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Occurrence of normal and anomalous diffusion in polygonal billiard channels
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From extensive numerical simulations, we find that periodic polygonal billiard channels with angles which
are irrational multiples of 7 generically exhibit normal diffusion (linear growth of the mean squared displace-
ment) when they have a finite horizon, i.e., when no particle can travel arbitrarily far without colliding. For the
infinite horizon case we present numerical tests showing that the mean squared displacement instead grows
asymptotically as 7Inz. When the unit cell contains accessible parallel scatterers, however, we always find
anomalous super-diffusion, i.e., power-law growth with an exponent larger than 1. This behavior cannot be
accounted for quantitatively by a simple continuous-time random walk model. Instead, we argue that anoma-
lous diffusion correlates with the existence of families of propagating periodic orbits. Finally we show that
when a configuration with parallel scatterers is approached there is a crossover from normal to anomalous
diffusion, with the diffusion coefficient exhibiting a power-law divergence.
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I. INTRODUCTION

Billiard models, in which point particles in free motion
undergo elastic collisions with fixed obstacles, have simple
microscopic dynamics but strong “statistical” behavior, such
as diffusion, at the macroscopic level. The statistical proper-
ties of scattering billiards such as the Lorentz gas, which
have smooth, convex scatterers, are well-understood: see,
e.g., Ref. [1] for a collection of reviews. Recently, however,
models with polygonal scatterers have attracted attention,
since they are only weakly chaotic, with for example all
Lyapunov exponents being 0, but they still exhibit surprising
statistical properties in numerical experiments [2—4].

The dynamics in polygonal billiards depends strongly on
the angles of the billiard table. Some rigorous results are
available for angles which are all rational, i.e., rational mul-
tiples of 77, see Ref. [5], and references therein. In particular,
an initial condition with a given angle cannot explore the
whole phase space, since the possible angles obtained in the
resulting trajectory are restricted, so that the model does not
have good ergodic properties. Previous numerical work has
shown that if one angle is rational and the others irrational,
then the results are sensitive to the value of the rational angle
[3.4].

In this work we restrict our attention to the case in which
all angles are irrational multiples of 7. There are few rigor-
ous results available in this case, but there is numerical evi-
dence that the dynamics is mixing in irrational triangles [6].

We have performed extensive simulations of the transport
properties of quasi-one-dimensional polygonal channel bil-
liards; here we report detailed results for two classes of
model. In both we find that transport generically corresponds
to what is usually referred to as normal diffusion, i.e., linear
growth of the mean squared displacement, when the particles
cannot travel arbitrarily long distances without collisions (fi-
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nite horizon). By “generic” we mean that the set of models
which do not exhibit normal diffusion is “small,” for ex-
ample, having measure zero in the space of geometrical pa-
rameters. Similarly, for the infinite horizon case we find that
transport is generically marginally superdiffusive, i.e., there
is a logarithmic correction to the linear growth law of the
mean squared displacement.

However, we also find exceptions to the generic behaviors
described above. These exceptions occur when there are par-
allel scatterers in the unit cell which are accessible from one
another (see Sec. III for the definition). In such cases we
always find superdiffusion, i.e., the mean squared displace-
ment grows as a power law with exponent greater than 1.
Further, we demonstrate that as a parallel configuration is
approached, the transition from normal to anomalous diffu-
sion occurs through a power-law divergence of the diffusion
coefficient. We also show that the exponents we obtain are
not consistent with a simple continuous-time random walk
model of anomalous diffusion.

Our results are consistent with previous observations of
irrational models exhibiting normal [3,4,7] and anomalous
[8-11] diffusion. Also, very recently, numerical results cor-
responding to one of the models studied in this work were
reported in Ref. [12], where it was also observed that parallel
scatterers result in anomalous diffusion; the results we obtain
complement and extend those of that reference.

Energy transport in polygonal billiards placed between
two heat reservoirs at different temperatures has also been a
focus of attention [3,4,7]. This process is closer to “color
diffusion” than to heat conduction due to the absence of par-
ticle interactions and, hence, of local thermodynamic equi-
librium [13]. In these systems the properties of the energy
transport process are known to be closely related to those of
the particle diffusion process [14,15], and for this reason we
only study the latter.

A. Models

The unit cells of our models are shown in Fig. 1; the
complete channel consists of an infinite horizontal periodic
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FIG. 1. Unit cells of (a) the polygonal Lorentz model and (b) the
zigzag model.

repetition of such cells. The polygonal Lorentz model is a
polygonal channel version of the Lorentz gas channel studied
in Ref. [16], consisting of a quasi-1D channel with an extra
square scatterer at the center of each unit cell. By “quasi-1D”
we mean that particles are confined to a strip infinitely ex-
tended in the x direction but of bounded height in the y
direction.

The polygonal Lorentz model can be simplified by elimi-
nating the central scatterer and flipping the bottom line of
scatterers to point upwards, resulting in the quasi-1D zigzag
model. Both models are designed to permit a finite horizon
by blocking all infinite corridors in the structure, so that there
is an upper bound on the distance a particle can travel with-
out colliding with a scatterer; in scattering billiards this con-
dition was shown to be necessary for normal diffusion to
occur [17,18]. The zigzag model has also been studied in
Ref. [12].

We remark that the zigzag model with parallel sides can
be reduced to a parallelogram with irrational angles. This
simple billiard geometry seems to have been neglected pre-
viously, although it is close to a model considered in Ref.
[19] which was reported to exhibit a very slow exploration of
phase space. We have found similar behavior in the parallel
zigzag model (see also Ref. [12]), but it appears to be a
peculiarity of this model which is not necessarily shared by
other polygonal billiards exhibiting anomalous diffusion.

B. Simulations

In our simulations we distribute N=10" initial conditions
(unless otherwise stated) uniformly with respect to Liouville
measure, i.e., with positions distributed uniformly in the
available space in one unit cell, and velocities with unit
speed and uniformly distributed angles. We consider only
irrational angles for the billiard walls in each model, al-
though we vary explicitly scatterer heights rather than
angles, and to fix the length scale we take d=1 (see Fig. 1).

We study statistical properties of the particle positions x(r)
as a function of time ¢, denoting averages at time ¢ over all
initial conditions by (---),. Of particular interest is the mean
squared displacement (Ax?),, where Ax,:=x(t)—x(0), which
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is frequently used to characterize the transport properties of
such systems.

II. NORMAL AND MARGINALLY ANOMALOUS
DIFFUSION

In this paper, by “normal diffusion” we mean asymptotic
linear growth of the mean squared displacement (Ax?), as a
function of time ¢, which we denote by (Ax?),~1 as t— .
This is characteristic of systems commonly thought of as
“diffusive,” for example, random walkers which take uncor-
related steps of finite mean squared length.

Strongly chaotic dynamical systems, such as the Lorentz
gas, are known to exhibit normal diffusive behavior [1]; this
arises due to a fast decay of correlations, even between
neighboring trajectories, so that after a short correlation time
the dynamics looks “random.” It is rather surprising, then,
that normal diffusion also seems to appear in nonchaotic po-
lygonal billiards [3,4,7] in which correlations do not decay
exponentially. In these systems, the only source of “random-
ization” arises due to divergence of neighboring trajectories
colliding on different sides of a corner of the billiard; see,
e.g., Ref. [20] for a recent attempt to characterize this ran-
domization effect.

In the following, we present sensitive tests which provide
strong confirmation that, apart from exceptional cases, the
decorrelation induced by the randomization mechanism men-
tioned above is indeed sufficient to give rise to normal dif-
fusion in polygonal billiards. In particular our tests distin-
guish the logarithmic correction (marginally anomalous
diffusion) which arises generically in these systems when
they have infinite horizon, as it does in fully chaotic billiards.

We will see that exceptions to these behaviors occur when
the billiards present accesible parallel walls. In such cases we
argue that long time correlations persist, related to the exis-
tence of families of traveling periodic orbits, which always
give rise to anomalous diffusion.

A. Growth of second moment

The growth of the mean squared displacement (Ax?), as a
function of time ¢ is the most commonly used indicator of
transport properties. In Fig. 2 we plot (Ax?), for several non-
parallel zigzag models, varying h,. For values of i, below
h3=0.45 there is a finite horizon and we find that a linear
regime is rapidly attained, suggesting normal diffusion. For
values of &, above this value, there is an infinite horizon; in
this case, the mean squared displacement is still almost lin-
ear, although a small amount of curvature is visible.

Normal diffusion corresponds to an asymptotic slope 1 of
(Ax?), on a double logarithmic plot. Figure 3 shows such a
plot for the same data as in Fig. 2, and we see that indeed the
slope is 1 for finite horizon and close to 1 for infinite horizon
(e.g., slope 1.06 for h=0.71). For models with irrational
angles and no accessible parallel sides (see Sec. III), we al-
ways find a growth exponent close to 1, so that normal dif-
fusion is generic in polygonal billiard channels.

The above test does not, however, take account of loga-
rithmic corrections such as those found in the Lorentz gas
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FIG. 2. (Color online) (Ax?), as a function of ¢ in the zigzag
model with 5,=0.77 and h3=0.45. There is a finite horizon only
when h; <h3=0.45; curvature is barely visible in the infinite hori-
zon cases. Statistical errors are smaller than the linewidth.

with infinite horizon, where (Ax?),~t1Int [18]; such a cor-
rection will appear on the above plot as a small change in the
exponent. A heuristic argument of Ref. [21] leads us to ex-
pect that in any channel with an infinite horizon, including
polygonal ones, we will have (at least) this kind of “mar-
ginal” anomalous diffusion. We now present numerical tests
which distinguish the logarithmic correction, showing that
the diffusion is normal in the finite horizon case and margin-
ally anomalous in the infinite horizon case.

In marginal anomalous diffusion we expect that
(Ax?),~ at In t+bt+c for some constants a, b, and ¢ [22], so
that

(Ax%),

~az+b+ce?, (2.1)

where z:=Int. Asymptotic linear growth of (Ax?),/t as a
function of In ¢ thus indicates marginal anomalous diffusion,
while asymptotic flatness corresponds to normal diffusion. A
similar method was used in Ref. [23] for a discrete time
system, and we have checked that it also correctly finds mar-
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FIG. 3. (Color online) {Ax?), as a function of ¢ on a double
logarithmic plot in the zigzag model with the same parameters as in
Fig. 2.
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FIG. 4. (Color online) {(Ax?),/t as a function of logz in the
zigzag model with the same parameters as in Fig. 2.

ginal anomalous diffusion in the infinite-horizon Lorentz gas
with continuous-time dynamics. Figure 4 plots (Ax?),/t, con-
firming the normal/marginal distinction in finite and infinite
horizon regimes.

We can also fit (Ax?), to the expected form at In t+bt+c
with parameters a, b, and ¢, for example, using a nonlinear
least-squares method. For h;=0.71 we find a=0.051; this
agrees very well with the asymptotic slope 0.049 in Fig. 4, as
it should do by Eq. (2.1). For h;=0.3 we instead obtain
a=-0.0003, i.e., essentially zero (note that it cannot be nega-
tive), confirming normal diffusion.

B. Integrated velocity autocorrelation function

For a system with normal diffusion we define the diffu-
sion coefficient D as the asymptotic growth rate
lim, ..(1/2¢)(Ax?), of the mean squared displacement. The
Green-Kubo formula D=lim,_..[(C(7)dT [24] relates D to
the velocity autocorrelation function C(¢)=(vv,): D exists,
and the diffusion is normal, only if C(z) decays faster than
1/t as t—o. C(t) was studied in Ref. [7] for a different
channel geometry, but this function is very noisy and it is not
possible to determine its decay rate.

Instead, following Ref. [25] we consider the integrated
velocity autocorrelation function

R(r): = Jl C(nd7T={(vy Ax,), (2.2)

0
where Ax,: =x(t)—x(0) is the particle displacement at time .
This function is much smoother than C(f), and satisfies
R(t)— D as t— oo if the diffusion coefficient exists, while
R(1)~1Int if C() decays as t~'.

Figure 5 plots R(z) as a function of In ¢ for several finite
and infinite horizon nonparallel zigzag models. The flatness
of R(7) in the finite horizon models indicates that the limit
exists, and hence that the diffusion is normal, and contrasts
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FIG. 5. (Color online) Integrated velocity autocorrelation func-
tion R(z) as a function of In 7 in the (non-parallel) zigzag model with
the same parameters as in Fig. 2 (h,=0.77 and h3=0.45).

with the asymptotic linear growth in the infinite horizon
models, providing further evidence of the marginally anoma-
lous behavior in the latter case.

C. Higher-order moments

We define the growth exponent 7y, of the gth moment
(|x[9), by

In{ |x|q>z

t—o0 111 t

= , (2.3)
which ignores corrections to power-law growth and is a con-
vex function of g; further, y,<gq for all g, since the particles
have finite velocity [26]. The exponents Y¥,» and in particular
the diffusion exponent = y,, are measured using a fit to the
long-time region of a double logarithmic plot of the relevant
moment, assuming that the asymptotic regime has been
reached.

We find that the behavior of moments of high order
(g=4) is dominated by the extreme particles, i.e., by those
which have the largest value of |x(7)|, giving data which is
not reproducible between different runs. For this reason we
eliminate the five most extreme particles from the average
before calculating the growth rate, resulting in data which is
now reproducible. A similar procedure was used in Ref. [27].

Figure 6 shows the exponents v, for the zigzag model
with finite and infinite horizon. The low-order exponents sat-
isfy y,=q/2, and in both cases there is a crossover to a
second linear regime with slope 1, which occurs at approxi-
mately ¢g=3 in the finite horizon case and g=2 for infinite
horizon; the latter agrees with the result found in Ref. [26]
for the infinite horizon Lorentz gas using a method which
also applies here. Higher-order moments thus provide an-
other method to distinguish between normal and marginal
anomalous diffusion in polygonal billiards.

The observed qualitative change in behavior of the mo-
ments corresponds to a change in relative importance be-
tween diffusive and ballistic effects [26,28,29], and explains
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FIG. 6. (Color online) Growth rate y, of gth moment (|x|?), for
finite horizon (4;=0.4) and infinite horizon (h;=0.5) in the zigzag
model with /1,=0.77 and h;=0.45 for 10% initial conditions.

the previous observation that the Burnett coefficient, defined
as the growth rate of the fourth cumulant <x4),—3(x2>l2, di-
verges as a function of time in polygonal billiards [2,3]. The
combination of the above tests provides strong evidence of
the distinction between normal diffusion in finite horizon
models and marginally anomalous diffusion in infinite hori-
zon models.

III. ANOMALOUS DIFFUSION

While we generically find normal diffusion, for certain
exceptional geometrical configurations this does not occur.
The main exception is when there are accessible parallel
scatterers in the unit cell of a model. In this case we always
find anomalous (super)diffusion, i.e., (Ax?),~t® with a> 1:
see Fig. 7. Since the particles have finite speed, we always
have a<2, with the value 2 corresponding to ballistic mo-
tion. Subdiffusion (a<<1) was reported in Ref. [3] in a model
with one rational angle, but we are not aware of any model
with irrational angles exhibiting subdiffusion.

We say that a model has “accessible parallel scatterers”
when there are trajectories which can propagate arbitrarily
far by colliding only with scatterers which are parallel to
some other scattering element in the unit cell. As an ex-
ample, the results we report for the polygonal Lorentz model
were obtained with a square central obstacle, that is, a scat-
terer whose opposite sides are parallel. This alone does not,
however, imply that the system exhibits anomalous diffusion,
since it is not possible for a particle to propagate by colliding
only with (copies of) this square, i.e. the scatterers making
up the square are not “accessible” from one another.

Any particle must in fact also collide with the top and
bottom scattering walls. Only if these walls are also accessi-
bly parallel as defined above (i.e., have parallel partners in
the unit cell) do we find anomalous diffusion. Furthermore, if
we alter the central obstacle shape so that it no longer has
parallel sides, then we still find anomalous diffusion pro-
vided that the scattering walls still have parallel partners
which are accessible from one cell to another.
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FIG. 7. (Color online) Mean squared displacement (Ax?), for
parallel models versus 7 on a double logarithmic plot. The upper and
lower lines are proportional to ¢ and > for comparison. The remain-
ing curves show, from top to bottom, the parallel zigzag model with
hy=0.1 and h3=5.2,10.2 (both shifted vertically for clarity), and the
parallel polygonal Lorentz model with /;=0.1, w=0.15, and
h3=5.2,10.2. Statistical errors are slightly greater than the width of
the lines.

Figure 8 shows the behavior of the anomalous diffusion
exponent «a as a function of %5 in the parallel zigzag and
polygonal Lorentz models with finite horizon. The represen-
tative error bars shown give the standard deviation of the
exponent over 100 independent simulations for the same
value of /3, and indicate that the structure visible in the curve
for the zigzag model is not an artifact.

Figure 9 shows the growth exponent v, as a function of ¢
in two models with anomalous diffusion. Again we find a

1.9 T T T T T T T

zligzagI -+
1.8 polygonal Lorentz ¢

: %%Wﬁ

L.l

0.0 2.0 40 6.0 8.0 100 12.0 14.0 16.0 18.0 20.0
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FIG. 8. (Color online) Diffusion exponent « as a function of /3
in the parallel zigzag model with 4;=0.1 and the parallel polygonal
Lorentz model with 71;=0.1 and w=0.15, calculated using 10° ini-
tial conditions evolved until the presumed asymptotic regime. (Note
that at 1;=1=d there is a rational angle in both models.) Represen-
tative error bars show the standard deviation of the exponent over
100 independent simulations.
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FIG. 9. (Color online) Growth exponent , of moments for the
parallel polygonal Lorentz and zigzag models with h;=0.51,
hy=h3=10.0, and w=0.21.

crossover between two linear regimes, with 7, of the form
[28]

v, for g <gq., 3.1)

Yq q -1y, for ¢ > gq..

A. Time evolution of densities

A feature typical of normal diffusive systems is that the
probability distribution of displacements (or equivalently of
posmons) converges in the long-time limit, when rescaled by
V1, to a normal distribution [16]. We find this behavior nu-
merically in both of the classes of polygonal billiard chan-
nels studied here, in the cases for which the mean squared
displacement grows linearly, and we conjecture that this
holds in general, providing a stronger sense in which polygo-
nal billiards can be considered diffusive.

For anomalous diffusion with (Ax?),~1% (a>1), we no
longer expect the central limit theorem to hold. The inset of

; 1100 ——
20 F o t =500 g

i +=1000 ----
T gaussian ------

FIG. 10. (Color online) Rescaled demodulated densities in the
polygonal Lorentz model, compared to a Gaussian with the corre-
sponding variance. The inset shows the original and demodulated
(heavy line) densities for 7r=100. The model parameters are
hy=0.1, hy=h3=0.45, w=0.2, d=1.
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FIG. 11. (Color online) Scatter plot representing the joint den-
sity ¢(x,7) of laminar stretches in the zigzag model with h;=0.1,
h3=0.3 and h,=h3+Ah. The straight lines with slope 1 correspond
to the maximum possible speed.

Fig. 10 shows the probability density p,(x) of positions x(#)
in a parallel polygonal Lorentz model. It exhibits a striking
fine structure, similar to that found in normally diffusive Lor-
entz gases and polygonal billiards in Ref. [16], where it was
shown that the principal contribution to this fine structure
arises from a geometrical effect, namely that the amount of
vertical space available for particles to occupy varies along
the channel. Assuming that the dynamics has good mixing
properties, it was shown that defining the demodulated den-

sity f(x) by
fi(x): = p(x)/h(x)

eliminates much of the fine structure. Here, h(x) is the height
of the available space in the billiard channel at horizontal
coordinate x, normalized by the area of the unit cell so that
the integral [ C_Idh(x)dx over the unit cell is 1. This demodu-
lated density is also shown in the inset of Fig. 10, although
the demodulation is not as effective as in the normally dif-
fusive cases studied in Ref. [16], due to the weaker mixing
properties of the current model.

Rescaling the demodulated position density f;(x) at time ¢
by

(3.2)

Filx): =142 f,(x1°?)

gives a bounded variance as t— o0 [11]. The main part of Fig.
10 shows demodulated densities rescaled in this way for dif-
ferent times, compared to a Gaussian with the corresponding
variance. The rescaled densities converge at long times to a
non-Gaussian limiting shape, as has previously been found in
other systems with anomalous diffusion [30].

(3.3)

B. Mechanism for anomalous diffusion

1. Continuous-time random walk approach

For the parallel zigzag model, Fig. 13 demonstrates the
presence of long laminar stretches, i.e., periods of motion
during which a particle’s velocity component parallel to the
channel wall does not change sign. Typical trajectories ex-
hibit such behavior, sometimes over very long periods of
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FIG. 12. (Color online) Tail of W(z) for the parallel zigzag
model. The top curve is for #;=0.1 and s3=0.3. The lower three
curves are for h;=0.49, h;=5.1, and Ah=0, 0.0001, and 0.001 (top
to bottom). The inset is a semilogarithmic plot of the A~=0.001
case, showing exponential decay.

time. Figure 11 shows a scatterplot representing the joint
distribution ¢{(x,7) of laminar stretches of duration ¢ with
horizontal displacement x along the channel. (To compute
these data, the channel was divided into sections lying be-
tween adjacent maxima and minima in order to determine the
wall direction.)

Thus, we may attempt to describe the dynamics of this
system as a continuous-time random walk (CTRW), whose
steps are the laminar stretches, see, e.g., Ref. [31,32]. To this
end, we note that Fig. 11 shows that the distribution ¢(x,?)
is concentrated on diagonal lines emanating from the
origin, which leads us to try an approximation of the form
(x,1)=(1/2)&(|x|-vt) Y1) for some speed v. This version of
the CTRW was termed the velocity model in Ref. [32], and
describes motion at a constant velocity for a time ¢ in the
direction x; after each stretch the direction is randomized and
a new step is taken. With this form for ¢/(x,7), the long-time
growth of the mean squared displacement depends on the
asymptotic decay rate of the marginal distribution i(r) of
step times [32]: if (f)~¢'"" as t— oo, then the variance
o>(t) behaves as o2(f)~ 1>~ whenl <v<2, while we have
normal diffusion o(¢) ~t for v>2.

Figure 12 shows the tail region of W(r):=1-[{y(7)dr.
From the top curve we find a long-time power-law decay
W(r) ~ '8 for a particular case having parallel scatterers.
For close-to-parallel configurations, the tail of the distribu-
tion follows that for the parallel case, but with an exponential
cutoff, as shown in the inset of Fig. 12. According to the
CTRW model, this cutoff gives rise to normal diffusion in
the asymptotic long-time regime. This change of behavior is
in qualitative agreement with our observations. Unfortu-
nately, the value of the tail exponent for the parallel case
corresponds to v=1.58 and hence to a mean squared dis-
placement o2(f) ~ >~18=¢142 which does not agree with the
numerically observed growth rate o(f) ~ '8!,

Although the above results rest on a rather gross approxi-
mation to the joint distribution ¢(x,7), we doubt that a more
general CTRW model, incorporating information on the
complete (x,7), would substantially improve the agreement.

026205-6



OCCURRENCE OF NORMAL AND ANOMALOUS...

FIG. 13. (Color online) Families of trapped and propagating
periodic orbits in parallel systems.

The reason is that correlations between consecutive laminar
trajectories have an important effect not accounted for by
CTRW models. Indeed, for a given trajectory, we find that
the lengths of consecutive long laminar stretches are often
nearly equal, indicating that the trajectory repeats very
closely its previous behavior many times.

2. Propagating periodic orbits

On the other hand, our results indicate that it is the pres-
ence of accessible parallel scatterers that gives rise to anoma-
lous diffusion. We believe that propagating periodic orbits,
i.e., orbits which repeat themselves with a spatial displace-
ment, may provide a mechanism for this behavior. Such or-
bits are more prevalent when there are parallel scatterers,
since in this case it is much easier for a particle to regain its
original angle of propagation after a given number of
bounces and, then, possibly repeat its previous motion. In
addition, periodic orbits in polygonal billiards occur in fami-
lies [33]; several such families are shown in Fig. 13.

Furthermore, trajectories with initial conditions which are
close in phase space to those of a propagating periodic orbit
will shadow it, and hence propagate, for a long time, with a
longer shadowing time for closer initial conditions. Anoma-
lous diffusion should then result from a balance between the
ballistic propagation of the periodic orbits themselves, the
long-lasting ballistic motion of shadowing orbits, and the
diffusive motion of other trajectories.

We have, however, not yet been able to account analyti-
cally for anomalous diffusion in this way. For instance, the
mere existence of propagating orbits is not enough to give
rise to the kind of anomalous behavior we observe. Indeed,
families of propagating orbits exist in the corridors of the
infinite-horizon periodic Lorentz gas, but these give rise only
to marginally anomalous diffusion (Ax*)~zInt [18] (see
Sec. II). Thus, although the set of propagating periodic orbits
must have measure zero in phase space, since otherwise their
ballistic nature would result in overall ballistic transport with
(Ax?) ~ 12, they must be plentiful in some sense, in order to
give rise to anomalous transport. For example, such orbits
could be dense at least in some parts of phase space.

IV. CROSSOVER FROM NORMAL TO ANOMALOUS
DIFFUSION

Since anomalous diffusion occurs only for special geo-
metrical configurations, it is of interest to study the crossover
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FIG. 14. (Color online) Double logarithmic plot of (Ax?), as a
function of time for the polygonal Lorentz model with #;=0.1,
h3=0.45, w=0.2, and h,=hs+Ah. Deviations from an asymptotic
linear fit to the lowest curve are shown for Ah=0 (uppermost) and
Ah=10"", m=2,...,11 (bottom to top). The inset shows a double
logarithmic plot of the diffusion coefficient D as a function of Ak
for the polygonal Lorentz model with #;=0.1 for 73=0.3,0.45, and
for h3=0.45 with Ar<0.

from normal to anomalous diffusion as such configurations
are approached. We begin by considering the polygonal Lor-
entz channel, in which we fix all geometrical parameters ex-
cept for h,, which we vary as h,=h;+Ah.

Figure 14 shows a double logarithmic plot of the mean
squared displacement in a polygonal Lorentz model for val-
ues of Ah tending to 0, i.e. approaching the parallel configu-
ration; a linear fit to the bottom curve has been subtracted
from each curve for clarity. As Ak tends to 0, the curve for
the parallel configuration (Ah=0) is followed for progres-
sively longer times before a crossover occurs to asymptotic
diffusive behavior, which appears on the figure as a zero
slope. Defining the crossover time T,.(Ah) as the intersection
of the initial anomalous growth with a straight line fit to the
asymptotic normal growth, we find that T, scales as
T.~(Ah)™%37 as Ah—0.

The inset of Fig. 14 shows the diffusion coefficient D as a
function of Ah, obtained from the asymptotic slope of the
mean squared displacement. Although Fig. 14 shows that the
asymptotic linear regime has not been reached for the small-
est values of Ah, thereby underestimating the diffusion coef-
ficient, we obtain a straight line on a double logarithmic plot
of D versus Ah, giving the power-law behavior

D(AR) ~ |AR|™1  as |AR| — 0, (4.1)
with the same exponent for both positive and negative values
of Ah and for two (close) values of h;. For this model, the
diffusion exponent in the parallel (Ah=0) case is a=1.40.

A similar crossover to anomalous diffusion occurs near to
the parallel configuration in the zigzag model (not shown),
and we conjecture that such crossover behavior is generally
found in polygonal billiards near to configurations exhibiting
anomalous diffusion. The rate of growth of the diffusion co-
efficient for Ah# 0 depends, however, on the diffusion ex-
ponent for Ah=0: for the zigzag model with #;=0.1 and
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FIG. 15. (Color online) Data collapse of |AA|*¥x*(Ah)), as a
function of u=|Ah|"t for the zigzag model with h;=0.1, h;=0.3,
which has a=1.81 (upper curve) and the polygonal Lorentz model
with h,=0.1, h3=0.45, with a=1.40. In both models the value
v=0.37 was used, and curves are shown for Ah=10"",
m=4,...,11. The solid lines show the extreme behaviors of the
scaling function (4.3).

h3=0.3, we find D~|Ah|7%%, with a diffusion exponent
a=1.81 for the parallel case; both of these exponents differ
from the results in the polygonal Lorentz model.

The growth of the diffusion coefficient close to a parallel
case thus depends on the anomalous diffusion exponent
found in that parallel case. Indeed, the relation between the
exponents characterizing the crossover from normal to
anomalous transport can be obtained from the following
simple scaling argument. Define the crossover time exponent
v by T.~|Ah|™". We have
D(Ah)t,

) fort>T,,
(x“(Ah)), ~ o

(4.2)
e, fort<T,,

so that continuity at T, gives D(Ah)~T%"'~|Ah["!=®),

which is in good quantitative agreement with our results.
Furthermore, this argument implies that plots of

|AR|"*(x*(Ah)), as a function of u:=|Ah|"t should collapse

onto a scaling function of the form

u,
]

u-,
The data collapse for both the zigzag and the polygonal
model near a configuration of parallel scatterers is shown in
Fig. 15. Interestingly, while the transport exponent « is sen-
sitive to the geometrical details of the models, the best col-
lapse was obtained for the same value of v»=0.37 in both
cases. Finally, it should be noted that the above calculations
all refer to irrational angles; the situation when the value of
Ah renders an angle rational is unclear.

foru>1,

4.3
foru<1. (4.3)
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V. DISCUSSION AND CONCLUSIONS

We have demonstrated that the type of diffusive behavior
exhibited by periodic polygonal billiard channels depends on
geometrical features of the unit cell. Based on our results, we
conjecture that sufficient conditions for a periodic polygonal
billiard channel to exhibit normal diffusion are the following:
(i) all vertex angles are irrationally related to 7r; (ii) the bil-
liard has a finite horizon; and (iii) there are no accessible
parallel scatterers in the unit cell.

When there is an infinite horizon, diffusive transport
is replaced by marginal anomalous diffusion with
(Ax?)~tIn 1, while if there are accessible parallel scatterers,
then anomalous diffusion with (Ax?)~ %, @>1 is observed.
In the zigzag model we also have evidence of anomalous
diffusion (e.g., with exponent 1.16 for one particular model)
with irrational angles chosen such that one angle is twice the
other, i.e., with a rational relation between them, in disagree-
ment with the result found in Ref. [12] (where a rather small
number of initial conditions was used). For other angle ratios
we do not have conclusive data, but the exponents are seem-
ingly close to 1, while for the polygonal Lorentz model we
find normal diffusion in similar situations. For the zigzag
model we must thus also exclude the possibility of rationally
related angles from the above conditions for normal diffu-
sion.

We remark that in Ref. [7], propagating periodic orbits
were conjectured to be related to anomalous diffusion in a
system with one rational angle, but no reason was given for
their existence. Actually, it is possible to include that system
into our picture by unfolding the rational angle, which gives
rise to an equivalent system with parallel scatterers.

We believe that the explanation of anomalous diffusion
should be found in terms of such propagating periodic orbits,
which are much more prevalent in the presence of parallel
scatterers. We further showed that there is a crossover from
normal to anomalous diffusion as a parallel configuration is
approached, with the diffusion coefficient having a power-
law divergence. We hope to achieve a quantitative descrip-
tion of both of these points in the future.
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