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We show, both heuristically and numerically, that three-dimensional periodic Lorentz gases—clouds of
particles scattering off crystalline arrays of hard spheres—often exhibit normal diffusion, even when there are
gaps through which particles can travel without ever colliding—i.e., when the system has an infinite horizon.
This is the case provided that these gaps are not “too large,” as measured by their dimension. The results are
illustrated with simulations of a simple three-dimensional model having different types of diffusive regime and
are then extended to higher-dimensional billiard models, which include hard-sphere fluids.
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The Lorentz gas is a classical model of transport pro-
cesses, in which a cloud of noninteracting point particles
�modeling electrons� undergo free motion between elastic
collisions with fixed hard spheres �atoms� �1�. It has been
much studied as a model system for which the program of
statistical physics can be carried out in detail: to relate the
known microscopic dynamics to the macroscopic behavior of
the system, which in this case is diffusive �2–4�.

When the scatterers are arranged in a periodic crystal
structure, the dynamics of this billiard model can be reduced
to a single unit cell �2�. The curved shape of the scatterers
implies that nearby trajectories separate exponentially fast,
so that the system is hyperbolic �chaotic� and ergodic �5�.

In two dimensions, it has been shown that the cloud of
particles in the periodic Lorentz gas undergoes normal diffu-
sion, provided that the geometrical finite-horizon condition is
satisfied: particles cannot travel arbitrarily far without collid-
ing with a scatterer �5,6�. By normal diffusion, we mean that
the distribution of particle positions behaves like solutions of
the diffusion equation; in particular, the mean-squared dis-
placement �variance� grows asymptotically linearly in time,
�r�t�2��2dDt, when t→�, where r�t� is the displacement of
a particle at time t from its initial position, d is the spatial
dimension, �·� denotes a mean over initial conditions, and the
diffusion coefficient D gives the asymptotic growth rate.

When the horizon is infinite, however, particles can un-
dergo arbitrarily long free flights along corridors in the
structure. It was long argued �7–9� and has recently been
proved �10� that there is then weak superdiffusive behavior,
with �r�t�2�� t log t, so that the diffusion coefficient no
longer exists.

For higher-dimensional periodic Lorentz gases, rigorous
results on ergodic properties �11� and diffusive properties
�12� have been obtained; recent progress in their analysis has
been made �13,14�, including in the limit of small scatterers
�15�. In particular, higher-dimensional Lorentz gases are be-
lieved to exhibit normal diffusion when the horizon is finite
�12�.

Nonetheless, the study of billiard models in higher dimen-
sions, especially three dimensions, has received surprisingly
little attention from the physics community, despite their in-
terest as simple models of transport in three-dimensional

�3D� crystals. This can be attributed to increased simulation
times and the difficulty of visualization in higher dimensions,
but also to an apparent general belief that the diffusive prop-
erties of higher-dimensional systems should be analogous to
those in the 2D case. Hypercubic Lorentz gases �with infinite
horizon� in d�7 dimensions were studied in �16�, but no
strong conclusions about diffusive properties could be
drawn.

In particular, it was believed that a finite horizon was
necessary for a system to show normal diffusion, with weak
superdiffusion occurring for an infinite horizon �12,17�.
While periodic Lorentz gases with finite horizon and disjoint
obstacles have been proved to exist in any dimension �18�,
constructing such a model turns out to be a difficult
task—we are not aware of any known explicit examples,
even in three dimensions. Furthermore, crystals of spheres
arranged in any Bravais lattice �and in many other crystal
structures� always have small gaps which prevent a finite
horizon �18–20�.

In this article, we show, using heuristic arguments and
careful numerical simulations, that in fact periodic Lorentz
gases in three and higher dimensions with infinite horizon—
that is, with gaps, or holes, in the structure—can exhibit
normal diffusion. The key observation is that the gaps in
configuration space, which are higher-dimensional analogs
of the corridors in 2D, can be of different dimensions. Struc-
tures with gaps of the highest possible dimension exhibit
weak superdiffusion, as in the 2D infinite-horizon case,
whereas lower-dimensional gaps give normal diffusion.
Nonetheless, higher moments of the displacement distribu-
tion are affected by the small proportion of arbitarily long
trajectories in the structure.

To test the analytical arguments, we perform careful nu-
merical simulations of a 3D periodic Lorentz gas model with
spheres of two radii, which can be varied to obtain different
types of diffusive regime. In particular, a finite-horizon re-
gime may be obtained by allowing the spheres to overlap;
otherwise, gaps of different dimensions can be found. Here,
results will be given for representative cases in each regime;
a detailed analysis of the model will be given elsewhere.

Finally, we extend the arguments to higher-dimensional
billiards, including the class of hard-sphere fluids �21�, thus
providing an approach to the diffusive behavior of such sys-
tems in terms of the geometry of their configuration space.

We begin by introducing a simple two-parameter 3D pe-
riodic Lorentz gas model, with which the different types of*dps@fciencias.unam.mx
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diffusive regime can be explored. The model consists of a
cubic lattice of spheres of radius a, with an additional spheri-
cal scatterer of radius b at the center of each cubic unit cell,
themselves forming another �interpenetrating� cubic lattice.
The side length of the cubic unit cell is taken equal to 1. By
varying the radii a and b of the spheres, a range of models
with different properties can be obtained; a “phase diagram”
showing the possibilities and a detailed study of its proper-
ties will be presented elsewhere. This is a 3D version of the
2D model studied in �22,23�.

When b=0, we obtain a simple cubic lattice of spherical
scatterers. In this case, we can insert planes parallel to the
lattice directions which do not intersect any obstacles—we
call these planar gaps. This remains the case for small
enough b, as shown in Fig. 1�a�. For b� �1 /2�−a, however,
all of the planar gaps are blocked. There are still gaps of
infinite extent in the structure, but they are now cylindrical
gaps, as shown in Fig. 1�b�. These are infinitely long tubes
which do not intersect any scatterer, given by the product of
a line with an area; the latter is the projection of the gap
along the axis of the cylinder.

By tuning a and b appropriately, it is also possible to
obtain an explicit 3D periodic Lorentz gas with finite hori-
zon. To do so, we allow the scatterers to overlap, since oth-
erwise constructing such a model is very difficult. All adja-
cent pairs of a spheres overlap when a�

1
2 ; choosing the

radius b of the central sphere large enough then allows us to
block all gaps in the structure, giving a finite-horizon model,
as shown elsewhere. Unlike in the 2D case, in 3D the free
space between the overlapping scatterers forms an infinite
connected network. Physically, this can correspond to a
sphere of nonzero radius colliding with disjoint scatterers.
Note that rigorous results on higher-dimensional Lorentz
gases assume disjoint scatterers �14� and thus do not directly
apply to our model.

Several approaches to the diffusive properties of infinite-
horizon systems involve the tail of the free-path length
distribution—that is, the proportion P�T� t� of trajectories,

starting from random initial conditions in a unit cell, which
have a free path length T before colliding which is greater
than t �7,24,25�.

Consider straight trajectories which emanate in all direc-
tions v from a given initial condition x0 lying inside a gap G.
Since energy is conserved at collisions, all particles can be
taken to have speed 1. The possible positions xt of the tra-
jectories at time t then lie on a sphere St of radius t and
surface area S�t�=4�t2, centered on x0. The proportion
P�T� t� of trajectories which have not collided during time t
is given by the ratio P�T� t�ªA�t� /S�t�, where A�t� is the
area of the intersection ItªG�St of the gap G with the
sphere St.

If G is a planar gap, then the intersection It is approxi-
mately the product of a circle of radius t with an interval of
the same width w as the gap. Thus A�t��2�wt, giving the
asymptotic behavior P�T� t��C / t when t→�, where C is a
constant. This result was previously found for a simple cubic
lattice �7,12�; a detailed calculation is given in �25�. When G
is a cylindrical gap, however, its intersection It with the
sphere St is asymptotically the cross-sectional area A of the
cylinder, giving the asymptotics P�T� t��C / t2.

The tail P�T� t� of the free-path distribution is strongly
related to the system’s diffusive properties. Friedman and
Martin �7� proposed that the asymptotic decay rate of the
velocity autocorrelation function C�t�ª �v�0� ·v�t�� is the
same as that of P�T� t�, since C�t� is dominated by trajec-
tories which do not collide up to time t. The finite-time dif-
fusion coefficient D�t�ª d

dt �r�t�2� is given by D�t�
= 1

d	0
t C�s�ds, so that D�t� converges to the diffusion coeffi-

cient D, only if the velocity autocorrelation C�t� decays
faster than 1 / t �2�.

Thus we expect that a 3D periodic Lorentz gas should
exhibit normal diffusion when P�T� t� decays faster than
1 / t, as is the case with cylindrical gaps �and when the hori-
zon is finite�, but weak superdiffusion when it decays like
1 / t. This is also in agreement with an equivalent condition
on the moment of the free-path distribution between colli-
sions �9�.

(a) (b) (c)

FIG. 1. �Color online� Spherical scatterers �light color, purple online� and gaps �dark color, green online� in the 3D periodic Lorentz
model discussed in the text: �a� vertical planar gaps for a=0.25 and b=0.15 and �b� vertical cylindrical gaps for a=0.4 and b=0.4 �a
body-centered-cubic structure�. The gaps are shown in a single unit cell, but in fact extend throughout the whole of space. �c� When a
=0.55 and b=0.4, the scatterers overlap, leaving an infinite, connected available space for the particles, which is depicted; for clarity, the
spheres are omitted. In this case, the horizon is finite—there are no gaps in the structure.
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To test the above hypotheses, we perform careful numeri-
cal simulations of our model to calculate the time evolution
of the mean-squared displacement �r�t�2� in each regime. We
use a stringent test to distinguish normal from weakly
anomalous diffusion: �r�t�2� / t is plotted as a function of log t
�22,26,27�. Normal diffusion corresponds to an asymptoti-
cally flat graph, since the logarithmic correction is absent,
and the diffusion coefficient is then proportional to the
asymptotic height of the graph. Weak superdiffusive t log t
behavior for the mean-squared displacement, on the other
hand, gives asymptotic linear growth �26�.

Numerical results are shown in Fig. 2. We see that the
arguments given in the previous section are confirmed: dif-
fusion is normal, with �r�t�2�� t, when the horizon is finite,
and is weakly superdiffusive, with �r�t�2�� t log t, when
there is a planar gap. Furthermore, the numerics clearly show
that diffusion is normal also in the case that there are only
cylindrical gaps. This is the case even when the cylindrical
gaps are “large,”—for example, when a=0.4 and
b=0.21—when the gaps depicted in Fig. 1�b� merge to form
a single cylindrical gap, still without any planar gaps in the
structure. Thus we conclude that the heuristic arguments cor-
rectly predict the type of diffusion which occurs in these
systems.

Fluids of hard spheres are isomorphic to higher-
dimensional chaotic billiard models, although with cylindri-
cal instead of spherical scatterers �21�. By extending the
above arguments, we can hope to obtain information on cor-
relation decay and diffusive properties for general higher-
dimensional chaotic billiards by analyzing the gaps in their
configuration space.

To define these higher-dimensional gaps, we consider ini-
tial positions in a configuration space of dimension d, from
which infinitely long noncolliding trajectories emanate along
certain directions. We call a connected set of such initial
positions for which these noncolliding trajectories point in
the same direction�s� a gap in configuration space. Note that
it is possible for a given set of initial conditions to have such

trajectories pointing in different, unconnected directions—
this is the case, for example, in Fig. 1�b�, where there are
also cylindrical gaps in a horizontal direction �not shown�. In
such cases, we consider each such set of different directions
as a distinct gap. For a discussion of higher-dimensional gaps
in the context of sphere packings, see Ref. �20�.

As shown above for the 3D case, the key geometrical
property determining the diffusive behavior of a system is
the dimension of its gaps. We define the dimension of a gap
G to be the dimension g of the largest affine subspace which
lies completely within the gap—i.e., which does not intersect
any scatterer. In a system with a d-dimensional configuration
space, there can be gaps with any dimension between 1 and
d−1, or no gaps at all �finite horizon�.

To calculate the tail P�T� t� of the free-path distribution
due to such gaps, we take coordinates xª �x1 , . . . ,xd� in the
d-dimensional configuration space, with the initial position at
the origin. The sphere St is then given by 
i=1

d xi
2= t2. Con-

sider a gap G, of dimension g. Inside the gap, there is a
largest subspace, also of dimension g, i.e., it has g freely
varying coordinates. By a rotation of the coordinate system,
this subspace can thus be written as x1=x2= ¯ =xc=0,
where cªd−g is the codimension of the gap, giving the
number of coordinates in the subspace which are fixed. The
intersection It=G�St of the gap with the sphere is thus
given by 
i=c+1

d vi
2= t2. This is a g-dimensional sphere, with

surface area Kgtg−1, where Kg is a dimension-dependent con-
stant. The tail of the free-path distribution is given by the
ratio of the area of intersection It to the area of the sphere St,
giving the asymptotics

P�T � t� � Zc
Kgtg−1

Kdtd−1 = Kt−�d−g� = Kt−c, �1�

where Zc is the c-dimensional cross-sectional area of the gap
in the directions orthogonal to the affine subspace and K is
an overall constant.

We thus see that the decay is faster for gaps of smaller
dimension �larger codimension�, but it is always eventually
dominated by the contribution of trajectories lying along the
gaps. The dominant contribution to the tail of the free-path
distribution, and hence to the diffusive properties, thus
comes from the gap of largest dimension.

We thus conjecture that d-dimensional chaotic, periodic
billiard models can generically be expected to exhibit normal
diffusion, at the level of the mean-squared displacement, pro-
vided that the largest-dimensional gap is of dimension less
than d−1—that is, if its codimension is larger than 1.

A more sensitive probe of diffusive properties is given by
the growth rates ��q� of the qth moments of the displacement
distribution, �rq�t��� t��q�, as a function of the real parameter
q �24,28,29�. If P�T� t� decays like t−c, then long trajectories
dominate �rq�t�� for large q, giving ��q�=q−c, while the low
moments show diffusive Gaussian behavior, with ��q�=q /2
�24�. A crossover between the two behaviors thus occurs at
q=2c. If the horizon is finite, then there are no long free
flights, and Gaussian behavior is expected for all q. Higher
moments for the finite-horizon Lorentz gas were studied in
�30�.
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FIG. 2. �Color online� Linear-log plot of �r�t�2� / t vs t in differ-
ent diffusive regimes: finite horizon �a=0.55, b=0.4�, cylindrical
gaps in a body-centered-cubic lattice �a=b=0.4�, single large cylin-
drical gap �a=0.4, b=0.21�, and simple cubic lattice �a=0.4, b
=0.0� with planar gaps. Means are taken over up to 4�107 initial
conditions; error bars are of the order of the symbol size. Linear
growth �weak superdiffusion� occurs only when there are planar
gaps.
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The numerical calculation of higher moments is difficult,
due to the weak effect of free flights �26�. Nonetheless, by
taking means over a very large number of initial conditions,
it is possible to see the effect of the different types of gaps
for our 3D Lorentz gas model: as shown in Fig. 3, they are in
agreement with the above argument. Thus, higher moments
can distinguish the subtle effects of different types of gaps.

In conclusion, we have shown that the diffusive properties
of periodic three-dimensional Lorentz gases, and by exten-
sion of higher-dimensional periodic billiard models, depend
on the highest dimension of the gap in configuration space.
By introducing a simple 3D model in which each type of
diffusive regime occurs, we showed that if there is a finite
horizon or cylindrical gaps, then the diffusion is normal,
whereas planar gaps give weak superdiffusion. Nonetheless,
higher moments distinguish between different types of gaps.
The concept of infinite horizon is thus no longer sufficiently
precise for higher-dimensional systems and must be replaced
by maximal gap dimension. In future work we will extend
our numerical investigations to higher-dimensional models.
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FIG. 3. �Color online� Growth rate ��q� of higher moments
�rq�t�� as a function of q; geometries are as in Fig. 2. For a=0.4 and
b=0.21, the means were calculated over 2.4�108 initial conditions,
up to a time t=10 000, to capture the weak effect of the cylindrical
gaps. The straight lines show the expected Gaussian behavior �q /2�
and behavior for large q with planar �q−1� and cylindrical �q−2�
gaps.
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