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Competitive nucleation and the Ostwald rule in a generalized Potts model with multiple
metastable phases
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We introduce a simple nearest-neighbor spin model with multiple metastable phases, the number and decay
pathways of which are explicitly controlled by the parameters of the system. With this model, we can construct,
for example, a system which evolves through an arbitrarily long succession of metastable phases. We also
construct systems in which different phases may nucleate competitively from a single initial phase. For such a
system, we present a general method to extract from numerical simulations the individual nucleation rates of
the nucleating phases. The results show that the Ostwald rule, which predicts which phase will nucleate, must
be modified probabilistically when the new phases are almost equally stable. Finally, we show that the nucle-
ation rate of a phase depends, among other things, on the number of other phases accessible from it.
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Metastability is a ubiquitous phenomenon in nature.
Broadly speaking, it occurs when a system is “trapped” in a
phase different from equilibrium. This nonequilibrium phase,
the metastable state, can last for extremely long times. Thus,
it is not surprising that metastable states play a crucial role in
many physical processes and are at the center of much cur-
rent research. For example, recently, an intermediate meta-
stable phase was shown to provide an easier pathway for the
growth of crystal nuclei from fluids (nucleation), with impli-
cations for the crystallization of proteins.!?> Proteins them-
selves are known to get stuck in misfolded metastable
structures,’ preventing them from reaching their equilibrium
configuration. The phenomenology observed in these and in
many other systems can be thought of as arising from a com-
plicated energy landscape, with several local “metastable
minima” where the trapping occurs.* The extreme situation is
that of glasses, in which the energy landscape can have ex-
tremely many local minima hindering relaxation of the sys-
tem to a thermodynamically stable crystal.’

The above systems present at least several metastable
states. These states and the transitions between them usually
arise from the microscopic interactions in a complicated way.
When this is the case, the study of phenomena such as com-
petition between nucleating phases and specific nucleation
pathways may be obscured. In view of this, in this work, we
present a simple spin model with nearest-neighbor interac-
tions, where the number of metastable phases and the decay
pathways between them can be explicitly specified by vary-
ing the model parameters. It thus serves as a test bed for
theoretical results relating to systems with multiple meta-
stable phases,5® just as the kinetic Ising model, a special
case of our model, has been central in the study of systems
with a single metastable phase.’ As discussed below, the
model also describes the adsorption of multiple chemical
species onto a surface, an interesting physical problem in its
own right.

After presenting the model, as an illustration of a possible
application, we construct a system with arbitrarily long suc-
cessions of metastable states. We then focus on competition
between phases nucleating from a single initial metastable
phase. An important question in this context is to understand
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which phases nucleate under which conditions. The Ostwald
rule states that the nucleating phase is the one with the small-
est free-energy barrier from the initial phase, see Ref. 10 and
references therein. Previous results have supported this
prediction.!!

We show that, in general, the Ostwald rule must be modi-
fied probabilistically when the new phases are of similar sta-
bility, using an argument based on individual nucleation rates
of each phase. We give a method by which these rates can be
measured in simulations or experiments, and show that there
is a parameter regime in which any of the new phases may
nucleate—only the nucleation probability of each phase can
be established, with the outcome in any given run being un-
predictable. We finally show that the nucleation probability
of a phase depends on the phases accessible from it.

(a) Model details. Our model is based on the Potts
model, in which each spin has one of ¢ states'? and each
phase has a majority of spins in one state; the Ising model
corresponds to g=2. The relative stability of each phase is
controlled by external fields, and the interplay of these fields
with interactions between different spin states allows us to
obtain any desired transition pathways between phases.

Viewing the fields as chemical potentials, we can recast
the model as a multicomponent lattice gas which describes
adsorption on a lattice substrate (e.g., a crystal plane) of
multiple chemical species with lateral interactions.!> Much
experimental work has been done on the thermodynamics of
such systems, but little on the kinetics—(see Ref. 14 and
references therein); nonetheless, our results should be test-
able in that context. A more complicated system where the
kinetics has been characterized is a colloid-polymer
system,'>!% where possible pathways were found from con-
siderations of the free-energy landscape.'” Our approach is
complementary in that specific pathways result from micro-
scopic interactions.

We work on an L X L square lattice with N:= L? spins and
periodic boundary conditions, although the results are quali-
tatively unaffected by lattice type. Each lattice site i has a
spin o; taking values in {1,...,q}, and the energy of a con-
figuration o is given by the Hamiltonian
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Here, M ,:=2,0, o is the magnetization (=number of spins)
of the spin type «; 6, ,=1 if =7, and 0 otherwise. The
first term is a sum over nearest-neighbor pairs of spins of
a symmetric interaction energy J, ,=J, ,, and the second
describes the effect of external fields &, acting on spin
type a.

We set the diagonal elements J,, , of the interaction matrix
to unity (J, =1 for all a), so that in the absence of nondi-
agonal interactions and fields, the model reduces to the stan-
dard Potts model.'? This has ¢ symmetrical phases coexisting
below a critical temperature 7,.=1/ [ln(1+v‘g)]; each phase
has a majority of spins in one of the g spin states. Including
fields breaks the symmetry between phases. If 4,=h,, then
the a and 7y phases coexist, with a first-order phase transition
between them, for 7<<T,; this is at the origin of metastabil-
ity. Weak nondiagonal interactions do not qualitatively affect
this coexistence.

To evolve the system, we choose discrete-time Metropolis
dynamics:'® at each time step, a spin and its new value are
chosen at random, the increment AH of the Hamiltonian (1)
for this change is calculated, and the update is accepted with
probability min{1,exp(-BAH)}, where B:=1/T is the in-
verse temperature. This gives a Markov chain on the space of
all possible configurations.

This Markov chain has a unique equilibrium distribution,
concentrated on the phase(s) with the largest &,. The other
phases are metastable, that is, when started in such a phase
a, the system stays there for some time before a transition to
a more stable phase vy is nucleated by the appearance of a
critical droplet of the y phase. At sufficiently low tempera-
tures, the relative stability is determined by /,> h,,. The re-
verse transition is exponentially unlikely.

In the standard Potts model, the equilibrium phase (al-
most) always nucleates. To obtain nontrivial transition path-
ways, nucleation of other phases must be promoted. This we
achieve using nondiagonal interactions between distinct spin
types a# y: setting J, ,>0 favors nucleation of 7y droplets
inside the a phase by lowering the surface tension between «
and 7y regions, and hence decreasing the droplet free energy
of formation (nucleation barrier), whereas formation of 7y
droplets in the a phase is suppressed if J,,,<0.

We can now construct models whose phases obey arbi-
trary metastable transition graphs. These are directed graphs
with the restriction that no loops returning to a previously
visited phase are allowed. Each vertex corresponds to one
phase, labeled by its dominant spin state, and each arrow to
a desired transition: &« — 7y means that phase y can nucleate
directly from phase «. Figure 1 shows example transition
graphs.

To construct a model corresponding to a given transition
graph, we proceed as follows. The number of spin types g is
the number of vertices in the graph. To each spin type «a, we
assign a field h,, with h,>h,, if 7y is below « in the graph.
The off-diagonal interactions are given by J, ,:=K;>0 (at-
tractive) if @— v, and J,, ,+=—K, <0 (repulsive) otherwise.
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FIG. 1. Metastable transition graphs: (a) kinetic Ising model, (b)
succession of three phases, (c) single metastable phase decaying to
two competing phases, (d) as in (c), but such that one phase can
decay further, and (e) three competing phases.

K, must be large enough to inhibit immediate formation of
nonadjacent phases with large fields.

As an illustration, we construct a model exhibiting a lin-
ear succession of metastable phases with transition graph 1
—2— - —¢q. We impose fields 0=h; <h,<---<h, and at-
tractive interactions J, ,.;:=K;>0 between neighboring
states and set all other nondiagonal interactions to —K, <0.
With suitable, moderately robust parameters, we observe the
desired behavior, shown for g=5 in Fig. 2.

A three-phase succession was previously observed in a
kinetic Blume-Capel model,!>* corresponding to a special
case of our model with g=3.2! The physical reason for the
observed transitions is, however, much more transparent with
the Hamiltonian in the form (1), with its intuitive interpreta-
tion in terms of attractive and repulsive interactions.

(b) Competitive nucleation. We now turn to the decay
of one metastable phase into two competing phases [Fig.
1(c)]. Sear studied competitive heterogeneous nucleation
(occurring on impurities) in the three-state standard Potts
model.!! In contrast, all behaviors discussed in this work are
endogenous: observed transitions are not caused by external
influences, but rather arise spontaneously from within the
system itself.

We fix O:hl < hz = ]’l3, 11’2:.]1’3 >0, and .12’3 <0. Let
Ah:=hs;—h, be the field difference between the new phases 2
and 3. When Ah=0, these phases are symmetrical, each
nucleating half of the time, while for AZ>0, we expect the
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FIG. 2. (Color online) Time dependence of magnetization per
site M,/N of each phase «a, in a single run of the model with
transition graph 1 —2—3—4—5 (a succession of phases). Param-
eters are L=50, 8=1.25, h,=0.1(a-1), K;=0.1, and K,=1.0. La-
bels denote the dominant phase. Configuration snapshots depict
postcritical nuclei of each new phase embedded in the previous
phase. These grow to fill the system, producing the next phase in
sequence.
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FIG. 3. (Color online) Probability p,(h3) that phase 2 nucleates
before phase 3 as a function of Ah/h,, with h,=0.1, K;=0.1, K,
=1, B=1.25, and L=50 unless otherwise noted. Up to n= 10* trials
were used for each data point; statistical errors are of the order of
the symbol size. Inset: system-size dependence of p, for two values
of hy with fixed parameter values.

1-3 free-energy barrier to be lower than the 1-2 one, so that
according to the Ostwald rule, only phase 3 should nucleate.
To test this, we perform n simulations starting from phase 1
for each Ah, in n, of which phase 2 nucleates before phase 3.
The ratio n,/n is then an estimate of the probability p,(Ah)
that phase 2 nucleates first. For efficiency, we use a rejection
free version of the Metropolis method.?'+??

Figure 3 plots p, as a function of a nondimensionalized
Ah. For Ah sufficiently close to 0, phase 2 can still nucleate
first, contrary to the simple Ostwald rule. The probability
that it does so rapidly decreases for larger Ak until a point
beyond which phase 3 effectively always nucleates.

To explain these results in a general context, we assume,
as in classical nucleation theory,23 that there are well-defined
nucleation rates \,(L) of phases i=2,3, giving the number of
critical nuclei which form per unit time in a system of size L.
The nucleation rates per site are w;(L):=N;(L)/N.

A nucleation rate is the inverse of a mean nucleation time,
which can be measured in experiments or simulations by
averaging over many nucleation events in independent runs.
In the case of competitive nucleation, however, we can only
measure the mean time 7 for the first phase to nucleate, after
which this phase invades the entire system. The rate of this
first nucleation is A,+A\3, since the total number of nucle-
ation events per unit time is the sum of those for each type,
so that 7=1/(N\,+X\3). For convenience, in simulations, 7 is
taken to be the time until the new phase occupies half the
system.

Under the same assumptions, the probability that phase 2
nucleates first is p,=Prob{T, <Ts}, where T;, the time for
phase i to nucleate, is an exponentially distributed random
variable with mean 1/\;. This gives py=N,/(Ay+X\3)=\, 7.

Individual nucleation rates of the two phases, which can-
not be obtained directly, can now be calculated as A,=p,/7
and N\;=(1-p,)/ 7. This generalizes to P competing phases,
where the measurable quantities are the mean nucleation
time 7=1/ Eil)\i and the nucleation probabilities p;
=N;/2;Nj=p;/Z;u; of each phase i. The nucleation rate of
phase i is then N\;=p;/ .
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FIG. 4. (Color online) (a) Comparison of nucleation rates \;(/5)
of phases i=2,3 from phase 1 in the model of Fig. 1(c) with h,
fixed, calculated directly from simulations and using forward-flux
sampling. (b) Nucleation probability p,(h,) for h;=0.1 and hy
=0.2 varying h,, with and without phase 4, in the model of Fig.
1(d). Dashed lines show positions of equal nucleation probability
and equal field of the two phases. In both figures, parameters are as
in Fig. 3, with L=50 and B8=1.25.

Figure 4(a) shows N\, and A5 calculated in this way. To
confirm the validity of such calculations, we use the
“forward-flux sampling” method,’*> which directly calcu-
lates the transition rate between two phases in a stochastic
system. This has previously been used to study nucleation
rates in the Ising model.?®?” In our case, the possibility of
escape to an additional new phase must be taken into
account.?! Figure 4(a) shows that the results indeed coincide
with those of the direct method, within statistical errors. We
remark that we are unaware of any analytical prediction giv-
ing the observed variation of nucleation rates.

The above considerations used “in reverse” confirm that
the Ostwald rule must, in general, be modified when the new
phases have similar stabilities as follows. Consider phases
which are equally stable for given parameter values. We ex-
pect nucleation barriers, and hence nucleation rates, to vary
continuously with the parameters, so that the nucleation
probabilities p; also vary continuously. Hence, there is a re-
gion, where the phases have similar stabilities, in which all
nucleation probabilities are nonzero—only the probability of
each phase nucleating is well defined, with the outcome in
any given run being stochastic, as in Fig. 3. The definite
prediction given by the Ostwald rule is thus invalid in this
region.

To see how our results depend on system size L, we note
that in a broad region of L, the per-site nucleation rates u;,
and hence also the p;, are independent of L, as confirmed by
the plateaus in the inset of Fig. 3. This is valid when the
nucleation process is mediated by growth of a single
droplet.? Note that this regime may be of relevance for mac-
roscopically large systems.’

Above a certain system size, however, droplets of differ-
ent phases may nucleate before any dominates the system
(the “multidroplet” regime).® This results in coarsening, as
shown in Fig. 5 for three competing phases of equal stability.
Even if a phase-a droplet nucleates first, droplets of a more
stable phase may then nucleate and grow to dominate the
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FIG. 5. (Color online) Configuration snapshots of the multi-
droplet regime in the model with transition graph Fig. 1(e), with
L=200, B=1.25, and h;=0, hy=h3=h4=0.15. Nucleation of drop-
lets of three equally stable phases from a single metastable phase is
followed by droplet growth and then domain coarsening. The “coat-
ing” of the initial phase visible between domains in the final snap-
shot is due to repulsive interactions between the new phases.

system before the « phase can do so, thus reducing p,, as
seen in Fig. 3.

Finally, a generic nonsymmetric case can be obtained by
adding a new phase, 4, and a decay path, 3—4, as in Fig.
1(d). Even when h,=h,, phase 3 now nucleates more often,
as shown by the horizontally displaced nucleation probability
curve in Fig. 4(b): the presence of phase 4 reduces p, by
roughly half. This is due to an entropic effect: there are more
3-dominated critical droplets than 2-dominated ones, since
spins of type 4 also appear in the former droplets, resulting
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in nucleation of a binary mixture:?? a similar effect is visible
in Fig. 1. There is thus a lower free-energy barrier to form
phase 3, and yet nucleation of both phases 2 and 3 is still
observed, again at odds with the simple Ostwald rule.

In summary, we have introduced a generalized Potts
model which can easily be tuned to have any given number
of metastable phases and arbitrary transitions between them.
We have shown generally that individual nucleation rates of
competitively nucleating phases can be calculated from ex-
perimentally measurable quantities, and that the Ostwald rule
must be modified when the nucleating phases have compa-
rable stabilities. In future work,?! we will study the model in
detail and compare its properties with theoretical results® on
systems with multiple metastable phases.

ACKNOWLEDGMENTS

D.P.S. thanks A. Huerta for useful discussions and the Uni-
versidad Nacional Auténoma de México for financial sup-
port. The financial support of DGAPA-UNAM Project No.
PAPIIT IN112307 is also acknowledged.

*Electronic address: dsanders @fis.unam.mx

1J. F. Lutsko and G. Nicolis, Phys. Rev. Lett. 96, 046102 (2006).

2p. R. ten Wolde and D. Frenkel, Science 277, 1975 (1997).

3S. Takada and P. G. Wolynes, Phys. Rev. E 55, 4562 (1997).

4D. Wales, Energy Landscapes (Cambridge University Press,
Cambridge, 2003).

5G. Biroli and J. Kurchan, Phys. Rev. E 64, 016101 (2001).

%A. Bovier, M. Eckhoff, V. Gayrard, and M. Klein, Commun.
Math. Phys. 228, 219 (2002).

"B. Gaveau and L. S. Schulman, Phys. Rev. E 73, 036124 (2006).

8H. Larralde, F. Leyvraz, and D. P. Sanders, J. Stat. Mech.: Theory
Exp. 2006, P0O8013 (2006).

9P. A. Rikvold, H. Tomita, S. Miyashita, and S. W. Sides, Phys.
Rev. E 49, 5080 (1994).

0P, R. ten Wolde and D. Frenkel, Phys. Chem. Chem. Phys. 1,
2191 (1999).

IR, P. Sear, J. Phys.: Condens. Matter 17, 3997 (2005).

I2E Y. Wu, Rev. Mod. Phys. 54, 235 (1982).

3P, Rikvold, J. Collins, G. Hansen, and J. Gunton, Surf. Sci. 203,
500(1988).

145, Manzi, W. Mas, R. Belardinelli, and V. Pereyra, Langmuir 20,
499 (2004).

ISW. C. K. Poon, F. Renth, R. M. L. Evans, D. J. Fairhurst, M. E.
Cates, and P. N. Pusey, Phys. Rev. Lett. 83, 1239 (1999).

I6F, Renth, W. C. K. Poon, and R. M. L. Evans, Phys. Rev. E 64,
031402 (2001).

I7R. M. L. Evans, W. C. K. Poon, and F. Renth, Phys. Rev. E 64,
031403 (2001).

I8M. E. J. Newman and G. T. Barkema, Monte Carlo Methods in
Statistical Physics (Oxford University Press, New York, 1999).

19E. N. M. Cirillo and E. Olivieri, J. Stat. Phys. 83, 473 (1996).

20T, Fiig, B. M. Gorman, P. A. Rikvold, and M. A. Novotny, Phys.
Rev. E 50, 1930 (1994).

21D, P. Sanders, H. Larralde, and F. Leyvraz (unpublished).

22M. A. Novotny, Phys. Rev. Lett. 74, 1 (1995).

2P. G. Debenedetti, Metastable Liquids (Princeton University
Press, Princeton, NJ, 1996).

24R. J. Allen, P. B. Warren, and P. R. ten Wolde, Phys. Rev. Lett.
94, 018104 (2005).

2R. J. Allen, D. Frenkel, and P. R. ten Wolde, J. Chem. Phys. 124,
024102 (2006).

20R. P. Sear, J. Phys. Chem. B 110, 4985 (2006).

2TAL T Page and R. P. Sear, Phys. Rev. Lett. 97, 065701 (2006).

132101-4



