20.212, so
that the rate of convergence for this polygonal model is sub-
stantially slower than that for the Lorentz gas, presumably
due to the slower rate of mixing in this system. A similar rate
of decay is found forf2=p /7, while f2=p /6 and f2
=p /9 appear to have a slower decay rate. Nonetheless, the
distance does appear to converge to 0 for all these values of
f2, providing evidence that the distributions are asymptoti-
cally normal, i.e., that the central limit theorem is satisfied.

We remark that these convergence rate considerations will
be affected if we have not reached the asymptotic regime,
which would lead to an incorrect determination of the rel-
evant limiting growth exponent and/or diffusion coefficient.

FIG. 17. sColor onlined Position density att=50 in the polygo-
nal model withf2=p / s2ed. The inset showshsxd over two periods.

FIG. 18. sColor onlined Rescaled displacement densities com-
pared to the Gaussian with variance 2D. The inset shows the func-
tion f for this geometry.

FIG. 19. sColor onlined Demodulated densitiesh̃̄t for t=100, t
=1000, andt=10 000, compared to a Gaussian with variance 2D.
The inset shows a detailed view of the peak nearx=0.
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VIII. CONCLUSIONS

We have studied deterministic diffusion in diffusive bil-
liards in terms of the central limit theorem. In a 2D periodic
Lorentz gas model, where the central limit theorem is
proved, we have shown that it is possible to understand ana-
lytically the fine structure occurring in the finite-time mar-
ginal position and displacement distribution functions, in
terms of the geometry of a unit cell. Demodulating the ob-
served densities by the fine structure allowed us to obtain
information about the large-scale shape of the densities
which would remain obscured without this demodulation: we
showed that the demodulated densities are close to Gaussian.

We then studied the manner and rate of convergence to
the limiting normal distribution required by the central limit
theorem. We were able to obtain a simple estimate of the rate

of convergence in terms of the fine structure of the distribu-
tion functions. The demodulated densities appear to converge
uniformly to Gaussian densities, which is a strengthening of
the usual central limit theorem.

We showed that imposing a Maxwellian velocity distribu-
tion does not change the growth of the mean-square displace-
ment, but alters the shape of the limiting position distribution
to a non-Gaussian one.

Finally, we showed that similar methods can be applied to
a polygonal billiard channel where few rigorous results are
available, showing that the central limit theorem can be sat-
isfied by such models, but finding a slower rate of conver-
gence than for the Lorentz gas.

We believe that our analysis may have implications for
the escape rate formalism for calculating transport coeffi-
cientsssee, e.g.,f4gd, where the diffusion equation with ab-
sorbing boundary conditions is used as a phenomenological
model of the escape process from a finite length piece of a
Lorentz gas: analyzing the fine structure in this situation
could provide information about the validity of this use of
the diffusion equation. We also intend to investigate models
exhibiting anomalous diffusion using the methods presented
in this paper.
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