Lógica Matemática III. Tarea-Examen II.

Prof. Rafael Rojas Barbachano. Ayte. Jorge Alan Morales Morillón.

1. Aritmetización del Metalenguaje.

1.1 (2 pts.)

- Prueba que **TERM** es una relación recursiva.
- Prueba que *FORM* es una relación recursiva.

Usa recursión por curso de valores.

2. Operador μ .

2.1 (1 pto.)

- Prueba que * es asociativa pero no conmutativa.
- Explica detalladamente que es lo que pasa si en la definición de \star se utiliza la función ld en lugar de lg.

2.2 (1 pto.) Sean $h_1, ..., h_m : \mathbb{N}^n \longrightarrow \mathbb{N}$ funciones recursivas y $R_1, ...R_m \subseteq \mathbb{N}^n$ relaciones recursivas ajenas dos a dos, tales que: $\bigcup_{i=1}^m R_i = \mathbb{N}$

Muestra que f es recursiva, donde $f: \mathbb{N}^n \longrightarrow \mathbb{N}$ esta definida de la siguiente manera.

$$f(\vec{x}) = \begin{cases} h_1(\vec{x}) & \text{Si} \quad R_1(\vec{x}) \\ h_2(\vec{x}) & \text{Si} \quad R_2(\vec{x}) \\ \vdots & & \vdots \\ h_m(\vec{x}) & \text{Si} \quad R_m(\vec{x}) \end{cases}$$

2.3 (1 pto.) Muestra que el operador μ preserva representabilidad de funciones recursivas en AP.

3. Aritmética de Peano.

- **3.1 (2 pts.)** Prueba los siguientes enunciados.
 - Para cualquier número natural n. $\vdash_{AP} x \leq \bar{n} \longleftrightarrow x = 0 \lor \cdots \lor x = \bar{n}$
 - Para cualquier número natural n > 0 y cualquier fórmula bien formada α . $\vdash_{AP} \forall x (x \leq \bar{n} \to \alpha(x)) \longleftrightarrow \alpha(0) \& \alpha(\bar{1}) \cdots \alpha(\bar{x} - 1)$

Usa inducción sobre n en el metalenguaje.

4. Random

- **4.1 (1 pto.)** Demuestra que toda relación recursiva es expresable en AP.
- **4.2 (1 pto.)** Sea T una teoría en un lenguaje de primer orden \mathscr{L}_{τ} tal que $\{c_0, f_s\} \subseteq \mathscr{L}_{\tau}$. Decimos que T es ω -consistente si para toda formula $\varphi \in \mathscr{L}_{\tau}^1$, si $\vdash_T \neg \varphi(\bar{n})$ para cualquier úmero natural n, entonces no es el caso que $\vdash_T \exists x \varphi(x)$.

Muestra que si T es ω -consistente, entonces T es concistente.

4.3 (2 pts.) Sea T una teoría en un lenguaje de primer orden \mathscr{L}_{τ} tal que $\{c_0, f_s\} \subseteq \mathscr{L}_{\tau}$. Decimos que T es ω -completa si para toda formula $\varphi \in \mathscr{L}_{\tau}^1$, si $\varphi \in T$ para cualquier número natural n, entonces $\forall x \varphi(x) \in T$.

Muestra que si T es una teoría ω -concistente y ω -completa en \mathscr{L}_{AP} y si $AP \subseteq T$, entonces $T = Th(\mathfrak{N})$.