Lógica Matemática I. Tarea-Examen IV.

Prof. Rafael Rojas Barbachano. Ayte. Jorge Alan Morales Morillón. Ayte. Adrián Alberto de Flon Gasca.

23 - 05 - 2016

1. Cálculo de Proposiciones

1.1. (1.0 pto.) Verifica si las siguientes fórmulas son teoremas de C.P. o no, si la respuesta es afirmativa exhiba la deducción, si es negativa puede argumentar desde el Metateorema de Correctud para el C.P.

- $\alpha \rightarrow (\alpha \rightarrow \alpha)$
- $(\alpha \to \alpha) \to \alpha$
- $(\alpha \to (\beta \to \alpha)) \to (\beta \to \alpha)$
- $(\neg \alpha \to \beta) \to (\neg \beta \to \neg \alpha)$
- $(\alpha \to \gamma) \to (\neg \alpha \to \beta)$
- $\bullet ((\alpha \to \gamma) \lor (\beta \to \gamma)) \to ((\alpha \lor \beta) \to \gamma)$

1.2. (1.0 pto.) Demuestra que C.P. es una teoría concistente.

2. Metateorema de la Deducción

2.1. (1.0 pto.) Sean $\alpha, \beta, \alpha', \beta' \in \Phi(\mathbb{B})$ como en el MTS₂. Así.

$$\models (\alpha \leftrightarrow \beta) \rightarrow (\alpha' \leftrightarrow \beta')$$

2.2. (1.0 pto.) Sean $\alpha, \gamma, \delta, \tilde{\alpha} \in \Phi(\mathbb{B})$ como en el MTS₃. Así.

$$\models (\gamma \leftrightarrow \delta) \rightarrow (\alpha \leftrightarrow \tilde{\alpha})$$

3. Compacidad

3.1. (2.0 pts.) Decimos que una gráfica es k-coloreable si hay una coloración de sus vértices con k colores tal que cualesquiera dos vértices adyacentes tienen colores distintos. Prueba usando el teorema de compacidad para la lógica de predicados, que una gráfica es k-coloreable sii toda subgráfica finita es k-coloreable.

4. Consecuencia Lógica

4.1. (1.0 pto.) Sean $\Sigma \cup \{\alpha, \beta, \gamma\} \in \Phi(\mathbb{B})$.

Diga si las siguientes afirmaciones son verdaderas o falsas, de ser verdaderas exhiba una prueba y de ser falsa un contraejemplo.

- Si $\Sigma \nvDash \alpha$, entonces $\Sigma \models \neg \alpha$
- Si $\Sigma \models \neg \alpha$, entonces $\Sigma \nvDash \alpha$
- Si $\Sigma \models \alpha \& \beta$, entonces $\Sigma \models \alpha$ y $\Sigma \models \beta$
- Si $\Sigma \models \alpha$ y $\Sigma \models \beta$, entonces $\Sigma \models \alpha \& \beta$
- Si $\Sigma \models \alpha \vee \beta$, entonces $\Sigma \models \alpha$ o $\Sigma \models \beta$
- Si $\Sigma \models \alpha$ o $\Sigma \models \beta$, entonces $\Sigma \models \alpha \vee \beta$
- Si $\alpha \vee \beta \models \gamma$, entonces $\alpha \models \gamma \vee \beta \models \gamma$
- Si $\alpha \vee \beta \models \gamma$, entonces $\alpha \models \gamma$ o $\beta \models \gamma$

4.2. (1.5 pts.) ¿Cuántas fórmulas no lógicamente equivalentes entre sí hay, que tengan exactamente $n(n \in \mathbb{Z}^+)$ letras proposicionales? ¿Por qué?

5. Formas Normales

- **5.1.** (1.0 pto.) Sea α una fórmula normal (booleana).
 - Sea α' la fórmula que resulta de α al intercambiar el conectivo & por el conectivo \vee y vice versa.
 - Prueba que, $\models \alpha$ sii $\models \neg \alpha'$
 - Si β y γ son fórmulas normales, entonces:

$$\circ \ \models \beta \rightarrow \gamma \ \mathrm{sii} \models \beta' \rightarrow \gamma'$$

$$\circ \models \beta \leftrightarrow \gamma \text{ sii} \models \beta' \leftrightarrow \gamma'$$

• Sea α^* la fórmula que resulta de sustituir en α cada letra proposicional por su negación y de cambiar el & por el \vee y vice versa.

Prueba, usando el principio de inducción sobre formación de fórmulas, que:

$$\neg \alpha \equiv \alpha^*$$

O equivalentemente,

$$\alpha \equiv \neg \alpha$$

6. Random

6.1. (2.5. pts.) Dadas dos fórmulas del Cálculo de Proposiciones definimos la siguiente función:

$$f: \mathcal{T}_{\rho} \times \mathcal{T}_{\rho} \longrightarrow \mathbb{N}$$

$$f(\alpha, \beta) = n \quad \text{si } \alpha \neq \beta$$

$$f(\alpha, \beta) = 0$$
 si $\alpha = \beta$

Donde n es el menor valor que puede tomar la longitud de la demostración de β a partir de α y los axiomas de $\mathbf{C.P.}$. Definimos la siguiente función:

$$d(\alpha,\beta) = \max\{f(\alpha,\beta), f(\beta,\alpha)\}$$

Demuestra que la función d es una métrica bien definida en \mathcal{T}_{ρ} .