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Abstract
We calculate the diffusion coefficients of persistent random walks on lattices,
where the direction of a walker at a given step depends on the memory of a
certain number of previous steps. In particular, we describe a simple method
which enables us to obtain explicit expressions for the diffusion coefficients of
walks with a two-step memory on different classes of one-, two- and higher
dimensional lattices.

PACS numbers: 05.60.Cd, 05.10.−a, 02.50.−r

1. Introduction

Random walks are widely used throughout physics as a model for systems in which the state
of the system can be viewed as evolving in a stochastic way from one time step to the next.
Their properties have been extensively explored and the techniques to study them are well
developed [1]. In particular, at a large scale, random walks behave diffusively.

The most-studied case is that of random walkers which have no memory of their past
history. Many physical applications, however, call for a model in which the choice of possible
directions for the walker’s next step are given by probabilities which are influenced by the
path it took prior to making that choice, so that its jumps are correlated; this is often called a
persistent or correlated random walk [2].

A walk with zero memory corresponds to the Bernoulli process of the usual uncorrelated
random walk. Walks with single-step memories are the most commonly studied cases of
persistent random walks, where the random walker determines the direction it takes at a given
step in terms of the direction taken on the immediately preceding step [1]. Such walks—not
necessarily restricted to lattices, as will be the case here—were first discussed in the context
of Brownian motion [3] and fluid dynamics [4], and have since found many applications
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in the physics literature, most prominently in polymer conformation theory [5] and tracer
diffusion in metals [6], but also in relation to the telegrapher’s equation in the context of
thermodynamics [7]. Previous works dealing with random walks on lattices with higher order
memory effects include that of Montroll [8], with applications to models of polymers, and
Bender and Richmond [9].

The state of the walker is thus specified by two variables, its location and the direction it
took at the preceding step. The statistical properties of such persistent walks can be described
by simple Markov chains and have already been thoroughly investigated in the literature; see
in particular [10]. We will only provide a short review of results relevant to our purposes, with
specific emphasis on the diffusive properties.

The statistics of random walks with multi-step memory can in principle be analysed in
terms of Markov chains, in a similar way to their single-step memory counterpart. However,
the number of states of these chains grows exponentially with the number of steps accounted
for. This is the source of great technical difficulties, which are present already at the level of
two-step processes.

Of specific interest to us are random walks with a two-step memory. Among the class of
persistent walks under consideration, these are the simplest case beyond those with a single-
step memory, and are therefore relevant to problems dealing with the persistence of motion
of tracer particles where the single-step-memory approximation breaks down. An example
where this occurs is given in recent work by the present authors, on diffusion in a class of
periodic billiard tables [11].

The paper is organized as follows. The general framework of walks on lattices is
briefly reviewed in section 2, where we provide the expression of the diffusion coefficient
of such walks in terms of the velocity autocorrelations. Successive approximation schemes
for the computation of these autocorrelation functions are presented in sections 3, 4 and
5, pertaining to the number of steps of memory of the walkers, respectively 0, 1 and
2. Specific examples are discussed, namely the one-dimensional lattice and the two-
dimensional square, honeycomb and triangular lattices, and their diffusion coefficients are
computed. Section 6 provides an alternative derivation of the diffusion coefficients of two-
step memory persistent walks with special left–right symmetries. Conclusions are drawn in
section 7.

2. Diffusion on a lattice

We consider the motion of independent tracer particles undergoing random walks on a regular
lattice L . Their trajectories are specified by their initial position r0 at time t = 0, and the
sequence {v0, . . . ,vn} of the successive values vi ∈ Vri

of their direction vectors at positions
ri , where Vri

denotes the space of direction vectors allowed at site ri , which point to the lattice
sites adjacent to ri . Here we consider dynamics in discrete time, so that the time sequences
are simply assumed to be incremented by identical time steps τ as the tracers move from site
to site. In what follows we will loosely refer to the direction vectors as velocity vectors; they
are in fact dimensionless unit vectors.

Examples of such motions are random walks on one- and two-dimensional lattices such
as honeycomb, square and triangular lattices, but also include persistent random walks where
memory effects must be accounted for, i.e. when the probability of occurrence of vn depends
on the past history vn−1,vn−2, . . . .

The quantity we will be concerned with is the diffusion coefficient D of such persistent
processes, which measures the linear growth in time of the mean-squared displacement of
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walkers. This can be written in terms of velocity autocorrelations using the Taylor–Green–
Kubo expression:

D = �2

2dτ

[
1 + 2 lim

K→∞

K∑
n=1

〈v0 · vn〉
]

, (2.1)

where d denotes the dimensionality of the lattice L , and � is the lattice spacing. The
(dimensionless) velocity autocorrelations are computed as averages 〈·〉 over the equilibrium
distribution μ, so that the problem reduces to computing

〈v0 ·vn〉 =
∑

v0,...,vn

v0 · vn μ({v0, . . . ,vn}). (2.2)

As reviewed below, this can be easily carried out in the simple examples of random walks
with zero- and single-step memories. The main achievement of this paper is to describe the
computation of the velocity autocorrelations of random walks with two-step memory. All
these cases involve factorizations of the measure μ({v0, . . . ,vn}) by products of probability
measures which depend on a number of velocity vectors, equal to the number of steps of
memory of the walkers. These measures will be denoted by p throughout the paper.

The next three sections, sections 3, 4 and 5, are devoted to the computation of the diffusion
coefficient (2.1) for random walks with zero-, one- and two-step memories, respectively.

3. No-memory approximation (NMA)

In the simplest case, the walkers have no memory of their history as they proceed to their
next position. This gives a Bernoulli process for the velocity trials, for which the probability
measure factorizes:

μ({v0, . . . ,vn}) =
n∏

i=0

p(vi ). (3.1)

Given that the lattice is isotropic and that p is uniform, the velocity autocorrelation (2.2)
vanishes:

〈v0 ·vn〉 = δn,0. (3.2)

The diffusion coefficient of the random walk without memory is then given by

DNMA = �2

2dτ
. (3.3)

4. One-step memory approximation (1-SMA)

We now assume that the velocity vectors obey a Markov process for which vn takes on different
values according to the velocity at the previous step vn−1. We may then write

μ({v0, . . . ,vn}) =
n∏

i=1

P(vi |vi−1)p(v0). (4.1)

Here, P(b|a) denotes the one-step conditional probability that the walker moves in a direction
b, given that it had direction a at the previous step.

We denote by z the coordination number of the lattice, i.e. the number of neighbouring
sites accessible from each site, and we denote by R the rotation operation which takes a
vector v through all the lattice directions v, Rv, . . . , Rz−1v. In general, the set of allowed
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orientations of v depends on the lattice site, such as in the two-dimensional honeycomb lattice.
We denote by T the symmetry operator that maps a cell to its neighbours, which corresponds
simply to the identity for square lattices and to a reflection for the honeycomb lattice.

The idea of our calculation is to express each velocity vector vk in terms of the first one,
v0, as vk = Rik Tkv0, where ik lies between 0 and z − 1. Substituting this into the expression
for the velocity autocorrelation 〈v0 · vn〉, equation (2.2), we obtain∑
v0,...,vn

v0 ·vn

n∏
i=1

P(vi |vi−1)p(v0) =
z∑

i0,...,in=1

v0 · RinTnv0 min,in−1 · · · mi1,i0 pi0 , (4.2)

where

min,in−1 ≡ P(RinTnv0|Rin−1 Tn−1v0) (4.3)

are the elements of the stochastic matrix M of the Markov chain associated with the persistent
random walk, and pi ≡ p(i) are the elements of its invariant (equilibrium) distribution, denoted
P, evaluated with a velocity in the ith lattice direction. The invariance of P is expressed as∑

j mi,j pj = pi . These notations will be used throughout this paper.
The terms involving M in (4.2) constitute the matrix product of n copies of M. Furthermore,

since the invariant distribution is uniform over the z possible lattice directions, we can choose
an arbitrary direction for v0, and hence write

〈v0 ·vn〉 = v0 · Tnv0 m(n)
1,1 + v0 · RTnv0 m(n)

2,1 + · · · + v0 · Rz−1Tnv0 m(n)
z,1, (4.4)

where m(n)
i,j denote the elements of Mn.

Under special symmetry assumptions to be discussed in the examples below, one has

〈v0 ·vn〉 = 〈cos θ〉n, (4.5)

where 〈cos θ〉 denotes the average angle between two successive velocity vectors. It is then
a general, well-known, result for such symmetric persistent random walks with single-step
memory [2] that their diffusion coefficients have the form

D1SMA = DNMA
1 + 〈cos θ〉
1 − 〈cos θ〉 (symmetric walks). (4.6)

The actual value of the diffusion coefficient depends on the probabilities P(Rj Tv|v),
which are parameters of the model. Specific applications of equation (4.6) are given in the
examples below, such as shown in figure 1. To simplify the notation, we denote the conditional
probabilities of these walks by Pj, where j = 0, . . . , z − 1 corresponds to the relative angle
2πj/z of the direction that the walker takes with respect to its previous step (up to a reflection
in the case of the honeycomb lattice). These conventions are shown in figure 2.

4.1. One-dimensional lattice

The simplest case is that of a regular one-dimensional lattice. In this case, each site is
equivalent, and so T is the identity. Each velocity vector vk has only two possible values, v

and −v, so that R is a reflection. We denote by P0 ≡ P(v|v) the probability that the random
walker continues in the same direction at the next step, and by P1 ≡ P(−v|v) the probability
that it reverses direction.

It is easy to check that the velocity autocorrelation (4.4) yields (4.5):

〈v0 ·vn〉 = (P0 − P1)
n = 〈cos θ〉n, (4.7)

and so the diffusion coefficient is given by

D1SMA = DNMA
P0

P1
. (4.8)
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(a) (b)

Figure 1. Examples of walks on (a) square and (b) honeycomb lattices. Note the inversion of the
allowed directions at neighbouring sites on the honeycomb lattice.
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Figure 2. The possible directions of motion at a given step for different lattices, relative to the
incoming direction which is shown by the arrow, are labelled from 0 to z − 1, corresponding to
the angle 2πj/z that the lattice direction j makes with respect to the reference direction, up to
a reflection inversion in the case of the honeycomb lattice. (a) One-dimensional lattice (z = 2);
(b) honeycomb lattice (z = 3); (c) square lattice (z = 4); (d) triangular lattice (z = 6).

4.2. Two-dimensional square lattice

On a two-dimensional square lattice, vk can take four possible values, and each lattice site is
again equivalent. Thus, T is the identity and R can be taken as an anticlockwise rotation by
angle π/2. We denote by P0 ≡ P(v|v) the probability that the particle proceeds in the same
direction as on its previous step, by P1 ≡ P(Rv|v) the probability that the particle turns to the
left relative to its previous direction, by P2 ≡ P(R2v|v) the probability that it turns around
and by P3 ≡ P(R3v|v) the probability that it turns right.

From (4.4), the velocity autocorrelation 〈v0 ·vn〉 is given by

〈v0 ·vn〉 = m(n)
1,1 − m(n)

1,3. (4.9)
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The transition matrix M given by (4.3) is thus the following cyclic matrix:

M =

⎛
⎜⎜⎝

P0 P1 P2 P3

P3 P0 P1 P2

P2 P3 P0 P1

P1 P2 P3 P0

⎞
⎟⎟⎠ . (4.10)

To calculate the elements m(n)
i,j of the powers Mn, it is possible to compute the eigenvalues

and eigenvectors of M and then decompose it as M = Q · L · Q−1, where L is the diagonal
matrix of the eigenvalues of M and Q is the matrix of its eigenvectors. This procedure is,
however, not necessary here, since we only require the combination of m(n)

i,j which appears in

(4.9). To proceed, we label the distinct entries of Mn as a(n)
i , using the fact that Mn is also

cyclic if M is:

Mn ≡

⎛
⎜⎜⎜⎜⎜⎝

a(n)
1 a(n)

2 a(n)
3 a(n)

4

a(n)
4 a(n)

1 a(n)
2 a(n)

3

a(n)
3 a(n)

4 a(n)
1 a(n)

2

a(n)
2 a(n)

3 a(n)
4 a(n)

1

⎞
⎟⎟⎟⎟⎟⎠ . (4.11)

Writing Mn = MMn−1, we can exploit the particular structure of the matrix to reduce it from a
(4 × 4) matrix to a (2 × 2) matrix, by considering the following differences:(

a(n)
1 − a(n)

3

a(n)
2 − a(n)

4

)
=
(

P0 − P2 P3 − P1

P1 − P3 P0 − P2

)(
a(n−1)

1 − a(n−1)
3

a(n−1)
2 − a(n−1)

4

)

=
(

P0 − P2 P3 − P1

P1 − P3 P0 − P2

)n−1 (
P0 − P2

P1 − P3

)
. (4.12)

The velocity autocorrelation (4.9) is thus given by

〈v0 ·vn〉 = a(n)
1 − a(n)

3

= (1 0)

(
P0 − P2 P3 − P1

P1 − P3 P0 − P2

)n−1 (
P0 − P2

P1 − P3

)
. (4.13)

Summing the previous expression over all n, and using the fact that
∑∞

n=0 An = (I − A)−1

for a matrix A, where I is the identity matrix, we obtain the diffusion coefficient (2.1) as

D1SMA = DNMA

[
1 + 2(1 0)

(
1 − P0 + P2 P1 − P3

P3 − P1 1 − P0 + P2

)−1 (
P0 − P2

P1 − P3

)]
. (4.14)

For a symmetric process in which P1 = P3, which is often imposed by a symmetry of the
physical system, equation (4.5) holds, and the diffusion coefficient takes the form (4.6), namely

D1SMA = DNMA
1 + P0 − P2

1 − P0 + P2
. (4.15)

If, however, P1 �= P3, then equation (4.6) is no longer valid. Instead, we have the more
complicated expression

D1SMA = DNMA
1 − (P0 − P2)

2 − (P1 − P3)
2

(1 − P0 + P2)2 + (P1 − P3)2
. (4.16)

Such asymmetric walks are the lattice equivalent of the continuous-space models of persistent
random walks with chirality considered in [12].
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4.3. Two-dimensional honeycomb lattice

On the two-dimensional honeycomb lattice, shown in figure 1(b), each site has z = 3
neighbours. Here, R is taken to be a clockwise rotation3 by angle 2π/3 and the arrangement
of neighbours differs by a reflection T. We denote by P0 ≡ P(−v|v) the probability that the
particle turns around, P1 ≡ P(−R2v|v) that it turns left relative to its previous direction and
P2 ≡ P(−Rv|v) that it turns right. The transition matrix M is thus

M =
⎛
⎝P0 P1 P2

P2 P0 P1

P1 P2 P0

⎞
⎠ . (4.17)

Proceeding as with the square lattice, we let

Mn ≡

⎛
⎜⎜⎝

a(n)
1 a(n)

2 a(n)
3

a(n)
3 a(n)

1 a(n)
2

a(n)
2 a(n)

3 a(n)
1

⎞
⎟⎟⎠ , (4.18)

and obtain the matrix equation⎛
⎜⎜⎝

−a(n)
1 + 1

2

[
a(n)

2 + a(n)
3

]
−a(n)

2 + 1
2

[
a(n)

1 + a(n)
3

]
−a(n)

3 + 1
2

[
a(n)

1 + a(n)
2

]
⎞
⎟⎟⎠ =

⎛
⎝P0 P1 P2

P2 P0 P1

P1 P2 P0

⎞
⎠
⎛
⎜⎜⎝

−a(n−1)
1 + 1

2

[
a(n−1)

2 + a(n−1)
3

]
−a(n−1)

2 + 1
2

[
a(n−1)

1 + a(n−1)
3

]
−a(n−1)

3 + 1
2

[
a(n−1)

1 + a(n−1)
2

]
⎞
⎟⎟⎠ ,

= 1

2

⎛
⎝P0 P1 P2

P2 P0 P1

P1 P2 P0

⎞
⎠

n−1⎛
⎝1 − 3P0

1 − 3P2

1 − 3P1

⎞
⎠ . (4.19)

The velocity autocorrelation (4.4) is thus

〈v0 ·vn〉 = −a(n)
1 +

1

2

[
a(n)

2 + a(n)
3

]
,

= 1

2
(1 0 0)

⎛
⎝P0 P1 P2

P2 P0 P1

P1 P2 P0

⎞
⎠

n−1⎛
⎝1 − 3P0

1 − 3P2

1 − 3P1

⎞
⎠ . (4.20)

Hence, the diffusion coefficient (2.1) is

D1SMA = DNMA

⎡
⎢⎣1 + (1 0 0)

⎛
⎝1 − P0 −P1 −P2

−P2 1 − P0 −P1

−P1 −P2 1 − P0

⎞
⎠

−1⎛
⎝1 − 3P0

1 − 3P2

1 − 3P1

⎞
⎠
⎤
⎥⎦ . (4.21)

Again, in the case of an isotropic process for which P2 = P1 ≡ Ps (‘symmetric’),
equation (4.5) holds, and substituting Ps = (1 − P0)/2 gives the following expression for the
diffusion coefficient:

D1SMA = DNMA
1 − P0 + Ps

1 + P0 − Ps
= DNMA

3(1 − P0)

1 + 3P0
. (4.22)

For an asymmetric process for which P1 �= P2, defining the symmetric and antisymmetric
parts Ps ≡ (P1 + P2)/2 and Pa ≡ (P1 − P2)/2, we instead obtain

3 We take a clockwise rotation as opposed to an anticlockwise one in the other examples so that the lattice directions
are still labelled anticlockwise.
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D1SMA = DNMA
1 − 3P 2

a − (P0 − Ps)
2

3P 2
a + (1 + P0 − Ps)2

,

= DNMA
3(1 − P0)(1 + 3P0) − 12P 2

a

(1 + 3P0)2 + 12P 2
a

. (4.23)

4.4. Two-dimensional triangular lattice

Persistent walks on a triangular lattice were made popular by Fink and Mao [13] in connection
with tie knots. Here, each site has z = 6 neighbours, so that R is an anticlockwise rotation
by angle π/3. Following our convention (see figure 2(d)), we denote by P0 ≡ P(v|v) the
probability that the particle moves forward, P1 ≡ P(Rv|v) that it moves in the forward left
direction relative to its previous direction and similarly for P2, P3, P4 and P5.

Proceeding along the lines of the previous subsection, we let

Mn ≡

⎛
⎜⎜⎜⎜⎜⎝

a(n)
1 a(n)

2 · · · a(n)
6

a(n)
6 a(n)

1 · · · a(n)

5
...

...
. . .

...

a(n)
2 a(n)

3 · · · a(n)
1

⎞
⎟⎟⎟⎟⎟⎠ , (4.24)

in terms of which the velocity autocorrelation (4.4) is given by

〈v0 ·vn〉 = a(n)
1 + 1

2

[
a(n)

2 + a(n)
6 − a(n)

3 − a(n)

5

]− a(n)
4 . (4.25)

A computation similar to that of equation (4.19) yields

〈v0 · vn〉= (1 0 · · · 0)

⎛
⎜⎜⎜⎝

P0 P1 · · · P5

P5 P0 · · · P4

...
...

. . .
...

P1 P2 · · · P0

⎞
⎟⎟⎟⎠

n−1⎛⎜⎜⎜⎜⎝
P0 − P3 + 1

2 (P1 − P2 − P4 + P5)

P1 − P4 + 1
2 (P2 − P3 − P5 + P0)

...

P5 − P2 + 1
2 (P0 − P1 − P3 + P4)

⎞
⎟⎟⎟⎟⎠ .

(4.26)

The diffusion coefficient (2.1) is then

D1SMA = DNMA

⎡
⎢⎢⎢⎢⎣1 + (1 0 · · · 0)

⎛
⎜⎜⎜⎝

1 − P0 −P1 · · · −P5

−P5 1 − P0 · · · −P4

...
...

. . .
...

−P1 −P2 · · · 1 − P0

⎞
⎟⎟⎟⎠

−1

×

⎛
⎜⎜⎜⎜⎝

P0 − P3 + 1
2 (P1 − P2 − P4 + P5)

P1 − P4 + 1
2 (P2 − P3 − P5 + P0)

...

P5 − P2 + 1
2 (P0 − P1 − P3 + P4)

⎞
⎟⎟⎟⎟⎠

⎤
⎥⎥⎥⎥⎦ . (4.27)

4.5. d-dimensional hypercubic lattice

The case of a hypercubic lattice in arbitrary dimension d with coordination number z = 2d

can also be treated, provided that the same probability Ps is assigned to scattering along all
new directions which are perpendicular to the previous direction of motion. We then have
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P0 + Pz/2 + 2(d − 1)Ps = 1, and the invariant distribution of velocities p(v) = 1/(2d) is
uniform. We then recover an expression similar to (4.15) for the diffusion coefficient in this
case.

5. Two-step memory approximation (2-SMA)

We now turn to the main contribution of this paper, namely the development of a technique for
the calculation of the diffusion coefficient for persistent random walks with a 2-step memory
on lattices.

We thus assume that the velocity vectors obey a random process for which the probability
of vn takes on different values according to the velocities at the two previous steps, vn−1 and
vn−2, so that we may write

μ({v0, . . . ,vn}) =
n∏

i=2

P(vi |vi−1,vi−2)p(v0,v1). (5.1)

The velocity autocorrelation function (2.2) is then

〈v0 ·vn〉 =
∑

{vn,...,v0}
v0 · vn

n∏
i=2

P(vi |vi−1,vi−2)p(v0,v1). (5.2)

The calculation of these correlations proceeds in the most straightforward way by
transposing the calculation leading to equation (2.2) to the two-step probability transitions as
characterizing the probability transitions of a two-dimensional Markov chain. Considering a
lattice with coordination number z, the state of the Markov chain is a normalized vector of
dimension z2. The time evolution is specified by the (z2 × z2) stochastic matrix M with entries

mi=(i1−1)z+i2,j=(j1−1)z+j2 ≡ δi2,j1P(Ri1 T2v|Rj1 Tv, Rj2v), (5.3)

where i1, i2, j 1 and j 2 take values between 1 and z. Denoting by P the invariant
distribution of this Markov chain, i.e. the z2-dimensional vector with components pi such
that

∑z2

j=1 mi,j pj = pi , equation (5.2) becomes

〈v0 ·vn〉 =
z2∑

i0,in=1

J(n)
in,i0

m(n−1)
in,i0

pi0 , (5.4)

where J(n) is the (z2 × z2) matrix with elements

J(n)

i=(i1−1)z+i2,j=(j1−1)z+j2
≡ ei1 · Tnej2 , (5.5)

and ek denotes the unit vector along the kth lattice direction.
Using the symmetries of the problem and writing Pj k = P(RkTRj Tv|Rj Tv,v) for

the conditional probability of turning successively by angles 2πj/z and 2πk/z with respect
to the current direction (with reflection by T where needed), we define φ ≡ exp(2iπ/z),
where i denotes the imaginary unit, i = √−1, and show, through the examples below, that
equation (5.4) reduces to the general expression

〈v0 · vn〉 = σn z

2
(1 · · · 1)

⎡
⎢⎢⎢⎢⎣

⎛
⎜⎜⎜⎝

P0 0 P1 0 · · · Pz−1,0

φP0 1 φP1 1 · · · φPz−1,1

...
...

. . .
...

φz−1P0,z−1 φz−1P1,z−1 · · · φz−1Pz−1,1

⎞
⎟⎟⎟⎠

n−1

× diag(1, φ, . . . , φz−1)

9
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+

⎛
⎜⎜⎜⎜⎜⎝

P0 0 P1 0 · · · Pz−1,0

φ−1P0 1 φ−1P1 1 · · · φ−1Pz−1,1

...
...

. . .
...

φ1−zP0,z−1 φ1−zP1,z−1 · · · φ1−zPz−1,1

⎞
⎟⎟⎟⎟⎟⎠

n−1

× diag(1, φ−1, . . . , φ1−z)

⎤
⎥⎥⎥⎥⎦
⎛
⎜⎝

p1

...

pz

⎞
⎟⎠ , (5.6)

where diag(1, φ, . . . , φz−1) denotes the matrix with elements listed on the main diagonal and
0 elsewhere. Here, σ is a sign factor which is −1 for the honeycomb lattice and +1 for the
other lattices, and reflects the action of T. Note that the second term in the summation is the
complex conjugate of the first, so that the result is real. The main result of our paper follows,
which is the expression of the diffusion coefficient for persistent random walks with 2-step
memory:

D2SMA

DNMA
= 1 + σz(1 · · · 1)

⎡
⎢⎢⎢⎢⎢⎣

⎛
⎜⎜⎜⎜⎜⎝

1 − P0 0 −P1 0 · · · −Pz−1,0

−φP0 1 1 − φP1 1 · · · −φPz−1,1

...
...

. . .
...

−φz−1P0,z−1 −φz−1P1,z−1 · · · 1 − φz−1Pz−1,1

⎞
⎟⎟⎟⎟⎟⎠

−1

× diag(1, φ, . . . , φz−1)

+

⎛
⎜⎜⎜⎜⎜⎝

1 − P0 0 −P1 0 · · · −Pz−1,0

−φ−1P0 1 −φ−1P1 1 · · · −φ−1Pz−1,1

...
...

. . .
...

−φ1−zP0,z−1 −φ1−zP1,z−1 · · · 1 − φ1−zPz−1,1

⎞
⎟⎟⎟⎟⎟⎠

−1

× diag(1, φ−1, . . . , φ1−z)

⎤
⎥⎥⎥⎥⎦
⎛
⎜⎝

p1

...

pz

⎞
⎟⎠ . (5.7)

The remainder of this section serves to illustrate the derivation of this formula in the
specific examples of a walk on a one-dimensional lattice, and on a two-dimensional honeycomb
lattice. Similar arguments can be used to establish the validity of equation (5.7) in the case of
square and triangular lattices.

5.1. One-dimensional lattice

We first consider the simplest case, namely the one-dimensional lattice. The stochastic matrix
M from equation (5.3) is the (4 × 4) matrix

10
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M =

⎛
⎜⎜⎝

P(v|v, v) P (v|v,−v) 0 0
0 0 P(−v|v,−v) P (−v|v, v)

P (−v|v, v) P (−v|v,−v) 0 0
0 0 P(v|v,−v) P (v|v, v)

⎞
⎟⎟⎠ ,

=

⎛
⎜⎜⎝

P0 0 P1 0 0 0
0 0 P1 1 P0 1

P0 1 P1 1 0 0
0 0 P1 0 P0 0

⎞
⎟⎟⎠ , (5.8)

where P0 0 + P0 1 = 1 and P1 0 + P1 1 = 1.
Considering equation (5.4), we compute the invariant distribution of M, which is the

vector P whose components correspond to the four states p(v, v), p(−v, v), p(v,−v) and
p(−v,−v). Given that we must have p(−v,−v) = p(v, v) and p(v,−v) = p(−v, v), the
equilibrium distribution is obtained as the solution of the system of equations

p(v, v) = P0 0 p(v, v) + P1 0 p(−v, v),

p(v, v) + p(−v, v) = 1
2 ,

(5.9)

giving

p1 = p4 = p(v, v) = P1 0

2[1 − P0 0 + P1 0]
,

p2 = p3 = p(−v, v) = 1 − P0 0

2[1 − P0 0 + P1 0]
.

(5.10)

The matrix J(n), equation (5.5), is here the same for all n, and has the expression

J =

⎛
⎜⎜⎝

1 −1 1 −1
1 −1 1 −1

−1 1 −1 1
−1 1 −1 1

⎞
⎟⎟⎠ . (5.11)

The velocity autocorrelation (5.4) is thus

〈v0 · vn〉 = 2
[(

m(n−1)
1,1 − m(n−1)

1,4 + m(n−1)
3,4 − m(n−1)

3,1

)
p1

+
(
m(n−1)

1,3 − m(n−1)
1,2 + m(n−1)

3,2 − m(n−1)
3,3

)
p2
]
,

= 2 (1 1)

(
m(n−1)

1,1 − m(n−1)
1,4 m(n−1)

1,3 − m(n−1)
1,2

m(n−1)
3,4 − m(n−1)

3,1 m(n−1)
3,2 − m(n−1)

3,3

)(
p1

p2

)
. (5.12)

Since Mn, the nth power of M, has the symmetries of M, its entries m(n)
i,j are such that

m(n)
1,1 = m(n)

4,4 ≡ a(n)
1 , m(n)

2,1 = m(n)
3,4 ≡ b(n)

4 ,

m(n)
1,2 = m(n)

4,3 ≡ a(n)
2 , m(n)

2,2 = m(n)
3,3 ≡ b(n)

3 ,

m(n)
1,3 = m(n)

4,2 ≡ a(n)
3 , m(n)

2,3 = m(n)
3,2 ≡ b(n)

2 ,

m(n)
1,4 = m(n)

4,1 ≡ a(n)
4 , m(n)

2,4 = m(n)
3,1 ≡ b(n)

1 .

(5.13)

Writing Mn = MMn−1, we obtain two separate sets of equations for (2 × 2) matrices, one
involving a(n)

1 , a(n)
4 and b(n)

1 , b(n)
4 , and the other involving a(n)

2 , a(n)
3 and b(n)

2 , b(n)
3 :(

a(n)
1 a(n)

4

b(n)
1 b(n)

4

)
=
(

P0 0 P1 0

P0 1 P1 1

)(
a(n−1)

1 a(n−1)
4

b(n−1)
4 b(n−1)

1

)
,

(
a(n)

2 a(n)
3

b(n)
2 b(n)

3

)
=
(

P0 0 P1 0

P0 1 P1 1

)(
a(n−1)

2 a(n−1)
3

b(n−1)
3 b(n−1)

2

)
.

(5.14)

11
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Figure 3. Diffusion coefficient of the two-step memory walk on a one-dimensional lattice,
equation (5.17), as a function of its two parameters, P0 0 and P1 0.

Note that these equations do not have a simple recursive form, since the elements of the
matrices on the two sides do not appear in the same places. However, taking the differences
a(n)

1 − a(n)
4 , a(n)

3 − a(n)
2 , b(n)

4 − b(n)
1 and b(n)

2 − b(n)
3 , we obtain the recursive system

(
a(n)

1 − a(n)
4 a(n)

3 − a(n)
2

b(n)
4 − b(n)

1 b(n)
2 − b(n)

3

)
=
(

P0 0 P1 0

−P0 1 −P1 1

)(
a(n−1)

1 − a(n−1)
4 a(n−1)

3 − a(n−1)
2

b(n−1)
4 − b(n−1)

1 b(n−1)
2 − b(n−1)

3

)
,

=
(

P0 0 P1 0

−P0 1 −P1 1

)n−1
(

a(1)
1 − a(1)

4 a(1)
3 − a(1)

2

b(1)
4 − b(1)

1 b(1)
2 − b(1)

3

)
,

=
(

P0 0 P1 0

−P0 1 −P1 1

)n−1
(

P0 0 −P1 0

−P0 1 P1 1

)
,

=
(

P0 0 P1 0

−P0 1 −P1 1

)n
(

1 0

0 −1

)
. (5.15)

Plugging this equation into equation (5.12), we obtain

〈v0 ·vn〉 = 2 (1 1)

(
P0 0 P1 0

−P0 1 −P1 1

)n−1 (
p1

−p2

)
. (5.16)

This is equation (5.6), where φ = exp(2iπ/2) = −1. The diffusion coefficient is therefore
given by equation (5.7):

D2SMA = DNMA

[
1 + 4(1 1)

(
1 − P0 0 −P1 0

P0 1 1 + P1 1

)−1 (
p1

−p2

)]
,

= DNMA
P1 0

[1 − P0 0]

[1 + P0 0 − P1 0]

[1 − P0 0 + P1 0]
. (5.17)

It is a function of the two parameters P0 0 and P1 0, with graph shown in figure 3; when these
are equal, the process reduces to a walk with single-step memory, and the diffusion coefficient
to that of the single-step memory approximation (4.8), as it should.

12
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5.2. Two-dimensional honeycomb lattice

For the two-dimensional honeycomb lattice, the stochastic matrix M of equation (5.3) is a
(9 × 9) matrix with the following non-zero entries:

m1,1 = m5,5 = m9,9 = P(v| − v,v) = P0 0,

m1,2 = m5,6 = m9,7 = P(R2v| − R2v,v) = P1 0,

m1,3 = m5,4 = m9,8 = P(Rv| − Rv,v) = P2 0,

m4,1 = m8,5 = m3,9 = P(Rv| − v,v) = P0 2,

m4,2 = m8,6 = m3,7 = P(v| − R2v,v) = P1 2,

m4,3 = m8,4 = m3,8 = P(R2v| − Rv,v) = P2 2,

m7,1 = m2,5 = m6,9 = P(R2v| − v,v) = P0 1,

m7,2 = m2,6 = m6,7 = P(Rv| − R2v,v) = P1 1,

m7,3 = m2,4 = m6,8 = P(v| − Rv,v) = P2 1.

(5.18)

Given the three constraints

P0 0 + P0 1 + P0 2 = 1,

P1 0 + P1 1 + P1 2 = 1,

P2 0 + P2 1 + P2 2 = 1,

(5.19)

the actual number of independent parameters is 6. Note that the matrix M, as in the one-
dimensional case of the previous subsection, can be thought of as a cyclic matrix of 3 × 3
blocks, where the blocks themselves are however also cyclically permuted.

The invariant distribution P with components pi can be written in terms of the three
probabilities p(v,−v), p(v,−Rv), p(v,−R2v),

p1 = p5 = p9 = p(v,−v),

p2 = p6 = p7 = p(v,−Rv),

p3 = p4 = p8 = p(v,−R2v),

(5.20)

which are solutions of the system of equations

p(v,−v) = P0 0 p(v,−v) + P1 0 p(v,−R2v) + P2 0 p(v,−Rv), (5.21)

p(v,−R2v) = P0 1 p(v,−v) + P1 1 p(v,−R2v) + P2 1 p(v,−Rv), (5.22)

p(v,−v) + p(v,−Rv) + p(v,−R2v) = 1
3 . (5.23)

The matrix (5.5) has the block structure

J(n) = (−1)n

⎛
⎝B1 B1 B1

B2 B2 B2

B3 B3 B3

⎞
⎠ , (5.24)

where

B1 =
⎛
⎝−1 1/2 1/2

−1 1/2 1/2
−1 1/2 1/2

⎞
⎠ , B2 =

⎛
⎝1/2 −1 1/2

1/2 −1 1/2
1/2 −1 1/2

⎞
⎠ , B3 =

⎛
⎝1/2 1/2 −1

1/2 1/2 −1
1/2 1/2 −1

⎞
⎠ . (5.25)
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Substituting these expressions into equation (5.4), we find

〈vn+1 ·v0〉 = 3(−1)n+1

{[
m(n)

1,1 − 1

2
m(n)

1,5 − 1

2
m(n)

1,9 − 1

2
m(n)

4,1 + m(n)

4,5 − 1

2
m(n)

4,9 − 1

2
m(n)

7,1

− 1

2
m(n)

7,5 + m(n)
7,9

]
p1 +

[
−1

2
m(n)

1,2 − 1

2
m(n)

1,6 + m(n)
1,7 + m(m,n)

4,2 − 1

2
m(n)

4,6

− 1

2
m(n)

4,7 − 1

2
m(n)

7,2 + m(n)
7,6 − 1

2
m(n)

7,7

]
p2 +

[
− 1

2
m(n)

1,3 + m(n)
1,4 − 1

2
m(n)

1,8

− 1

2
m(n)

4,3 − 1

2
m(n)

4,4 + m(n)
4,8 + m(n)

7,3 − 1

2
m(n)

7,4 − 1

2
m(n)

7,8

]
p3

}
,

= 3(−1)n+1(1 1 1)

×

⎛
⎜⎜⎝

m(n)
1,1 − 1

2 m(n)

1,5 − 1
2 m(n)

1,9 − 1
2 m(n)

1,2 − 1
2 m(n)

1,6 + m(n)
1,7 − 1

2 m(n)
1,3 + m(n)

1,4 − 1
2 m(n)

1,8

− 1
2 m(n)

7,1 − 1
2 m(n)

7,5 + m(n)
7,9 − 1

2 m(n)
7,2 + m(n)

7,6 − 1
2 m(n)

7,7 m(n)
7,3 − 1

2 m(n)
7,4 − 1

2 m(n)
7,8

− 1
2 m(n)

4,1 + m(n)

4,5 − 1
2 m(n)

4,9 m(n)
4,2 − 1

2 m(n)
4,6 − 1

2 m(n)
4,7 − 1

2 m(n)
4,3 − 1

2 m(n)
4,4 + m(n)

4,8

⎞
⎟⎟⎠

×
⎛
⎝p1

p2

p3

⎞
⎠ . (5.26)

Proceeding along the lines of the computation presented in subsection 5.1, we obtain a
set of recursive matrix equations (A.9) involving the coefficients of Mn. We refer the reader
to appendix A for the details of this derivation.

We note that the coefficients which appear in equation (5.26) satisfy identities such as,
for instance,

m(n)
1,1 − 1

2 m(n)

1,5 − 1
2 m(n)

1,9 = 1
2

[
m(n)

1,1 + e2iπ/3m(n)

1,5 + e−2iπ/3m(n)
1,9

]
+ 1

2

[
m(n)

1,1 + e−2iπ/3m(n)

1,5 + e2iπ/3m(n)
1,9

]
. (5.27)

Thus, letting φ = exp(2iπ/3), we can combine the results of equation (A.9) with
equation (5.26) to find

〈vn · v0〉 = (−1)n
3

2
(1 1 1)

⎡
⎢⎣
⎛
⎝ P0 0 P1 0 P2 0

φP0 1 φP1 1 φP2 1

φ2P0 2 φ2P1 2 φ2P2 2

⎞
⎠

n−1⎛
⎝1 0 0

0 φ 0
0 0 φ2

⎞
⎠

+

⎛
⎝ P0 0 P1 0 P2 0

φ2P0 1 φ2P1 1 φ2P2 1

φP0 2 φP1 2 φP2 2

⎞
⎠

n−1⎛
⎝1 0 0

0 φ2 0
0 0 φ

⎞
⎠
⎤
⎥⎦
⎛
⎝p1

p2

p3

⎞
⎠ . (5.28)

This is equation (5.6). The diffusion coefficient (2.1) is therefore given by (5.7), which is here

D2SMA

DNMA
= 1 − 3(1 1 1)

⎡
⎢⎣
⎛
⎝1 + P0 0 P1 0 P2 0

φP0 1 1 + φP1 1 φP2 1

φ2P0 2 φ2P1 2 1 + φ2P2 2

⎞
⎠

−1⎛
⎝1 0 0

0 φ 0
0 0 φ2

⎞
⎠

+

⎛
⎝1 + P0 0 P1 0 P2 0

φ2P0 1 1 + φ2P1 1 φ2P2 1

φP0 2 φP1 2 1 + φP2 2

⎞
⎠

−1⎛
⎝1 0 0

0 φ2 0
0 0 φ

⎞
⎠
⎤
⎥⎦
⎛
⎝p1

p2

p3

⎞
⎠ . (5.29)
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Figure 4. Diffusion coefficient of the two-step memory completely symmetric walk on a two-
dimensional honeycomb lattice, equation (5.33), as a function of its two parameters, P0 0 and
Ps b.

Given a symmetric process for which left and right probabilities are equal, but the
probability of a left–left turn is different than that of a right–left turn, we let

P0 2 = P0 1 ≡ Pb s = 1 − P0 0

2
,

P1 0 = P2 0 ≡ Ps b, P1 1 = P2 2 ≡ Ps s, P1 2 = P2 1 = 1 − Ps b − Ps s.

(5.30)

Carrying out the matrix inversions in (5.29), we find the diffusion coefficient

D2SMA = DNMA
3(1 − P0 0)(1 + P0 0 − Ps b)(2 − Ps b − 2Ps s)

(1 − P0 0 + Ps b)[Ps b(7 + P0 0 − 8Ps s) + 2(1 + P0 0)Ps s − 4P 2
s b]

. (5.31)

If we further assume complete left–right symmetry and identify the probabilities of left–left
turns and left–right turns, thus letting

P1 2 = P2 1 = P1 1 = P2 2 = 1 − Ps b

2
, (5.32)

equation (5.31) simplifies to

D2SMA = DNMA
3(1 − P0 0)(1 + P0 0 − Ps b)

(1 − P0 0 + Ps b)(1 + P0 0 + 2Ps b)
. (5.33)

A graphical representation is displayed in figure 4.

6. Two-step memory approximation revisited

As seen in the previous section, the symbolic computation of (5.4) quickly becomes tricky.
However, an alternative to the above scheme can be found, provided that the walk has special
symmetries. Returning to (5.2), we write

〈v0 · vn〉 =
∑
v0

∑
i1,...,in

v0 · Si1,...,inv0P(Si1,...,inv0|Si1,...,in−1v0, Si1,...,in−2v0)

× · · · × P(Si1,i2v0|Si1v0,v0)p(v0, Si1v0), (6.1)

where we introduce the compact notation Si ≡ RiT, and sequences in the exponent denote
multiple composition: Si1,...,in ≡ Sin ◦ Sin−1 ◦ · · · ◦ Si1 , where each ik takes values between 1
and z. Note that in general Sj ◦ Si �= Si+j when T is non-trivial. The transition probabilities

15
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P(Sj2v0|Sj1v0, S
j0v0) can be seen as matrix elements Q̃j2−j1,j1−j0 , so that (6.1) may be

rewritten as

〈v0 ·vn〉 =
∑
v0

∑
i1,...,in

v0 · Si1,...,inv0Q̃in,in−1 · · · Q̃i2,i1p(v0, Si1v0). (6.2)

We would like to rewrite this expression as a matrix product. However, this is in general
not possible, and further approximations are needed. Thus, assuming that the scalar product
vn ·v0 factorizes as

Si1,...,inv0 · v0 =
n∏

k=1

Sikv0 ·v0, (6.3)

and defining

Qi,j ≡ Q̃i,j Sjv0 · v0 = P(Sj,iv0|Sjv0,v0)S
jv0 ·v0, (6.4)

equation (6.2) becomes

〈v0 ·vn〉 =
∑
v0

∑
i1,...,in

v0 · Sinv0Qin,in−1 · · · Qi2,i1 p(v0, Si1v0),

= z
∑
i1,in

V†
in

Qn−1
in,i1

pi1 , (6.5)

where we have introduced the vectors Vin ≡ v0 · Sinv0 and pi1 ≡ p(v0, Si1v0). As can be
seen, equation (6.5) has an appropriate matrix form and can easily be resummed over n to
compute the diffusion coefficient (2.1).

Since Q is a (z × z) matrix, equation (6.5) is much easier to evaluate than (5.4). The
trouble is that equation (6.3) is in general incorrect, and turns out to be strictly valid only
for one-dimensional walks. Nonetheless, it may also be applied to higher dimensional walks
satisfying special symmetry conditions. We consider the different geometries separately in the
following and discuss the conditions under which equation (6.5) can be applied. For higher
dimensional lattices, we recover by this simpler method the results obtained earlier under the
relevant symmetry assumptions.

6.1. One-dimensional lattice

The result (5.17) follows from equation (6.5). Indeed, Rin,...,i1v0 ·v0 = Rin+···+i1v0 · v0 = ±1
according to the parity of in + · · · + i1, and since this is also a property of the product∏n

k=1 Rikv0 · v0, we see that equation (6.3) is valid.
The vector pi on the right-hand side of equation (6.5) is

p1 = p(−v, v) = 1 − P0 0

2(1 − P0 0 + P1 0)
,

p2 = p(v, v) = P1 0

2(1 − P0 0 + P1 0)
.

(6.6)

The vector Vi , on the other hand, has components

V1 = −1,

V2 = 1.
(6.7)

The matrix elements Qi,j are defined according to equation (6.4):

Q =
(−P1 1 P0 1

−P1 0 P0 0

)

=
(

P1 0 − 1 1 − P0 0

−P1 0 P0 0

)
. (6.8)
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Considering equation (2.1) and plugging the above expressions into equation (6.5), we
have

D2SMA = DNMA{1 + 4V†[I2 − Q]−1P}, (6.9)

and we recover equation (5.17).

6.2. Two-dimensional honeycomb lattice

Consider equation (6.3) in the case of a honeycomb lattice. The operation Siv is a clockwise
rotation of v by angle −π/3 if i = 1, π/3 if i = 2, or π if i = 3. The operation Si1,...,inv is
thus a rotation by angle [2(i1 + · · · + in) − 3n]π/3, and the scalar product

Si1,...,inv · v = cos[2(i1 + · · · + in) − 3n]π/3. (6.10)

This expression is in general different from the product

Sinv · v · · · Si1v ·v =
n∏

k=1

cos[2(ik) − 3]π/3. (6.11)

This is so, for instance, when n = 2 and i1 = i2 = 1, for which (6.10) yields −1/2, whereas
(6.11) yields 1/4.

There is however a special case under which the product structure that we seek can be
retrieved, as follows. There are a priori nine transition probabilities P(Sj,iv|Sjv,v). There
are, however, a number of left–right symmetries in the system which reduce the number of
independent transition probabilities to 3:

P(S1,1v|S1v,v), P (S3,3v|S3v,v), P (S1,2v|S1v,v). (6.12)

In the event that the two probabilities P(S1,2v|S1v,v) and P(S1,1v|S1v,v) are equal

P(S1,2v|S1v,v) = P(S1,1v|S1v,v) ≡ Ps s, (6.13)

which is to say that forward–left and right scatterings are treated as identical events, then the
number of independent parameters reduces to 2, which we take to be P0 0 and Ps s.

In this case, the expression of the diffusion coefficient can be obtained in a way similar to
equation (5.17) for the one-dimensional lattice. This is so because

Si1...,in−1,1v ·v = cos

{
[2(i1 + · · · + in−1 + 1) − 3n]

π

3

}

= cos
π

3
cos

{
[2(i1 + · · · + in−1) − 3(n − 1)]

π

3

}

+ sin
π

3
sin

{
[2(i1 + · · · + in−1) − 3(n − 1)]

π

3

}
, (6.14)

Si1...,in−1,2v ·v = cos

{
[2(i1 + · · · + in−1 + 2) − 3n]

π

3

}

= cos
π

3
cos

{
[2(i1 + · · · + in−1) − 3(n − 1)]

π

3

}

− sin
π

3
sin

{
[2(i1 + · · · + in−1) − 3(n − 1)]

π

3

}
, (6.15)

Si1...,in−1,3v ·v = cos

{
[2(i1 + · · · + in−1 + 3) − 3n]

π

3

}

= −cos

{
[2(i1 + · · · + in−1) − 3(n − 1)]

π

3

}
. (6.16)
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Thus, given the symmetry between forward–left and right scatterings, the two sine
contributions in equations (6.14) and (6.15) cancel, whereas the cosines add up to 1:

Si1...,in−1,1v · v + Si1...,in−1,2v · v = Si1...,in−1v ·v,

= Si1...,in−1v ·v(S1v ·v + S2v ·v), (6.17)

Si1...,in−1,3v · v = −Si1...,in−1v · v = Si1...,in−1v ·v S3v ·v. (6.18)

We therefore retrieve an effective product structure, as in equation (6.3), and can compute the
diffusion coefficient using equation (6.5), with

P = 1

3(2 − 2Ps s − P0 0)

( 1
2 (1 − P0 0)

1 − 2Ps s

)
, (6.19)

V =
(

1
−1

)
, (6.20)

and

Q =
(

Ps s 1/2P0 0 − 1/2
1 − 2Ps s −P0 0

)
. (6.21)

We obtain the expression of the diffusion coefficient for the symmetric (in the sense of
equation (6.13)) two-step memory approximation on the honeycomb lattice:

Ds
2SMA = DNMA

3(1 − P0 0)

(3 − 4Ps s + P0 0)

(2Ps s + P0 0)

(2 − 2Ps s − P0 0)
. (6.22)

This is equation (5.33).

6.3. Two-dimensional square lattice

For the two-dimensional square lattice, recall that T is the identity and the operation Siv = Riv
is a anticlockwise rotation of v by angle iπ/2, with i = 0, . . . , 3. The operation Si1,...,inv is
thus a rotation by angle (i1 + · · · + in)π/2. Equations similar to (6.14)–(6.16) hold4:

Ri1...,inv ·v = cos

[
(i1 + · · · + in)

π

2

]
,

= cos
inπ

2
cos

[
(i1 + · · · + in−1)

π

2

]

− sin
inπ

2
sin

[
(i1 + · · · + in−1)

π

2

]
,

= Ri1...,in−1v ·v Rinv · v

− (δin,1 − δin,3
)

sin

[
(i1 + · · · + in−1)

π

2

]
. (6.23)

4 Note that, in general, we have the decomposition

Ri1 ...,inv · v =
∑

ω1,...,ωn∈{0,1}
sgn(ω1, . . . , ωn)R

i1 v · vω1 · · · Rinv · vωn ,

where we introduced the notation vω = v if ω = 0 and vω = v⊥ if ω = 1, and the function sgn(ω1, . . . , ωn) = ±1,
depending on the sequence ω1, . . . , ωn. Equation (6.5) would then be replaced by a more complicated expression
involving the mixed products of two matrices P(Rj+iv|Rj v,v)Rj v · v and P(Rj+iv|Rj v,v)Rj v · v⊥.
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The last term drops out provided

P(Ri+1v|Riv,v) = P(Ri+3v|Riv,v). (6.24)

Under the additional assumption that

P(R1+iv|R1v,v) = P(R3+iv|R3v,v), (6.25)

we retrieve an effective factorization similar to that postulated in (6.3), and we can then use
(6.5) to obtain the corresponding diffusion coefficient. We refer to equations (6.24) and (6.25)
as defining a complete left–right symmetry. In this case, the invariant distribution is the
solution of

p(v, Riv) =
∑

j

P (Ri+jv|Rjv,v)p(Riv, Rjv), (6.26)

∑
i

p(v, Riv) = 1

4
. (6.27)

We solve these equations for p(v,v) and p(v,−v), identifying p(v, R1v) and p(v, R3v),
and define

V =
(−1

1

)
, P =

(
p(v,−v)

p(v,v)

)
, (6.28)

with the transition matrix

Q =
( −P(v| − v,v) P (−v|v,v)

−P(−v| − v,v) P (v|v,v)

)
=
(−P2 2 P0 2

−P2 0 P0 0

)
. (6.29)

The expression of the diffusion coefficient follows, but will not be written down explicitly
as it is rather lengthy and not very transparent. The validity of this expression extends to
d-dimensional orthogonal lattices under the symmetry assumptions (6.24) and (6.25).

7. Conclusions

We have shown that it is possible to find exact results for the diffusion coefficient of persistent
random walks with a two-step memory on one- and two-dimensional regular lattices, by finding
the matrix elements which give the velocity autocorrelation function and then resumming them.

We have applied the results obtained here to approximate the diffusion coefficients of
certain periodic billiard tables in [11].

The extension to lattice random walks with longer memory is possible, albeit difficult for
obvious technical reasons. Finally, we remark that the extension to lattices in three dimensions
is not direct, since in that case, additional information must be specified in order to uniquely
define relative directions [12].
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Appendix A. 2-SMA on a honeycomb lattice

In analogy to equation (5.13), we may write

Mn ≡

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a(n)
1 a(n)

2 a(n)
3 a(n)

4 a(n)

5 a(n)
6 a(n)

7 a(n)
8 a(n)

9

c(n)
9 c(n)

7 c(n)
8 c(n)

3 c(n)
1 c(n)

2 c(n)
6 c(n)

4 c(n)

5

b(n)

5 b(n)
6 b(n)

4 b(n)
8 b(n)

9 b(n)
7 b(n)

2 b(n)
3 b(n)

1

b(n)
1 b(n)

2 b(n)
3 b(n)

4 b(n)

5 b(n)
6 b(n)

7 b(n)
8 b(n)

9

a(n)
9 a(n)

7 a(n)
8 a(n)

3 a(n)
1 a(n)

2 a(n)
6 a(n)

4 a(n)

5

c(n)

5 c(n)
6 c(n)

4 c(n)
8 c(n)

9 c(n)
7 c(n)

2 c(n)
3 c(n)

1

c(n)
1 c(n)

2 c(n)
3 c(n)

4 c(n)

5 c(n)
6 c(n)

7 c(n)
8 c(n)

9

b(n)
9 b(n)

7 b(n)
8 b(n)

3 b(n)
1 b(n)

2 b(n)
6 b(n)

4 b(n)

5

a(n)

5 a(n)
6 a(n)

4 a(n)
8 a(n)

9 a(n)
7 a(n)

2 a(n)
3 a(n)

1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (A.1)

We have the three sets of equations⎛
⎜⎜⎝

a(n)
1 a(n)

5 a(n)
9

c(n)
1 c(n)

5 c(n)
9

b(n)
1 b(n)

5 b(n)
9

⎞
⎟⎟⎠ =

⎛
⎜⎝

P0 0 P1 0 P2 0

P0 1 P1 1 P2 1

P0 2 P1 2 P2 2

⎞
⎟⎠
⎛
⎜⎜⎝

a(n−1)
1 a(n−1)

5 a(n−1)
9

c(n−1)
9 c(n−1)

1 c(n−1)

5

b(n−1)

5 b(n−1)
9 b(n−1)

1

⎞
⎟⎟⎠ , (A.2)

⎛
⎜⎜⎝

a(n)
2 a(n)

6 a(n)
7

c(n)
2 c(n)

6 c(n)
7

b(n)
2 b(n)

6 b(n)
7

⎞
⎟⎟⎠ =

⎛
⎜⎝

P0 0 P1 0 P2 0

P0 1 P1 1 P2 1

P0 2 P1 2 P2 2

⎞
⎟⎠
⎛
⎜⎜⎝

a(n−1)
2 a(n−1)

6 a(n−1)
7

c(n−1)
7 c(n−1)

2 c(n−1)
6

b(n−1)
6 b(n−1)

7 b(n−1)
2

⎞
⎟⎟⎠ , (A.3)

⎛
⎜⎜⎝

a(n)
3 a(n)

4 a(n)
8

c(n)
3 c(n)

4 c(n)
8

b(n)
3 b(n)

4 b(n)
8

⎞
⎟⎟⎠ =

⎛
⎜⎝

P0 0 P1 0 P2 0

P0 1 P1 1 P2 1

P0 2 P1 2 P2 2

⎞
⎟⎠
⎛
⎜⎜⎝

a(n−1)
3 a(n−1)

4 a(n−1)
8

c(n−1)
8 c(n−1)

3 c(n−1)
4

b(n−1)
4 b(n−1)

8 b(n−1)
3

⎞
⎟⎟⎠ . (A.4)

Proceeding with our analogy, we seek linear combinations of the elements in the rows of the
matrices on the left-hand side of the above equations, so as to obtain a single matrix equation
similar to equation (5.15). Considering the elements in equation (A.2), we write⎛
⎜⎜⎝

a(n)
1 + φa(n)

5 + φ2a(n)
9

φc(n)
1 + φ2c(n)

5 + c(n)
9

φ2b(n)
1 + b(n)

5 + φb(n)
9

⎞
⎟⎟⎠ =

⎛
⎜⎝

P0 0 P1 0 P2 0

φP0 1 φP1 1 φP2 1

φ2P0 2 φ2P1 2 φ2P2 2

⎞
⎟⎠
⎛
⎜⎜⎝

a(n−1)
1 + φa(n−1)

5 + φ2a(n−1)
9

φc(n−1)
1 + φ2c(n−1)

5 + c(n−1)
9

φ2b(n−1)
1 + b(n−1)

5 + φb(n−1)
9

⎞
⎟⎟⎠ .

(A.5)

Comparing with equation (A.2), we infer

φ3 = 1 ⇔

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

φ = 1,

φ = exp(2iπ/3) = −1 − i
√

3

2
,

φ = exp(−2iπ/3) = −1 + i
√

3

2
.

(A.6)

Applying the same procedure to equations (A.3) and (A.4), we obtain
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⎜⎜⎝

φa(n)
2 + φ2a(n)

6 + a(n)
7

φ2c(n)
2 + c(n)

6 + φc(n)
7

b(n)
2 + φb(n)

6 + φ2b(n)
7

⎞
⎟⎟⎠=

⎛
⎜⎝

P0 0 P1 0 P2 0

φP0 1 φP1 1 φP2 1

φ2P0 2 φ2P1 2 φ2P2 2

⎞
⎟⎠
⎛
⎜⎜⎝

φa(n−1)
2 + φ2a(n−1)

6 + a(n−1)
7

φ2c(n−1)
2 + c(n−1)

6 + φc(n−1)
7

b(n−1)
2 + φb(n−1)

6 + φ2b(n−1)
7

⎞
⎟⎟⎠ (A.7)

⎛
⎜⎜⎝

φ2a(n)
3 + a(n)

4 + φa(n)
8

c(n)
3 + φc(n)

4 + φ2c(n)
8

φb(n)
3 + φ2b(n)

4 + b(n)
8

⎞
⎟⎟⎠ =

⎛
⎜⎝

P0 0 P1 0 P2 0

φP0 1 φP1 1 φP2 1

φ2P0 2 φ2P1 2 φ2P2 2

⎞
⎟⎠
⎛
⎜⎜⎝

φ2a(n−1)
3 + a(n−1)

4 + φa(n−1)
8

c(n−1)
3 + φc(n−1)

4 + φ2c(n−1)
8

φb(n−1)
3 + φ2b(n−1)

4 + b(n−1)
8

⎞
⎟⎟⎠ . (A.8)

The system of equations (A.5), (A.7), (A.8) reduces to the single recursive matrix equation⎛
⎜⎜⎝

a(n)
1 + φa(n)

5 + φ2a(n)
9 φa(n)

2 + φ2a(n)
6 + a(n)

7 φ2a(n)
3 + a(n)

4 + φa(n)
8

φc(n)
1 + φ2c(n)

5 + c(n)
9 φ2c(n)

2 + c(n)
6 + φc(n)

7 c(n)
3 + φc(n)

4 + φ2c(n)
8

φ2b(n)
1 + b(n)

5 + φb(n)
9 b(n)

2 + φb(n)
6 + φ2b(n)

7 φb(n)
3 + φ2b(n)

4 + b(n)
8

⎞
⎟⎟⎠

=

⎛
⎜⎝

P0 0 P1 0 P2 0

φP0 1 φP1 1 φP2 1

φ2P0 2 φ2P1 2 φ2P2 2

⎞
⎟⎠

×

⎛
⎜⎝

a(n−1)
1 + φa(n−1)

5 + φ2a(n−1)
9 · · · φ2a(n−1)

3 + a(n−1)
4 + φa(n−1)

8

φc(n−1)
1 + φ2c(n−1)

5 + c(n−1)
9 · · · c(n−1)

3 + φc(n−1)
4 + φ2c(n−1)

8

φ2b(n−1)
1 + b(n−1)

5 + φb(n−1)
9 · · · φb(n−1)

3 + φ2b(n−1)
4 + b(n−1)

8

⎞
⎟⎠ ,

=

⎛
⎜⎝

P0 0 P1 0 P2 0

φP0 1 φP1 1 φP2 1

φ2P0 2 φ2P1 2 φ2P2 2

⎞
⎟⎠

n−1⎛
⎝ P0 0 φP1 0 φ2P2 0

φP0 1 φ2P1 1 P2 1

φ2P0 2 P1 2 φP2 2

⎞
⎠ ,

=
⎛
⎝ P0 0 P1 0 P2 0

φP0 1 φP1 1 φP2 1

φ2P0 2 φ2P1 2 φ2P2 2

⎞
⎠

n⎛
⎝1 0 0

0 φ 0
0 0 φ2

⎞
⎠ . (A.9)
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