Lógica Matemática II

Tarea Examen II

9 de abril de 2015

- 1. Sintaxis: En los ejercicios siguientes está prohibido emplear el significado, la noción de verdad, etc.
 - a) Pruebe que hay una deducción en el CP de las siguientes fórmulas (De la deducción o emplee meta teoremas).
 - 1) $\forall x(\alpha \& \beta) \rightarrow ((\forall x\alpha) \& (\forall x\beta))$
 - 2) $\forall x \alpha(x) \rightarrow \exists x \alpha(x)$
 - 3) $\forall x(\alpha \to \beta) \to (\forall x\alpha \to \forall x\beta)$
 - 4) $\exists x(\alpha \lor \beta) \to (\exists x\alpha \lor \exists x\beta)$

5)

$$\forall x_1 \dots \forall x_n \forall y_1 \dots \forall y_n \Big[\bigwedge_{i=1}^n x_i \approx y_i \to t(x_1, \dots, x_n) \approx t(y_1, \dots, y_n) \Big]$$

Donde $t(x_1, \ldots, x_n) \in TMR_\rho$ donde aparecen exactamente las variables x_1, \ldots, x_n y $t(y_1, \ldots, y_n)$ es el resurtado de sustituir en $t(x_1, \ldots, x_n)$ la variable x_i por y_i .

6)

$$\forall x_1 \dots \forall x_n \forall y_1 \dots \forall y_n \Big[\bigwedge_{i=1}^n x_i \approx y_i \to \big(R(x_1, \dots, x_n) \leftrightarrow R(y_1, \dots, y_n) \big) \Big]$$

Donde R es una letra relacional de aridad n y la explicación de $R(x_1, \ldots, x_n)$ y $R(y_1, \ldots, y_n)$ son análogas al inciso anterior. Haga notar que este resultad se puede hacer para cualquier $\varphi(x_1, \ldots, x_n)$.

b) Pruebe que

$$\forall x(\varphi \to \psi), \forall x\varphi \vdash \forall x\psi$$

Y empleando el algoritmo brindado por la prueba del Metateorema de la deducción exhiba que

$$\forall x \varphi \vdash \forall x (\varphi \to \psi) \to \forall x \psi$$

- 2. Semántica:
 - a) Sean $\mathfrak{A}, \mathfrak{B} \in V_{\rho}$ y $h: A \longrightarrow B$. Si para toda fórmula α atómica o negación de una atómica se tiene que

Para todas
$$a_1, \ldots, a_n \in A$$
 $\mathfrak{A} \models \alpha[a_1, \ldots a_n]$ syss $\mathfrak{B} \models \alpha[h(a_1), \ldots, h(a_n)]$

Entonces h es un encaje de \mathfrak{A} en \mathfrak{B} .

b) Pruebe que la composición de encajes es un encaje.

Posiblemente serán agregados más problemas...