Lógica Matemática I. Tarea-Examen II.

Prof. Rafael Rojas Barbachano. Ayte. Jorge Alan Morales Morillón. Ayte. Adrián Alberto de Flon Gasca.

05 - 04 - 2016

1. Sistemas Formales

- **1.1.** (1pto.) Sea $SF_L = \langle L, \{R_i\}_{i \in I} \rangle$ un Sistema Formal y sean $\Gamma, \Delta \subseteq \Phi$ y $A, B \in \Phi$, entonces:
 - a) Para toda $c \in \Gamma$, $\Gamma \vdash_{SF_L} c$
 - b) Si $\Gamma \subseteq \Delta$ y $\Gamma \vdash_{SF_L} A$, entonces $\Delta \vdash_{SF_L} A$
 - c) Si $\Gamma \vdash_{SF_L} A$ y $A \vdash_{SF_L} B$, entonces $\Gamma \vdash_{SF_L} B$
 - d) Si para cada $B_i \in \Delta$, se tiene $\Gamma \vdash_{SF_L} B_i$ y $\Delta \vdash_{SF_L} A$, entonces $\Gamma \vdash_{SF_L} A$
 - e) (Metateorema de Finitud) $\Delta \vdash_{SF_L} A$ sii existe un subconjunto finito Γ de Δ tal que $\Gamma \vdash_{SF_L} A$
- **1.2.** (1pto.) Considerando $SF_L = \langle L, \{R_i\}_{i \in I} \rangle$, sean $\Gamma, \Delta \subseteq \Phi$ y $A \in \Phi$, entonces:
 - a) $\overline{\overline{\Gamma}} = \overline{\Gamma}$
 - b) $\overline{\Phi} = \Phi$, por lo que Φ es una teoría formal.
 - c) Si $\Gamma \subseteq \Delta$, entonces $\overline{\Gamma} \subseteq \overline{\Delta}$
 - d) $\overline{\Gamma} \cup \overline{\Delta} \subseteq \overline{\Gamma \cup \Delta}$
 - e) $\overline{\Gamma \cap \Delta} \subseteq \overline{\Gamma} \cap \overline{\Delta}$
 - f) Γ es una teoría formal si
i $\Gamma \vdash A \leftrightarrow A \in \Gamma$
- **1.3.** (1.5pts.) Considere $SF_L = \langle L, \{R_i\}_{i \in I} \rangle$, un Sistema Formal y sea $\Gamma \subseteq \Phi$, demustre que:
 - a) $\overline{\Gamma} = \cap \langle T \mid T$ es Teoría y $\Gamma \subseteq T \rangle$
 - b) Si T es una Teoría y Γ es un conjunto de axiomas para T, entonces son equivalentes:
 - 1) Γ es independiente para T
 - 2) $\Delta \subsetneq \Gamma$ entonces $\overline{\Delta} \subsetneq T$

2. Lenguajes Formales e Interpretación

2.1. (1pto.) Considere la siguiente Estructura Elemental $\Phi = \langle \mathbb{R}, +, -, \cdot, | \cdot |, f, \leq, P, 0, 1 \rangle$ donde f es la función sucesor, P es una relacón de aridad 1.

Sea $\rho = \langle h_+, h_-, h_-, h_-, h_-, h_- \rangle$ $\cup \langle R_{\leq}, R_P \rangle \cup \langle c_0, c_1 \rangle$ un tipo de semejanza adecuado para la estructura. Para las siguientes expresiones de L_ρ , determine si son fórmulas, si las variables ocurren libres o acotadas, y en caso de ser enunciados, si son verdaderos o no.

- a) $h_+(v_0, c_0)$
- b) $\exists v_0(\forall v_1(R_{<}(v_0,h_{+}(c_1,v_1))))$
- c) $(R_P(v_1, c_0) \lor (c_1 \approx v_0)) \to (h.(v_3, v_4) \approx c_0)$
- d) $\forall v_1((\neg(c_0 \approx v_1)) \to (\exists v_2(h_+(v_1, v_2) \approx c_0)))$
- e) $(R<(c_0,c_1))\&(h.(v_0,c_0))$
- f) $\forall v_0(\forall v_1((R_{<}(v_0, v_1)) \to (\exists v_2((R_{<}(v_0, v_2))\&(R_{<}(v_2, v_1)))))$
- g) $\forall v_0(h_+(v_0, v_1) \approx c_0)$

2.2. (1.5pts.) Sea ρ un tipo de semejanza. Demuestre que las siguientes fórmulas son universalmente verdaderas:

- a) $(\forall x(\forall y(\alpha(x,y)))) \leftrightarrow (\forall y(\forall x(\alpha(x,y))))$
- b) $(\forall x (\forall y (\forall z ((x \approx y) \& (y \approx z)) \rightarrow (x \approx z)))))$
- c) $(\forall x(\alpha(x))) \to (\exists x(\alpha(x)))$
- d) $(\forall x((\alpha(x))\&(\beta(x))) \leftrightarrow ((\forall x(\alpha(x)))\&(\forall x(\beta(x))))$
- e) $(\alpha(t)) \to (\exists x (\alpha(x)))$ si t
 es un término libre para x en α .
- f) $(\exists x ((\alpha(x)) \& (\beta(x))) \to ((\exists x (\alpha(x))) \& (\exists x (\beta(x))))$

2.3. (1.5pts.) Sean $\mathfrak{A} \in V_{\rho}$ y $\alpha, \beta \in FRM_{\rho}$. Así:

- 1. a) α es falsa en \mathfrak{A} sii $\mathfrak{A} \models \neg \alpha$
 - b) $\mathfrak{A} \models \alpha$ sii $\neg \alpha$ es falsa en \mathfrak{A}
- 2. No es el caso que ambas se den: $\mathfrak{A} \models \alpha$ y $\mathfrak{A} \models \neg \alpha$. Es decir, ninguna fórmula es verdadera y falsa en una ρ -interpretación
- 3. $\mathfrak{A} \models \alpha \rightarrow \beta$ y $\mathfrak{A} \models \alpha$, entonces $\mathfrak{A} \models \beta$
- 4. $\alpha \to \beta$ es falsa en ${\mathfrak A}$ si
i ${\mathfrak A} \models \alpha$ y ${\mathfrak A} \models \neg \beta$
- 5. $\mathfrak{A} \models \alpha \operatorname{sii} \mathfrak{A} \models \forall x \alpha$

Esto se puede generalizar de la siguiente manera: Por la *Clausura* de α , denotado por $\overline{\alpha}$, entenderemos por la fórmula, cerrada o enunciado, que se obtiene de α , al anteponerle a ella todos los cunantificadores universales de las variables -en orden creciente- que ocurren libres en ella. Así $\mathfrak{A} \models \alpha$ sii $\mathfrak{A} \models \overline{\alpha}$.

- 2.4. (1pto.) Construya un tipo de semejanza adecuado para escribir los siguientes conceptos:
 - a) La relación \boldsymbol{R} es un orden lineal denso.
 - b) Que un orden R tiene un elemento mínimo.
 - c) Que una función \boldsymbol{f} sea monotona.
 - d) Que \boldsymbol{R} sea una relación de equivalencia.
 - e) Tener exactamente tres elementos.
 - f) Nadie en la clase de estadísticas es más inteligente que todos en la clase de lógica.

3. Random

3. (3pts.) Sea L un lenguaje formal $L = \langle S, \Phi \rangle$. Sea SF_L un sistema formal $SF_L = \langle L, \{R_i\}_{i \in I} \rangle$. Sea $\Gamma \subseteq \Phi$, tal que Γ es una teoría.

Definición 1: Sean $\alpha, \beta \in \Phi$. Decimos que α está relacionado con β módulo Γ , $(\alpha \sim_{\Gamma} \beta)$ sii

$$\Gamma \cup \{\alpha\} \vdash_{SF_L} \beta$$

$$\Gamma \cup \{\beta\} \vdash_{SF_L} \alpha$$

 \blacksquare Demostrar que \sim_{Γ} es una relación de equivalencia.

Definición 2: Sea $[\alpha] = \{\delta \in \Phi : \delta \sim_{\Gamma} \alpha\}$, la clase de equivalencia de α definida por la relación de equivalencia anterior.

Definición 3: Sea $<_{\Gamma}$ una relación (binaria), tal que $[\alpha] <_{\Gamma} [\beta]$ sii

$$\Gamma \cup \{\alpha\} \vdash_{SF_L} \beta$$

$$\alpha \in [\alpha]$$

$$\beta \in [\beta]$$

- \bullet Demostrar que $<_{\Gamma}$ está bien definida y es un orden Parcial.
- Demostrar que el orden parcial tiene máximo. Diga quien es explícitamente.