Billiard models
Chaotic properties
-
Chaos and stability in a two-parameter family of convex billiard tables
Péter Bálint, Miklós Halász, Jorge A. Hernández-Tahuilán and David P. Sanders
Nonlinearity 24(5), 1499 (2011) | [arXiv:1009.3922] -
Stable and unstable regimes in higher-dimensional convex billiards with cylindrical shape
Thomas Gilbert and David P. Sanders
New J. Phys. 13(2), 023040 (2011) | [arXiv:1009.0337] -
Chaos in cylindrical stadium billiards via a generic nonlinear mechanism
Thomas Gilbert and David P. Sanders
Int. J. Bif. Chaos 22(09), 1250206 (2012) | [arXiv:0908.4243]
Infinite horizon
-
Efficient algorithms for the periodic Lorentz gas in two and three dimensions
Atahualpa S. Kraemer, Nikolay Kryukov, David P. Sanders
J. Phys. A: Math. Theor. 49(02), 025001 (2016) | [arXiv:1511.00236] -
Machta-Zwanzig regime of anomalous diffusion in infinite-horizon billiards
Giampaolo Cristadoro, Thomas Gilbert, Marco Lenci, David P. Sanders
Phys. Rev. E 90(05), 050102(R) (2014) | [arXiv:arXiv:1408.0349] -
Measuring logarithmic corrections to normal diffusion in infinite-horizon billiards
Giampaolo Cristadoro, Thomas Gilbert, Marco Lenci & David P. Sanders
Phys. Rev. E 90(02), 022106 (2014) | [arXiv:1405.0975]
Non-elastic billiards
-
Structure and evolution of strange attractors in non-elastic triangular billiards
Aubin Arroyo, Roberto Markarian and David P. Sanders
Chaos 22(2), 026107 (2012) | [arXiv:1112.1255] -
Bifurcations of periodic and chaotic attractors in pinball billiards with focusing boundaries
A. Arroyo, R. Markarian and David P. Sanders
Nonlinearity 22(7), 1499 (2009) | [arXiv:0902.1563]
Quasiperiodic
-
Horizons and free path distributions in quasiperiodic Lorentz gases
Atahualpa S. Kraemer, Michael Schmiedeberg, David P. Sanders
Phys. Rev. E 92(05), 052131 (2015) | [arXiv:1511.00340] -
Embedding quasicrystals in a periodic cell: Dynamics in quasiperiodic structures
Atahualpa S. Kraemer and David P. Sanders
Phys. Rev. Lett. 111(12), 125501 (2013) | [arXiv:1206.1103]
Transport properties
-
Diffusive properties of persistent walks on cubic lattices with application to periodic Lorentz gases
Thomas Gilbert, Huu Chuong Nguyen and David P. Sanders
J. Phys. A: Math. Theor. 44(6), 065001 (2011) | [arXiv:1009.3922] -
Persistence effects in deterministic diffusion
T. Gilbert and David P. Sanders
Phys. Rev. E 80(4), 041121 (2009) | [arXiv: 0908.0600] -
Normal diffusion in crystal structures and higher-dimensional billiard models with gaps
David P. Sanders
Phys. Rev. E 78(6), 060101R (2008) | [arXiv:0808.2235] -
Occurrence of normal and anomalous diffusion in polygonal billiard channels
David P. Sanders and H. Larralde
Phys. Rev. E 73(2), 026205 (2006) | [arXiv:cond-mat/0510654] -
Fine structure of distributions and central limit theorem in diffusive billiards
David P. Sanders
Phys. Rev. E 71(1), 016220 (2005) | [arXiv:nlin.CD/0411012]
Metastability
-
Competitive nucleation and the Ostwald rule in a generalized Potts model with multiple metastable phases
David P. Sanders, H. Larralde and F. Leyvraz
Phys. Rev. B. 75(13), 132101 (2007) | [arXiv:0704.0472] -
Metastability in Markov processes
H. Larralde, F. Leyvraz and David P. Sanders
J. Stat. Mech. 2006(08), P08013 (2006) | [arXiv:cond-mat/0608439]
Random environments
-
Zero density of open paths in the Lorentz mirror model for arbitrary mirror probability
Atahualpa S. Kraemer & David P. Sanders
J. Stat. Phys. 156(5), 908 (2014) | [arXiv:1406.4796]
Random walks
Encounters
-
Encounter times in overlapping domains: application to epidemic spread in a population of territorial animals
Luca Giuggioli, Sebastian Pérez-Becker and David P. Sanders
Phys. Rev. Lett. 110(5), 058103 (2013) | [arXiv:1207.2427] -
Exact encounter times for many random walkers on regular and complex networks
David P. Sanders
Phys. Rev. E 80(3), 036119 (2009) | [arXiv:0906.0810] -
How rare are diffusive rare events?
David P. Sanders and H. Larralde
Europhys. Lett. 82(4), 40005 (2008) | [arXiv:0804.1165]
Lattice Levy walks
-
Lévy walks on lattices as multi-state processes
Giampaolo Cristadoro, Thomas Gilbert, Marco Lenci, David P. Sanders
J. Stat. Mech. 2015(05), P05012 (2015) | [arXiv:1501.05216] -
Transport properties of Léy walks: an analysis in terms of multistate processes
Giampaolo Cristadoro, Thomas Gilbert, Marco Lenci, David P. Sanders
Europhys. Lett. 108(5), 50002 (2014) | [arXiv:1407.0227]
Nonequilibrium stationary states
-
Sustained currents in coupled diffusive systems
Hernán Larralde and David P. Sanders
J. Phys. A: Math. Theor. 47(34), 345001 (2014) | [arXiv:1401.5526] -
Long-range correlations in a simple stochastic model of coupled transport
H. Larralde and David P. Sanders
J. Phys. A: Math. Theor. 42(33), 335002 (2009) | [arXiv:0903.3166]
Transport properties
-
Diffusion coefficients for periodically induced multi-step persistent walks on regular lattices
Thomas Gilbert and David P. Sanders
J. Phys. A 45(25), 255003 (2012) | [arXiv:] -
Diffusion coefficients for multi-step persistent random walks on lattices
T. Gilbert and David P. Sanders
J. Phys. A: Math. Theor. 43(3), 035001 (2010) | [arXiv:0908.1271]
Thermostatted dynamics
-
Ergodicity of one-dimensional systems coupled to the logistic thermostat
Diego Tapias, Alessandro Bravetti and David P. Sanders
Submitted for publication | [arXiv:1611.05090] -
Geometric integrator for simulations in the canonical ensemble
Diego Tapias, David P. Sanders, Alessandro Bravetti
J. Chem. Phys. 145(08), 084113 (2016) | [arXiv:1605.01654]