S.M. Srivastava

A Course on Mathematical Logic

Springer

Universitext

Kurt Gödel (1906-1978)

S.M. Srivastava

A Course on Mathematical Logic

S.M. Srivastava
Indian Statistical Institute
Kolkata
India
e-mail: smohan@isical.ac.in

ISBN: 978-0-387-76275-3
e-ISBN: 978-0-387-76277-7
DOI: 10.1007/978-0-387-76277-7
Library of Congress Control Number: 2008920049
Mathematics Subject Classification (2000): 03-xx

[^0]Printed on acid-free paper

To HAIMANTI

Contents

Preface ix
1 Syntax of First-Order Logic 1
1.1 First-Order Languages 1
1.2 Terms of a Language 4
1.3 Formulas of a Language 6
1.4 First-Order Theories 10
2 Semantics of First-Order Languages 15
2.1 Structures of First-Order Languages 16
2.2 Truth in a Structure 17
2.3 Model of a Theory 19
2.4 Embeddings and Isomorphisms 20
3 Propositional Logic 29
3.1 Syntax of Propositional Logic 30
3.2 Semantics of Propositional Logic 31
3.3 Compactness Theorem for Propositional Logic 33
3.4 Proof in Propositional Logic 37
3.5 Metatheorems in Propositional Logic 38
3.6 Post Tautology Theorem 42
4 Proof and Metatheorems in First-Order Logic 45
4.1 Proof in First-Order Logic 45
4.2 Metatheorems in First-Order Logic 46
4.3 Some Metatheorems in Arithmetic 59
4.4 Consistency and Completeness 62
5 Completeness Theorem and Model Theory 65
5.1 Completeness Theorem 65
5.2 Interpretations in a Theory 70
5.3 Extension by Definitions 72
5.4 Compactness Theorem and Applications 74
5.5 Complete Theories 77
5.6 Applications in Algebra 79
6 Recursive Functions and Arithmetization of Theories 83
6.1 Recursive Functions and Recursive Predicates 84
6.2 Semirecursive Predicates 93
6.3 Arithmetization of Theories 96
6.4 Decidable Theories 103
7 Incompleteness Theorems and Recursion Theory 107
7.1 Representability 107
7.2 First Incompleteness Theorem 115
7.3 Arithmetical Sets 116
7.4 Recursive Extensions of Peano Arithemetic 125
7.5 Second Incompleteness Theorem 131
References 135
Index 137

Preface

This book is written on the occassion of the birth centenary year of Kurt Gödel (1906-1978), the most exciting logician of all times, whose discoveries shook the foundations of mathematics. His beautiful technique to examine the whole edifice of mathematics within mathematics itself has been likened, not only figuratively but also in precise technical terms, to the music of Bach and drawings of Escher [4]. It had a deep impact on philosophers and linguists. In a way, it ushered in the era of computers. His idea of arithmetization of formal systems led to the discovery of a universal computer program that simulates all programs. Based on his incompleteness theorems, physicists have propounded theories concerning artifical intelligence and the mind-body problem [10].

The main goal of this book is to state and prove Gödel's completeness and incompleteness theorems in precise mathematical terms. This has enabled us to present a short, distinctive, modern, and motivated introduction to mathematical logic for graduate and advanced undergraduate students of logic, set theory, recursion theory, and computer science. Any mathematician who is interested in knowing what mathematical logic is concerned with and who would like to learn the famous completeness and incompleteness theorems of Gödel should also find this book particularly convenient. The treatment is thoroughly mathematical, and the entire subject has been approached like any other branch of mathematics. Serious efforts have been made to make the book suitable for both instructional and self-reading purposes. The book does not strive to be a comprehensive encyclopedia of logic,
nor does it broaden its audience to linguists and philosophers. Still, it gives essentially all the basic concepts and results in mathematical logic.

The main prerequisite for this book is the willingness to work at a reasonable level of mathematical rigor and generality. However, a working knowledge of elementary mathematics, particularly naive set theory and algebra, is required. We suggest [12, pp. 1-15] for the necessary prerequisites in set theory. A good source for the algebra needed to understand some examples and applications would be [7].

Students who want to specialize in foundational subjects should read the entire book, preferably in the order in which it is presented, and work out all the problems. Sometimes we have only sketched the proof and left out the routine arguments for readers to complete. Students of computer science may leave out sections on model theory and arithmetical sets. Mathematicians working in other areas and who want to know about the completeness and incompleteness theorems alone may also omit these sections. However, sections on model theory give applications of logic to mathematics. Chapters 1 to 4 , except for Section 2.4 and Sections 5.1 and 5.4, should make a satisfactory course in mathematical logic for undergraduate students.

The book prepares students to branch out in several areas of mathematics related to foundations and computability such as logic, model theory, axiomatic set theory, definability, recursion theory, and computability. Hinman's recent book [3] is the most comprehensive one, with representation in all these areas. Shoenfield's [11] is still a very satisfactory book on logic. For axiomatic set theory, we particularly recommend Kunen [6] and Jech [5]. For model theory, the readers should also see Chang and Keisler [2] and Marker [8]. For recursion theory we suggest [9].

Acknowledgments. I thank M. G. Nadkarni, Franco Parlamento, Ravi A. Rao, B. V. Rao, and H. Sarbadhikari for very carefully reading the entire manuscript and for their numerous suggestions and corrections. Thanks are also due to my colleagues and research fellows at the Stat-Math Unit, Indian Statistical Institute, for their encouragements and help. I fondly acknowledge my daughter Rosy, my son Ravi, and my grandsons Pikku and Chikku for keeping me cheerful while I was writing this book. Last but not least, I shall ever be grateful to my wife, H. Sarbadhikari, for cheerfully putting up with me at home as well at the office all through the period I was working on the book.

1

Syntax of First-Order Logic

The main objects of study of mathematical logic are mathematical theories such as set theory, number theory, and the theory of algebraic structures such as groups, rings, fields, algebraically closed fields, etc., with the aim to develop tools to examine their consistency, completeness, and other similar questions concerning the foundation of these theories. In this chapter we take the first step toward logic and precisely define the notion of a firstorder theory.

1.1 First-Order Languages

The objects of study in the natural sciences have physical existence. By contrast, mathematical objects are concepts, e.g., "sets," "belongs to (\in)," "natural numbers," "real numbers," "complex numbers," "lines," "curves," "addition," "multiplication," etc.

There have to be initial concepts in a theory. To elaborate it a bit more, note that a concept can be defined in terms of other concepts. For instance, $x-y$ is the unique number z such that $y+z=x$; or if x and y are sets, $x \subset y$ if for every element $z, z \in x$ implies $z \in y$. Thus, "subtraction" can be "defined" in terms of "addition" and "subset (\subset) " in terms of "belongs to (\in)." At the onset, one begins with a minimal number of undefined concepts. For instance, in set theory, the undefined concepts are "sets" and "belongs to"; in number theory, the undefined concepts are "natural numbers," "zero," and the "successor function"; in the theory of real numbers (seen as an archimedean ordered field), the undefined concepts are "real
numbers," "zero," "one," "addition," "multiplication," and "less than." In these examples, we see that there are two groups of concepts: sets or natural numbers or real numbers on the one hand; belongs to, zero, one, successor, addition, multiplication, less than, etc. on the other. Concepts of the first type are the main objects of study; concepts of the second type are used to reflect basic structural properties of the objects of the first type. Then one lists a set of axioms that give the basic structural properties of the objects of study. It is expected that based on these undefined concepts and the axioms, other concepts can be defined. Then the theory is developed by introducing more and more concepts and proving more and more theorems.

Clearly, we ought to have a language to develop a theory. Like any of the natural languages, say Latin, Sanskrit, Tamil, etc., a language suitable for a mathematical theory also has an alphabet. But unlike natural languages, a statement in a mathematical theory is expressed symbolically and has an unambiguous syntactical construction. Before giving precise definitions, we give some examples of statements in some theories that we are familiar with.

Example 1.1.1 Consider the following statement in group theory: For every x there exists y such that $x \cdot y=e$. Here • (dot) is a symbol for the binary group operation and e for the identity element. If we use the symbol \forall to denote "for every" and \exists for "there exists," then we can represent the above statement as follows:

$$
\forall x \exists y(x \cdot y=e)
$$

Example 1.1.2 The following are two statements in set theory:

$$
\forall x \forall y \exists z(x \in z \wedge y \in z)
$$

and

$$
\neg \exists x \forall y(y \in x) .
$$

The first statement is a symbolic representation of the statement "Given any two sets x and y, there is a set z that contains both x and y "; the second statement means that "There is no set x that contains all sets y ".

We see that the language for a theory should have "variables" to represent the objects of study, e.g., sets in set theory, or elements of a group in group theory, etc., and some logical symbols like \exists (there exists), \wedge (and), ᄀ (negation),$=$ (equality). These symbols are common to the languages for all theories. We call them logical symbols. On the other hand, there are certain alphabets that represent undefined concepts of a specific theory. For instance, in group theory we use two symbols: the dot \cdot for the group operation and a symbol, say e, for the identity element; in set theory we have a binary relation symbol \in for the undefined concept belongs to.

We make one more observation before giving the first definition in the subject. Mathematicians use many logical connectives and quantifiers such as $\vee($ or $), \wedge$ (and), \exists (there exists), \forall (for all), $\rightarrow($ if \cdots, then \cdots), and \leftrightarrow (if and only if). However, in their reasoning "two statements A and B are both true" if and only if "it is not true that any of A or B is false"; " A implies B " if and only if "either A is false or B is true," etc. This indicates that some of the logical connectives and quantifiers can be defined in terms of others. So, we can start with a few logical connectives and quantifiers. This economy will help in making many proofs quite short.

A first-order language L consists of two types of symbols: logical symbols and nonlogical symbols. Logical symbols consist of a sequence of variables $x_{0}, x_{1}, x_{2}, \ldots$; logical connectives \neg (negation) and \vee (disjunction); a logical quantifier \exists (existential quantifier) and the equality symbol $=$. We call the order in which variables $x_{0}, x_{1}, x_{2}, \ldots$ are listed the alphabetical order. These are common to all first-order languages. Depending on the theory, nonlogical symbols of L consist of an (empty or nonempty) set of constant symbols $\left\{c_{i}: i \in I\right\}$; for each positive integer n, a set of n-ary function symbols $\left\{f_{j}: j \in J_{n}\right\}$; and a set of n-ary relation symbols $\left\{p_{k}: k \in K_{n}\right\}$.

When it is clear from the context, a first-order language will simply be called a language. Since logical symbols are the same for all languages, to specify a language one has to specify its nonlogical symbols only. To avoid suffixes and for ease in reading, we shall use symbols x, y, z, u, v, w, with or without subscriptss, to denote variables. Any finite sequence of symbols of a language L will be called an expression in L.

A language L is called countable if it has only countably many nonlogical symbols; it is called finite if it has finitely many nonlogical symbols.

Example 1.1.3 The language for set theory has only one nonlogical symbol: a binary relation symbol \in for "belongs to."

Example 1.1.4 The language for group theory has a constant symbol e (for the identity element) and a binary function symbol • (for the group operation).

Example 1.1.5 The language for the theory of rings with identity has two constant symbols 0 and 1 and two binary function symbols + and \cdot.

Example 1.1.6 The language for the theory of ordered fields has two constant symbols 0 and 1, two binary function symbols + and \cdot, and a binary relation symbol $<$.

A first-order language L^{\prime} is called an extension of another language L if every constant symbol of L is a constant symbol of L^{\prime} and every n-ary
function (relation) symbol of L is an n-ary function (relation) symbol of L^{\prime}.

Example 1.1.7 The language for the theory of ordered fields is an extension of the language for the theory of rings with identity.

Exercise 1.1.8 Show that the set of all expressions of a countable language is countable.

1.2 Terms of a Language

We now define terms of a language L. Broadly speaking, they correspond to algebraic expressions.

The set of all terms of a language L is the smallest set \mathcal{T} of expressions of L that contains all variables and constant symbols and is closed under the following operation: whenever $t_{1}, \ldots, t_{n} \in \mathcal{T}, f_{j} t_{1} \cdots t_{n} \in \mathcal{T}$, where f_{j} is any n-ary function symbol of L. Equivalently, all the terms of a language can be inductively defined as follows: variables and constant symbols are terms of rank 0 ; if t_{1}, \ldots, t_{n} are terms of rank $\leq k$, and if f_{j} is an n-ary function symbol, then $f_{j} t_{1} \cdots t_{n}$ is a term of rank at most $k+1$. Thus, the rank of a term t is the smallest natural number k such that t is of rank $\leq k$.

Note that the set of variable-free terms is the smallest set \mathcal{T}^{\prime} of expressions of L that contains all constant symbols and is closed under the following operation: whenever $t_{1}, \ldots, t_{n} \in \mathcal{T}^{\prime}$, then $f_{j} t_{1} \cdots t_{n} \in \mathcal{T}^{\prime}$, where f_{j} is any n-ary function symbol of L.

We shall freely use parentheses and commas in a canonical way for easy readability. For instance, we shall often write $f_{j}\left(t_{1}, \ldots, t_{n}\right)$ instead of $f_{j} t_{1} \cdots t_{n}$, and $t+s$ instead of $+t s$. We shall also drop parentheses when there is no possibility of confusion. Further, we shall adopt the convention of association to the right for omitting parentheses. For instance, instead of writing $t_{1} \cdot\left(t_{2} \cdot\left(t_{3} \cdot t_{4}\right)\right)$, we shall write $t_{1} \cdot t_{2} \cdot t_{3} \cdot t_{4}$. It is important to note that the term $\left(\left(t_{1} \cdot t_{2}\right) \cdot t_{3}\right) \cdot t_{4}$ is not the same as $t_{1} \cdot t_{2} \cdot t_{3} \cdot t_{4}$. This term can only be written using parentheses, unless, of course, one writes it as

$$
\cdots t_{1} t_{2} t_{3} t_{4}!
$$

Similarly, $\left(t_{1} \cdot t_{2}\right) \cdot\left(t_{3} \cdot t_{4}\right)$ will stand for

$$
\cdots t_{1} t_{2} \cdot t_{3} t_{4}!
$$

Example 1.2.1 Let L be the language for the theory of rings with identity: L has two constant symbols, 0 and 1 , and two binary function symbols, +
and \cdot. Let \underline{m} denote the term obtained by "adding" 1 to itself m times, i.e., \underline{m} is the term

$$
\underbrace{1+\cdots+1}_{m \text { times }} ;
$$

for any term t, let t^{n} denote the term obtained by "multiplying" t with itself n times, i.e., t^{n} is the term

$$
\underbrace{t \cdot t \cdots t \cdot t}_{n \text { times }} .
$$

Then \underline{m} and t^{n} are terms of L. Also any "formal polynomial"

$$
\underline{m_{0}}+\underline{m_{1}} x+\cdots+\underline{m_{n}} x^{n}
$$

x a variable, is a term of L.
Example 1.2.2 Variables are the only terms of the language for set theory because it has no constant and no function symbols.

We define the set of all subterms of a term t by induction as follows: t is a subterm of t. If $f t_{1} \cdots t_{n}, t_{1}, \ldots, t_{n} \in \mathcal{T}$, is a subterm of t, so is each t_{i}, $1 \leq i \leq n$. An expression is a subterm of t if it is obtained as above. Thus, the set of all subterms of a term t is the smallest set \mathcal{S} of expressions that contains t and such that whenever $f t_{1} \cdots t_{n} \in \mathcal{S}$, then $t_{1}, \ldots, t_{n} \in \mathcal{S}$.

Example 1.2.3 Let t be the term $x \cdot y \cdot z$ of the language for group theory. Then $x \cdot y \cdot z, x, y \cdot z, y$, and z are all the subterms of t. Note that $x \cdot y$ is not a subterm of t.

Exercise 1.2.4 List all the subterms of the term

$$
x \cdot u+y \cdot v+z \cdot w
$$

of the language for the theory of rings.
Let s be a term. We shall write $s\left[v_{1}, \ldots, v_{n}\right]$ to indicate that variables occurring in s are among v_{1}, \ldots, v_{n}. If s is a term, $s_{v_{1}, \ldots, v_{n}}\left[t_{1}, \ldots, t_{n}\right]$, or simply $s\left[t_{1}, \ldots, t_{n}\right]$ when there is no possibility of confusion, denotes the expression obtained from s by simultaneously replacing all occurrences of v_{1}, \ldots, v_{n} in s by t_{1}, \ldots, t_{n} respectively.

Example 1.2.5 Let s be the term $x \cdot(y+z)$ of the language for the theory of rings with identity. Then

$$
s_{x, y, z}[x+z, 1, y \cdot y]=(x+z) \cdot(1+y \cdot y) .
$$

Proposition 1.2.6 Let $s\left[v_{1}, \ldots, v_{n}\right]$ and let t_{1}, \ldots, t_{n} be terms. The expression $s\left[t_{1}, \ldots, t_{n}\right]$ defined above is a term.

Proof. We prove the result by induction on the rank of s. If s is a constant symbol $c, s\left[t_{1}, \ldots, t_{n}\right]=c$; if s is a variable other than the v_{i} 's, then $s\left[t_{1}, \ldots, t_{n}\right]=s$; if s is v_{i} for some $1 \leq i \leq n, s\left[t_{1}, \ldots, t_{n}\right]=t_{i}$. Thus, the assertion is true for terms of rank 0 .

Let k be a natural number and assume that the assertion be true for all terms s of rank $\leq k$ (and all variables v_{i} and all terms t_{i}). Let $s_{j}\left[v_{1}, \ldots, v_{n}\right]$, $1 \leq j \leq m$, be terms of rank $\leq k, t_{1}, \ldots, t_{n}$ terms, and f an m-ary function symbol. Suppose

$$
s\left[v_{1}, \ldots, v_{n}\right]=f\left(s_{1}\left[v_{1}, \ldots, v_{n}\right], \ldots, s_{m}\left[v_{1}, \ldots, v_{n}\right]\right) .
$$

Then

$$
s\left[t_{1}, \ldots, t_{n}\right]=f\left(s_{1}\left[t_{1}, \ldots, t_{n}\right], \ldots, s_{m}\left[t_{1}, \ldots, t_{n}\right]\right)
$$

By the induction hypothesis, each $s_{j}\left[t_{1}, \ldots, t_{n}\right]$ is a term. Hence $s\left[t_{1}, \ldots, t_{n}\right]$ is a term. The proof is complete by induction on the rank of terms.

Remark 1.2.7 The above method of proving statements on terms by induction on the rank of terms is a fairly standard one in the subject. Sometimes, in the rest of this book, we may not give the complete argument and just say that the result can be proved by induction on the rank of terms.

1.3 Formulas of a Language

Our next concept is that of an atomic formula of the language L.
An atomic formula of a language is defined as follows: if t and s are terms of L, then $t=s$ is an atomic formula of L; if p is an n-ary relation symbol of L and t_{1}, \ldots, t_{n} are terms, then $p t_{1} \cdots t_{n}$ is an atomic formula; these are all the atomic formulas of L.

Example 1.3.1 $x \cdot y=1, \underline{i} \cdot(\underline{j}+\underline{k})=\underline{i} \cdot \underline{j}+\underline{i} \cdot \underline{k}, \underline{i} \cdot \underline{i}<\underline{m}$ are atomic formulas of the language for the theory of ordered fields.

Example 1.3.2 $v \in w, v=w$, where v, w are variables, are all the atomic formulas of the language for set theory.

A formula of a language is inductively defined as follows: every atomic formula is a formula - these are all the formulas of rank 0 ; if A and B are formulas of rank $\leq k$ and v is a variable, then $\neg A$ (the negation of A); $\exists v A$ and $\vee A B$ (the disjunction of A and B) are formulas of rank $\leq k+1$. The set of strings so obtained are all the formulas of L. Thus, the set of all formulas of L is the smallest set of all expressions of L that contains all the atomic formulas and that is closed under negation, disjunction, and existential quantification. Let A be a formula of L. The rank of A is the smallest natural number k such that the rank of A is $\leq k$.

From now on, unless otherwise stated, L will denote a first-order language, and by a term (or a formula) we shall mean a term (or a formula) of L.

We shall generally write $A \vee B$ instead of $\vee A B$. In the case of formulas also, we shall use parentheses and commas in a canonical way for easy readability. We adopt the convention of association to the right for omitting parentheses. This means that $A \vee B \vee C$ is to be read as $A \vee(B \vee C)$; $A \vee B \vee C \vee D$ is to be read as $A \vee(B \vee(C \vee D))$; and so on. Note that the formula $(A \vee B) \vee C$ is different from the formula $A \vee(B \vee C)$ and that the parentheses have to be used to write the former formula, unless, of course, one writes it as $\vee \vee A B C$!

Remark 1.3.3 Any term or formula is of the form $A u_{1} \cdots u_{n}$ where A is a symbol and u_{1}, \cdots, u_{n} terms or formulas. It should be noted that such a representation of a term or formula is unique. This allows us to define functions or give proofs by induction on the length of terms or formulas.

We now define some other commonly used logical connectives and quantifiers:
$\forall v A$ is an abbreviation of $\neg \exists v \neg A ; A \wedge B$ abbreviates $\neg(\neg A \vee \neg B) ; A \rightarrow B$ is an abbreviation of $(\neg A) \vee B$; and $A \leftrightarrow B$ abbreviates $(A \rightarrow B) \wedge(B \rightarrow A)$. Note that according to our convention of omitting parentheses, $A \rightarrow B \rightarrow C$ is to be read as $A \rightarrow(B \rightarrow C) ; A \rightarrow B \rightarrow C \rightarrow D$ is to be read as $A \rightarrow(B \rightarrow(C \rightarrow D))$; and so on. The connective \wedge is called conjunction and the quantifier \forall the universal quantifier. Note that we could have added all these symbols into our alphabet. There are several reasons for not doing so. For instance, proof of some results concerning formulas will become long if we do not exercise economy in the number of logical symbols.

A formula of the form $\exists v A$ is called an instantiation of A, and a formula of the form $\forall v A$ is called a generalization of A. A formula is called elementary if it is either an atomic formula or an instantiation of a formula.

Exercise 1.3.4 Show that the set of all formulas is the smallest collection \mathcal{F} of formulas such that each elementary formula is in \mathcal{F} and that is closed under \neg and \vee, i.e., whenever $A, B \in \mathcal{F}$, then $\neg A$ and $A \vee B$ are in \mathcal{F} as well.

A subformula of a formula A is inductively defined as follows: A is a subformula of itself; if $\neg B$ or $\exists v B$ is a subformula of A, then so is B; if $B \vee C$ is a subformula of A, then B and C are subformulas of A; nothing else is a subformula of A. Thus, the set of subformulas of A is the smallest set $\mathcal{S}(A)$ of formulas of L that contains A and satisfies the following conditions: whenever $\neg B$ or $\exists v B$ is in $\mathcal{S}(A)$, so is B, and whenever $B \vee C$ is in $\mathcal{S}(A)$, so are B and C.

Exercise 1.3.5 List all the subformulas of the following formulas:

1. $\forall x \exists y(x \cdot y=e)$.
2. $\forall x \forall y \exists z(x \in z \wedge y \in z)$.
3. $\neg \exists x \forall y(y \in x)$.
(The above formulas should be considered in their unabbreviated forms.)
An occurrence of a variable v in a formula A is bound if it occurs in a subformula of the form $\exists v B$; otherwise, the occurrence is called free. A variable is said to be free in A if it has a free occurrence in A. We shall write $\varphi\left[v_{0}, \ldots, v_{n}\right]$ if φ is a formula all of whose free variables belong to the set $\left\{v_{0}, \ldots, v_{n}\right\}$.

Example 1.3.6 In the formula

$$
x \in y \vee \exists x(x \in y),
$$

all the occurrences of y are free, the first occurrence of x is free, and other occurrences of x are bound.

A formula with no free variable is called a closed formula or a sentence. A formula that contains no quantifiers is called an open formula.

Exercise 1.3.7 Show that the set of all open formulas is the smallest collection \mathcal{O} of formulas such that each atomic formula is in \mathcal{O} and that is closed under \neg and \vee, i.e., whenever $A, B \in \mathcal{O}$, then $\neg A$ and $A \vee B$ are in \mathcal{O} as well.

Let $A\left[x_{0}, \ldots, x_{n-1}\right]$ be a formula whose free variables are among x_{0}, \ldots, x_{n-1} and x_{n-1} is free in A, where x_{0}, \ldots, x_{n-1} are the first n variables in alphabetical order. We call

$$
\forall x_{n-1} \cdots \forall x_{0} A
$$

the closure of A. Note that if A is closed, it is its own closure.
Let t be a term, v a variable, and A a formula of a language L. We say that the term t is substitutable for v in A if for each variable w occurring in t, no subformula of A of the form $\exists w B$ contains an occurrence of v that is free in A.

Example 1.3.8 In the formula

$$
x \in y \vee \exists x(x \in y)
$$

we can't substitute any term containing x for y.
If t is substitutable for v in A, then $A_{v}[t]$ designates the expression obtained from A by simultaneously replacing each free occurrence of v in A by t. Similarly, if terms t_{1}, \ldots, t_{n} are substitutable in A for v_{1}, \ldots, v_{n} respectively, then $A_{v_{1}, \ldots, v_{n}}\left[t_{1}, \ldots, t_{n}\right]$, or $A\left[t_{1}, \ldots, t_{n}\right]$, when there is no possibility
of confusion, called an instance of A, will denote the expression obtained from A by simultaneously replacing all free occurrences of v_{1}, \ldots, v_{n} in A by t_{1}, \ldots, t_{n} respectively. Note that whenever we talk of $A\left[t_{1}, \ldots, t_{n}\right]$, it will be assumed that t_{1}, \ldots, t_{n} are substitutable in A for v_{1}, \ldots, v_{n} respectively.

Example 1.3.9 Let A be the formula

$$
x \in y \vee \exists x(x \in y)
$$

Then $A_{x}[z]$ is the formula $z \in y \vee \exists x(x \in y)$.
Proposition 1.3.10 The sequence $A\left[t_{1}, \ldots, t_{n}\right]$ defined above is a formula.
Proof. As in the case of the corresponding result on terms, this result is also proved by induction on the rank of formulas. Let $A\left[v_{1}, \ldots, v_{n}\right]$ be an atomic formula. So A is a formula of the form $p\left(s_{1}\left[v_{1}, \ldots, v_{n}\right], \ldots, s_{m}\left[v_{1}, \ldots, v_{n}\right]\right)$, where p is an m-ary predicate symbol and s_{1}, \ldots, s_{m} terms of L (p may be the equality symbol. In this case $m=2$). Then,

$$
A\left[t_{1}, \ldots, t_{n}\right]=p\left(s_{1}\left[t_{1}, \ldots, t_{n}\right], \ldots, s_{m}\left[t_{1}, \ldots, t_{n}\right]\right)
$$

By Proposition 1.2.6, $s_{j}\left[t_{1}, \ldots, t_{n}\right], 1 \leq j \leq m$, are terms. Hence, $A\left[t_{1}, \ldots, t_{n}\right]$ is a formula. Thus, the assertion is true for formulas of rank 0 .

Let k be a natural number and assume that the assertion is true for all formulas of rank $\leq k$ (and all variables v_{i} and all terms t_{i}).

Let $B\left[v_{1}, \ldots, v_{n}\right]$ and $C\left[v_{1}, \ldots, v_{n}\right]$ be formulas of rank $\leq k$ and let t_{1}, \ldots, t_{n} be substitutable for v_{1}, \ldots, v_{n} respectively in B and C. If A is the formula $\neg B, A\left[t_{1}, \ldots, t_{n}\right]$ is the expression $\neg B\left[t_{1}, \ldots, t_{n}\right]$, which is a formula by the induction hypothesis. If A is $B \vee C, A\left[t_{1}, \ldots, t_{n}\right]$ is the expression $B\left[t_{1}, \ldots, t_{n}\right] \vee C\left[t_{1}, \ldots, t_{n}\right]$, which is a formula by the induction hypothesis.

Let $B\left[v, v_{1}, \ldots, v_{n}\right]$ be a formula of rank k and let v be distinct from the v_{i} 's. Suppose A is the formula $\exists v B$. Then $A\left[t_{1}, \ldots, t_{n}\right]$ is the expression $\exists v B\left[v, t_{1}, \ldots, t_{n}\right]$. This is clearly a formula by the induction hypothesis. Thus the assertion is true for all formulas of rank $k+1$. Our proof is complete by induction on the rank of formulas.

Remark 1.3.11 The above method of proving results by induction on the rank of formulas is a fairly standard method in the subject. Sometimes, in the rest of this book, we may not give the complete argument and just say that the result can be proved by induction on the rank of formulas.

So far, we have been describing the "syntax," i.e., rules for arranging symbols into terms and sentences, of a theory. Here a sentence is just a string of symbols from the language of the theory (without having a meaning). One may consider this to be a useless representation of a sentence.

But it is far from so. Logical connectives and quantifiers have an intended logical meaning, so that whatever A may be, $\neg A \vee A$ is "true"; for any term $t, t=t$ is "true"; $A \vee B$ is "true" if and only if at least one of A and B is "true"; and so on. Thus, quite often, the structure of a formula itself helps us to make inferences about the formula. We are now in a very good situation: we have a precise definition of a sentence; it exists concretely, as the string of symbols that we see; and we can make some inferences about it from its syntactical structure. Of course, we should know what is inference and how it is done. This will be specified later in this book.

1.4 First-Order Theories

A first-order theory or simply a theory T consists of a first-order language L and a set of formulas of L. These formulas are called nonlogical axioms of T. By terms or formulas of T, we shall mean terms or formulas respectively of the language for T. The language for T will also be denoted by $L(T)$. A theory is called countable if its language is countable. It is finite if the set of all nonlogical symbols is finite. In general, a theory T whose set of all nonlogical symbols is of cardinality κ, κ an infinite cardinal, is called a κ-theory.

Example 1.4.1 Group theory is the theory whose nonlogical symbols are a constant symbol e and a binary function symbol \cdot and whose nonlogical axioms are the following formulas: (Below, x, y, and z denote the first three variables.)

1. $\forall x \forall y \forall z(x \cdot(y \cdot z)=(x \cdot y) \cdot z)$.
2. $\forall x(x \cdot e=x \wedge e \cdot x=x)$.
3. $\forall x \exists y(x \cdot y=e \wedge y \cdot x=e)$.

Example 1.4.2 The theory of abelian groups is the theory whose nonlogical symbols are a constant symbol 0 and a binary function symbol + and whose nonlogical axioms are the following formulas:

1. $\forall x \forall y \forall z(x+(y+z)=(x+y)+z)$.
2. $\forall x(x+0=x \wedge 0+x=x)$.
3. $\forall x \exists y(x+y=0 \wedge y+x=0)$.
4. $\forall x \forall y(x+y=y+x)$.

Example 1.4.3 The language for the theory of rings with identity has two constant symbols, 0 and 1 , and two binary function symbols, + and \cdot. The nonlogical axioms of this theory are the axioms (1)-(4) of abelian groups together with the following axioms:
$5 \forall x \forall y \forall z(x \cdot(y \cdot z)=(x \cdot y) \cdot z)$.
$6 \forall x(x \cdot 1=x \wedge 1 \cdot x=x)$.
$7 \forall x \forall y \forall z(x \cdot(y+z)=x \cdot y+x \cdot z)$.
$8 \forall x \forall y \forall z((y+z) \cdot x=y \cdot x+z \cdot x)$

Example 1.4.4 The theory of fields has the same language as that of the theory of rings with identity; its nonlogical axioms are the axioms (1)-(8) of the the theory of rings with identity together with the following axioms:
$9 \forall x \forall y(x \cdot y=y \cdot x)$.
$10 \forall x(\neg(x=0) \rightarrow \exists y(x \cdot y=1 \wedge y \cdot x=1))$.
Example 1.4.5 Let L be a language with only one nonlogical symbola binary relation symbol $<$. The theory $L O$ (the theory of linearly ordered sets) is the theory whose language is L and whose nonlogical axioms are the following:

```
1 \forallx\neg(x<<x).
2 \forallx\forally\forallz((x<y^y<z)->x<z).
3}\forallx\forally(x<y\veex=y\veey<x)
```

Example 1.4.6 The theory of dense linearly ordered sets, denoted by $D L O$, is obtained from $L O$ by adding the following axioms:
$4 \forall x \forall y((x<y) \rightarrow \exists z(x<z \wedge z<y))$.
$5 \forall x \exists y(y<x)$.
$6 \forall x \exists y(x<y)$.
Exercise 1.4.7 Express the axioms of an equivance relation as formulas of a suitable first-order language.

Example 1.4.8 Let F be the theory of fields. For each $m \geq 1$, let A_{m} be the formula $\neg(\underline{m}=0)$. The theory obtained by adding each A_{m} to the set of axioms of F as an axiom is called the theory of fields of characteristic 0 .

Example 1.4.9 Let F be the theory of fields. Let L be an extension of the language for the theory of rings with identity obtained by adding a new binary predicate symbol $<$. Consider the theory $O F$ whose language is L and whose nonlogical axioms are all the nonlogical axioms of F and the following axioms:

```
11 \forallx\neg(x<x).
12\forallx\forally\forallz((x<y\wedgey<z)->x<z).
13}\forallx\forally(x<y\veex=y\veey<x)
14}\forallx\forally(\neg(x<y\veex=y)->y<x)
15}\forallx\forally(x<y->\forallz(x+z<y+z))
16}\forallx\forally((0<x\wedge0<y)->0<x\cdoty)
```

The theory $O F$ is known as the theory of ordered fields.

Example 1.4.10 We now give some axioms of number theory, which plays an important role in logic. We designate this theory by N. The nonlogical symbols of N are a constant symbol 0 , a unary function symbol S (which designates the successor function), two binary function symbols + and \cdot, and a binary relation symbol $<$. The nonlogical axioms of N are:

1. $\forall x(\neg(S x=0))$.
2. $\forall x \forall y(S x=S y \rightarrow x=y)$.
3. $\forall x(x+0=x)$.
4. $\forall x \forall y(x+S y=S(x+y))$.
5. $\forall x(x \cdot 0=0)$.
6. $\forall x \forall y(x \cdot S y=(x \cdot y)+x)$.
7. $\forall x(\neg(x<0))$.
8. $\forall x \forall y(x<S y \leftrightarrow(x<y \vee x=y))$.
9. $\forall x(\forall y(x<y \vee x=y \vee y<x)$.

For any nonnegative integer n, the term

$$
\underbrace{S \cdots S}_{m \text { times }} 0
$$

will be denoted by k_{n}. These terms are called numerals. Note that k_{0} is the constant symbol 0 .

Example 1.4.11 Peano arithmetic is the theory obtained from N by deleting the last axiom and adding the following axiom schema, called the induction axiom schema: for every formula $A[v]$, the formula

$$
A_{v}[0] \rightarrow \forall v\left(A \rightarrow A_{v}[S v]\right) \rightarrow A
$$

is called an induction axiom. This theory will be denoted by $P A$.
Example 1.4.12 We give below the axioms of set theory. This theory is called Zermelo-Fraenkel set theory, and is designated by $Z F$. To convey the content of the axioms better, we shall state the axioms informally in words also:

1. Set Existence. There exists a set. This is expressed by the following formula:

$$
\exists x(x=x)
$$

2. Extensionality. Two sets are the same if they have exactly same members:

$$
\forall x \forall y(\forall z(z \in x \leftrightarrow z \in y) \rightarrow x=y)
$$

3. Comprehension (subset) schema. For each formula $\varphi\left[x, w_{1}, \ldots, w_{n}\right]$, the following is an axiom.

$$
\forall z \forall w_{1} \cdots \forall w_{n}(\exists y \forall x(x \in y \leftrightarrow x \in z \wedge \varphi)) .
$$

This axiom says that given any "property of sets" expressed by a formula $\varphi\left[x, w_{1}, \ldots, w_{n}\right]$, for any fixed parameters w_{1}, \ldots, w_{n} and for any set z, there is a set y that consists precisely of those $x \in z$ that satisfy $\varphi\left[x, w_{1}, \ldots, w_{n}\right]$.
By extensionality, it can be proved that such a set y is unique. It is assumed that the variables x, y, z and the w_{i} 's are distinct.
4. Replacement schema. For every formula $\varphi\left[x, y, z, u_{1}, \ldots, u_{n}\right]$, the following formula is an axiom:

$$
\forall z \forall u_{1} \cdots \forall u_{n}(\forall x \in z \exists!y \varphi \rightarrow \exists v \forall x(x \in z \rightarrow \exists y(y \in v \wedge \varphi))),
$$

where \exists ! $y \varphi$ abbreviates the formula

$$
\varphi \wedge \forall u\left(\varphi_{y}[u] \rightarrow u=y\right)
$$

This axiom together with comprehension says that the range of a "function" on a set z that is defined by a formula φ is a set.
5. Pairing. Given sets x and y, there is a set z that contains both x and y :

$$
\forall x \forall y \exists z(x \in z \wedge y \in z)
$$

This axiom together with comprehension helps us to talk of sets of the form $\{x\},\{x, y\},\{x, y, z\}$, etc.
6. Union. Given any set x, there is a set y that contains all those z that belong to a member of x :

$$
\forall x \exists y \forall z \forall u(u \in x \wedge z \in u \rightarrow z \in y)
$$

This axiom together with comprehension will imply that the union of a family of sets is a set.
7. Power Set. Given any set x, there is a set y that contains all subsets z of x :

$$
\forall x \exists y \forall z(\forall u(u \in z \rightarrow u \in x) \rightarrow z \in y)
$$

This axiom together with comprehension will enable us to define the power set of a set.
8. Infinity. Based on the axioms introduced so far, it can be "proved" that the empty set exists, which we shall denote by 0 . The following formula is an axiom:

$$
\exists x(0 \in x \wedge \forall y(y \in x \rightarrow y \cup\{y\} \in x))
$$

Without the infinity axiom, we can't prove the existence of an "infinite" set; without this axiom, we can't prove that there is a set containing all natural numbers.
9. Foundation. This is the most unintuitive axiom. It is the following formula:

$$
\forall x(\exists y(y \in x) \rightarrow \exists y(y \in x \wedge \neg \exists z(z \in x \wedge z \in y)))
$$

It says that the binary relation \in is well-founded on every nonempty set. It rules out the existence of a set that contains itself. It also has the effect of restricting the domain of discourse of set theory to those sets where mathematics actually takes place.

2

Semantics of First-Order Languages

In the previous chapter, we presented the syntactical notions pertaining to first-order theories. However, in general, mathematical theories are not developed syntactically. There is, of course, one serious exception to this: essentially, due to its foundational nature, axiomatic set theory is developed syntactically. Since set theory is needed for proving independence results, the syntactical approach is quite important for mathematics. In this chapter we give the semantics of first-order languages to connect the syntactical description of a theory with the setting in which a mathematical theory is generally developed.

Recall that instead of beginning with the syntactical object group theory, in practice, one begins by defining a group as a nonempty set G with a specified element e and a binary operation $\cdot: G \times G \rightarrow G$ satisfying the following three conditions:

1. For every a, b, c in G,

$$
a \cdot(b \cdot c)=(a \cdot b) \cdot c
$$

2. For every $a \in G$,

$$
a \cdot e=e \cdot a=a
$$

3. For every $a \in G$, there is a $b \in G$ such that

$$
a \cdot b=b \cdot a=e
$$

Thus a group consists of a nonempty set G with "interpretations" or "meanings" of the nonlogical symbols • (a binary function symbol) and e (a constant symbol) such that all the axioms of group theory are "satisfied." Further, a statement of the language for group theory is called a theorem if it is satisfied in all groups. Thus, to give the connection we are looking for, first we should define the interpretation or a structure of a language L as a nonempty set A together with the interpretations or meanings of all the nonlogical symbols of L. This is known as the semantics of L. Then models of a theory T are those structures of the language for T in which all nonlogical axioms are true.

In this chapter we shall define the structure of a language, truth or satisfiability in a structure, and the model of a theory. Finally, we shall generalize the notion of homomorphisms, isomorphisms, subgroups, subfields, etc. in the general setting of models of a theory.

2.1 Structures of First-Order Languages

A structure or an interpretation of a first-order language L consists of (i) a nonempty set M (called the universe of the structure), (ii) for each constant symbol c of L, a fixed element $c_{M} \in M$, (iii) for each n ary function symbol f of L, an n-ary $\operatorname{map} f_{M}: M^{n} \rightarrow M$, and (iv) for each n-ary relation symbol p of L, an n-ary relation $p_{M} \subset M^{n}$ on M. The interpretation of $=$ is always taken to be the equality relation in M.

The elements of the universe M are called individuals of the structure; the f_{M} 's the individual functions of the structure; and the p_{M} 's, the individual predicates; c_{M}, f_{M}, and p_{M} will be called interpretations of the constant symbol c, of the function symbol f, and of the predicate symbol p respectively.

Any group is a structure of the language for group theory; the usual set of real numbers with the usual $0,1,+, \cdot$, and $<$ is a structure for the language of the theory of ordered fields. Note that which statement of L is true in the structure and which is not, is not relevant in the notion of a structure of L. For instance, the set of all natural numbers $\mathbb{N}=\{0,1,2, \ldots\}$ as the universe, 0 as the interpretation of e, and + the interpretation of \cdot is a structure of the language for group theory even though it is not a group.

Example 2.1.1 Let \mathbb{N} be the set of all natural numbers and $0,1,+, \cdot$, and $<$ have the usual meanings. Further, let $S(n)=n+1, n \in \mathbb{N}$. This is a structure for the language of the theory N defined in Chapter 1. This structure will be called the standard structure of N.

Let L be an extension of L^{\prime} and M a structure of L. By ignoring the interpretations of those nonlogical symbols of L that are not symbols of L^{\prime}, we get a structure M^{\prime} of L^{\prime}. We call M^{\prime} the restriction of M to L^{\prime} and
denote it by $M \mid L^{\prime}$. In this case we shall also call M an expansion of M^{\prime} to L.

Recall that all variable-free terms can be obtained starting from constant symbols and iterating function symbols on them. So, we can define the interpretation or meaning t_{M} of each variable-free term t of L in M by induction on the rank of t. The interpretation of a constant symbol c is already given by the structure, namely c_{M}. If t_{1}, \ldots, t_{n} are variable-free terms whose interpretations have been defined and if f is an n-ary function symbol of L, then we define

$$
\left(f t_{1} \cdots t_{n}\right)_{M}=f_{M}\left(\left(t_{1}\right)_{M}, \ldots,\left(t_{n}\right)_{M}\right)
$$

By induction on the rank of terms, it is easy to see that we have defined t_{M} for each variable-free term t of L.

Example 2.1.2 Let L be the language for the theory of rings with identity. For each positive integer m, let \underline{m} denote the term obtained by "adding" 1 to itself m times. Let $P(x)$ be a polynomial expression whose coefficients are of the form \underline{m}, i.e., $P(x)$ is a term of the form

$$
\underline{m_{0}}+\underline{m_{1}} x+\cdots+\underline{m_{n}} x^{n}
$$

where x is a variable. Let R be a ring with identity. Then the interpretation of \underline{m} in R is the element $m \in R$ obtained by adding the multiplicative identity of R to itself m times, and for any variable-free term t, the interpretation of $P_{x}[t]$ in R is the element $P\left(t_{M}\right)$ of R.

2.2 Truth in a Structure

In this section, we shall define when a formula of L is true and when it is false in a structure of L. Note that if we have a structure of L with universe M and we would like to know whether there is an element $a \in M$ satisfying a formula $\varphi[x]$, we have a bit of a problem because φ is a syntactical object, and elements of M are not. To circumvent this problem, given a structure of L with universe M, we first describe an extension L_{M} of the language L.

Given L and and a structure of L with universe M, let L_{M} be the firstorder language obtained from L by adding a new constant symbol i_{a} for each $a \in M$. The symbol i_{a} is called the name of a. We regard M itself as the expansion of M to L_{M} by setting the interpretation of i_{a} to be a for each $a \in M$.

We are now in a position to define when a formula of L is true or valid or satisfiable in the structure M. To achieve this, we define the notion of truth of a closed formula or a sentence of L_{M} in the structure M. The definition is based on the well-known intended meanings of logical connectives \vee and \neg
and that of the existential quantifier \exists. The notion of truth will be defined by defining a function from the set of all closed formulas of L_{M} to the set \{true, false\} satisfying some conditions. This will be done by induction on the rank of sentences of L_{M}. If a sentence takes the value true, we shall say that the sentence is true or valid in M; otherwise, it is said to be false in M.

Recall that formulas have been defined inductively starting from atomic formulas and iterating \neg, \vee, and \exists on them. A variable-free atomic formula is of the form $p t_{1} \cdots t_{n}$, where p is an n-ary relation symbol (including $=$) and t_{1}, \ldots, t_{n} are variable-free terms. We say that $p t_{1} \cdots t_{n}$ is true in the structure if

$$
p_{M}\left(\left(t_{1}\right)_{M}, \ldots,\left(t_{n}\right)_{M}\right)
$$

holds, i.e.,

$$
\left(\left(t_{1}\right)_{M}, \ldots,\left(t_{n}\right)_{M}\right) \in p_{M} \subset M^{n}
$$

Otherwise, we say that $p t_{1} \cdots t_{n}$ is false in the structure. A sentence $\neg A$ is true if and only if A is false. A sentence $A \vee B$ is true if either A is true or B is true. Finally, a sentence $\exists v A$ is true if $A_{v}\left[i_{a}\right]$ is true for some $a \in M$. We say that a formula A of L_{M} is true in the structure if its closure is true in the structure. If a formula A of L is true in a structure M of L, we also say that A is valid in the structure and write $M \models A$. If A is not valid in M, we write $M \not \vDash A$.

Note that if A and B are closed formulas, then

$$
M \not \models A \Longleftrightarrow M \models \neg A
$$

and

$$
M \models A \vee B \Longleftrightarrow M \models A \text { or } M \models B
$$

Exercise 2.2.1 Give an example of a formula (necessarily not closed) of the language for the theory N that is neither true nor false in the standard structure \mathbb{N} of N. Similarly, give examples of formulas A and B of the language for the theory N such that $A \vee B$ is valid in the standard structure \mathbb{N} but neither A nor B is valid in \mathbb{N}.

Exercise 2.2.2 Show the following:

1. A sentence $A \wedge B$ is valid in a structure if and only if both A and B are valid in the structure.
2. A sentence of the form $\forall v \varphi[v]$ is valid in a structure with universe M if and only if for each $a \in M$, the sentence $\varphi_{v}\left[i_{a}\right]$ of L_{M} is valid in the structure.
3. A sentence of the form $A \rightarrow B$ is valid in a structure if and only if either A is false or B true in the structure.
4. A sentence of the form $A \leftrightarrow B$ is valid in a structure if and only if either both A and B are valid or both are not valid in the structure.

Exercise 2.2.3 Let $A\left[v_{1}, \ldots, v_{n}\right]$ be a formula and t_{1}, \ldots, t_{n} variable-free terms of L. Show that the formulas

$$
\forall v_{1} \cdots \forall v_{n} A \rightarrow A\left[t_{1}, \ldots, t_{n}\right]
$$

and

$$
A\left[t_{1}, \ldots, t_{n}\right] \rightarrow \exists v_{1} \cdots \exists v_{n} A
$$

are valid in all structures of L.

2.3 Model of a Theory

A model of a first-order theory T is a structure of $L(T)$ with universe M in which all nonlogical axioms of T are valid. For instance, any group is a model of group theory. On the other hand, the set \mathbb{N} of natural numbers together with the usual 0 and + as the interpretations for e and \cdot respectively is definitely a structure for the language of group theory but not a model of group theory.

A formula A of T that is true in all models of T is called valid in T. One writes $T \models A$ if A is valid in T. If A is not valid in some model of T, we shall write $T \not \vDash A$

Example 2.3.1 Let L be a first-order language with no nonlogical symbol. For each $n>1$, let A_{n} be the formula

$$
\exists x_{0} \cdots \exists x_{n-1} \wedge_{0 \leq i<j<n} \neg\left(x_{i}=x_{j}\right) .
$$

Suppose T is the theory whose language is L and whose axioms are A_{2}, A_{3}, \ldots. Then models of T are precisely the infinite sets.

Exercise 2.3.2 A field \mathbb{K} is called algebraically closed if every nonconstant polynomial over \mathbb{K} has a root in \mathbb{K}. The characteristic of a field \mathbb{K} is the least integer $n \geq 2$ such that

$$
\underbrace{1+\cdots+1}_{n \text { times }}=0 .
$$

If such an integer n exists, it must be prime. If \mathbb{K} is not of characteristic n for any $n>1, \mathbb{K}$ is said to be of characteristic 0 .
(i) Show that every algebraically closed field is infinite.
(ii) Define a first-order theory $A C F$ whose models are precisely the algebraically closed fields.
(iii) Define a first-order theory $\operatorname{ACF}(p), p \geq 2$ a prime, whose models are precisely the algebraically closed fields of characteristic p.
(iv) Define a first-order theory $A C F(0)$ whose models are precisely the algebraically closed fields of characteristic 0 .

Example 2.3.3 Show that the set of all natural numbers

$$
\mathbb{N}=\{0,1, \ldots\}
$$

with the usual meanings of S (the successor function), + , \cdot, and $<$ is a model of the theory N and also of Peano arithmetic. This model will be called the standard model of N or of Peano arithmetic.

Exercise 2.3.4 Let L be an extension of L^{\prime}, M a structure of L, and M^{\prime} the restriction of M to L^{\prime}. Note that M and M^{\prime} have the same individuals. Use the same constant as a name for an individual in M and M^{\prime}. Show that a statement of $L_{M^{\prime}}^{\prime}$ is valid in M^{\prime} if and only if it is valid in M.

In mathematical parlance, valid statements in T are called theorems. So, in order to decide whether a statement is a theorem of T, one has to show that it is true in all models of T. But a sentence is a well-formed finite sequence of symbols. So it is not unreasonable to expect to give a finitary and also constructive notion of theorem. This is where the famous program of the great German mathematician David Hilbert enters. Hilbert proposed to write down a set of axioms and a set of rules of inference to infer a formula from its syntactical structure, and call a sentence a theorem if it can be inferred from axioms by using certain logical rules of inference. We shall elaborate on Hilbert's program in the next few chapters.

2.4 Embeddings and Isomorphisms

In this section we introduce notions analogous to subgroups of a group, isomorphisms of rings, isomorphic fields, etc. in the general context of firstorder logic.

In the rest of this section, unless otherwise stated, M and N will denote structures of a fixed first-order language L.

For the sake of brevity, a sequence $\left(a_{1}, \ldots, a_{n}\right) \in N^{n}$ will sometimes be denoted by \bar{a} and $\left(i_{a_{1}}, \ldots, i_{a_{n}}\right)$ by $i_{\bar{a}}$. Further, for any map $\alpha: N \rightarrow M$, $\alpha(\bar{a})$ will stand for the sequence $\left(\alpha\left(a_{1}\right), \ldots, \alpha\left(a_{n}\right)\right)$.

An embedding of N into M is a one-to-one map $\alpha: N \rightarrow M$ satisfying the following conditions:
(1) For every constant symbol c of L,

$$
\alpha\left(c_{N}\right)=c_{M}
$$

(2) For every n-ary function symbol f of L and every $\bar{a} \in N^{n}$,

$$
\alpha\left(f_{N}(\bar{a})\right)=f_{M}(\alpha(\bar{a}))
$$

(2) For every n-ary relation symbol p of L and every $\bar{a} \in N^{n}$,

$$
p_{N}(\bar{a}) \Longleftrightarrow p_{M}(\alpha(\bar{a})),
$$

i.e.,

$$
\bar{a} \in P_{N} \Longleftrightarrow \alpha(\bar{a}) \in P_{M} .
$$

If, moreover, α is onto M, we call $\alpha: N \rightarrow M$ an isomorphism. In this case, M and N are called isomorphic structures.

If $N \subset M$ and the inclusion map $N \hookrightarrow M$ is an embedding, then N is called a substructure of M.

Remark 2.4.1 Let N be a subset of a structure M such that for each constant symbol c, $c_{M} \in N$, and for every function symbol f, N is closed under f_{M}. We then make N a substructure of M by setting
(i) for every constant symbol c of L,

$$
c_{N}=c_{M},
$$

(ii) for every n-ary relation symbol p,

$$
p_{N}=p_{M} \cap N^{n},
$$

the restriction of p_{M} to N, and
(iii) for every n-ary function symbol f,

$$
f_{N}=f_{M} \mid N^{n}
$$

the restriction of f_{M} to N^{n}.
Example 2.4.2 Let L be the language for group theory. If H is a subgroup of a group G, then H is a substructure of G. If G and H are groups, then a group isomorphism $\alpha: G \rightarrow H$ is an isomorphism from the structure G to the structure H.

Exercise 2.4.3 Show that any two countable models \mathbb{Q}_{1} and \mathbb{Q}_{2} of $D L O$ are isomorphic.

Hint: Let $\left\{r_{n}\right\}$ and $\left\{s_{m}\right\}$ be enumerations of \mathbb{Q}_{1} and \mathbb{Q}_{2} respectively. Set $n_{0}=0$ and $m_{0}=0$. Suppose for some $i, n_{0}, \ldots, n_{2 i}$ and $m_{0}, \ldots, m_{2 i}$ have been defined so that the the map f defined by

$$
f\left(r_{n_{j}}\right)=s_{m_{j}}, 0 \leq j \leq 2 i
$$

is injective and order-preserving. Now let $m_{2 i+1}$ be the first natural number k such that s_{k} is different from each of $s_{m_{j}}, j \leq 2 i$. Show that there is a
natural number l such that r_{l} is different from each of $r_{n_{j}}, j \leq 2 i$, and the extension of f sending r_{l} to $s_{m_{2 i+1}}$ is order-preserving. Set $n_{2 i+1}$ to be the first such l. Thus, the map $f\left(r_{n_{j}}\right)=s_{m_{j}}, j \leq 2 i+1$, is injective and orderpreserving. Now define $n_{2 i+2}$ to be the first natural number l such that r_{l} is different from each of $r_{n_{j}}, j \leq 2 i+1$. Again observe that there is a natural number k such that s_{k} is different from each of $s_{m_{j}}, j \leq 2 i+1$, and the extension of the above map by defining $f\left(r_{n_{2 i+2}}\right)=s_{k}$ is order-preserving. Set $s_{2 i+2}$ to be the least such k.

Proposition 2.4.4 Let $\alpha: N \rightarrow M$ be an embedding, $t\left[v_{1}, \ldots, v_{n}\right]$ a term of L, and $\bar{a} \in N^{n}$. Then

$$
\alpha\left(t\left[i_{\bar{a}}\right]_{N}\right)=t\left[i_{\alpha(\bar{a})}\right]_{M} .
$$

Proof. We prove the result by induction on the rank of t. If t is a variable v_{i}, then both the terms equal $\alpha\left(a_{i}\right)$. If t is a constant c, then the term on the left is $\alpha\left(c_{N}\right)$ and that on the right is c_{M}. They are equal because α is an embedding.

Now assume that the result is true for t_{1}, \ldots, t_{k} and t is the term $f\left(t_{1}, \ldots, t_{k}\right)$. Then

$$
\begin{aligned}
\alpha\left(t\left[i_{\bar{a}}\right]_{N}\right) & =\alpha\left(f_{N}\left(t_{1}\left[i_{\bar{a}}\right]_{N}, \ldots, t_{k}\left[i_{\bar{a}}\right]_{N}\right)\right) \\
& =f_{M}\left(\alpha\left(t_{1}\left[i_{\bar{a}}\right]_{N}\right), \ldots, \alpha\left(t_{k}\left[i_{\bar{a}}\right]_{N}\right)\right) \\
& \left.=f_{M}\left(t_{1}\left[i_{\alpha(\bar{a})}\right]_{M}, \ldots, t_{k}\left[i_{\alpha(\bar{a}}\right)\right]_{M}\right) \\
& =t\left[i_{\alpha(\bar{a})}\right]_{M} .
\end{aligned}
$$

The first equality holds by the definition of $t\left[i_{\bar{a}}\right]_{N}$, the second equality holds because α is an embedding, the third equality holds by the induction hypothesis, and the fourth equality holds by the definition of $t\left[i_{\alpha(\bar{a})}\right]_{M}$.

The proof is complete.

Proposition 2.4.5 Let $\alpha: N \rightarrow M$ be an embedding, $\varphi\left[v_{1}, \ldots, v_{n}\right]$ an open formula of L, and $\bar{a} \in N^{n}$. Then

$$
\begin{equation*}
N \models \varphi\left[i_{\bar{a}}\right] \Longleftrightarrow M \models \varphi\left[i_{\alpha(\bar{a})}\right] . \tag{*}
\end{equation*}
$$

Proof. Recall that the set of all open formulas is the smallest class of formulas that contains all atomic formulas and is closed under \neg and \vee. So, the result will be proved if we show that the set of formulas φ satisfying $(*)$ contains all atomic formulas and is closed under \neg and \vee.

By the definition of the truth in a structure, and the definition of embedding, $(*)$ holds for formulas of the form $t=s$, as well as, for atomic formulas of the form $p\left(t_{1}, \ldots, t_{n}\right)$.

Now assume that φ is the formula $\neg \psi$ and the result is true for ψ. Then

$$
\begin{aligned}
N \models \varphi\left[i_{\bar{a}}\right] & \Longleftrightarrow N \not \vDash \psi\left[i_{\bar{a}}\right] \\
& \Longleftrightarrow M \not \models \psi\left[i_{\alpha(\bar{a})}\right] \\
& \Longleftrightarrow M \models \varphi\left[i_{\alpha(\bar{a})}\right] .
\end{aligned}
$$

The first and the last equivalences hold because the formulas $\psi\left[i_{\bar{a}}\right]$ and $\psi\left[i_{\alpha(\bar{a})}\right]$ are closed; the second equivalence holds by the induction hypothesis.

The case φ of the form $\psi \vee \eta$ is dealt with similarly:

$$
\begin{aligned}
N \models \varphi\left[i_{\bar{a}}\right] & \Longleftrightarrow N \models \psi\left[i_{\bar{a}}\right] \text { or } N \models \eta\left[i_{\bar{a}}\right] \\
& \Longleftrightarrow M \models \psi\left[i_{\alpha(\bar{a})}\right] \text { or } M \models \eta\left[i_{\alpha(\bar{a})}\right] \\
& \Longleftrightarrow M \models \varphi\left[i_{\alpha(\bar{a})}\right] .
\end{aligned}
$$

The proof is complete.
Exercise 2.4.6 Let $\alpha: N \rightarrow M$ be a map such that for every open formula $\varphi\left[v_{1}, \ldots, v_{n}\right]$ of L and every $\bar{a} \in N^{n}$,

$$
N \models \varphi\left[i_{\bar{a}}\right] \Longleftrightarrow M \models \varphi\left[i_{\alpha(\bar{a})}\right] .
$$

Show that φ is an embedding.
Hint: To show that for any constant symbol $c, \alpha\left(c_{N}\right)=c_{M}$, let the formula $\varphi[x]$ be $c=x$ and consider $\varphi\left[i_{c_{N}}\right]$; to show that for $a, b \in N$, $\alpha(a)=\alpha(b)$ implies $a=b$, let $\varphi[x, y]$ be the formula $x=y$ and consider $\varphi\left[i_{a}, i_{b}\right]$.

Theorem 2.4.7 Let $\alpha: N \rightarrow M$ be an isomorphism and $\varphi\left[v_{1}, \ldots, v_{n}\right] a$ formula of L_{N}. Then for every $\bar{a} \in N^{n}$,

$$
\begin{equation*}
N \models \varphi\left[i_{\bar{a}}\right] \Longleftrightarrow M \models \varphi\left[i_{\alpha(\bar{a})}\right] . \tag{**}
\end{equation*}
$$

In particular, for every sentence φ of $L, N \models \varphi$ if and only if $M \models \varphi$.
Proof. Since an isomorphism is an embedding, by the arguments contained in the proof of Proposition 2.4.5, the set of all formulas φ satisfying ($* *$) contains all atomic formulas and is closed under \neg and \vee.

Let $\varphi\left[v_{1}, \ldots, v_{n}\right]$ be a formula of the form $\exists v \psi, v$ different from each of the v_{i}. Suppose ($* *$) holds for ψ and all $\left(a, a_{1}, \ldots, a_{n}\right) \in N^{n+1}$. To complete the proof, we now have only to show that $(* *)$ holds for φ and every $\bar{a} \in N^{n}$. So, we take any $\bar{a} \in N^{n}$. Then,

$$
\begin{aligned}
N \models \varphi\left[i_{\bar{a}}\right] & \Longleftrightarrow N \models \psi\left[i_{a}, i_{\bar{a}}\right] \text { for some } a \in N \\
& \Longleftrightarrow M \models \psi\left[i_{\alpha(a)}, i_{\alpha(\bar{a})}\right] \text { for some } a \in N \\
& \Longleftrightarrow M \models \psi\left[i_{b}, i_{\alpha(\bar{a})}\right] \text { for some } b \in M \\
& \Longleftrightarrow M \models \varphi\left[i_{\alpha(\bar{a})}\right] .
\end{aligned}
$$

The first equivalence holds by the definition of validity in N, the second equivalence holds by the induction hypothesis, the third equivalence holds
because α is surjective, and the last equivalence holds by the definition of validity in M.

The proof is complete
An embedding $\alpha: N \rightarrow M$ is called an elementary embedding if for every formula $\varphi\left[v_{1}, \ldots, v_{n}\right]$ and every $\bar{a} \in N^{n}$,

$$
N \models \varphi\left[i_{\bar{a}}\right] \Longleftrightarrow M \models \varphi\left[i_{\alpha(\bar{a})}\right] .
$$

If $N \subset M$ and the inclusion $N \hookrightarrow M$ is an elementary embedding, then we say that N is an elementary substructure of M or that M is an elementary extension of N. The structures N and M are called elementarily equivalent if for every closed formula φ,

$$
N \models \varphi \Longleftrightarrow M \models \varphi .
$$

We write $N \equiv M$ if N and M are elementarily equivalent. Clearly, \equiv is an equivalence relation on the class of all structures of L.

Remark 2.4.8 By Theorem 2.4.7, two structures N and M are elementarily equivalent if they are isomorphic. Later in this book we shall show that any two algebraically closed fields of characteristic 0 are elementarily equivalent. But there exist two algebraically closed fields \mathbb{F}_{1} and \mathbb{F}_{2} of characteristic 0 such that $\left|\mathbb{F}_{1}\right| \neq\left|\mathbb{F}_{2}\right|$. Hence, elementarily equivalent structures need not be isomorphic.

Theorem 2.4.9 Let N be a substructure of M. Then N is an elementary substructure of M if and only if for every formula $\varphi\left[v, v_{1}, \ldots, v_{n}\right]$ and for every $\bar{a} \in N^{n}$, if there is $b \in M$ satisfying

$$
M \models \varphi\left[i_{b}, i_{\bar{a}}\right],
$$

then there is $b \in N$ satisfying

$$
M \models \varphi\left[i_{b}, i_{\bar{a}}\right] .
$$

Proof. Let N be an elementary substructure of M. Take a formula $\varphi\left[v, v_{1}, \ldots, v_{n}\right]$. Let $\bar{a} \in N^{n}$ and suppose there is $b \in M$ satisfying

$$
M \models \varphi\left[i_{b}, i_{\bar{a}}\right] .
$$

This means that

$$
M \models \exists v \varphi\left[v, i_{\bar{a}}\right] .
$$

Since N is an elementary substructure of M, we have

$$
N \neq \exists v \varphi\left[v, i_{\bar{a}}\right] .
$$

So, there is $b \in N$ satsfying

$$
N \models \varphi\left[i_{b}, i_{\bar{a}}\right] .
$$

Since N is an elementary substructure of M, it follows that

$$
M \models \varphi\left[i_{b}, i_{\bar{a}}\right] .
$$

We prove the if part of the result by showing that for every formula $\psi\left[v_{1}, \ldots, v_{n}\right]$ and for every $\bar{a} \in N^{n}$,

$$
\begin{equation*}
M \models \psi\left[i_{\bar{a}}\right] \Longleftrightarrow N \models \psi\left[i_{\bar{a}}\right] . \tag{*}
\end{equation*}
$$

We shall prove (*) by induction on the rank of ψ. By Proposition 2.4.5, (*) is true for all atomic formulas. Arguing as in the proof of that proposition, we can show that if $(*)$ is true for φ, it is true for $\neg \varphi$, and if φ and ψ satisfy $(*)$, so does $\varphi \vee \psi$.

Now assume that $\varphi\left[v_{1}, \ldots, v_{n}\right]$ is a formula of the form $\exists v \psi\left[v, v_{1}, \ldots, v_{n}\right]$ and $(*)$ holds for ψ and every $\left(a, a_{1}, \ldots, a_{n}\right) \in N^{n+1}$. Take $\bar{a} \in N^{n}$.

Suppose

$$
N \neq \varphi\left[i_{\bar{a}}\right] .
$$

Then there is $b \in N$ such that

$$
N \neq \psi\left[i_{b}, i_{\bar{a}}\right] .
$$

By the induction hypothesis,

$$
M \models \psi\left[i_{b}, i_{\bar{a}}\right] .
$$

So,

$$
M \models \varphi\left[i_{\bar{a}}\right] .
$$

Now assume that

$$
M \models \varphi\left[i_{\bar{a}}\right] .
$$

So there is $b \in M$ such that

$$
M \models \psi\left[i_{b}, i_{\bar{a}}\right] .
$$

By our assumptions, there is $b \in N$ such that

$$
M \models \psi\left[i_{b}, i_{\bar{a}}\right] .
$$

By the induction hypothesis,

$$
N \neq \psi\left[i_{b}, i_{\bar{a}}\right] .
$$

Thus,

$$
N \neq \varphi\left[i_{\bar{a}}\right] .
$$

The next result gives a method of constructing elementary substructures of small cardinality. From this result it will follow that if a finite theory has a model, it has a countable model. In particular, if there is an infinite model of set theory, there is a countable model of set theory. This is an important result in set theory. In Chapter 5, we shall give a method to construct elementary extensions of arbitraily large cardinality.

Theorem 2.4.10 (Downward Löwenheim-Skolem theorem) Let M be a structure of L and $X \subset M$. Suppose L has at most κ nonlogical symbols, κ an infinite cardinal number. Then there is an elementary substructure N of M such that $X \subset N$ and the cardinality of N is at most $\max (\kappa,|X|)$, where $|X|$ denotes the cardinality of X.

Proof. Essentially, our N will be the smallest subset of M containing X satsfying the following conditions:
(i) Each $c_{M} \in N$, where c is a constant symbol of L.
(ii) The set N is closed under f_{M} for every function symbol f of L.
(iii) Whenever a sentence of the form $\exists v \varphi$ is valid in M, there is an element $a \in N$ such that $M \models \varphi_{v}\left[i_{a}\right]$.

By induction on k, we shall define

$$
N_{0} \subset N_{1}^{\prime} \subset N_{1} \subset \ldots \subset N_{k} \subset N_{k}^{\prime} \subset N_{k+1} \subset \ldots \subset M
$$

such that each N_{k}^{\prime} is a substructure of N and for every formula of the form $\exists v \varphi\left[v, v_{1}, \ldots, v_{n}\right]$ and every $\bar{a} \in N_{k}^{\prime n}$, if $M \models \exists v \varphi\left[v, i_{\bar{a}}\right]$, there is $b \in N_{k+1}$ such that $M \models \varphi\left[i_{b}, i_{\bar{a}}\right]$. Further, each N_{k} is of cardinality $\leq \max (\kappa,|X|)$.

Let N_{0} be the smallest subset of M containing X that contains all c_{M} 's and that is closed under all f_{M} 's. Note that $\left|N_{0}\right| \leq \max (\kappa,|X|)$ and that N_{0} is a substructure of M.

Suppose N_{k} has been defined such that $\left|N_{k}\right| \leq \max (\kappa,|X|)$. We define N_{k}^{\prime} and N_{k+1} now. Let N_{k}^{\prime} be the smallest subset of M containing N_{k} that is closed under all f_{M} 's. Note that $\left|N_{k}^{\prime}\right| \leq \max (\kappa,|X|)$.

Fix a formula of the form $\varphi\left[v, v_{1}, \ldots, v_{n}\right]$. Let ψ be the formula $\exists v \varphi$. For $\bar{a}=\left(a_{1}, \ldots, a_{n}\right) \in\left(N_{k}^{\prime}\right)^{n}$, whenever

$$
M \models \psi\left[i_{\bar{a}}\right],
$$

there is $b \in M$ such that

$$
M \models \varphi\left[i_{b}, i_{\bar{a}}\right] .
$$

Choose and fix one such b. Let N_{k+1} be obtained from N_{k}^{\prime} by adding all the b 's so chosen. Again note that $\left|N_{k+1}\right| \leq \max (\kappa,|X|)$.

Set

$$
N=\cup_{k} N_{k}
$$

Then
(i) For every constant symbol $c, c_{M} \in N$.
(ii) For every function symbol f, N is closed under f_{M}.
(iii) $|N| \leq \max (\kappa,|X|)$ and $X \subset N$.

Thus, N is a substructure of M as in Remark 2.4.1.
Let $\varphi\left[v_{1}, \ldots, v_{n}\right]$ be any formula and $\bar{a} \in N^{n}$. Since N is a substructure of M, by Theorem 2.4.9, the proof will be complete if we show that for every formula $\varphi\left[v, v_{1}, \ldots, v_{n}\right]$ and for every $\bar{a} \in N^{n}$, if there is $b \in M$ satsfying

$$
M \models \varphi\left[i_{b}, i_{\bar{a}}\right],
$$

then there is $b \in N$ satsfying

$$
M \models \varphi\left[i_{b}, i_{\bar{a}}\right] .
$$

Let $\varphi\left[v, v_{1}, \ldots, v_{n}\right]$ be a formula, and let $\bar{a} \in N^{n}$ and $b \in M$ be such that

$$
M \models \varphi\left[i_{b}, i_{\bar{a}}\right] .
$$

Since $N_{k} \subset N_{k+1}$ for all k, there is a natural number p such that each $a_{i} \in N_{p}$. By the definition of N_{p+1} there is $b \in N_{p+1} \subset N$ such that

$$
M \models \varphi\left[i_{b}, i_{\bar{a}}\right] .
$$

Remark 2.4.11 In the above proof we have used the following version of the axiom of choice.

Axiom of choice: If $\left\{X_{i}: i \in I\right\}$ is a family of nonempty sets, there is a map $f: I \rightarrow \cup_{i \in I} X_{i}$ such that $f(i) \in X_{i}$ for all $i \in I$.

A function f satsfying the conclusion of the axiom of choice is called a choice function for the family $\left\{X_{i}: i \in I\right\}$. The axiom of choice asserts only the existence of a choice function-it gives no method to produce a choice function.

From now on, by set theory we shall mean the theory obtained by adding the axiom of choice to the axioms of $Z F$. We denote this theory by $Z F C$.

Any model of the theory $O F$ is called an ordered field. Let \mathbb{F} be an ordered field and $A \subset \mathbb{F}$. An element u of \mathbb{F} is called an upper bound of A if for every $a \in A, a \leq u$, where $x \leq y$ means that either $x<y$ or $x=y$. If u is an upper bound of A and no $v<u$ is an upper bound of A, then u is called the least upper bound of A. A complete ordered field is an ordered field \mathbb{F} such that every nonempty subset A of \mathbb{F} that has an upper bound has a least upper bound. It is known that if \mathbb{F}_{1} and \mathbb{F}_{2} are two complete ordered fields, then they are isomorphic, i.e., there is a field isomorphism $f: \mathbb{F}_{1} \rightarrow \mathbb{F}_{2}$ such that for every $a, b \in \mathbb{F}_{1}, a<b \rightarrow f(a)<f(b)$. We denote
a complete ordered field by \mathbb{R}. This is the traditional set of real numbers and is unique modulo the isomorphism just described. Cantor proved that \mathbb{R} is uncountable.

Theorem 2.4.12 There is no first-order theory with language L for ordered fields whose models are precisely complete ordered fields.

Proof. This is because \mathbb{R} is uncountable, and by the downward LöwenheimSkolem theorem, any such theory must have a countable model.

Remark 2.4.13 There is no set of first-order formulas of the language L for ordered fields expressing the least upper bound axiom: Every nonempty set of real numbers that has an upper bound has a least upper bound.

Let G be an abelian group. For any element $x \in G$, let $n x$ denote the term

$$
\underbrace{x+\cdots+x}_{n \text { times }} .
$$

We call a group G divisible if for every $n \geq 1$ and every $x \in G$ there exists a $y \in G$ such that $n y=x$. Call G torsion-free if for every $x \in G, x \neq 0$, and every $n \geq 1, n x \neq 0$.

Exercise 2.4.14 1. Show that there is a sequence of formulas of the language for group theory expressing that an abelian group is divisible. Later we shall show that such a finite set of formulas does not exist.
2. Show that there is a sequence of formulas of the language for group theory expressing that an abelian group is torsion-free. Later we shall show that such a finite set of formulas does not exist.

Remark 2.4.15 1. An ordered field $(A ; 0,1 ;+, \cdot ;<)$ is called an archimedean ordered field if for every $x, y \in A, 0<x, y$, there is an n such that $y<n x$. Later we shall show that there is no first-order theory whose language is the same as the language for ordered fields, and whose models are precisely archimedean ordered fields.
2. A linearly ordered set $(A,<)$ is called well-ordered if for every nonempty subset B of A there is an element $b_{0} \in B$ such that for every $b \in B, b_{0}<b$, i.e., every nonempty subset of A has a least element. Using the axiom of choice, it is easy to show that a linearly ordered set is well-ordered if and only there is a sequence $\left\{a_{n}\right\}$ in A such that $a_{n+1}<a_{n}$ for all n. The statement "Every nonempty set can be wellordered" is known as the well-ordering principle. It is known that the well-ordering principle is equivalent to the axiom of choice. Later we shall show that there is no first-order theory T whose language has only one nonlogical symbol-a binary relation symbol-and whose models are precisely well-ordered sets.

3

Propositional Logic

We now turn our attention to the fundamental notion of a logical deduction or a proof. As mentioned earlier, in mathematical parlance, statements valid in all models of a theory are called the theorems of the theory. But any statement is a well-formed finite sequence of symbols of the language. So, it is natural to expect a finitary definition of a theorem depending only on its subformulas and the syntactical construction. Note that while computing the truth value of a statement in a structure, one uses some rules of inference depending only on the syntactical construction of the statement. For instance, if A or B is true in a structure, we infer that $A \vee B$ is true in the structure. We have also noted that statements with some specific syntactical structures are valid in all structures. For instance, a statement of the form $\neg A \vee A$ is true in all structures. Statements true in all structures of a language are called tautologies. So all tautologies ought to be theorems. Is there a conveniently nice list of tautologies (to be called logical axioms) and a list of rules of inference such that a statement is valid if and only if it can be inferred from logical and nonlogical axioms using the rules of inference from our list? It is indeed the case.

In this chapter we first develop a simpler but important form of logic called propositional logic. The main objective of propositional logic is to formalize reasoning involving logical connectives \vee and \neg only.

A language for propositional logic has a nonempty set of variables and logical symbols \vee and \neg alone. Here variables stand for propositions rather than elements of a set. Then we consider the smallest set of expressions \mathcal{F}, to be called formulas, of the language that contains all variables and that is closed under \neg and \vee. For instance, our set of variables could be
the set of all elementary formulas of a first-order language L. Then \mathcal{F} will coincide with the set of all formulas of L. We may think of variables of L to be some simple statements and formulas that can be made using variables and logical connectives. In this setting it is more important to examine the truth of a formula in terms of its subformulas.

In this chapter we shall introduce propositional logic in details.

3.1 Syntax of Propositional Logic

Thus language for a propositional logic L consists of
(i) variables: a nonempty set of symbols, and
(ii) logical connectives: \neg and \vee.

Throughout this chapter, unless otherwise stated, L will denote the language of a propositional logic. A finite sequence of symbols of L will be called an expression in L.

Let \mathcal{F} be the smallest set of expressions in L that contains all variables and that contains the expression $\neg A$ whenever $A \in \mathcal{F}$, and contains $\vee A B$ whenever A and B are in \mathcal{F}. The expressions belonging to \mathcal{F} are called formulas of L.

Example 3.1.1 Let R be a binary relation on a nonempty set X. Let A stand for the proposition " R is reflexive," B for " R is symmetric," C for " R is transitive," and E for the proposition " R is an equivalence relation." Let the set of all variables of L be $\{A, B, C, E\}$. Then $E \leftrightarrow(A \wedge B \wedge C)$ is a formula of L standing for the statement " R is an equivalence relation if and only if R is reflexive, symmetric, and transitive."

Example 3.1.2 Let A stand for the statement "Humidity is high," B for "It will rain this afternoon," and C for "It will rain this evening." Let A, B, C be all the variables of L. Then the formula $A \rightarrow(B \vee C)$ stands for the statement "If humidity is high, it will rain this afternoon or this evening."

Exercise 3.1.3 Express the following statements as formulas of a propositional logic:

1. If the prime rateinterest goes up, people are not happy.
2. If stock prices go up, people are happy.

By a literal of L we shall mean either a variable or the negation of a variable of L. The rank of a formula is defined as in Chapter 1. As in the case of a first-order language, we shall often write $A \vee B$ for $\vee A B$. We shall maintain the same convention in using parentheses. Also, logical
connectives \wedge, \rightarrow, and \leftrightarrow are defined similarly. We shall use letters A, B, C, P, Q, R, and S, with or without subscripts for variables of L.

Let A be a formula of L. The set of all subformulas of A is the smallest set \mathcal{S} of expressions in L satisfying the following conditions:
(i) $A \in \mathcal{S}$.
(ii) $A \in \mathcal{S}$ whenever $\neg A \in \mathcal{S}$.
(iii) $A, B \in \mathcal{S}$ whenever $A \vee B \in \mathcal{S}$.

The following example, mentioned in the beginning of this chapter, is an important example for us.

Example 3.1.4 Let L be a language for a first-order theory and L^{\prime} the propositional logic whose variables are elementary formulas of L. Then the set of all formulas of L^{\prime} is the same as the set of all formulas of L.

3.2 Semantics of Propositional Logic

In the next step we use the intuitive meaning of the logical connectives and define the truth or falsity of a formula in terms of its subformulas.

A truth valuation or an interpretation or a structure of L is a map v from the set of all variables of L to $\{T, F\}$.

Let v be an interpretation of L. We extend v (and denote the extension by v itself) to the set of all formulas by induction as follows:

$$
v(\neg A)=T \text { if and only if } v(A)=F
$$

and

$$
v(A \vee B)=T \text { if and only if } v(A)=T \text { or } v(B)=T
$$

If $v(A)=T$, we say that A is true in the structure v or that v satisfies A. Otherwise, A is said to be false in the structure.

Note that the truth value $v(A)$ of a formula A depends only on the variables occurring in A.

Exercise 3.2.1 Let A, B, C be all the variables of L. For each truth valuation v of L, compute the truth values of the following formulas:

1. $A \rightarrow B \rightarrow C$.
2. $B \rightarrow A \rightarrow C$.
3. $A \rightarrow C \rightarrow B$.
4. $(\neg A \vee B) \rightarrow \neg(A \wedge \neg B)$.

Let \mathcal{A} be a set of formulas of L. An interpretation v is called a model of \mathcal{A} if every $A \in \mathcal{A}$ is true in v. In this case we write $v \models \mathcal{A}$. If \mathcal{A} has a model, we say that \mathcal{A} is satisfiable.

Note that if a set of formulas is satisfiable, all its subsets are satisfiable.
Exercise 3.2.2 Let A, B be formulas and v a truth valuation of L. Show the following:
(a) $v(A \wedge B)=T$ if and only if $v(A)=v(B)=T$.
(b) $v(A \rightarrow B)=T$ if and only if $v(A)=F$ or $v(B)=T$.
(c) $v(A \leftrightarrow B)=T$ if and only if $v(A)=v(B)$.

Let A, B be formulas and \mathcal{A} a set of formulas.
(i) We say that A is a tautological consequence of \mathcal{A}, and write $\mathcal{A} \models A$ if A is true in every model v of \mathcal{A}.
(ii) If A is a tautological consequence of the empty set of formulas, we say that A is a tautology and write $\models A$. Thus, A is a tautology if and only if $v(A)=T$ for every truth valuation v of L.
(iii) If $A \leftrightarrow B$ is a tautology (i.e., if $v(A)=v(B)$ for all truth valuations v), we say that A and B are tautologically equivalent and write $A \equiv B$.

Exercise 3.2.3(a) Show that $A \rightarrow B \rightarrow C$ and $B \rightarrow A \rightarrow C$ are tautologically equivalent.
(b) Show that $A \rightarrow B \rightarrow C$ and $A \rightarrow C \rightarrow B$ are not tautologically equivalent.
(c) Show that $A \rightarrow B \rightarrow C$ and $(A \rightarrow B) \rightarrow C$ are not tautologically equivalent.
(d) Show that $\neg(A \vee B) \vee C$ is a tautology if and only if both $\neg A \vee C$ and $\neg B \vee C$ are tautologies.
(e) Show that \equiv is an equivalence relation on the set of all formulas of L.

The following result is quite easy to prove. Therefore, its proof is left as an exercise.

Proposition 3.2.4 Let $A, A_{1}, A_{2}, \ldots, A_{n}$ be formulas. Then the following statements are equivalent:
(a) A is a tautological consequence of $A_{1}, A_{2}, \ldots, A_{n}$.
(b) $A_{1} \rightarrow A_{2} \rightarrow \cdots \rightarrow A_{n} \rightarrow A$ is a tautology.

Exercise 3.2.5(a) Show that

$$
\vDash A \leftrightarrow \neg \neg A .
$$

(b) Show that

$$
\vDash \neg(A \vee B) \leftrightarrow \neg A \wedge \neg B .
$$

(c) Show that

$$
\models \neg(A \wedge B) \leftrightarrow \neg A \vee \neg B
$$

A formula is said to be in conjunctive normal form if it is a conjunction of disjunctions of literals, i.e., it is of the form

$$
\wedge_{i=1}^{k} \vee_{j=1}^{n_{k}} A_{i j}
$$

where each $A_{i j}$ is a literal.
Exercise 3.2.6 Show that for every formula A there is a formula B in conjunctive normal form such that A and B are tautologically equivalent.

Proposition 3.2.7 Let $A \rightarrow A^{*}$ be a map from the set of formulas of L to itself such that for all formulas A and B,

$$
(\neg A)^{*}=\neg\left(A^{*}\right) \text { and }(A \vee B)^{*}=A^{*} \vee B^{*}
$$

Assume that B is a tautological consequence of A_{1}, \ldots, A_{n}. Then B^{*} is a tautological consequence of $A_{1}^{*}, \ldots, A_{n}^{*}$.

Proof. Let v be a truth valuation. For every variable A, define

$$
v^{\prime}(A)=v\left(A^{*}\right)
$$

It is routine to check that for every formula A,

$$
v^{\prime}(A)=v\left(A^{*}\right)
$$

Since B is a tautological consequence of A_{1}, \ldots, A_{n}, it is easy to see that $v\left(B^{*}\right)=T$ if $v\left(A_{1}^{*}\right)=\ldots=v\left(A_{n}^{*}\right)=T$.

Exercise 3.2.8 Show that $\{A, \neg(A \vee B)\},\{\neg A, \neg B, A \vee B\}$ are not satisfiable.

3.3 Compactness Theorem for Propositional Logic

We now present a nontrivial fact: the compactness theorem for propositional logic.

A binary relation \leq on a set \mathbb{P} is called a partial order if it is reflexive, antisymmetric, and transitive. An element p of \mathbb{P} is called an upper bound of a subset A of \mathbb{P} if $q \leq p$ for every $q \in A$. An element p of \mathbb{P} is called a maximal element of \mathbb{P} if for any $q \in \mathbb{P}, p \leq q$ implies that $p=q$. A partial order \leq on \mathbb{P} is called a linear order if for every $p, q \in \mathbb{P}, p \leq q$ or $q \leq p$. A chain in a partially ordered set \mathbb{P} is a subset \mathbb{Q} of \mathbb{P} such that for every $p, q \in \mathbb{Q}, p \leq q$ or $q \leq p$, i.e., the restriction of \leq to \mathbb{Q} is a linear order.

Lemma 3.3.1 (Zorn's lemma) Let (\mathbb{P}, \leq) be a nonempty partially ordered set such that every chain in \mathbb{P} has an upper bound in \mathbb{P}. Then \mathbb{P} has a maximal element.

Remark 3.3.2 It can be proved that the axiom of choice and Zorn's lemma are equivalent in $Z F$. In particular, Zorn's lemma is a theorem of $Z F C$.

We call \mathcal{A} finitely satisfiable if every finite subset of \mathcal{A} is satisfiable.
Clearly if \mathcal{A} is satisfiable, it is finitely satisfiable. The compactness theorem tells us that the converse is also true. We proceed to prove this important result now.

Lemma 3.3.3 Let \mathcal{A} be a finitely satisfiable set of formulas and A a formula of L. Then either $\mathcal{A} \cup\{A\}$ or $\mathcal{A} \cup\{\neg A\}$ is finitely satisfiable.

Proof. Suppose $\mathcal{A} \cup\{A\}$ is not finitely satisfiable. We need to show that for every finite subset \mathcal{B} of $\mathcal{A}, \mathcal{B} \cup\{\neg A\}$ is satisfiable. Suppose this is not the case for a finite $\mathcal{B} \subset \mathcal{A}$. Then A is a tautological consequence of \mathcal{B}. Fix a finite $\mathcal{C} \subset \mathcal{A}$. Since $\mathcal{B} \cup \mathcal{C}$ is finite, it is satisfiable. Let v be a truth valuation that satisfies it. Since A is a tautological consequence of $\mathcal{B}, v(A)=T$. In particular, $\mathcal{C} \cup\{A\}$ is satisfiable. Thus, $\mathcal{A} \cup\{A\}$ is finitely satisfiable and we have arrived at a contradiction.

Theorem 3.3.4 (Compactness theorem for propositional logic) A set \mathcal{A} of formulas of L is satisfiable if and only if it is finitely satisfiable.

Proof. We need to prove the if part of the result only. Assume that \mathcal{A} is finitely satisfiable. We have to show that \mathcal{A} is satisfiable. Let \mathbb{P} denote the set of all finitely satisfiable collections of formulas containing \mathcal{A}. Equip \mathbb{P} with the partial order \subset (contained in). Let \mathbb{Q} be a chain in \mathbb{P}. Clearly, $\cup \mathbb{Q}$ is finitely satisfiable. So, it is an upper bound of \mathbb{Q} in \mathbb{P}. Thus, by Zorn's lemma, there is a maximal family \mathcal{M} of finitely satisfiable formulas containing \mathcal{A}. By Lemma 3.3.3, for every formula A, either $A \in \mathcal{M}$ or $\neg A \in \mathcal{M}$.

Consider the truth valuation v defined by

$$
\begin{equation*}
v(A)=T \Longleftrightarrow A \in \mathcal{M} \tag{*}
\end{equation*}
$$

where A is a variable. We extend v to the set of all formulas such that for all formulas A and B,

$$
v(\neg A)=T \Longleftrightarrow v(A)=F
$$

and

$$
v(A \vee B)=T \Longleftrightarrow v(A) \text { or } v(B)=T
$$

By induction on the length of formulas A, we now show that $(*)$ holds for all formulas A. Since $\mathcal{A} \subset \mathcal{M}$, it will follow that $v(A)=T$ for every $A \in \mathcal{A}$ and the proof will be complete.

If A is a variable, the induction hypothesis holds for A by the definition of v.

Let A be of the form $\neg B$ and B satisfies $(*)$. Since $v(A)=T$ if and only if $v(B)=F$ and B satisfies $(*), v(A)=T$ if and only if $B \notin \mathcal{M}$. But $B \notin \mathcal{M}$ if and only if $A \in \mathcal{M}$.

Finally, let A be a formula of the form $B \vee C$ and let B and C satisfy $(*)$. Let $v(A)=T$. Then either $v(B)=T$ or $v(C)=T$. So, either $B \in \mathcal{M}$ or $C \in \mathcal{M}$. If possible, suppose $B \vee C \notin \mathcal{M}$. Then $\neg(B \vee C) \in \mathcal{M}$. Since one of B and C belongs to \mathcal{M}, it follows that \mathcal{M} is not finitely satisfiable.

Now assume that $v(A)=F$. Then $v(B)=v(C)=F$. So, $\neg B, \neg C \in \mathcal{M}$. If $A \in \mathcal{M},\{B \vee C, \neg B, \neg C\}$ is satisfiable, which is impossible. Thus, $A \notin \mathcal{M}$.

Exercise 3.3.5 Assume that L is countable. Give a proof of the compactness theorem using induction on the natural numbers that does not require Zorn's lemma.

Hint: Since L is countable, the set of all its formulas is countable. Let $\left\{A_{0}, A_{1}, A_{2}, \ldots\right\}$ be an enumeration of all its formulas. We define a sequence of natural numbers $n_{0}, n_{1}, n_{2}, \ldots$ as follows: let n_{0} be the first natural number i such that $A_{i} \notin \mathcal{A}$ and $\mathcal{A} \cup\left\{A_{i}\right\}$ is finitely satisfiable. Suppose $n_{i}, 0 \leq i \leq k$, have been defined in such a way that $\mathcal{A} \cup\left\{A_{n_{0}}, \ldots, A_{n_{k}}\right\}$ is finitely satisfiable. Set $\mathcal{B}=\mathcal{A} \cup\left\{A_{n_{i}}: 0 \leq i \leq k\right\}$. Let n_{k+1} be the least natural number i such that $A_{i} \notin \mathcal{B}$ and $\mathcal{B} \cup\left\{A_{i}\right\}$ is finitely satisfiable, if such an i exists. Otherwise, set $n_{k+1}=n_{k}$. Now consider the set $\mathcal{M}=$ $\mathcal{A} \cup\left\{A_{n_{i}}: i \in \mathbb{N}\right\}$.

Remark 3.3.6 One can prove the compactness theorem quite elegantly using Tychonoff's theorem for compact Hausdorff spaces. We give below the difficult part of the proof. Readers not familiar with these topics may skip the following proof.

Equip $X=\{T, F\}^{\mathcal{F}}$ with the product of discrete topologies on $\{T, F\}$, where \mathcal{F} denotes the set of all variables of L. Thus, X is the set of all structures of L. By Tychonoff's theorem, X is compact Hausdorff.

For each finite $\mathcal{B} \subset \mathcal{A}$, set

$$
F_{\mathcal{B}}=\{v \in X: v(A)=T \text { for all } A \in \mathcal{B}\}
$$

It is easy to check that each $F_{\mathcal{B}}$ is closed in X. They are nonempty by hypothesis. By hypothesis again, the family

$$
\left\{F_{\mathcal{B}}: \mathcal{B} \subset \mathcal{A} \text { finite }\right\}
$$

has the finite intersection property. Since X is compact, this implies that

$$
\cap\left\{F_{\mathcal{B}}: \mathcal{B} \subset \mathcal{A} \text { finite }\right\} \neq \emptyset
$$

Any v in this set models \mathcal{A}.

As a corollary to the compactness theorem, we get the following useful result.

Proposition 3.3.7 Let \mathcal{A} be a set of formulas and A a formula. Then A is a tautological consequence of \mathcal{A} if and only if A is a tautological consequence of a finite $\mathcal{B} \subset \mathcal{A}$.

Proof. The if part of the result is clear. So, assume that for no finite $\mathcal{B} \subset \mathcal{A}$, $\mathcal{B} \models A$. It follows that $\mathcal{A} \cup\{\neg A\}$ is finitely satisfiable. Hence, it is satisfiable by Theorem 3.3.4. This implies that A is not a tautological consequence of \mathcal{A}.

Exercise 3.3.8 A graph is an ordered pair $G=(V, E)$, where V is a nonempty set and E is a set of unordered pairs $\{x, y\}(x \neq y)$ of elements of V. Elements of V are called vertices and those of E the edges of G. A subgraph of G is a graph $G^{\prime}=\left(V^{\prime}, E^{\prime}\right)$, where $V^{\prime} \subset V$ and $E^{\prime} \subset E$. For any natural number $k \geq 1$, we say that G is k-colorable if there is a map $c: V \rightarrow\{1,2, \ldots, k\}$ such that

$$
\{x, y\} \in E \Rightarrow c(x) \neq c(y)
$$

Show that a graph is k-colorable if and only if each of its finite subgraphs is k-colorable.

Hint: Let $G=(V, E)$ be a graph. Consider the language L for propositional logic with the set of variables

$$
\left\{A_{x i}: x \in V, 1 \leq i \leq k\right\}
$$

Informally, we think of $A_{x i}$ as the statement "the vertex x is assigned the color i." Now consider the set Φ of formulas consisting of the following formulas:

$$
\begin{gathered}
A_{x 1} \vee \ldots \vee A_{x k}, x \in V \\
\neg\left(A_{x i} \wedge A_{x j}\right), x \in V, 1 \leq i<j \leq k,
\end{gathered}
$$

and

$$
\neg\left(A_{x i} \wedge A_{y i}\right), \quad\{x, y\} \in E, 1 \leq i \leq k .
$$

Note that Φ is satisfiable means that G is k-colorable.

3.4 Proof in Propositional Logic

In this section we define a proof in propositional logic. To define a proof syntactically, we fix some tautologies and call them logical axioms. Further, we fix some rules of inference. There is only one class of logical axioms, called propositional axioms. These are formulas of the form $\neg A \vee A$.

Rules of inference of the propositional logic are
(a) Expansion Rule. Infer $B \vee A$ from A.
(b) Contraction Rule. Infer A from $A \vee A$.
(c) Associative Rule. Infer $(A \vee B) \vee C$ from $A \vee(B \vee C)$.
(d) Cut Rule. Infer $B \vee C$ from $A \vee B$ and $\neg A \vee C$.

Exercise 3.4.1 Show that the conclusion of any rule of inference is a tautological consequence of its hypotheses.

Let \mathcal{A} be a set of formulas not containing any logical axiom. Elements of \mathcal{A} will be called nonlogical axioms. A proof in \mathcal{A} is a finite sequence of formulas $A_{1}, A_{2}, \ldots, A_{n}$ such that each A_{i} is either a logical axiom or a nonlogical axiom or can be inferred from formulas $A_{j}, j<i$, using one of the rules of inference. In this case we call the above sequence a proof of A_{n} in \mathcal{A}. If A has a proof in \mathcal{A}, we say that A is a theorem of \mathcal{A} and write $\mathcal{A} \vdash A$. We call \mathcal{A} inconsistent if there is a formula A such that $\mathcal{A} \vdash A$ and $\mathcal{A} \vdash \neg A ; \mathcal{A}$ is called consistent if it is not inconsistent.

We shall write $\vdash A$ instead of $\emptyset \vdash A$. Note that each logical and nonlogical axiom is a theorem.

Remark 3.4.2 It is worth noting that there is an algorithm to decide whether a finite sequence of formulas is a proof, provided there is an algorithm to decide whether a formula is a nonlogical axiom.

Lemma 3.4.3 If there is a sequence $A_{1}, A_{2}, \ldots, A_{n}$ such that each A_{i} is either a theorem of \mathcal{A} or can be inferred from formulas $A_{j}, j<i$, using one of the rules of inference, then A_{n} is a theorem of \mathcal{A}.

Proof. In the sequence $A_{1}, A_{2}, \ldots, A_{n}$, replace each A_{i} that is a theorem by a proof of it. The sequence thus obtained is a proof of A_{n}.

Another easy but useful result is the following.
Lemma 3.4.4 Let \mathcal{A} be a set of formulas of L and A a formula of L. Suppose $\mathcal{A} \vdash A$. Then there is a finite $\mathcal{B} \subset \mathcal{A}$ such that $\mathcal{B} \vdash A$.

Proof. This follows from the fact that each proof is a finite sequence of formulas and so contains only finitely many nonlogical axioms.

Theorem 3.4.5 Let L be the language of a propositional logic and A a formula of L. Then

$$
\vdash A \Longrightarrow \mid=A
$$

Proof. Let $A_{1}, A_{2}, \ldots, A_{n}$ be a proof of A. Thus, $A=A_{n}$. Fix any truth valuation v. By induction on $i, 1 \leq i \leq n$, we show that $v\left(A_{i}\right)=T$. Note that A_{1} must be a tautology. So, $v\left(A_{1}\right)=T$. Let $1 \leq i \leq n$ and $v\left(A_{j}\right)=T$ for all $j<i$. If A_{i} is a tautology, then $v\left(A_{i}\right)=T$. Otherwise, by Exercise 3.4.1, A_{i} is a tautological consequence of $\left\{A_{j}: j<i\right\}$. Hence $v\left(A_{i}\right)=T$.

Exactly the same proof proves the following theorem.
Theorem 3.4.6 (Soundness theorem for propositional logic) If \mathcal{A} is a set of formulas of L and A a formula, then

$$
\mathcal{A} \vdash A \Longrightarrow \mathcal{A} \models A
$$

3.5 Metatheorems in Propositional Logic

Metatheorems in their own right are not very interesting. Their proofs are often mechanical and sometimes quite tedious. But they are unavoidable. Metatheorems play a key role in proving important results. In this section we prove some metatheorems in propositional logic. These results are needed to show that $\mathcal{A} \vdash A \Longleftrightarrow \mathcal{A} \models A$. This is a very important result because this shows that we have indeed formalized the notion of logical deduction in propositional logic.

Lemma 3.5.1 Let A and B be formulas of L such that $\vdash A \vee B$. Then $\vdash B \vee A$.

Proof. Consider the sequence

$$
A \vee B, \quad \neg A \vee A, \quad B \vee A
$$

The first element of it is a theorem by the hypothesis, the second one is a propositional axiom, and the third one follows from the first two by the cut rule. By Lemma 3.4.3, $\vdash B \vee A$.

Lemma 3.5.2 A set of formulas \mathcal{A} is inconsistent if and only if for every formula $A, \mathcal{A} \vdash A$.

Proof. Let \mathcal{A} be inconsistent. So there is a formula A such that both A and $\neg A$ are theorems of \mathcal{A}. Now take any formula B. By the expansion rule, $\vdash B \vee A$ and $\vdash B \vee \neg A$. By Lemma 3.5.1, $\vdash A \vee B$ and $\vdash \neg A \vee B$. By
the cut rule, $\vdash B \vee B$. By the contraction rule, $\vdash B$. This proves the only if part of the result. The if part of the result is trivial.

Lemma 3.5.3 (Modus ponens) Let A and B be formulas of L such that $\vdash A$ and $\vdash A \rightarrow B$. Then $\vdash B$.

Proof. Since A is a theorem, by the expansion rule, $B \vee A$ is a theorem. Hence, by Lemma 3.5.1, $A \vee B$ is a theorem. Now consider the sequence

$$
A \vee B, \quad A \rightarrow B, \quad B \vee B, \quad B
$$

The first formula is shown above to be a theorem; the second formula is a theorem by hypothesis; since $A \rightarrow B$ is the formula $\neg A \vee B$ by definition, the third formula is inferred from the first two by the cut rule; the last formula is inferred from the third formula by the contraction rule. The result follows by Lemma 3.4.3.

Now by induction on n, we easily get the following corollary.
Corollary 3.5.4 (Detachment rule) Let $B, A_{1}, A_{2}, \ldots, A_{n}$ be formulas of L. Assume that each of A_{1}, \ldots, A_{n} and $A_{1} \rightarrow \cdots \rightarrow A_{n} \rightarrow B$ is a theorem. Then $\vdash B$.

Lemma 3.5.5 If $\vdash A \vee B$, then $\vdash \neg \neg A \vee B$.
Proof. Since $\neg \neg A \vee \neg A$ is a logical axiom, $\vdash \neg \neg A \vee \neg A$. Then $\vdash \neg A \vee \neg \neg A$ by Lemma 3.5.1. By hypothesis, $\vdash A \vee B$. Hence $\vdash B \vee \neg \neg A$ by the cut rule. So, $\vdash \neg \neg A \vee B$ by Lemma 3.5.1.

Lemma 3.5.6 Let A_{1}, \ldots, A_{n} be formulas of $L(n \geq 2)$ and $1 \leq i<j \leq n$. Suppose $\vdash A_{i} \vee A_{j}$. Then

$$
\vdash A_{1} \vee \cdots \vee A_{n}
$$

Proof. We shall prove the result by induction on n. Clearly we can assume that $n \geq 3$.

If $i \geq 2$, then

$$
\vdash A_{2} \vee \cdots \vee A_{n}
$$

by the induction hypothesis. Hence,

$$
\vdash A_{1} \vee A_{2} \vee \cdots \vee A_{n}
$$

by the expansion rule.
Now let $i=1$ and $j \geq 3$. Then

$$
\vdash A_{1} \vee A_{3} \vee \cdots \vee A_{n}
$$

by the induction hypothesis. So,

$$
\vdash\left(A_{3} \vee \cdots \vee A_{n}\right) \vee A_{1}
$$

by Lemma 3.5.1. So,

$$
\vdash A_{2} \vee\left(\left(A_{3} \vee \cdots \vee A_{n}\right) \vee A_{1}\right)
$$

by the expansion rule. Then

$$
\vdash\left(A_{2} \vee\left(A_{3} \vee \cdots \vee A_{n}\right)\right) \vee A_{1}
$$

by the associative rule. Hence,

$$
\vdash A_{1} \vee \cdots \vee A_{n}
$$

by Lemma 3.5.1.
Finally, assume that $i=1$ and $j=2$. Then

$$
\vdash\left(A_{3} \vee \cdots \vee A_{n}\right) \vee\left(A_{1} \vee A_{2}\right)
$$

by the expansion rule. By the associative rule,

$$
\vdash\left(\left(A_{3} \vee \cdots \vee A_{n}\right) \vee A_{1}\right) \vee A_{2} .
$$

By Lemma 3.5.1,

$$
\vdash A_{2} \vee\left(\left(A_{3} \vee \cdots \vee A_{n}\right) \vee A_{1}\right) .
$$

By the associative rule,

$$
\vdash\left(A_{2} \vee \cdots \vee A_{n}\right) \vee A_{1} .
$$

By Lemma 3.5.1 again,

$$
\vdash A_{1} \vee \cdots \vee A_{n} .
$$

Lemma 3.5.7 Let $m \geq 1, n \geq 1$, and $1 \leq i_{1}, i_{2}, \ldots, i_{m} \leq n$. Suppose

$$
\vdash A_{i_{1}} \vee A_{i_{2}} \vee \cdots \vee A_{i_{m}}
$$

Then

$$
\vdash A_{1} \vee A_{2} \vee \cdots \vee A_{n}
$$

Proof. We shall prove the result by induction on m. In the rest of the proof, A will designate the formula $A_{1} \vee \cdots \vee A_{n}$.

Case 1: $m=1$. Set $i=i_{1}$. By hypothesis, $\vdash A_{i}$. By the expansion rule,

$$
\vdash\left(A_{i+1} \vee \cdots \vee A_{n}\right) \vee A_{i} .
$$

By Lemma 3.5.1,

$$
\vdash A_{i} \vee A_{i+1} \vee \cdots \vee A_{n} .
$$

Applying the expansion rule repeatedly, we get

$$
\vdash A_{1} \vee \cdots \vee A_{n}
$$

Case 2: $m=2$. Suppose $i_{1}=i_{2}$. Then $\vdash A_{i_{1}}$ by the hypothesis and the contraction rule. The result now follows from Case 1.

Suppose $i_{2}<i_{1}$. Then, by the hypothesis and Lemma 3.5.1, $\vdash A_{i_{2}} \vee A_{i_{1}}$. Hence, without loss of generality, we assume that $i_{1}<i_{2}$. The result now follows from Lemma 3.5.6.

Case 3: $m>2$. By the hypothesis and the associative law,

$$
\vdash\left(A_{i_{1}} \vee A_{i_{2}}\right) \vee A_{i_{3}} \vee \cdots \vee A_{i_{m}} .
$$

Note that m is reduced by 1 . Hence, by the induction hypothesis,

$$
\vdash\left(A_{i_{1}} \vee A_{i_{2}}\right) \vee A .
$$

By Lemma 3.5.1,

$$
\vdash A \vee\left(A_{i_{1}} \vee A_{i_{2}}\right)
$$

By the associative law,

$$
\vdash\left(A \vee A_{i_{1}}\right) \vee A_{i_{2}}
$$

By the induction hypothesis,

$$
\vdash\left(A \vee A_{i_{1}}\right) \vee A .
$$

By Lemma 3.5.1,

$$
\vdash A \vee\left(A \vee A_{i_{1}}\right)
$$

By the associative law,

$$
\vdash(A \vee A) \vee A_{i_{1}} .
$$

By the induction hypothesis,

$$
\vdash(A \vee A) \vee A .
$$

By the induction hypothesis,

$$
\vdash(A \vee A) \vee(A \vee A)
$$

Applying the contraction rule twice, we see that

$$
\vdash A .
$$

Lemma 3.5.8 If $\vdash \neg A \vee C$ and if $\vdash \neg B \vee C$, then $\vdash \neg(A \vee B) \vee C$.
Proof. Since $\neg(A \vee B) \vee(A \vee B)$ is a propositional axiom, by Lemma 3.5.7,

$$
\vdash A \vee B \vee \neg(A \vee B)
$$

Since $\vdash \neg A \vee C$, by the cut rule,

$$
\vdash(B \vee \neg(A \vee B)) \vee C
$$

By Lemma 3.5.1,

$$
\vdash C \vee B \vee \neg(A \vee B)
$$

Hence, by Lemma 3.5.7,

$$
\vdash B \vee C \vee \neg(A \vee B)
$$

Since $\vdash \neg B \vee C$, by the cut rule,

$$
\vdash(C \vee \neg(A \vee B)) \vee C
$$

By Lemma 3.5.1,

$$
\vdash C \vee C \vee \neg(A \vee B)
$$

Hence

$$
\vdash \neg(A \vee B) \vee C
$$

by Lemma 3.5.7.

3.6 Post Tautology Theorem

In this section we prove the following theorem due, to Emil Post.
Theorem 3.6.1 (Post tautology theorem) If A is a formula of L, then

$$
\vdash A \Longleftrightarrow \vDash A .
$$

By Theorem 3.4.5, we only need to prove that
Every tautology is a theorem.
Note that if A is a tautology, so is $A \vee A$. By the contraction rule, our result will be proved if we show that every tautology of the from $A \vee A$ is a theorem. We shall prove a bit more.

Proposition 3.6.2 Let $n \geq 2$, and $A_{1} \vee \cdots \vee A_{n}$ be a tautology. Then $\vdash A_{1} \vee \cdots \vee A_{n}$.

Proof. Suppose each A_{i} is a literal, i.e., each A_{i} is either a variable or the negation of a variable. Since $A_{1} \vee \cdots \vee A_{n}$ is a tautology, there is a variable B such that both B and $\neg B$ occur in the sequence A_{1}, \ldots, A_{n}. But $\vdash \neg B \vee B$. Hence the result follows by Lemma 3.5.7.

So, we assume that for some $1 \leq i \leq n, A_{i}$ is not a literal. By Lemma 3.5.7, without loss of generality, we assume that A_{1} is not a literal. Thus A_{1} is a formula in one of the three forms: $B \vee C$ or $\neg \neg B$ or $\neg(B \vee C)$.

We shall complete the proof by induction on the sum of lengths of the A_{i} 's.

Case 1. A_{1} is of the form $B \vee C$: Then $B \vee C \vee A_{2} \vee \cdots \vee A_{n}$ is a tautology. Hence, it is a theorem by the induction hypothesis. The result in this case follows by the associative rule.

Case 2. A_{1} is of the form $\neg \neg B$: From the hypothesis, it follows that $B \vee A_{2} \vee \cdots \vee A_{n}$ is a tautology. Hence it is a theorem by the induction hypothesis. The result in this case now follows from Lemma 3.5.5.

Case 3. A_{1} is of the form $\neg(B \vee C)$: Assuming the hypothesis, it is easy to check that $\neg B \vee A_{2} \vee \cdots \vee A_{n}$ and $\neg C \vee A_{2} \vee \cdots \vee A_{n}$ are tautologies. So, by the induction hypothesis, they are theorems. The result in this case follows from Lemma 3.5.8.

There is another very useful formulation of the Post tautology theorem.
Theorem 3.6.3 If $\vdash A_{1}, \ldots, \vdash A_{n}$ and if B is a tautological consequence of A_{1}, \ldots, A_{n}, then $\vdash B$.

Proof. By Lemma 3.2.4, $A_{1} \rightarrow \cdots \rightarrow A_{n} \rightarrow B$ is a tautology. Hence, by the Post tautology theorem,

$$
\vdash A_{1} \rightarrow \cdots \rightarrow A_{n} \rightarrow B
$$

The result now follows from Corollary 3.5.4 (the detachment rule).
Theorem 3.6.4 (Completeness theorem for propositional logic) Let \mathcal{A} be a set of formulas of L. Then

$$
\mathcal{A} \vdash A \Longleftrightarrow \mathcal{A} \models A
$$

Proof. Assume that $\mathcal{A} \vdash A$. Then there is a finite set of formulas $\left\{B_{1}, \ldots, B_{n}\right\}$ such that

$$
\left\{B_{1}, \ldots, B_{n}\right\} \vdash A
$$

By the soundness theorem,

$$
\left\{B_{1}, \ldots, B_{n}\right\} \models A .
$$

Hence,

$$
\mathcal{A} \models A .
$$

Conversely, assume that $\mathcal{A} \vDash A$. Then, by the compactness theorem (Proposition 3.3.7), there is a finite set $\mathcal{B} \subset \mathcal{A}$ such that $\mathcal{B} \models A$. Hence, by Theorem 3.6.3, $\mathcal{B} \vdash A$. In particular, $\mathcal{A} \vdash A$.

Corollary 3.6.5(a) A set of formulas \mathcal{A} is consistent if and only if it is satisfiable.
(b) Suppose A and B are tautologically equivalent. Then $\vdash A$ if and only if $\vdash B$.
(c) Suppose $\vdash A \leftrightarrow B$. Then $\vdash A$ if and only if $\vdash B$.
(d) $\vdash A \rightarrow B$ if and only if $\vdash \neg B \rightarrow \neg A$.
(e) $\vdash A \wedge B$ if and only if $\vdash A$ and $\vdash B$.
(f) $I f \vdash A \rightarrow B$ and $\vdash B \rightarrow C$, then $\vdash A \rightarrow C$.

The simple proof of this result is left as an exercise.
Remark 3.6.6 The completeness theorem gives a trivial proof of the compactness theorem. To see this, let \mathcal{A} be a set of formulas of L, and A a formula of L. Then

$$
\begin{aligned}
\mathcal{A} \models A & \Rightarrow \mathcal{A} \vdash A \\
& \Rightarrow \mathcal{B} \vdash A \text { for some finite } \mathcal{B} \subset \mathcal{A} \\
& \Rightarrow \mathcal{B} \models A \text { for some finite } \mathcal{B} \subset \mathcal{A} .
\end{aligned}
$$

The first implication holds by Theorem 3.6.4, the second implication holds because every proof contains only finitely many nonlogical axioms, and the last one holds by the soundness theorem for propositional logic.

4

Proof and Metatheorems in First-Order Logic

In the previous chapter, we introduced the notion of proof in propositional logic. In this chapter we shall define proof in a first-order theory and prove several metatheorems in first-order logic.

4.1 Proof in First-Order Logic

In Chapter 1, we have already described what a first-order language is and what its terms and formulas are. We fix a first-order language L.

The logical axioms of L are:
(a) Propositional axioms: These are formulas of the form $\neg A \vee A$.
(b) Identity axioms: These are formulas of the form $x=x$, where x is a variable;
(c) Equality axioms: These are formulas of the form

$$
y_{1}=z_{1} \rightarrow \cdots \rightarrow y_{n}=z_{n} \rightarrow f y_{1} \cdots y_{n}=f z_{1} \cdots z_{n}
$$

or formulas of the form

$$
y_{1}=z_{1} \rightarrow \cdots \rightarrow y_{n}=z_{n} \rightarrow p y_{1} \cdots y_{n} \rightarrow p z_{1} \cdots z_{n}
$$

(d) Substitution axioms: These are formulas of the form $A_{x}[t] \rightarrow \exists x A$, where A is a formula and t a term substitutable for x in A.

The rules of inference of L are:
(a) Expansion rule. Infer $B \vee A$ from A.
(b) Contraction rule. Infer A from $A \vee A$.
(c) Associative rule. Infer $(A \vee B) \vee C$ from $A \vee(B \vee C)$.
(d) Cut rule. Infer $B \vee C$ from $A \vee B$ and $\neg A \vee C$.
(e) \exists-Introduction rule: If x is not free in B, infer $\exists x A \rightarrow B$ from $A \rightarrow B$.

Each logical axiom is valid in every structure of L. Also, the conclusion of each rule of inference is valid in any structure of L in which its hypotheses are valid.

Let T be a first-order theory. A proof in T, a theorem in T, etc., are defined as before. So, a proof in T is a finite sequence A_{1}, \ldots, A_{n} of formulas of $L(T)$ such that for each $i \leq n, A_{i}$ is either an axiom (logical or nonlogical) of $L(T)$ or can be inferred from $\left\{A_{j}: j<i\right\}$ by a rule of inference. We shall write $T \vdash A$ or simply $\vdash A$ (when T is understood) to say that A is a theorem of T.

We prove the soundness theorem (also known as the validity theorem) for first-order theories in exactly the same way we proved the soundness theorem for propositional logic (Theorem 3.4.6). Recall that a formula in a theory is valid if it is true in all models of the theory.

Theorem 4.1.1 (Validity theorem) Every theorem in T is valid in T.
A theory T^{\prime} is called an extension of T if $L\left(T^{\prime}\right)$ is an extension of $L(T)$ and if every nonlogical axiom of T is a theorem of T^{\prime}. If $L\left(T^{\prime}\right)$ is an extension of $L(T)$ and if every nonlogical axiom of T is a nonlogical axiom of T^{\prime}, then T is called a part of T^{\prime}; moreover, if the number of nonlogical axioms of T is finite, it is called a finitely axiomatized part of T^{\prime}. If T and T^{\prime} are extensions of each other, then they are called equivalent. Note that if T and T^{\prime} are equivalent, then they have the same language, i.e., $L(T)=L\left(T^{\prime}\right)$. Let Γ be a set of formulas of T. The simple extension of the theory T obtained by adding Γ as new nonlogical axioms is designated by $T[\Gamma]$.

Exercise 4.1.2 Let T^{\prime} be an extension of T. Show that every theorem of T is a theorem of T^{\prime}.

An extension T^{\prime} of T is called a conservative extension of T if every formula of T that is a theorem of T^{\prime} is also a theorem of $T ; T^{\prime}$ is a simple extension of T if $L(T)=L\left(T^{\prime}\right)$ and every theorem of T is a theorem of T^{\prime} too.

4.2 Metatheorems in First-Order Logic

The converse of the validity theorem is also true. This is a famous result that was first proved by Gödel and is known as the completeness theorem.

A proof of it will be given in the next chapter. In this section we present a few metatheorems needed to prove the completeness theorem.

Throughout this section, we fix a first-order theory T; by a theorem we shall mean a theorem of T, and $\vdash A$ will mean that A is a theorem of T.

The next few definitions are needed to adapt results from propositional logic to first-order logic. Recall that a formula is called elementary if it is either an atomic formula or a formula of the form $\exists x B$. We have already seen that the formulas of L are precisely the formulas of the language of the propositional logic whose variables are precisely the elementary formulas of L. A truth valuation for L is a map v from the set of all elementary formulas into $\{T, F\}$. We extend v to the set of all formulas of L as before. Further, we define the notion of tautological consequences, tautology, and Tautologically equivalent formulas, in exactly the same way as before. For instance, A is a tautological consequence of a set \mathcal{A} of formulas of L if $v(A)=T$ for every truth valuation v of L in which all formulas of \mathcal{A} are true.

It is also clear that the detachment rule (Theorem 3.6.3), the Post tautology theorem (Theorem 3.6.1) etc. proved in the last chapter hold for first-order theories also.

Proposition 4.2.1 (Detachment rule) Suppose

$$
\vdash A_{1}, \ldots, \vdash A_{n}
$$

and

$$
\vdash A_{1} \rightarrow \cdots \rightarrow A_{n-1} \rightarrow A_{n} \rightarrow A
$$

Then

$$
\vdash A
$$

Theorem 4.2.2 (Post tautology theorem) Suppose

$$
T \vdash A_{1}, \ldots, T \vdash A_{n}
$$

and

$$
A_{1}, \ldots, A_{n} \models A
$$

Then

$$
T \vdash A .
$$

Theorem 4.2.3 Every tautology in a first-order theory is a theorem of the theory.

The corollary to the tautology theorem given in the last chapter also holds for first-order theories. In the rest of this section, we shall prove some metatheorems involving terms, quantifiers, etc.

Lemma 4.2.4

$$
\vdash A \rightarrow \exists v_{1} \cdots \exists v_{n} A
$$

Proof. Applying the substitution axiom repeatedly, we get

$$
\begin{aligned}
& \vdash A \rightarrow \exists v_{n} A, \\
& \vdash \exists v_{n} A \rightarrow \exists v_{n-1} \exists v_{n} A, \\
& \vdots \\
& \vdash \exists v_{2} \ldots \exists v_{n} A \rightarrow \exists v_{1} \cdots \exists v_{n} A .
\end{aligned}
$$

Since $A \rightarrow \exists v_{1} \ldots \exists v_{n} A$ is a tautological consequence of the above formulas, the result follows from the tautology theorem.

Proposition 4.2.5 (\forall-introduction rule) If $\vdash A \rightarrow B$ and x is not free in A, then $\vdash A \rightarrow \forall x B$.

Proof. By the hypothesis and the tautology theorem, we have

$$
\vdash \neg B \rightarrow \neg A
$$

Then

$$
\vdash \exists x \neg B \rightarrow \neg A
$$

by the \exists-introduction rule. So,

$$
\vdash A \rightarrow \neg \exists x \neg B
$$

Hence,

$$
\vdash A \rightarrow \forall x B
$$

by the definition of \forall.

Proposition 4.2.6 (Generalization rule) If $\vdash A$, then $\vdash \forall x A$.
Proof. By the hypothesis and the expansion rule,

$$
\vdash \neg \forall x A \rightarrow A .
$$

Then, by the \forall-introduction rule (Proposition 4.2.5),

$$
\vdash \neg \forall x A \rightarrow \forall x A .
$$

The result follows by the tautology theorem.

Proposition 4.2.7 (Substitution rule) If B is an instance of A and if $\vdash A$, then $\vdash B$.

Proof. We first prove the result in a simple case. Suppose t is substitutable for v in A and B is $A_{v}[t]$. By the substitution axiom,

$$
\vdash \neg A_{v}[t] \rightarrow \exists v \neg A .
$$

So, by the tautology theorem,

$$
\vdash \forall v A \rightarrow B
$$

By hypothesis and the generalization rule,

$$
\vdash \forall v A .
$$

Hence

$$
\vdash B
$$

by the detachment rule.
Now let B be the formula $A_{v_{1}, \ldots, v_{n}}\left[t_{1}, \ldots, t_{n}\right]$. Let w_{1}, \ldots, w_{n} be variables, each different from v_{1}, \ldots, v_{n}, not occurring in A or B. By repeated application of the first part,

$$
\begin{gathered}
\vdash A_{v_{1}}\left[w_{1}\right], \\
\vdash A_{v_{1}, v_{2}}\left[w_{1}, w_{2}\right], \\
\vdots \\
\vdash A_{v_{1}, \ldots, v_{n}}\left[w_{1}, \ldots, w_{n}\right] .
\end{gathered}
$$

Let C designate the formula $A_{v_{1}, \ldots, v_{n}}\left[w_{1}, \ldots, w_{n}\right]$. Then B is the formula $C_{w_{1}, \ldots, w_{n}}\left[t_{1}, \ldots, t_{n}\right]$. By repeated application of the first part, we see that

$$
\begin{gathered}
\vdash C_{w_{1}}\left[t_{1}\right], \\
\vdash C_{w_{1}, w_{2}}\left[t_{1}, t_{2}\right], \\
\vdots \\
\vdash C_{w_{1}, \ldots, w_{n}}\left[t_{1}, \ldots, t_{n}\right] .
\end{gathered}
$$

Using Lemma 4.2.4, Proposition 4.2.6 and the substitution rule (Proposition 4.2.7), we get the following result.

Proposition 4.2.8 (Substitution theorem)

(a) $\vdash A_{v_{1}, \ldots, v_{n}}\left[t_{1}, \ldots, t_{n}\right] \rightarrow \exists v_{1} \cdots \exists v_{n} A$.
(b) $\vdash \forall v_{1} \cdots \forall v_{n} A \rightarrow A_{v_{1}, \ldots, v_{n}}\left[t_{1}, \ldots, t_{n}\right]$.

Proposition 4.2.9 (Closure theorem) Let B be the closure of A. Then $\vdash A$ if and only if $\vdash B$.

Proof. If A is a theorem, then B is a theorem by the generalization rule (Proposition 4.2.6).

Since $A=A_{v_{1}, \ldots, v_{n}}\left[v_{1}, \ldots, v_{n}\right]$, by the substitution theorem, $\vdash B \rightarrow A$. So, if $\vdash B, \vdash A$ by the detachment rule.

Exercise 4.2.10 Let $L\left(T^{\prime}\right)$ be an extension of $L(T)$. Show that the following statements are equivalent.
(i) The theory T^{\prime} is a conservative extension of T.
(ii) A sentence of T is a theorem of T^{\prime} if and only if it is a theorem of T.

Proposition 4.2.11 (Distribution rule) If $\vdash A \rightarrow B$, then

$$
\vdash \exists v A \rightarrow \exists v B
$$

and

$$
\vdash \forall v A \rightarrow \forall v B
$$

Proof. By the substitution axiom,

$$
\vdash B \rightarrow \exists v B
$$

By the hypothesis and the tautology theorem,

$$
\vdash A \rightarrow \exists v B
$$

So,

$$
\vdash \exists v A \rightarrow \exists v B
$$

by the \exists-introduction rule.
By the substitution theorem,

$$
\vdash \forall v A \rightarrow A .
$$

By the hypothesis and the tautology theorem,

$$
\vdash \forall v A \rightarrow B
$$

So,

$$
\vdash \forall v A \rightarrow \forall v B
$$

by the \forall-introduction rule.
Formulas A and B are called equivalent in T if

$$
T \vdash A \leftrightarrow B .
$$

We write $A \equiv_{T} B$ if A and B are equivalent in T.

Exercise 4.2.12 Show that \equiv_{T} is an equivalence relation on the set of all formulas of T.

Proposition 4.2.13 (Equivalence theorem) Let A^{\prime} be obtained from A by simultaneously replacing subformulas B_{1}, \ldots, B_{n} by $B_{1}^{\prime}, \ldots, B_{n}^{\prime}$ respectively. Assume that

$$
\vdash B_{i} \leftrightarrow B_{i}^{\prime},
$$

$1 \leq i \leq n$. Then

$$
\vdash A \leftrightarrow A^{\prime}
$$

Proof. If A is one of the formulas B_{i}, then there is nothing to prove. We assume that this is not the case and prove the result by induction on the length of A.

Let A be a formula of the form $\neg B$. Then A^{\prime} is $\neg B^{\prime}$, where B^{\prime} is obtained by replacing subformulas B_{1}, \ldots, B_{n} by $B_{1}^{\prime}, \ldots, B_{n}^{\prime}$ respectively. Then

$$
\vdash B \leftrightarrow B^{\prime}
$$

by the induction hypothesis. So,

$$
\vdash A \leftrightarrow A^{\prime}
$$

by the tautology theorem.
The proof is similar if A is a formula of the form $B \vee C$.
Now assume that A is a formula of the form $\exists v B$. Then by the induction hypothesis,

$$
\vdash B \leftrightarrow B^{\prime}
$$

where B^{\prime} is obtained by replacing subformulas B_{1}, \ldots, B_{n} by $B_{1}^{\prime}, \ldots, B_{n}^{\prime}$ respectively. The result now follows from the distribution rule.

Sometimes there is difficulty in substituting a term t for a variable v in a formula A. Our next result shows a way to circumvent this.

Let B be obtained from A by a sequence of replacements of the following type: replace a subformula $\exists v C$ by a formula of the form $\exists w C_{v}[w]$, where w is not free in C. Then B is called a variant of the formula A.

Proposition 4.2.14 (Variant theorem) If B is a variant of A, then

$$
\vdash A \leftrightarrow B .
$$

Proof. By the equivalence theorem and the tautology theorem, we only need to show that

$$
\begin{equation*}
\vdash \exists v C \leftrightarrow \exists w C_{v}[w], \tag{1}
\end{equation*}
$$

where w is not free in C.
By the substitution axiom,

$$
\vdash C_{v}[w] \rightarrow \exists v C .
$$

So, by the \exists-introduction rule,

$$
\begin{equation*}
\vdash \exists w C_{v}[w] \rightarrow \exists v C \tag{2}
\end{equation*}
$$

On the other hand, since w is not free in C, the formula $\left(C_{v}[w]\right)_{w}[v]$ is C. In other words, if we replace free occurrences of v in C by w and then replace free occurrences of w by v, we get back C because w is not free in C. Hence, by the substitution axiom,

$$
\begin{equation*}
\vdash C \rightarrow \exists w C_{v}[w] . \tag{3}
\end{equation*}
$$

By the \exists-introduction rule,

$$
\begin{equation*}
\vdash \exists v C \rightarrow \exists w C_{v}[w] \tag{4}
\end{equation*}
$$

Since the formula in (1) is a tautological consequence of those in (2) and (4), (1) follows from the tautology theorem.

Proposition 4.2.15 (Symmetry theorem) For any two terms t and s,

$$
\vdash t=s \leftrightarrow s=t
$$

Proof. Let v and w be distinct variables. By the equality axioms,

$$
\vdash v=w \rightarrow v=v \rightarrow v=v \rightarrow w=v
$$

By the identity axiom and the tautology theorem,

$$
\vdash v=w \rightarrow w=v
$$

Substituting t for v and s for w, by the substitution rule,

$$
\vdash t=s \rightarrow s=t
$$

and

$$
\vdash s=t \rightarrow t=s
$$

The result now follows from the tautology theorem.

Proposition 4.2.16 (Equality theorem)

(a) Let a term s be obtained from t by replacing subterms t_{1}, \ldots, t_{n} by s_{1}, \ldots, s_{n} respectively. If

$$
\vdash t_{i}=s_{i},
$$

$1 \leq i \leq n$, then

$$
\vdash t=s .
$$

(b) Let a formula B be obtained from A by replacing some occurrences of terms t_{1}, \ldots, t_{n} in A not immediately following \exists or \forall by s_{1}, \ldots, s_{n} respectively. If

$$
\vdash t_{i}=s_{i}
$$

$1 \leq i \leq n$, then

$$
\vdash A \leftrightarrow B
$$

Proof. (a) We shall prove the result by induction on the rank of t.
If t is t_{i} for some i, s is the term s_{i} and there is nothing to be proved. This, in particular, shows that the result is true for t of rank 0 .

Let t be a term of the form $f a_{1} \cdots a_{k}$. Then, the t_{i} 's are subterms of the a_{j} 's. (Why?) Let a_{j}^{\prime} be the term obtained from a_{j} by replacing appropriate occurrences of terms t_{1}, \ldots, t_{n} by s_{1}, \ldots, s_{n} respectively. Then by the induction hypothesis,

$$
\vdash a_{j}=a_{j}^{\prime}
$$

$1 \leq j \leq k$. We have the equality axiom

$$
x_{1}=y_{1} \rightarrow \cdots \rightarrow x_{k}=y_{k} \rightarrow f x_{1} \cdots x_{k}=f y_{1} \cdots y_{k}
$$

So, the result follows from the substitution rule and the tautology theorem.
(b) We prove the result by induction on the rank of A.

Assume A is an atomic formula of the form $p a_{1} \cdots a_{k}$. Then the t_{i} 's are subterms of the a_{j} 's. Let a_{j}^{\prime} be the term obtained from a_{j} by replacing appropriate occurrences of terms t_{1}, \ldots, t_{n} by s_{1}, \ldots, s_{n} respectively. Then B is the formula $p a_{1}^{\prime} \cdots a_{k}^{\prime}$. By (a),

$$
\vdash a_{j}=a_{j}^{\prime},
$$

$1 \leq j \leq k$. We have the equality axiom

$$
\vdash x_{1}=y_{1} \rightarrow \cdots \rightarrow x_{k}=y_{k} \rightarrow p x_{1} \cdots x_{k} \rightarrow p y_{1} \cdots y_{k}
$$

By the substitution rule and the tautology theorem,

$$
\vdash p a_{1} \cdots a_{k} \rightarrow p a_{1}^{\prime} \cdots a_{k}^{\prime} .
$$

Since by the symmetry theorem,

$$
\vdash a_{j}^{\prime}=a_{j}
$$

by the tautology theorem,

$$
\vdash p a_{1}^{\prime} \cdots a_{k}^{\prime} \rightarrow p a_{1} \cdots a_{k}
$$

Hence,

$$
\vdash p a_{1} \cdots a_{k} \leftrightarrow p a_{1}^{\prime} \cdots a_{k}^{\prime}
$$

by the tautology theorem.
Let A be a formula of the form $\exists v C$. Then, by the hypothesis in (b), B is the formula $\exists v D$, where D is obtained from C by replacing appropriate occurrences of terms t_{1}, \ldots, t_{n} by s_{1}, \ldots, s_{n} respectively. By the induction hypothesis,

$$
\vdash C \leftrightarrow D .
$$

The result follows from the distribution rule and the tautology theorem. The cases in which A is of the form $\neg C$ or $C \vee D$ are dealt with similarly.

In mathematics, while proving a sentence of the form $A \rightarrow B$, quite often one assumes A and then proves B. This means that one adds A as a new axiom and proves B in this extension of T. We now show that this is a correct method of proving $A \rightarrow B$ in T.

Recall that we designated the simple extension of a theory T obtained by adding a set Γ of formulas as new axioms by $T[\Gamma]$. If $\Gamma=\left\{A_{1}, \ldots, A_{n}\right\}$, we shall write $T\left[A_{1}, \ldots, A_{n}\right]$ instead of $T(\Gamma)$.

Proposition 4.2.17 (Deduction theorem) Let A be a closed formula. Then

$$
T \vdash A \rightarrow B
$$

if and only if

$$
T[A] \vdash B .
$$

Proof. Suppose

$$
T \vdash A \rightarrow B .
$$

Then

$$
T[A] \vdash A \rightarrow B
$$

Also

$$
T[A] \vdash A .
$$

So,

$$
T[A] \vdash B
$$

by the detachment rule.
Now assume that

$$
T[A] \vdash B
$$

Fix a proof of A_{1}, \ldots, A_{n} of B in $T[A]$. By induction on i, we shall prove that

$$
T \vdash A \rightarrow A_{i}
$$

for $1 \leq i \leq n$, which will complete the proof.
The formula A_{1} is an axiom of $T[A]$. If A_{1} is an axiom of T, then

$$
T \vdash A_{1} .
$$

Hence,

$$
T \vdash A \rightarrow A_{1}
$$

by the expansion rule. In case A_{1} is A,

$$
T \vdash A \rightarrow A
$$

by the propositional axiom.
Assume the hypothesis for all $j<i$. If A_{i} is an axiom of $T[A]$, we have already proved that

$$
T \vdash A \rightarrow A_{i} .
$$

If A_{i} is inferred from $\left\{A_{j}: j<i\right\}$ using a rule of inference other than the \exists-introduction rule, then A_{i} is a tautological consequence of $\left\{A_{j}: j<i\right\}$. But then $A \rightarrow A_{i}$ is a tautological consequence of $\left\{A \rightarrow A_{j}: j<i\right\}$. By the induction hypothesis,

$$
T \vdash A \rightarrow A_{j}
$$

for every $j<i$. Hence,

$$
T \vdash A \rightarrow A_{i}
$$

by the tautology theorem.
Now assume that A_{i} is inferred from some $A_{j}, j<i$, by the \exists-introduction rule. So, A_{j} is a formula of the form $B \rightarrow C, A_{i}$ of the form $\exists v B \rightarrow C$, where v is not free in C. By the induction hypothesis,

$$
T \vdash A \rightarrow B \rightarrow C ;
$$

by the tautology theorem,

$$
T \vdash B \rightarrow A \rightarrow C .
$$

Since A is closed, v is not free in $A \rightarrow C$. Hence by the \exists-introduction rule,

$$
T \vdash \exists v B \rightarrow A \rightarrow C ;
$$

by the tautology theorem,

$$
T \vdash A \rightarrow \exists v B \rightarrow C
$$

i.e.,

$$
T \vdash A \rightarrow A_{i} .
$$

Corollary 4.2.18 If A_{1}, \ldots, A_{n} are closed, then

$$
T\left[A_{1}, \ldots, A_{n}\right] \vdash B \Longleftrightarrow T \vdash A_{1} \rightarrow \cdots \rightarrow A_{n} \rightarrow B .
$$

Exercise 4.2.19 For any consistent theory T that has a model with more than one point, show that

$$
T[x=y] \vdash \forall x \forall y(x=y)
$$

but

$$
T \nvdash x=y \rightarrow \forall x \forall y(x=y) .
$$

Thus, the deduction theorem is not true if the A 's are not closed.
Proposition 4.2.20 (Theorem on constants) Let T^{\prime} be obtained from T by adding new constants but no new nonlogical axioms. Then T^{\prime} is a conservative extension of T.

Proof. By the definition of conservative extension, we need to show that for any formula φ of T,

$$
T^{\prime} \vdash \varphi \Rightarrow T \vdash \varphi
$$

Suppose

$$
T^{\prime} \vdash \varphi
$$

Hence, by the substitution rule,

$$
T^{\prime} \vdash \varphi_{v_{1}, \ldots, v_{n}}\left[c_{1}, \ldots, c_{n}\right]
$$

where v_{1}, \ldots, v_{n} are all the variables free in φ and c_{1}, \ldots, c_{n} are new constants.

Fix a proof of $\varphi_{v_{1}, \ldots, v_{n}}\left[c_{1}, \ldots, c_{n}\right]$ in T^{\prime} and replace all occurrences of c_{1}, \ldots, c_{n} in the proof by distinct variables w_{1}, \ldots, w_{n} respectively that do not occur in the proof. Note that we have thus obtained a proof of $\psi=\varphi_{v_{1}, \ldots, v_{n}}\left[w_{1}, \ldots, w_{n}\right]$ in T. Since $\varphi=\psi_{v_{1}, \ldots, v_{n}}\left[w_{1}, \ldots, w_{n}\right]$, the result now follows from the substitution rule.

Proposition 4.2.21 Let t, t_{1}, \ldots, t_{n} and s_{1}, \ldots, s_{n} be terms. Then

$$
\vdash t_{1}=s_{1} \rightarrow \cdots \rightarrow t_{n}=s_{n} \rightarrow t\left[t_{1}, \ldots, t_{n}\right]=t\left[s_{1}, \ldots, s_{n}\right] .
$$

Proof. Replace each variable occurring in a t_{i} or in an s_{i} by a new constant. Designate the extension of T thus obtained by T^{\prime}. Let t_{i} become t_{i}^{\prime}, s_{i} become s_{i}^{\prime}, and t become t^{\prime}. By the theorem on constants, it suffices to prove that

$$
T^{\prime} \vdash t_{1}^{\prime}=s_{1}^{\prime} \rightarrow \cdots \rightarrow t_{n}^{\prime}=s_{n}^{\prime} \rightarrow t^{\prime}\left[t_{1}^{\prime}, \ldots, t_{n}^{\prime}\right]=t^{\prime}\left[s_{1}^{\prime}, \ldots, s_{n}^{\prime}\right]
$$

By the deduction theorem, this will follow from

$$
T^{\prime}\left[t_{1}^{\prime}=s_{1}^{\prime}, \ldots, t_{n}^{\prime}=s_{n}^{\prime}\right] \vdash t^{\prime}\left[t_{1}^{\prime}, \ldots, t_{n}^{\prime}\right]=t^{\prime}\left[s_{1}^{\prime}, \ldots, s_{n}^{\prime}\right] .
$$

This follows from the equality theorem.

In the same way we prove the following result.
Proposition 4.2.22 Let t_{1}, \ldots, t_{n} and s_{1}, \ldots, s_{n} be terms and A a formula of L. Then

$$
\vdash t_{1}=s_{1} \rightarrow \cdots \rightarrow t_{n}=s_{n} \rightarrow\left(A\left[t_{1}, \ldots, t_{n}\right] \leftrightarrow A\left[s_{1}, \ldots, s_{n}\right]\right) .
$$

Proposition 4.2.23 Let a variable v not occur in the term t and let A be a formula of L such that t is substitutable for v in A. Then

$$
\vdash A_{v}[t] \leftrightarrow \exists v(v=t \wedge A)
$$

Proof. By Proposition 4.2.22,

$$
\vdash v=t \rightarrow\left(A \leftrightarrow A_{v}[t]\right) .
$$

So, by the tautology theorem,

$$
\vdash(v=t \wedge A) \rightarrow A_{v}[t] .
$$

By the \exists-introduction rule,

$$
\vdash \exists v(v=t \wedge A) \rightarrow A_{v}[t] .
$$

On the other hand, by the substitution axiom,

$$
\vdash\left(t=t \wedge A_{v}[t]\right) \rightarrow \exists v(v=t \wedge A)
$$

Since $\vdash t=t$, by the tautology theorem, it follows that

$$
\vdash A_{v}[t] \rightarrow \exists v(v=t \wedge A) .
$$

The result now follows from the tautology theorem.
Exercise 4.2.24 Let T be a first-order theory. Let \mathcal{O} be the smallest set of formulas that contains all atomic formulas and their negations and that is closed under disjunctions and conjunctions. Show that every open formula is equivalent in T to a formula in \mathcal{O}.

Exercise 4.2.25 Show that a formula of T of the form $\neg\left(f x_{1} \cdots x_{n}=y\right)$ is equivalent in T to a formula of the form

$$
\exists z\left(\neg(y=z) \wedge f x_{1} \cdots x_{n}=z\right)
$$

$y, z, x_{1}, \ldots, x_{n}$ distinct.
Exercise 4.2.26 (a) Show that

$$
\vdash \neg \exists v A \leftrightarrow \forall v \neg A .
$$

(b) Show that

$$
\vdash \neg \forall v A \leftrightarrow \exists v \neg A
$$

(c) If v is not free in B, show that

$$
\begin{aligned}
& \vdash \exists v A \vee B \leftrightarrow \exists v(A \vee B), \\
& \vdash \forall v A \vee B \leftrightarrow \forall v(A \vee B), \\
& \vdash B \vee \exists v A \leftrightarrow \exists v(B \vee A),
\end{aligned}
$$

and

$$
\vdash B \vee \forall v A \leftrightarrow \forall v(B \vee A)
$$

Exercise 4.2.27 Show the following:
(a) $\vdash \exists v(A \vee B) \leftrightarrow \exists v A \vee \exists v B$.
(b) $\vdash \forall v(A \wedge B) \leftrightarrow \forall v A \wedge \forall v B$.
(c) $\vdash \exists v(A \wedge B) \rightarrow \exists v A \wedge \exists v B$.
(d) $\vdash \forall v A \vee \forall v B \rightarrow \forall v(A \vee B)$.

Exercise 4.2.28 Give examples A and B of formulas of N such that the formulas

$$
\forall v(A \vee B) \rightarrow \forall v A \vee \forall v B
$$

and

$$
\exists v A \wedge \exists v B \rightarrow \exists v(A \wedge B)
$$

are not theorems of N.
Exercise 4.2.29 Let v and w be distinct variables. Show the following:
(a) $\vdash \exists v \exists w A \leftrightarrow \exists w \exists v A$.
(b) $\vdash \forall v \forall w A \leftrightarrow \forall w \forall v A$.
(c) $\vdash \exists v \forall w A \rightarrow \forall w \exists v A$.

Exercise 4.2.30 Give a formula of N of the form

$$
\forall v \exists w A \rightarrow \exists w \forall v A
$$

that is not a theorem.
A formula A is said to be in prenex form if it is in the form

$$
Q_{1} v_{1} \cdots Q_{n} v_{n} B
$$

where each Q_{i} is either \exists or \forall, and B open. Then $Q_{1} v_{1} \cdots Q_{n} v_{n}$ is called the prefix and B the matrix of A. A formula in prenex form is called existential if all the quantifiers in its prefix are \exists; a formula in prenex form is called universal if all the quantifiers in its prefix are \forall.

Exercise 4.2.31 Show that every formula is equivalent in T to a formula in prenex form whose matrix is of the form

$$
\wedge_{i=1}^{k} \vee_{j=1}^{n_{i}} B_{i j}
$$

where each $B_{i j}$ is either an elementary formula or the negation of an elementary formula.

4.3 Some Metatheorems in Arithmetic

In this section we prove a few metatheorems pertaining to the theories N and $P A$. They are needed to prove the first incompleteness theorem.
Proposition 4.3.1 For any formula A of N and any $n \in \mathbb{N}$,

$$
N \vdash A_{v}\left[k_{0}\right] \rightarrow \cdots \rightarrow A_{v}\left[k_{n-1}\right] \rightarrow v<k_{n} \rightarrow A .
$$

Proof. We prove the result by induction on n. For $n=0$, the result follows since $\neg(v<0)$ is an axiom of N.

Let the result be true for some n. By the axiom (8) of N,

$$
N \vdash v<k_{n+1} \leftrightarrow v<k_{n} \vee v=k_{n}
$$

By the equality theorem,

$$
N \vdash v=k_{n} \rightarrow\left(A \leftrightarrow A_{v}\left[k_{n}\right]\right) .
$$

Hence, by the induction hypothesis and the tautology theorem,

$$
N \vdash A_{v}\left[k_{0}\right] \rightarrow \cdots \rightarrow A_{v}\left[k_{n-1}\right] \rightarrow A_{v}\left[k_{n}\right] \rightarrow v<k_{n+1} \rightarrow A
$$

Proposition 4.3.2 Let $N \vdash \neg A_{v}\left[k_{i}\right]$ for all $i<n$ and $N \vdash A_{v}\left[k_{n}\right]$. Then

$$
N \vdash A \wedge \forall w\left(w<v \rightarrow \neg A_{v}[w]\right) \leftrightarrow v=k_{n} .
$$

Proof. Let B denote the formula

$$
A \wedge \forall w\left(w<v \rightarrow \neg A_{v}[w]\right)
$$

By the equality theorem,

$$
\begin{equation*}
N \vdash v=k_{n} \rightarrow\left(B \leftrightarrow B_{v}\left[k_{n}\right]\right) \tag{1}
\end{equation*}
$$

By Proposition 4.3.1, we have

$$
\begin{equation*}
N \vdash \neg\left(A_{v}[w]\right)_{w}\left[k_{0}\right] \rightarrow \cdots \rightarrow \neg\left(A_{v}[w]\right)_{w}\left[k_{n-1}\right] \rightarrow w<k_{n} \rightarrow \neg A_{v}[w] . \tag{2}
\end{equation*}
$$

Hence, by the hypothesis, the detachment rule, and the generalization rule,

$$
\begin{equation*}
N \vdash \forall w\left(w<k_{n} \rightarrow \neg A_{v}[w]\right) \tag{3}
\end{equation*}
$$

Since $N \vdash A_{v}\left[k_{n}\right]$, by (1) and (3) and the tautology theorem,

$$
\begin{equation*}
N \vdash v=k_{n} \rightarrow B \tag{4}
\end{equation*}
$$

By the substitution theorem, we have

$$
N \vdash \forall w\left(w<v \rightarrow \neg A_{v}[w]\right) \rightarrow\left(k_{n}<v \rightarrow \neg A_{v}\left[k_{n}\right]\right) .
$$

But $N \vdash A_{v}\left[k_{n}\right]$. Hence, by the tautology theorem,

$$
\begin{equation*}
N \vdash B \rightarrow \neg\left(k_{n}<v\right) . \tag{5}
\end{equation*}
$$

Since $N \vdash \neg A_{v}\left[k_{i}\right], i<n$, by Proposition 4.3.1 and the detachment rule,

$$
N \vdash v<k_{n} \rightarrow \neg A
$$

Hence,

$$
\begin{equation*}
N \vdash B \rightarrow \neg\left(v<k_{n}\right) . \tag{6}
\end{equation*}
$$

By the axiom (9) of N,

$$
\begin{equation*}
N \vdash v<k_{n} \vee v=k_{n} \vee k_{n}<v \tag{7}
\end{equation*}
$$

Hence, by (4)-(7) and the tautology theorem, we get

$$
N \vdash B \leftrightarrow v=k_{n} .
$$

Example 4.3.3 Peano arithmetic $P A$ is an extension of N.
This will follow if we show that the axiom (9)

$$
x<y \vee x=y \vee y<x
$$

of the theory N is a theorem of $P A$. We show this in three steps.
Step 1: $P A \vdash 0=y \vee 0<y$.
Let A be the formula $0=y \vee 0<y$. Then $P A \vdash A_{y}[0]$. By the axiom (8) of N (which is also an axiom of $P A$),

$$
P A \vdash A \leftrightarrow 0<S y .
$$

Also,

$$
P A \vdash 0<S y \rightarrow A_{y}[S y] .
$$

Hence,

$$
P A \vdash A \rightarrow A_{y}[S y] .
$$

So, by the induction axiom of P,

$$
P A \vdash A .
$$

Step 2: $P A \vdash x<y \rightarrow S x<S y$.
Let B be the formula $x<y \rightarrow S x<S y$. By the axiom (7) of N,

$$
P A \vdash B_{y}[0] .
$$

By the axiom (8) of N,

$$
P A \vdash B_{y}[S y] \leftrightarrow((x<y \vee x=y) \rightarrow(S x<S y \vee S x=S y))
$$

So, by the equality axiom,

$$
P A \vdash(x<y \vee x=y) \rightarrow(S x<S y \vee S x=S y)
$$

Hence,

$$
P A \vdash B \rightarrow B_{y}[S y] .
$$

By the induction axiom of $P A$,

$$
P A \vdash B
$$

Step 3: Let C denote the formula $x<y \vee x=y \vee y<x$. Since $P A \vdash A$ $\overline{\text { (Step 1), }}$

$$
P A \vdash C_{x}[0] .
$$

Since $P A \vdash B$ (Step 2), by the axiom (8) of N,

$$
P A \vdash x<y \rightarrow(S x<y \vee S x=y)
$$

and

$$
P A \vdash(y<x \vee y=x) \rightarrow y<S x .
$$

Hence,

$$
P A \vdash C \rightarrow C_{x}[S x] .
$$

So, by the induction axiom of P,

$$
P A \vdash C .
$$

Thus $P A$ is a finite extension of N.

Exercise 4.3.4 Let φ be a formula of $P A, x, y$ distinct, such that y does not occur in φ. Show the following:
(a) $P A \vdash \forall x\left(\forall y\left(y<x \rightarrow \varphi_{x}[y]\right) \rightarrow \varphi\right) \rightarrow \forall x \varphi$.
(b) $P A \vdash \exists x \varphi \rightarrow \exists x\left(\varphi \wedge \forall y\left(y<x \rightarrow \neg \varphi_{x}[y]\right)\right)$.

Exercise 4.3.5 Let φ be a formula of $P A$ in which no variable other than v_{1}, \ldots, v_{n} and w are free, v_{1}, \ldots, v_{n}, w distinct. Suppose $P A \vdash \exists w \varphi$. Let w^{\prime} be a new variable and ψ the formula

$$
\varphi \wedge \forall w^{\prime}\left(w^{\prime}<w \rightarrow \neg \varphi_{w}\left[w^{\prime}\right]\right)
$$

Show the following:
(a) $P A \vdash \exists w \psi$.
(b) $P A \vdash \psi \wedge \psi_{w}\left[w^{\prime \prime}\right] \rightarrow w=w^{\prime \prime}$.

4.4 Consistency and Completeness

A formula A is said to be undecidable in a theory T if neither A nor $\neg A$ is a theorem of T; otherwise, the formula is called decidable in T.

It is not reasonable to expect that in a theory all formulas would be decidable. For instance, the formula $v=0$ of N is undecidable in N. (Why?)

A theory T is called inconsistent if every formula of T is a theorem of T. Otherwise, the theory is called consistent.

While developing a theory axiomatically, one is naturally confronted with the question of the consistency of the theory. Proving consistency of theories is often a challenging task in mathematics. This is one of the most important topics in axiomatic set theory. Interested readers may see the excellent book of Kenneth Kunen [6].

Lemma 4.4.1 A theory T is inconsistent if and only if there is a formula A such that both A and $\neg A$ are theorems of T.

Proof. The necessary part of the result is clear. So, assume that A is such that $\vdash A$ as well as $\vdash \neg A$. Take any formula B. By the expansion axiom and Lemma 3.5.1, $\vdash A \vee B$ and $\vdash \neg A \vee B$. So, by the cut rule, $\vdash B \vee B$. Hence, $\vdash B$ by the contraction rule.

Remark 4.4.2 Since a proof is finite and in particular uses only a finite number of axioms, a theory is consistent if and only if each of its finitely axiomatized parts is consistent.

Lemma 4.4.3 If T has a model, then T is consistent.

Proof. Suppose T has a model M and it is inconsistent. Take a closed formula A. Then, both A and $\neg A$ are theorems of T. Hence, by the validity theorem, both are valid in M. This is a contradiction.

Exercise 4.4.4 Let T^{\prime} be an extension of T. If T^{\prime} is consistent, show that T is also consistent. Assume, moreover, that T^{\prime} is a conservative extension of T. Show that the converse is also true, i.e., if T is consistent, so is T.

The following is another useful result.
Proposition 4.4.5 Let B be the closure of A. Then $T \vdash A$ if and only if $T[\neg B]$ is inconsistent.

Proof. Suppose $T \vdash A$. Then by the closure theorem, $T \vdash B$, and hence $T[\neg B] \vdash B$. Hence, $T[\neg B]$ is inconsistent.

Now assume that $T[\neg B]$ is inconsistent. Then $T[\neg B] \vdash B$. So, by the deduction theorem, $T \vdash \neg B \rightarrow B$. Hence, by the tautology theorem, $T \vdash B$. Thus, $T \vdash A$ by the closure theorem.

Exercise 4.4.6 (Reduction theorem) Let Γ be a set of formulas of T. Then

$$
T[\Gamma] \vdash A
$$

if and only if there exist B_{1}, \ldots, B_{n}, each the closure of a formula in Γ, such that

$$
T \vdash B_{1} \rightarrow \cdots \rightarrow B_{n} \rightarrow A
$$

Theorem 4.4.7 (Completeness theorem, first form) A formula A of T is a theorem of T if and only if it is valid in T.

The only if part of the result is precisely the validity theorem.
There is an equivalent formulation, the form in which we shall prove it, of this result. The proof still requires some preparation. We postpone the proof to the next chapter.

Theorem 4.4.8 (Completeness theorem, second form) A theory T is consistent if and only if it has a model.

We now show that the two forms are equivalent.
Assume the first form of the completeness theorem. Let T be consistent. Let B be a closed formula that is not a theorem of T. So, by the first form, it is not valid in T. This, in particular, gives us a model of T.

Now assume the second form of the completeness theorem. By the closure theorem, without loss of generality we assume that A is closed. By Proposition 4.4.5,

$$
T \vdash A \Leftrightarrow T[\neg A] \text { is inconsistent. }
$$

By the second form, $T[\neg A]$ is inconsistent if and only if it has no model. Since A is closed, a model of $T[\neg A]$ is a model of T in which A is not valid. Hence, A is a theorem of T if and only if it is valid in T.

A theory T is called complete if it is consistent and if every closed formula is decidable in T.

Remark 4.4.9 The importance of giving a complete set of axioms in the above sense cannot be overemphasized. Let T be a theory with a model M. Let T^{\prime} be the simple extension of T whose nonlogical axioms are precisely those sentences that are valid in M. We designate this theory by $T h(M)$. Clearly $T h(M)$ is complete. However, we may not be able to mechanically decide whether a sentence is valid in M. This is obviously not a satisfactory situation. A theory for which there is an algorithm to decide whether a formula is an axiom is called an axiomatized theory. In an epoch making discovery, Gödel showed that for most of the theories this is impossible. After introducing the notion of an algorithm, we shall briefly study axiomatized theories in Chapter 6.

Exercise 4.4.10 Let T be a complete theory and A, B closed formulas of T. Show that
(a) $T \vdash A \vee B \Longleftrightarrow(T \vdash A$ or $T \vdash B)$.
(b) $T \vdash A \wedge B \Longleftrightarrow(T \vdash A$ and $T \vdash B)$.

We close this section by proving the following theorem, due to Adolf Lindenbaum, which will be used to prove the completeness theorem in the next chapter. This will be proved by Zorn's lemma and Proposition 4.4.5.

Theorem 4.4.11 (Lindenbaum's theorem) Every consistent theory T admits a simple complete extension.

Proof. Let \mathbb{P} be the family of subsets Γ of the set of formulas of T such that $T[\Gamma]$ is consistent. Since T is consistent, $\mathbb{P} \neq \emptyset .(\emptyset \in \mathbb{P}$. $)$ Partially order \mathbb{P} by inclusion \subset. Let \mathbb{C} be a chain in \mathbb{P} and $\Gamma=\cup \mathbb{C}$. Since every proof is finite, $\Gamma \in \mathbb{P}$. So, by Zorn's lemma, \mathbb{P} has a maximal element, say Δ.

Set $T^{\prime}=T[\Delta]$. Clearly, T^{\prime} is a simple consistent extension of T.
We claim that T^{\prime} is complete. Let A be a closed formula of T that is not a theorem of T^{\prime}. In particular, $A \notin \Delta$. We must show that $T^{\prime} \vdash \neg A$. If not, then by Proposition 4.4.5, $T^{\prime}[A]$ is consistent, contradicting the maximality of Δ.

5

Completeness Theorem and Model Theory

5.1 Completeness Theorem

In this section we prove the completeness theorem for first-order logic. We shall prove it in its second form (Theorem 4.4.8). The result for countable theories was first proved by Gödel in 1930. The result in its complete generality was first observed by Malcev in 1936. The proof given below is due to Leo Henkin.

Theorem 5.1.1 (Completeness theorem) Every consistent first-order theory T has a model.

Since we have only syntactical objects at hand, a model of T has to be built out of these. Since syntactical objects that designate individuals of a model are variable-free terms of the language of T, it seems quite natural to start with these. However, T may have no constants. In that case, we add at least one constant to T and no other nonlogical axiom. By the theorem on constants, the theory T^{\prime} thus obtained is a conservative extension of T, and so consistent. Further, the restriction of any model of T^{\prime} to $L(T)$ is a model of T. Thus, without any loss of generality, we assume that T has at least one constant symbol.

Let N be the set of all variable-free terms. Let a and b be variable-free terms such that $T \vdash a=b$. Then interpretations of a and b in any model of T are the same individuals. This leads us to define a binary relation on N as follows:

$$
a \sim b \text { if } T \vdash a=b,
$$

where a, b belong to N.
Lemma 5.1.2 The binary relation \sim is an equivalence relation on N.
Proof. (i) The relation \sim is reflexive, i.e., for every variable-free term t,

$$
T \vdash t=t
$$

This is so by the identity axiom and the substitution rule.
(ii) It is symmetric by the symmetry theorem (Proposition 4.2.15) and the tautology theorem.
(iii) By the equality axiom and the substitution rule,

$$
\vdash s=t \rightarrow t=u \rightarrow s=u
$$

Hence, the relation is transitive by the detachment rule.
We set M to be the set of \sim-equivalence classes. For any $a \in N$, let $[a]$ denote the equivalence class containing a. Since T has constant symbols, M is nonempty. The set M will be the universe of our intended model.

We now define the interpretations of the nonlogical symbols of T in M in a natural way:

$$
\begin{aligned}
c_{M} & =[c] \\
f_{M}\left(\left[a_{1}\right], \ldots,\left[a_{n}\right]\right) & =\left[f a_{1} \cdots a_{n}\right],
\end{aligned}
$$

and

$$
p_{M}\left(\left[a_{1}\right], \ldots,\left[a_{n}\right]\right) \text { if and only if } T \vdash p a_{1} \cdots a_{n}
$$

In the above definitions, c is a constant symbol (so a variable-free term), a_{1}, \ldots, a_{n} are variable-free terms, f an n-ary function symbol, and p an n-ary relation symbol. The above functions and relations on M are welldefined by the equality theorem (Proposition 4.2.16).

We have now defined a structure M for the language of T. The structure M is called the canonical structure for the language of T. By induction on the length of expressions, the following result is quite routine to prove.

Lemma 5.1.3 Let a be a variable-free term and A a variable-free open formula of T. Then
(a) $a_{M}=[a]$.
(b) $T \vdash A \Longleftrightarrow M \models A$.

Is the canonical structure for $L(T)$ a model of T ? A moment's reflection will tell us that T ought to have many constants. For instance, suppose $T \vdash \exists v A$, where v is the only free variable in A. In order that $\exists v A$ be valid in M, there should be a variable-free term t such that $T \vdash A_{v}[t]$.

In a very special case, we prove that the canonical structure of $L(T)$ is a model of T.

A theory T is called a Henkin theory if for every closed formula of the form $\exists x A$ there is a constant symbol, say c, in $L(T)$ such that

$$
T \vdash \exists x A \rightarrow A_{x}[c] .
$$

An extension of T that is Henkin is called a Henkin extension of T.
We have the following theorems.
Theorem 5.1.4 Every theory T has a conservative Henkin extension T^{\prime}. In particular, if T is consistent, so is T^{\prime}.

We shall give a proof of this later in the section.
So, we fix a conservative Henkin extension T^{\prime} of T. Since T is consistent, T^{\prime} is consistent. By Lindenbaum's theorem (Theorem 4.4.11), T^{\prime} has a complete simple extension $T^{\prime \prime}$. Since $T^{\prime \prime}$ is a simple extension of a Henkin theory, it is clearly a Henkin theory.

So, the completeness theorem will follow from the following theorem.
Theorem 5.1.5 If $T^{\prime \prime}$ is a complete Henkin theory, then the canonical structure for $T^{\prime \prime}$ is a model of $T^{\prime \prime}$.

Proof. By the closure theorem, the result will be proved if we show the following:

For every closed formula A,

$$
\begin{equation*}
T^{\prime \prime} \vdash A \text { if and only if } M \models A \text {. } \tag{*}
\end{equation*}
$$

The proof of $(*)$ proceeds by induction on the number of times the logical symbols \vee, \neg, and \exists occur in A. This number is called the height of A.

By definition of $M,(*)$ holds for all atomic A.
Suppose B is the closed formula $\neg A$ and that (*) holds for A. Let $T^{\prime \prime} \vdash B$. Since $T^{\prime \prime}$ is consistent, it follows that $T^{\prime \prime} \forall A$. By the induction hypothesis, it follows that $M \not \vDash A$. But then $M \models B$. Conversely, suppose $T^{\prime \prime} \nvdash B$. Since $T^{\prime \prime}$ is complete, this implies that $T^{\prime \prime} \vdash A$. By the induction hypothesis, $M \models A$. So $M \not \vDash B$.

Now suppose $A=B \vee C$, and ($*$) holds for B and C. We can show that $(*)$ holds for A using similar arguments and Exercise 4.4.10.

Suppose B is the closed formula $\exists x A$ and $(*)$ holds for all formulas of height less than the height of B. Let $T^{\prime \prime} \vdash \exists x A$. Since $T^{\prime \prime}$ is a Henkin theory, there is a constant symbol c such that

$$
T^{\prime \prime} \vdash \exists x A \rightarrow A_{x}[c]
$$

By the detachment rule, it follows that

$$
T^{\prime \prime} \vdash A_{x}[c] .
$$

By the induction hypothesis, $M \models A_{x}[c]$. Let $m=c_{M}$. Since $c_{M}=\left(i_{m}\right)_{M}$, $M \models A_{x}\left[i_{M}\right]$. Hence $M \models B$. Conversely, suppose $M \models B$. Then there is an $m \in M$ such that $M \models A_{x}\left[i_{m}\right], i_{m}$ the name for m in the language L_{M}. Let $m=[a]$ for some variable-free term a. By Lemma 5.1.3, $a_{M}=\left(i_{m}\right)_{M}=m$, i.e., $M \models a=i_{m}$. Hence, $M \models A_{x}[a]$. By the induction hypothesis,

$$
T^{\prime \prime} \vdash A_{x}[a] .
$$

Since $A_{x}[a] \rightarrow \exists x A$ is a substitution axiom, by the detachment rule,

$$
T^{\prime \prime} \vdash B
$$

It only remains to prove Theorem 5.1.4. We first define T^{\prime}. Set $T_{0}=T$. Suppose T_{n} has been defined. We define an extension T_{n+1} of T_{n} as follows: for each closed formula of T_{n} of the form $\exists x A$, add a new symbol, say $c_{\exists x A}$, and a new axiom $\exists x A \rightarrow A_{x}\left[c_{\exists x A}\right]$. The new constant symbols added to T_{n-1} to define T_{n} will be called special constants of level n; If c is the special constant for $\exists x A$, the axiom $\exists x A \rightarrow A_{x}[c]$ will be called the special axiom for c.

Now let T^{\prime} be the theory whose language is the "union" of the languages of the T_{n} 's, i.e., nonlogical symbols (nonlogical axioms) of T^{\prime} are precisely those that are nonlogical symbols (respectively nonlogical axioms) of some T_{n}. Clearly, T^{\prime} is a Henkin theory.

Claim. The Henkin extension T^{\prime} of T is a conservative extension of T.
Proof of the claim. Our claim will be established if we show that for each n, T_{n+1} is a conservative extension of T_{n}. To see this, observe the following: Let A be a formula of T and a theorem of T^{\prime}. Since every proof of A in T^{\prime} contains only finitely many axioms and finitely many special constants, $T_{n} \vdash A$ for some n.

Let T_{n}^{c} be the extension of T_{n} obtained by adding all special constants of level $n+1$ but no new nonlogical axiom. By the theorem on constants, T_{n}^{c} is a conservative extension of T_{n}. Hence, our proof will be complete if we show that T_{n+1} is a conservative extension of T_{n}^{c}.

Let A be a formula of T_{n}^{c} such that $T_{n+1} \vdash A$. By the reduction theorem, there exist distinct special axioms for special constants of level $n+1$, B_{1}, \ldots, B_{k}, such that

$$
T_{n}^{c} \vdash B_{1} \rightarrow \cdots \rightarrow B_{k} \rightarrow A
$$

Suppose B_{1} is the formula $\exists x C \rightarrow C_{x}[c]$, where c is the special constant for $\exists x C$. Since the B_{i} 's are distinct, it follows that c does not occur in B_{2}, \ldots, B_{k}.

Let y be a variable not occurring in $B_{1} \rightarrow \cdots \rightarrow B_{k} \rightarrow A$. Then, by the theorem on constants,

$$
T_{n}^{c} \vdash\left(\exists x C \rightarrow C_{x}[y]\right) \rightarrow B_{2} \rightarrow \cdots \rightarrow B_{k} \rightarrow A .
$$

Hence, by the \exists-introduction rule,

$$
T_{n}^{c} \vdash \exists y\left(\exists x C \rightarrow C_{x}[y]\right) \rightarrow B_{2} \rightarrow \cdots \rightarrow B_{k} \rightarrow A
$$

Now,

$$
T_{n}^{c} \vdash \exists x C \rightarrow \exists y C_{x}[y]
$$

by the variant theorem. Since y does not occur in $\exists x C$, it follows that

$$
T_{n}^{c} \vdash \exists y\left(\exists x C \rightarrow C_{x}[y]\right)
$$

By the detachment rule,

$$
T_{n}^{c} \vdash B_{2} \rightarrow \cdots \rightarrow B_{k} \rightarrow A
$$

Proceeding similarly, in k steps, we show that

$$
T_{n}^{c} \vdash A
$$

The completeness theorem is a very important result in mathematical logic. It shows that our definition of proof is a correct one. Besides, it is quite useful. Instead of giving the tedious syntactical proofs, now one can establish results using the notion of truth. This is often an easier job. Further, arguments no longer depend on logical axioms and rules of inference.

The model of T obtained as above is called the Henkin model of T.
Let κ be an infinite cardinal. Recall that a theory T is called a κ-theory if its language has at most κ nonlogical symbols.

Theorem 5.1.6 Let κ be an infinite cardinal and T a consistent κ-theory. Then there is a model M of T such that $|M| \leq \kappa$.

Proof. The model M obtained in the proof is of cardinality at most κ. (We invite the reader to prove it.)

Exercise 5.1.7 Let $L\left(T^{\prime}\right)$ be an extension of $L(T)$. Show that T^{\prime} is an extension of T if and only if the restriction of every model of T^{\prime} to $L(T)$ is a model of T.

Exercise 5.1.8 Show that two theories are equivalent if and only if they have the same models.

Proposition 5.1.9 Any finite set of first-order sentences that is valid in the theory T of torsion-free abelian groups is true in some abelian group with torsion. Hence, the theory of torsion-free abelian groups is not finitely axiomatizable.

Proof. Let A_{1}, \ldots, A_{n} be sentences of T that are valid in T. So, these are theorems of T. Since every proof of $A_{i}, 1 \leq i \leq n$, contains only finitely many axioms P_{m} of the form

$$
\forall x(\neg(x=0) \rightarrow \neg(m x=0)),
$$

there is a natural number k such that A_{i} has a proof in T without using axioms P_{i} for $i>k$. Since there are abelian groups such that the order of each of its elements is $\leq k$, the theory T^{\prime} that is an extension of the theory of abelian groups and whose new axioms are $P_{i}, i>k$, is consistent. Hence it has a model. The result now follows.

Exercise 5.1.10 Show the following:
(i) The theory of torsion-free abelian groups is not finitely axiomatizable.
(ii) The theory of divisible abelian groups is not finitely axiomatizable.
(iii) Any finite set of first-order sentences of the theory of fields that are valid in the theory of fields of characteristic zero are valid in fields of characteristic p for all large p.
(iv) The theory of fields of characteristic 0 is not finitely axiomatizable.

5.2 Interpretations in a Theory

In this section we define an interpretation of a theory T in another theory T^{\prime}. Semantically, this would mean that given any model of T^{\prime} one can define a model of T. For instance, starting from the Peano axioms, we construct rational numbers and show that they form a field. Thus we can say that field theory has a model in Peano arithmetic.

Let L an L^{\prime} be first-order languages. An interpretation I of L in L^{\prime} consists of:
(a) a unary predicate symbol U_{I} of L^{\prime}, called the universe of L;
(b) for each constant symbol c of L, a constant symbol c_{I} of L^{\prime};
(c) for each n-ary function symbol f of L, an n-ary function symbol f_{I} of L^{\prime};
(d) for each n-ary relation symbol p of L other than $=$, an n-ary relation symbol p_{I} of L^{\prime}.

Let I be an interpretation of L in L^{\prime} as above and t a term of L. The term, designated by t_{I}, of L^{\prime} obtained from t by replacing each nonlogical symbol u of L by u_{I} is called the interpretation of t by I.

An interpretation of L in a theory T^{\prime} is an interpretation I of L in $L\left(T^{\prime}\right)$ such that

$$
\begin{gather*}
T^{\prime} \vdash U_{I}\left(c_{I}\right), \tag{1}\\
T^{\prime} \vdash \exists x U_{I} x, \tag{2}
\end{gather*}
$$

and

$$
\begin{equation*}
T^{\prime} \vdash U_{I} x_{1} \rightarrow \cdots \rightarrow U_{I} x_{n} \rightarrow U_{I} f_{I} x_{1} \ldots x_{n} \tag{3}
\end{equation*}
$$

for each n-ary function symbol f of L.
The first condition requires that T^{\prime} prove that the universe U_{I} contains c_{I}; the second requires that T^{\prime} prove that U_{I} is nonempty; the third requires that in the theory T^{\prime}, f_{I} be an n-ary function whose restriction to U_{I} takes values in U_{I}. An interpretation I of L in T^{\prime} may be thought of as a structure of L in T^{\prime} where the underlying universe is U_{I}.

Let A be a formula of L. We now proceed to define a formula A^{I} of L^{\prime} such that $T^{\prime} \vdash A^{I}$ will mean that A is true in the structure U_{I}. Let A_{I} be the formula of $L\left(T^{\prime}\right)$ obtained from A by replacing each nonlogical symbol u occurring in A by u_{I} and also replacing each subformula of A of the type $\exists x B$ by $\exists x\left(U_{I} x \wedge B_{I}\right)$. More precisely, we define A_{I} by induction on the rank of A. For atomic formulas, we obtain A_{I} from A by replacing each nonlogical symbol u occurring in A by u_{I}. If A is $\neg B$ or $B \vee C, A_{I}$ is $\neg B_{I}$ or $B_{I} \vee C_{I}$ respectively. If A is $\exists x B, A_{I}$ is $\exists x\left(U_{I} x \wedge B_{I}\right)$.

Finally, if v_{0}, \ldots, v_{n-1} are all the variables free in A (and hence in A_{I}) in alphabetical order, then A^{I} is the formula

$$
U_{I} v_{0} \rightarrow \cdots \rightarrow U_{I} v_{n-1} \rightarrow A_{I} .
$$

Note that if A is closed, then A^{I} is the formula A_{I}.
An interpretation of a theory T in a theory T^{\prime} is an interpretation I of $L(T)$ in $L\left(T^{\prime}\right)$ such that for every nonlogical axiom A of $T, T^{\prime} \vdash A^{I}$.

Theorem 5.2.1 If T has an interpretation in T^{\prime} and if T^{\prime} is consistent, then so is T.

Proof. Let I be an interpretation of T in T^{\prime} with universe U_{I}. Since T^{\prime} is consistent, by the completeness theorem, it has a model M.

Set

$$
N=\left(U_{I}\right)_{M} .
$$

By (1) and the validity theorem, N is a nonempty set. For any relation symbol p of T, let p_{N} be the restriction of $\left(p_{I}\right)_{M}$ to N. Now take a n-ary function symbol f of T. By (2) and the validity theorem, N is closed under $\left(f_{I}\right)_{M}$. We define f_{N} to be the restriction of $\left(f_{I}\right)_{M}$ to N. Thus, N is a structure for $L(T)$.

Now let A be a nonlogical axiom of T. Then $T^{\prime} \vdash A^{I}$. Hence, by the validity theorem, $M \models A^{I}$. Now it is quite easy to check that $N \models A$. So N is a model of T.

5.3 Extension by Definitions

In a theory we begin with the minimal number possible of undefined concepts (constant, function, and predicate symbols of the theory). Axioms of the theory state their basic properties. But as the theory develops, more and more concepts are introduced and they are treated as an integral part of the theory. For instance, in number theory, subtraction is not a nonlogical symbol of N. It is defined later. Similarly, in set theory, \subset (inclusion) is a defined concept and not a nonlogical symbol of the language for set theory. Results proved using these concepts are taken as theorems of the original theory. In this section, we show that this is a logically correct process.

Let $\varphi\left[v_{1}, \ldots, v_{n}\right], v_{i}$'s distinct, be a formula of T. We form an extension T^{\prime} of T by adding a new n-ary relation symbol p and adding a new nonlogical axiom

$$
\begin{equation*}
p v_{1} \cdots v_{n} \longleftrightarrow \varphi . \tag{1}
\end{equation*}
$$

The formula (1) is called the defining axiom for p.
Example 5.3.1 In $Z F$, if we add a binary relation symbol \subset and a new axiom

$$
x \subset y \longleftrightarrow \forall z(z \in x \rightarrow z \in y)
$$

we get an extension by definition of $Z F$ in which \subset (subset) is a defined concept.

Proposition 5.3.2 Let $\varphi\left[v_{1}, \ldots, v_{n}\right]$ be a formula of T and let T^{\prime} be obtained from T by adding a new n-ary relation symbol p with

$$
p v_{1} \cdots v_{n} \longleftrightarrow \varphi
$$

as its defining axiom. Then T^{\prime} is a conservative extension of T.
Proof. Let A be a formula of T that is a theorem of T^{\prime}. By the completeness theorem, the proof will be complete if we show that A is valid in T. Let M be a model of T. Interpret p in M as follows: For $a_{1}, \ldots, a_{n} \in M$,

$$
p\left(a_{1}, \ldots, a_{n}\right) \Longleftrightarrow M \models \varphi_{v_{1}, \ldots, v_{n}}\left[i_{a_{1}}, \ldots, i_{a_{n}}\right] .
$$

Thus, we get a model M^{\prime} of T^{\prime}. By the validity theorem,

$$
M^{\prime} \mid=A .
$$

But this implies that

$$
M \models A
$$

Now we consider a similar method of adding a function symbol to a theory. Let v_{0}, \ldots, v_{n-1} and w, w^{\prime} be distinct variables and $\varphi\left[v_{0}, \ldots, v_{n-1}, w\right]$ a formula of T. Further, assume that

$$
\begin{equation*}
T \vdash \exists w \varphi \tag{i}
\end{equation*}
$$

and

$$
\begin{equation*}
T \vdash\left(\varphi \wedge \varphi_{w}\left[w^{\prime}\right]\right) \rightarrow w=w^{\prime} \tag{ii}
\end{equation*}
$$

Informally speaking, conditions (i) and (ii) say that for all v_{0}, \ldots, v_{n-1}, there is a unique w "satisfying" φ. We form T^{\prime} from T by adding a new n-ary function symbol f and a new nonlogical axiom

$$
\begin{equation*}
w=f v_{0} \cdots v_{n-1} \longleftrightarrow \varphi \tag{iii}
\end{equation*}
$$

The formula (iii) is called the defining axiom for f.
Example 5.3.3 In $Z F$, (after adding \subset), consider the following formula $\varphi[x, y]$:

$$
\forall z(z \in y \longleftrightarrow z \subset x)
$$

Using the power set, comprehension, and extensionality axioms, one shows that the formula φ satisfies (i) and (ii) for $T=Z F$ (in fact the extension of $Z F$ obtained by adding \subset). So, one may add a new unary function symbol \mathcal{P} (traditionally called power set) and a new nonlogical axiom

$$
y=\mathcal{P}(x) \longleftrightarrow \varphi
$$

Remark 5.3.4 Note that if $n=0$, this method adds a new constant symbol to T. As an example, we can add a constant symbol 0 (called empty set) in an extension by definition of $Z F$. This can be seen as follows: Let $A[y]$ be the formula

$$
\forall x \neg(x \in y) .
$$

Using the set existence, extensionality, and comprehension axioms of $Z F$, one shows that A satisfies conditions (i) and (ii) for $T=Z F$. One then defines an extension by definition of $Z F$ by adding a new constant symbol 0 and a new axiom

$$
y=0 \leftrightarrow A
$$

Proposition 5.3.5 Let T^{\prime} be obtained from T by adding a new n-ary function symbol f with

$$
w=f v_{0} \cdots v_{n-1} \longleftrightarrow \varphi
$$

as its defining axiom. Then T^{\prime} is a conservative extension of T.

Proof. Let A be a formula of T that is a theorem of T^{\prime}. By the completeness theorem, the proof will be complete if we show that A is valid in T. Let M be a model of T. Interpret f in M as follows: For $b, a_{0}, \ldots, a_{n-1} \in M$,

$$
b=f\left(a_{0}, \ldots, a_{n-1}\right) \Longleftrightarrow M \models \varphi_{w, v_{0}, \ldots, v_{n-1}}\left[i_{b}, i_{a_{0}}, \ldots, i_{a_{n-1}}\right] .
$$

Thus, we get a structure M^{\prime} of $L\left(T^{\prime}\right)$ that is an expansion of M. It is easy to check that M^{\prime} is a model of T^{\prime}.

By the validity theorem,

$$
M^{\prime} \mid=A
$$

But this implies that

$$
M \models A .
$$

We say that T^{\prime} is an extension by definitions of T if T^{\prime} is obtained from T by a finite number of extensions of the two types that we have described.

Theorem 5.3.6 If T^{\prime} is an extension by definitions of T, then T^{\prime} is a conservative extension of T. In particular, T is consistent if and only if T^{\prime} is consistent.

An interpretation I of T in T^{\prime} is called faithful if for every formula φ of $T, T^{\prime} \vdash \varphi^{I} \Rightarrow T \vdash \varphi$.

Exercise 5.3.7 Suppose T has a faithful interpretation in an extension by definitions of T^{\prime} and T^{\prime} is consistent. Show that T is consistent.

Remark 5.3.8 The previous exercise gives a method to prove relative consistency results.

We state some interesting results without proof.
Theorem 5.3.9 Peano arithmetic $P A$ has an interpretation in an extension by definitions of $Z F$. [6]

Theorem 5.3.10 Each of Peano arithmetic PA and ZF - Infinity has a faithful interpretation in an extension by definitions of the other. In particular, $P A$ is consistent if and only if $Z F$ - Infinity is consistent. [6, Exercise 30, p.149].

5.4 Compactness Theorem and Applications

In this section we present the compactness theorem for first-order theories. This was first proved for countable theories by Gödel in 1930. In its full generality, it was proved by Malcev. Malcev was also the first who saw the
power of this theorem. Using the completeness theorem, it is now trivial to prove.

Theorem 5.4.1 (Compactness theorem for first-order theories)

A theory T has a model if and only if each of its finitely axiomatized parts has a model.
Proof.

$$
\begin{aligned}
T \text { has a model } & \Leftrightarrow T \text { is consistent } \\
& \Leftrightarrow \text { each finitely axiomatized part of } T \text { is consistent } \\
& \Leftrightarrow \text { each finitely axiomatized part of } T \text { has a model. }
\end{aligned}
$$

We now give some applications of the compactness theorem.
Proposition 5.4.2 Let T be a theory that has arbitrarily large finite models. Then T has an infinite model.

Proof. Let $\left\{c_{n}: n \in \mathbb{N}\right\}$ be a sequence of distinct symbols not appearing in L. Let T^{\prime} be the extension of T obtained by adding each c_{n} as a new constant symbol and for each $m<n$, the formula $\neg\left(c_{n}=c_{m}\right)$ as a new axiom.

Since T has arbitrarily large finite models, each finite part of T^{\prime} has a model. Hence, by the compactness theorem, T^{\prime} has a model. Clearly, any model of T^{\prime} is infinite and a model of T.

Remark 5.4.3 This also shows that there is no theory T whose models are precisely the finite sets.

We can use the above idea to build models of arbitrarily large cardinalities.

Theorem 5.4.4 (Tarski) Let κ be an infinite cardinal. Assume that T has an infinite model M. Then T has a model of cardinality at least κ.

Proof. Fix a set $\left\{c_{\alpha}: \alpha<\kappa\right\}$ of cardinality κ of distinct symbols not appearing in L. Let L^{\prime} be the extension of L obtained by adding each c_{α} as a constant symbol. Set

$$
\Gamma=\left\{c_{\alpha} \neq c_{\beta}: \alpha \neq \beta\right\} .
$$

Consider the theory

$$
T^{\prime}=T[\Gamma]
$$

with language L^{\prime}.
We claim that T^{\prime} is finitely satisfiable. To see this, fix a finite subset Γ^{\prime} of Γ. Let $c_{\alpha_{1}}, \ldots, c_{\alpha_{k}}$ be all the new constants that appear in a formula in Γ^{\prime}. Since M is infinite, there exist distinct elements b_{1}, \ldots, b_{k} of M.

Interpret $c_{\alpha_{i}}$ by $b_{i}, 1 \leq i \leq k$. Then we get a model of T in which Γ^{\prime} is satsifiable. Thus, by the compactness theorem, T^{\prime} has a model. Now note that any model of T^{\prime} is of cardinality at least κ and a model of T.

Under the hypothesis of Tarski's theorem, we can say more.
Theorem 5.4.5 (Tarski) Let κ be an infinite cardinal and T a consistent κ-theory. Assume that T has an infinite model M. Then T has a model of cardinality κ.

Proof. Let T^{\prime} be the theory obtained from T as in the proof of Theorem 5.4.4. Note that T^{\prime} is a consistent κ-theory. By Theorem 5.1.6, T^{\prime} has a model N of cardinality at most κ. Since any model of T^{\prime} is of cardinality at least $\kappa,|N|=\kappa$. Thus, we get a model of T of cardinality κ.

Corollary 5.4.6 (Löwenheim-Skolem) Every countable consistent theory has a countable model.

Remark 5.4.7 $Z F C$ is a countable theory. Assume that $Z F C$ is consistent. Then $Z F C$ has a countable model, say V. However, in $Z F C$ we can prove that the set of real numbers \mathbb{R} is uncountable. How can a countable model contain an uncountable set? This paradox is resolved as follows: no bijection from \mathbb{N} (the set of all natural numbers) onto \mathbb{R}^{V}, the set of all reals in V, is in the model V.

Theorem 5.4.8 (Upward Löwenheim-Skolem theorem) Let κ be an infinite cardinal, L have at most κ nonlogical symbols, and let N be an infinite structure of L of cardinality at most κ. Then there is a structure M of cardinality κ such that N has an elementary embedding in M.

Proof. Let $N_{e l}$ be the theory whose language is L_{N} and whose axioms are formulas of the form $\varphi\left[i_{\bar{a}}\right]\left(\bar{a} \in N^{n}, n \geq 0\right)$ that are valid in N. Since N is a model of $N_{e l}$, the theory $N_{e l}$ is consistent. Further, the model N of $N_{e l}$ is infinite. Hence, by Theorem 5.4.5, $N_{e l}$ has a model M of cardinality κ.

Now define $\alpha: N \rightarrow M$ by

$$
\alpha(a)=\left(i_{a}\right)_{M}, \quad a \in N
$$

i.e., $\alpha(a)$ is the meaning of i_{a} in M. We claim that $\alpha: N \rightarrow M$ is an elementary embedding.

Let a_{1}, a_{2} be distinct elements of N. Then

$$
N \models \neg\left(i_{a_{1}}=i_{a_{2}}\right),
$$

i.e., $\neg\left(i_{a_{1}}=i_{a_{2}}\right)$ is an axiom of $N_{e l}$. Hence,

$$
M \models \neg\left(i_{a_{1}}=i_{a_{2}}\right),
$$

i.e., $\alpha\left(a_{1}\right) \neq \alpha\left(a_{2}\right)$. Thus, α is an injection.

Since M is a model of $N_{e l}, \alpha$ is clearly an elementary embedding of N into M.

The compactness theorem gives nonstandard models of number theory, real numbers, etc.

The set \mathbb{N} with the usual $S,+, \cdot$ and $<$ will be called standard model of N and of $P A$. A formula φ of N or of an extension by definitions of N will be called true if it is valid in the standard model \mathbb{N}.

Proposition 5.4.9 There is a model M of the theory N having an element b such that for every natural number $n,(\underline{n})_{M}<b$.

Proof. Recall that the set of all natural numbers $\mathbb{N}=\{0,1,2, \ldots\}$ is a model of N. Take a new constant symbol c and for each natural number m, let A_{m} be the formula $\underline{m}<c$. Now consider the theory

$$
N^{\prime}=N\left[\left\{A_{m}: m \in \mathbb{N}\right\}\right] .
$$

Since every finite set of natural numbers has an upper bound in \mathbb{N}, it follows that N^{\prime} is finitely satisfiable. Hence, by the compactness theorem, it has a model M. This model has the required properties with $b=c_{M}$.

Exercise 5.4.10 Show that there are models of N of arbitrarily large infinite cardinalities.

Proposition 5.4.11 There is an ordered field ${ }^{*} \mathbb{R}$ that is not archimedean.
Proof. Let T be the theory of ordered fields. Consider the extension T^{\prime} of T obtained by adding a new constant symbol c and the following new axioms:

$$
n 1<c, \quad n \in \mathbb{N}
$$

Since the real line \mathbb{R} is a model of each finitely axiomatized part of T^{\prime}, by the compactness theorem, T^{\prime} is consistent. Let ${ }^{*} \mathbb{R}$ be a model of T^{\prime} and $\overline{1}, b$ the interpretations of 1 and c respectively in this model. Then $n \overline{1}<b$ for all n. Thus ${ }^{*} \mathbb{R}$ is not archimedean.

Exercise 5.4.12 Show that there is no first-order theory whose models are precisely archimedean ordered fields.

Exercise 5.4.13 Show that there is no first-order theory whose language has only one nonlogical symbol, namely a binary relation symbol, and whose models are precisely the well-ordered sets.

5.5 Complete Theories

In this section we shall study general properties of complete theories.

Proposition 5.5.1 Let T be a consistent theory. Then the following statements are equivalent:
(1) The theory T is complete.
(2) Any two models M and N of T are elementarily equivalent.
(3) For any model M of T, T is equivalent to $T h(M)$.

Proof. We first show that (1) implies (2). Let φ be a sentence in T. If $T \vdash \varphi$, then $M \models \varphi$ as well as $N \models \varphi$. If $T \vdash \neg \varphi$, then $N \not \models \varphi$ and $M \not \vDash \varphi$. Thus (1) implies (2)

Now assume (2). Any model of $T h(M)$ is clearly a model of T. On the other hand, let N be a model of T. By (2), every theorem of $T h(M)$ is valid in N, i.e., N is a model of $T h(M)$. So, T and $T h(M)$ are equivalent by Proposition 5.5.1.

We now prove that (3) implies (1). Let φ be a closed formula. Exactly one of $\varphi, \neg \varphi$ is in $T h(M)$. Hence, by (3), one of them is a theorem of T.

Exercise 5.5.2 Show that there exists a nonarchimedean ordered field elementarily equivalent to the field of reals.

Let κ be an infinite cardinal. A consistent κ-theory T is called κ-categorical if any two models of T of cardinality κ are isomorphic.

Our interest in this concept stems from the following result of Robert Vaught.

Theorem 5.5.3 (Vaught) Let κ be an infinite cardinal and T a consistent κ-theory all of whose models are infinite. If T is κ-categorical, T is complete.

Proof. Suppose a sentence φ is not decidable in T. By Proposition 4.4.5, the theories $T_{1}=T[\varphi]$ and $T_{2}=T[\neg \varphi]$ are consistent. Since T has no finite models, both T_{1} and T_{2} have infinite models. So, by Theorem 5.4.5, T_{1} and T_{2} have models M_{1} and M_{2} respectively of cardinality κ. Hence, by the hypothesis of the theorem, they are isomorphic. But φ is valid in M_{1} and not in M_{2}. Thus we have arrived at a contradiction. Hence, T is complete.

Proposition 5.5.4 The theory DLO of order-dense, linearly ordered sets with no first and no last elements is complete.

Proof. By Exercise 2.4.3, $D L O$ is \aleph_{0}-categorical, where \aleph_{0} is the first infinite cardinal. Clearly all its models are infinite. Therefore by Vaught's theorem (Theorem 5.5.3), $D L O$ is a complete theory.

5.6 Applications in Algebra

Let $(G,+)$ be a divisible torsion-free abelian group. Then for every $x \in G$ and every $n \geq 1$, there is a unique $y \in G$ such that $n y=x$. We set $y=x / n$. Now for any rational number m / n, we define $\frac{m}{n} x=m(x / n)$. It is easy to check that $(G,+)$ with this definition of scalar product is a vector space over the field of rationals \mathbb{Q}.

Proposition 5.6.1 Any two divisible torsion-free abelian uncountable groups G_{1} and G_{2} of the same cardinality are isomorphic.

Proof. We treat both G_{1} and G_{2} as vector spaces over the field \mathbb{Q} of rationals. Let B_{i} be a basis of of $G_{i}, 1 \leq i \leq 2$. Since each G_{i} is uncountable, we have

$$
\left|B_{1}\right|=\left|G_{1}\right|=\left|G_{2}\right|=\left|B_{2}\right| .
$$

Hence, G_{1} and G_{2} are isomorphic as vector spaces. In particular, they are isomorphic as groups.

Hence by Vaught's theorem (Theorem 5.5.3), we have the following result.

Theorem 5.6.2 The theory of divisible torsion-free abelian groups is complete.

It is known that two algebraically closed fields are isomorphic if and only if they have the same characteristic and same transcendence degree. Let κ be an uncountable cardinal. It is known that an algebraically closed field is of transcendence degree κ if and only if it is of cardinality κ. [7]. So we have the following theorem.

Theorem 5.6.3 Let κ be an uncountable cardinal. Then $A C F(0)$ and ACF $(p), p>1$, are κ-categorical.

Let $\mathbb{F}=\left\{a_{1}, \ldots, a_{k}\right\}$ be a finite field and let 1 denote its multiplicative identity. Then the polynomial

$$
1+\left(x-a_{1}\right) \cdot\left(x-a_{2}\right) \cdots\left(x-a_{n}\right)
$$

has no zero in \mathbb{F}. Hence every algebraically closed field is infinite. Thus all models of $A C F$ are infinite. Now by Vaught's theorem (Theorem 5.5.3), we have the following result.

Theorem 5.6.4 The theories $A C F(0)$ and $A C F(p), p>1$, are all complete.

Theorem 5.6.5 Let φ be a sentence of the language of the theory of rings with identity. Then the following statements are equivalent:
(i) φ is valid in the field \mathbb{C} of complex numbers.
(ii) φ is valid in all algebraically closed fields of characteristic 0 .
(iii) φ is valid in some algebraically closed field of characteristic 0 .
(iv) There is an m such that for all prime $p>m, \varphi$ is valid in some algebraically closed field of characteristic p.
(v) There is an m such that for all prime $p>m, \varphi$ is valid in all algebraically closed fields of characteristic p.

Proof. By Proposition 5.5.1, (i) implies (ii) and also (iii) implies (ii). Now assume (ii). Then by the completeness theorem, φ is theorem of $A C F(0)$. Since a proof of φ contains only finitely many nonlogical axioms, there is an m such that for all primes $p>m, \varphi$ is a theorem of $A C F(p)$. Hence (iv) is true by the validity theorem.

The statement (iv) implies (v) because each $A C F(p)$ is complete. We now show that (v) implies (ii). Let $A C F(0) \not \models \varphi$, i.e., φ is not valid in $A C F(0)$. Since $A C F(0)$ is complete, it follows that $\neg \varphi$ is valid in $A C F(0)$. Since (ii) implies (v), it follows that there is an m^{\prime} such that for all primes $p>m^{\prime}, \neg \varphi$ is valid in all algebraic closed fields of characteristic p. So, (v) is false.

We close this chapter by giving an application in algebra. We recall a standard result from algebra.

Proposition 5.6.6 Let p be a prime, F_{p} the field with p elements, and $\overline{F_{p}}$ its algebraic closure. Then

$$
\overline{F_{p}}=\cup_{n \geq 1} F_{p^{n}} .
$$

In particular, every subfield of $\overline{F_{p}}$ generated by finitely many elements is finite.

Proposition 5.6.7 Let $p>1$ be prime and

$$
f_{1}\left(X_{1}, \ldots, X_{n}\right), \ldots, f_{n}\left(X_{1}, \ldots, X_{n}\right) \in \overline{F_{p}}\left[X_{1}, \ldots, X_{n}\right]
$$

If the map

$$
f=\left(f_{1}, \ldots, f_{n}\right):{\overline{F_{p}}}^{n} \rightarrow{\overline{F_{p}}}^{n}
$$

is injective, it is surjective.
Proof. Suppose f is not surjective. Let $\left\{a_{1}, \ldots, a_{k}\right\}$ be the set of all coefficients of f_{1}, \ldots, f_{n}. Let $b_{1}, \ldots, b_{n} \in \overline{F_{p}}$ be such that $\left(b_{1}, \ldots, b_{n}\right)$ is not in the range of f. Let \mathbb{K} be the subfield of $\overline{F_{p}}$ generated by $\left\{a_{1}, \ldots, a_{k}, b_{1}, \ldots, b_{n}\right\}$. By Proposition 5.6.6, \mathbb{K} is finite. But now we have an injective map $f: \mathbb{K}^{n} \rightarrow \mathbb{K}^{n}$ that is not surjective. This is impossible since \mathbb{K}^{n} is a finite set.

Theorem 5.6.8 ($\mathbf{A x}$) Let \mathbb{K} be an algebraically closed field and

$$
f_{1}\left(X_{1}, \ldots, X_{n}\right), \ldots, f_{n}\left(X_{1}, \ldots, X_{n}\right) \in \mathbb{K}\left[X_{1}, \ldots, X_{n}\right]
$$

If the map

$$
f=\left(f_{1}, \ldots, f_{n}\right): \mathbb{K}^{n} \rightarrow \mathbb{K}^{n}
$$

is injective, it is surjective.
Proof. Let each f_{i} be of degree at most d. It is not hard to see that there is a sentence φ of the language of ring theory saying that if f_{1}, \ldots, f_{n} are polynomials of degree at most d and if the map $f=\left(f_{1}, \ldots, f_{n}\right)$ is injective, then it is surjective.

Let \mathbb{K} be of characteristic p for some prime $p>1$. Then φ is valid in $\overline{F_{p}}$ by Proposition 5.6.7. So φ is valid in \mathbb{K} by Theorem 5.6.4 and Proposition 5.5.1.

Now let \mathbb{K} be of characteristic 0 . In this case the result follows from Proposition 5.6.7 and Theorem 5.6.5.

6

Recursive Functions and Arithmetization of Theories

Let us ask the following question: is there an algorithm to decide whether an arbitrary sentence of the theory N is a theorem? Many important mathematical problems are of this type. For instance, the famous Hilbert's tenth problem sought for an algorithm to decide whether an arbitrary polynomial equation

$$
F\left(X_{1}, \ldots, X_{n}\right)=0
$$

with integer coefficients (also known as a Diophantine equation) has a solution in rational numbers. Problems of this form are called decision problems.

The possibility of nonexistence of an algorithm for a decision problem calls for defining the notion of algorithm precisely. This was considered by several logicians including Herbrand, Church, Kleene, Gödel, and Turing. Several possible definitions were advanced, and quite remarkably, all of them were shown to be equivalent. The notion of algorithm is quite important for the incompleteness theorems. We shall adopt the definition given by Gödel. He introduced a class of functions $f: \mathbb{N}^{k} \rightarrow \mathbb{N}^{l}$, now called recursive functions. These are all the functions that can be computed mechanically. The definition given by Gödel is quite mathematical and helps to prove quite a strong form of incompleteness theorem.

In this chapter we shall study recursive functions. We shall also introduce techniques to show how a general decision problem can be converted into showing whether a partcular function is recursive.

6.1 Recursive Functions and Recursive Predicates

Throughout this and the next section, unless otherwise stated, by a number we shall mean a natural number, by a relation or a predicate we shall mean an n-ary relation on $\mathbb{N}, n \geq 1$, and by a function we shall mean a function of the form $f: \mathbb{N}^{m} \rightarrow \mathbb{N}^{n}, m, n \geq 1$. A sequence of numbers $\left(n_{0}, \ldots, n_{k-1}\right)$ will usually be denoted by \bar{n}. Further, we shall not distinguish between a k ary relation and a subset of \mathbb{N}^{k}. In fact, in our context, it is more convenient and natural to treat a subset of \mathbb{N}^{k} as a k-ary relation. Thus, for $P, Q \subset \mathbb{N}^{k}$,

$$
\neg P=P^{c}=\mathbb{N}^{k} \backslash P, \quad P \vee Q=P \cup Q, \quad P \wedge Q=P \cap Q
$$

and

$$
P \rightarrow Q=P^{c} \cup Q, \quad P \leftrightarrow Q=(P \rightarrow Q) \cap(Q \rightarrow P)
$$

If $Q \subset \mathbb{N}^{k+1}$, we have the following equivalence:

$$
\exists m Q(m, \bar{n}) \leftrightarrow\left(\pi_{1} Q\right)(\bar{n}),
$$

where $\pi_{1} Q$ denotes the projection of Q to the last \mathbb{N}^{k} coordinate space.
The characteristic function χ_{A} of $A \subset X$ is defined by

$$
\chi_{A}(x)=\left\{\begin{array}{l}
0 \text { if } x \in A \\
1 \text { otherwise }
\end{array}\right.
$$

We caution the reader that some authors define $\chi_{A}(x)$ to be 1 if $x \in A$ and 0 otherwise.

Let P be a k-ary relation. We define a $(k-1)$-ary function by

$$
\mu m P(m, \bar{n})= \begin{cases}0 & \text { if } \forall m \neg P(m, \bar{n}) \\ \text { first } m \text { such that } P(m, \bar{n}) \text { holds otherwise }\end{cases}
$$

where $\bar{n}=\left(n_{0}, \ldots, n_{k-2}\right)$. In paricular, if k is 1 , this defines the following natural number:

$$
\mu m P(m)=\left\{\begin{array}{lr}
0 & \text { if } \forall m \neg P(m) \\
\text { first } m \text { such that } P(m) \text { holds otherwise }
\end{array}\right.
$$

The operation μ is called minimalization. In the sequel, we shall also need bounded minimalization $\mu^{<}$and bounded quantifiers $\exists^{<}, \forall^{<}$, $\exists \leq$, and $\forall \leq$. We define

$$
\begin{aligned}
& \mu^{<m} P(m, \bar{n}) \leftrightarrow \mu k[P(k, \bar{n}) \vee k=m], \\
& \exists{ }^{<m} P(m, \bar{n}) \leftrightarrow \exists k[k<m \wedge P(k, \bar{n})],
\end{aligned}
$$

and

$$
\forall^{<m} P(m, \bar{n}) \leftrightarrow \forall k[k<m \rightarrow P(k, \bar{n})] .
$$

The bounded quantifiers $\exists \leq$ and $\forall \leq$ are similarly defined.
We give below examples of some simple functions.
Successor Function: $S(n)=n+1$;
Constant Functions: For any $k \geq 1$ and any $p \geq 0$,

$$
C_{p}^{k}\left(n_{1}, \ldots, n_{k}\right) \equiv p
$$

Projection Functions: For any $k \geq 1$ and $1 \leq i \leq k$,

$$
\pi_{i}^{k}\left(n_{1}, \ldots, n_{k}\right)=n_{i}
$$

The functions $+($ addition $), \cdot($ multiplication $), \chi_{<}$, and $\pi_{i}^{k}, k \geq 1,1 \leq$ $i \leq k$, will be called initial functions.

Now we fix some constructive schemes for defining a function f from given functions.

Composition: Given $h\left(n_{1}, \ldots, n_{m}\right)$ and $g_{i}\left(l_{1}, \ldots, l_{k}\right), 1 \leq i \leq m$, define

$$
f\left(l_{1}, \ldots, l_{k}\right)=h\left(g_{1}\left(l_{1}, \ldots, l_{k}\right), \ldots, g_{m}\left(l_{1}, \ldots, l_{k}\right)\right)
$$

Minimalization: Given a function g of $(m+1)$ variables such that for every $\left(n_{1}, \ldots, n_{m}\right)$, there is a k such that $g\left(k, n_{1}, \ldots, n_{m}\right)=0$, we define f by

$$
f\left(n_{1}, \ldots, n_{m}\right)=\mu k\left[g\left(k, n_{1}, \ldots, n_{m}\right)=0\right] .
$$

A function f is called recursive if it can be defined by successive applications of composition and minimalization starting with initial functions. More precisely, the set of recursive functions is the smallest collection of functions that contains all initial functions and that is closed under composition and minimalization. A relation R is called recursive if its characteristic function χ_{R} is recursive.

Note that by definition, $<$ is a binary recursive predicate.
It has been accepted that a function is "computable mechanically" if and only if it is recursive. The statement in italics is known as Church's thesis. Once again we mention that several natural definitions of mechanically computable functions were given. All definitions are shown to be equivalent.

We shall see that many decision problems can be turned into showing whether a function $f: \mathbb{N}^{m} \rightarrow \mathbb{N}^{n}$ is computable.

Remark 6.1.1 It is quite easy to see that the sets of recursive functions and recursive predicates are countable. So, there are functions and predicates that are not recursive. However, it is not easy to give examples of
such functions and prediactes. This is because nonrecursive functions and nonrecursive predicates are, in some sense, nonconstructive.

Now we proceed systematically to give examples and closure properties of recursive functions and predicates.

If $\pi: \mathbb{N}^{k} \rightarrow \mathbb{N}^{n}$ is the projection to the first n coordinate spaces and if f is a an n-ary recursive function, so is the k-ary map g defined by

$$
g(\bar{u})=f(\pi(\bar{u}))
$$

Lemma 6.1.2 If $P(\bar{n})$ is a k-ary recursive predicate and if $f_{i}(\bar{u}), 1 \leq j \leq k$, are recursive, then the predicate

$$
Q(\bar{u}) \Longleftrightarrow P\left(f_{1}(\bar{u}), \ldots, f_{k}(\bar{u})\right)
$$

is recursive. In particular, if π is a permutation of $\{0,1, \ldots, n-1\}$ and P an n-ary recursive predicate, then so is the predicate Q defined by

$$
Q\left(l_{0}, \ldots, l_{n-1}\right) \leftrightarrow P\left(l_{\pi(0)}, \ldots, l_{\pi(n-1)}\right)
$$

Proof. Since the set of all recursive functions is closed under composition, the result follows from the following identity:

$$
\chi_{Q}(\bar{u})=\chi_{P}\left(f_{1}(\bar{u}), \ldots, f_{k}(\bar{u})\right)
$$

The above closure property of the set of all recursive predicates is called closure under recursive substitutions.

Lemma 6.1.3 If $P(m, \bar{n})$ is a recursive predicate such that for every \bar{n}, $P(m, \bar{n})$ holds for some m, then

$$
f(\bar{n})=\mu m P(m, \bar{n})
$$

is recursive.
Proof. The result follows from the identity

$$
f(\bar{n})=\mu m\left[\chi_{P}(m, \bar{n})=0\right]
$$

and the minimalization rule.

Lemma 6.1.4 Every constant function $C_{p}^{k}, k \geq 1, p \geq 0$, is recursive. In particular, \emptyset and each \mathbb{N}^{k} are recursive.

Proof. For each k, we prove the result by induction on p. Since

$$
C_{0}^{k}(\bar{n})=\mu m\left[\pi_{1}^{k+1}(m, \bar{n})=0\right],
$$

C_{0}^{k} is recursive. Assume that C_{p}^{k} is recursive. Now,

$$
C_{p+1}^{k}=\mu m\left[C_{p}^{k}<m\right]
$$

The result follows by the induction hypothesis.

In what follows, instead of giving complete proofs, we shall define functions and predicates in such a way that it would not be hard to show that they are recursive.

Example 6.1.5 The successor function $S(n)=n+1$ is recursive. This follows from the identity

$$
S(n)=\pi_{1}^{1}(n)+C_{1}^{1}(n) .
$$

Example 6.1.6 The binary predicates $\leq,>$, and \geq are recursive. This follows from the following equvalences and the closure properties of recursive predicates already proved:

$$
\begin{gathered}
m \leq n \Longleftrightarrow m<n+1 \\
m>n \Longleftrightarrow n<m \\
m=n
\end{gathered}
$$

and

$$
m \geq n \Longleftrightarrow m+1>n
$$

Proposition 6.1.7 If P and Q are n-ary recursive predicates, so are $\neg P$ and $P \vee Q$. It follows that the predicates $P \wedge Q, P \rightarrow Q$, and $P \leftrightarrow Q$ are also recursive if P and Q are. In particular each finite subset of $\mathbb{N}^{k}, k \geq 1$, is recursive.

Proof. The result follows from the following identity:

$$
\chi_{\neg P}(\bar{p})=\chi_{<}\left(0, \chi_{P}(\bar{p})\right) \text { and } \chi_{P \vee Q}(\bar{p})=\chi_{P}(\bar{p}) \cdot \chi_{Q}(\bar{p})
$$

where $\bar{p}=\left(p_{1}, \ldots, p_{n}\right)$.

Example 6.1.8 We define $m-n$ as follows:

$$
m-n= \begin{cases}m-n & \text { if } m \geq n \\ 0 & \text { otherwise }\end{cases}
$$

The function $m-n$ is recursive. To see this, note the following identity:

$$
m \stackrel{\bullet}{-}=\mu k[n+k=m \vee m<n] .
$$

Exercise 6.1.9 Show that the following functions are recursive:
(i) $|m-n|$.
(ii) $\min (m, n)$.
(iii) $\max (m, n)$.
(iv)

$$
\alpha(n)=\left\{\begin{array}{l}
1 \text { if } n=0 \\
0 \text { if } n>0
\end{array}\right.
$$

(v)

$$
s g(n)=\left\{\begin{array}{l}
0 \text { if } n=0 \\
1 \text { if } n>0
\end{array}\right.
$$

Exercise 6.1.10 Show that the set of all recursive functions is closed under bounded minimalization; the set of all recursive predicates is closed under bounded quantifiers.

Remark 6.1.11 In the next chapter, we shall show that the set of all recursive predicates is not closed under existential and universal quantifiers.

Exercise 6.1.12 Let A_{1}, \ldots, A_{m} be pairwise disjoint recursive subsets of \mathbb{N}^{k} whose union is \mathbb{N}^{k}. Suppose f_{1}, \ldots, f_{m} are k-ary recursive functions. Define $g: \mathbb{N}^{k} \rightarrow \mathbb{N}$ by

$$
g(\bar{a})=\left\{\begin{array}{c}
f_{1}(\bar{a}) \text { if } \bar{a} \in A_{1}, \\
\vdots \\
f_{m}(\bar{a}) \text { if } \bar{a} \in A_{m} .
\end{array}\right.
$$

Show that g is recursive.
We now proceed to show that we can effectively code a finite sequence of numbers, a finite sequence of finite sequences of numbers, etc. by numbers. This remarkable idea is due to Gödel, and he turned it into a powerful tool for proving his incompleteness theorems.

Exercise 6.1.13 The following predicates are recursive:
(i) (Divisibility) $m \mid n \leftrightarrow \exists \leq n k[m \cdot k=n]$.
(ii) (Prime) Prime $(p) \leftrightarrow p$ is a prime.
(iii) (Relatively prime) $R P(m, n) \leftrightarrow m \neq 0 \wedge n \neq 0 \wedge \forall p \leq m[(\operatorname{Prime}(p) \wedge$ $p \mid m) \rightarrow \neg p \mid n]$.
For an ordered pair (m, n) of natural numbers, we define

$$
O P(m, n)=(m+n) \cdot(m+n+1)+n+1 .
$$

Clearly, $O P(m, n)$ is recursive.
Lemma 6.1.14 The function $O P$ is one-to-one.
Proof. Let $O P(m, n)=O P\left(m^{\prime}, n^{\prime}\right)$. We first show that $m+n=m^{\prime}+n^{\prime}$. Suppose not. Without any loss of generality, we assume that $m+n<$ $m^{\prime}+n^{\prime}$. Now

$$
O P(m, n) \leq(m+n+1)^{2} \leq\left(m^{\prime}+n^{\prime}\right)^{2}<O P\left(m^{\prime}, n^{\prime}\right)
$$

This is a contradiction.
Since $m+n=m^{\prime}+n^{\prime}$ and $O P(m, n)=O P\left(m^{\prime}, n^{\prime}\right)$, from the definition of $O P$, it follows that $n=n^{\prime}$. This, in turn, implies that $m=m^{\prime}$ too.

We shall need the following two simple lemmas from number theory.
Lemma 6.1.15 Let m_{1}, \ldots, m_{k} and n_{1}, \ldots, n_{l} be sequences of numbers such that $\forall i \forall j\left[R P\left(m_{i}, n_{j}\right)\right]$. Then there is a number x such that $\forall i\left[m_{i} \mid x\right]$ and $\forall j\left[R P\left(x, n_{j}\right)\right]$.

Proof. Take x to be the product of all the m_{i} 's. If a prime p divides x, it divides some m_{i}. Hence, $\neg p \mid n_{j}$ for all j. The result follows.

Lemma 6.1.16 $\forall m, n \forall j[m \mid n \rightarrow R P(1+(j+m) n, 1+j n)]$.
Proof. Let p be a prime number such that $p \mid 1+(j+m) n$ as well as $p \mid 1+j n$. Then $p \mid m n$. Since p is a prime, either $p \mid m$ or $p \mid n$. If $p \mid m$, then $p \mid n$ also because $m \mid n$. Hence, $p \mid n$. But then $\neg(p \mid 1+j n)$. This contradiction proves our result.

The following result is due to Gödel.
Theorem 6.1.17 There is a 2-ary function $\beta(n, i)$ satisfying the following properties:
(a) β is recursive.
(b) $\beta(0, i)=0$ for all i.
(c) $n \neq 0 \rightarrow \beta(n, i)<n$ for all i.
(d) For every finite sequence $\bar{n}=\left(n_{0}, \ldots, n_{k-1}\right)$ of positive length, there is an n such that

$$
\forall i<k\left[\beta(n, i)=n_{i}\right] .
$$

Proof. Define

$$
\beta(n, i)=\mu^{<n} x \exists^{<n} y \exists^{<n} z[n=O P(y, z) \wedge(1+(O P(x, i)+1) \cdot z) \mid y]
$$

i.e., $\beta(n, i)$ is the first natural number $x<n$ for which there exist $y, z<n$ satisfying $n=O P(y, z)$ and $y \mid 1+(O P(x, i)+1) \cdot z$. If such an x does not exist, $\beta(n, i)=n \doteq 1$.

Properties (a)-(c) of β follow from the definition. To prove (d), take a finite sequence $\bar{n}=\left(n_{0}, \ldots, n_{k-1}\right)$ of positive length. Let

$$
u=\max \left\{O P\left(n_{i}, i\right)+1: i<k\right\}
$$

and z the product of all nonzero numbers less than u. Then, by Lemma 6.1.16,

$$
j<l<u \Longrightarrow R P(1+j z, 1+l z) .
$$

For $i<k$, set

$$
m_{i}=1+\left(O P\left(n_{i}, i\right)+1\right) z .
$$

Let $\left\{l_{j}\right\}$ be an enumeration of all numbers of the form $1+v z$, where $0<$ $v<u$ and $v \neq O P\left(n_{i}, i\right)+1$ for all $i<k$. Then, by Lemma 6.1.15, there is a number y such that

$$
\forall j<u\left[1+j z \mid y \Longleftrightarrow \exists i\left(j=O P\left(n_{i}, i\right)+1\right)\right]
$$

Set $n=O P(y, z)$.
It remains to show that $\beta(n, i)=n_{i}$ for all i. This will follow if we show that n_{i} is the smallest number x such that

$$
1+(O P(x, i)+1) z \mid y .
$$

Note that this will follow if for all $x<n_{i}, O P(x, i)<u$ and $O P(x, i) \neq$ $O P\left(n_{j}, j\right)$ for all j. This can easily be seen using the fact that $O P$ is one-to-one (Lemma 6.1.14).

The function β defined above is called Gödel's β-function.
For each $n \geq 1$ and each finite sequence $\left(k_{1}, \ldots, k_{n}\right)$, we define

$$
\left\langle k_{1}, \ldots, k_{n}\right\rangle=\mu m\left[\beta(m, 0)=n \wedge \beta(m, 1)=k_{1} \wedge \cdots \wedge \beta(m, n)=k_{n}\right] .
$$

We shall call such a number a sequence number.
The empty sequence of natural numbers will be denoted by \rangle, and its sequence number equals 0 by definition.

We now introduce some relations and functions of sequence numbers:
seq will denote the set of all sequence numbers, $\operatorname{lh}(n)=\beta(n, 0)$ (the length of the sequence coded by n), $(n)_{i}=\beta(n, i+1)$ (the i th element of the sequence coded by n), and concatenation

$$
\left\langle m_{0}, \ldots, m_{l-1}\right\rangle *\left\langle n_{1}, \ldots, n_{k-1}\right\rangle=\left\langle m_{0}, \ldots, m_{l-1}, n_{0}, \ldots, n_{k-1}\right\rangle .
$$

Proposition 6.1.18 The following functions and predicates are recursive: $n \longrightarrow \operatorname{lh}(n),(n, i) \longrightarrow(n)_{i}$, seq, and the concatenation $(m, n) \rightarrow m * n$.

Proof. Since $l h(n)=\beta(n, 0)$ and $(n)_{i}=\beta(n, i+1)$ and since β is recursive, the functions $\operatorname{lh}(n)$ and $(n)_{i}$ are recursive. That seq is recursive follows from the following equivalence:

$$
\operatorname{seq}(n) \Longleftrightarrow \exists^{<n} u_{0}, \ldots, u_{l h(n)-1} \forall 0 \leq i<\operatorname{lh}(n)\left[\beta(n, i)=u_{i}\right]
$$

Let $m=\left\langle m_{0}, \ldots, m_{l h(m)-1}\right\rangle$ and $n=\left\langle n_{0}, \ldots, n_{l h(n)-1}\right\rangle$. Then

$$
\begin{aligned}
& m * n=\mu u[\operatorname{seq}(u) \wedge \operatorname{lh}(u)=\operatorname{lh}(m)+\operatorname{lh}(n) \\
& \left.\wedge \forall i<\operatorname{lh}(m)\left((u)_{i}=m_{j}\right) \wedge \forall j<\operatorname{lh}(n)\left((u)_{l+j}=n_{j}\right)\right] .
\end{aligned}
$$

Hence the concatenation function $*$ is recursive.
We introduce yet another operation on recursive functions.
Primitive Recursion: Given an m-ary function g and an $(m+2)$-ary function h, we define an $(m+1)$-ary function f by

$$
\begin{aligned}
f(0, \bar{n}) & =g(\bar{n}), \\
f(k+1, \bar{n}) & =h(f(k, \bar{n}), k, \bar{n}) .
\end{aligned}
$$

The scheme of primitive recursion is a general form of definition of functions by induction. It should be noted that m may be 0 and that a 0 -ary function is nothing but a constant. Thus given a natural number p and a 2 -ary function h, this procedure defines a sequence $\left\{x_{k}\right\}$ by induction: set $x_{0}=p$ and $x_{k+1}=h\left(x_{k}, k\right)$. Intuitively it should be obvious that if g and h are "computable," so is f.

Proposition 6.1.19 If g is an m-ary and h an $(m+2)$-ary recursive function and if f is defined by primitive recursion as above, then f is recursive.

Proof. The function $f: \mathbb{N}^{m+1} \rightarrow \mathbb{N}$ is defined by

$$
\begin{aligned}
f(0, \bar{n}) & =g(\bar{n}) \\
f(k+1, \bar{n}) & =h(f(k, \bar{n}), k, \bar{n}) .
\end{aligned}
$$

We first define a function $F: \mathbb{N}^{m+1} \rightarrow \mathbb{N}$ as follows:

$$
\begin{aligned}
& F(p, \bar{n})=\mu k\left[l h(k)=p+1 \wedge(k)_{0}=g(\bar{n})\right. \\
& \wedge \forall<p\left((k)_{i+1}=h\left((k)_{i}, i, \bar{n}\right)\right]
\end{aligned}
$$

By the closure properties of recursive functions and recursive predicates, F is recursive. Now note that for all $p \geq 0$,

$$
f(p, \bar{n})=(F(p, \bar{n}))_{p}
$$

The result can now easily be seen.
Exercise 6.1.20 Let \mathcal{R} be the smallest set of functions that contains the successor function S, constant functions C_{k}^{n}, and the projection maps π_{i}^{n},
and that is closed under composition, minimalization, and primitive recursion. Show that a function is recursive if and only if it belongs to \mathcal{R}.

The previous exercise gives a more traditional definition of recursive functions. Further, coding a sequence, sequence of sequences, etc. is achieved more easily with this definition. However, our definition of recursive functions is chosen to give the best-known form of Gödel's theorem.

Example 6.1.21 The exponentiation function m^{n} inductively defined by

$$
\begin{aligned}
m^{0} & =1 \\
m^{n+1} & =m^{n} \cdot m
\end{aligned}
$$

is recursive.
Exercise 6.1.22 The function n ! is recursive.
Exercise 6.1.23 Show that the predecessor function $p(n)$ defined below is recursive:

$$
\begin{array}{r}
p(0)=0, \\
p(n+1)=n .
\end{array}
$$

Exercise 6.1.24 Show that the functions max $\{m, n\}, \min \{m, n\}$, and for any $k>1$, $\max \left\{n_{1}, \ldots, n_{k}\right\}$ and $\min \left\{n_{1}, \ldots, n_{k}\right\}$ are recursive.

Exercise 6.1.25 Let $2=p_{0}, p_{1}, p_{2}, \ldots$ be the increasing enumeration of all prime numbers. Show that $n \rightarrow p_{n}$ is recursive.

Exercise 6.1.26 (Closure under complete recursion) Let $f(m, \bar{n})$ be recursive and $g(m, \bar{n})$ be defined by the equation

$$
g(m, \bar{n})=f(\langle g(0, \bar{n}), \ldots, g(m-1, \bar{n}), \bar{n}) .
$$

Show that g is recursive. (What is $g(0, \bar{n}$?)
Proposition 6.1.27 A function $f: \mathbb{N}^{k} \rightarrow \mathbb{N}$ is recursive if and only if its graph $\operatorname{gr}(f)$ is recursive, where for any $\bar{n} \in \mathbb{N}^{k}$,

$$
(\bar{n}, m) \in g r(f) \Longleftrightarrow f(\bar{n})=m .
$$

Proof. If f is recursive, $g r(f)$ is recursive because $=$ is recursive and the set of all recursive predicates is closed under recursive substitutions. Conversely, if $\operatorname{gr}(f)$ is recursive, f is recursive because of the following identity:

$$
f(\bar{n})=\mu m[(\bar{n}, m) \in g r(f)] .
$$

We prove the following result using the well-known diagonal argument of Cantor. Gödel uses it beautifully to prove the first incompleteness theorem.

Proposition 6.1.28 There is no recursive set $U \subset \mathbb{N} \times \mathbb{N}$ such that for every recursive set $A \subset \mathbb{N}$ there is an $n \in \mathbb{N}$ satisfying

$$
\forall m[m \in A \Longleftrightarrow(n, m) \in U]
$$

i.e., there is no recursive set $U \subset \mathbb{N} \times \mathbb{N}$ whose vertical sections exactly list all recursive subsets of \mathbb{N}.

Proof. Suppose such a recursive set U exists. Define

$$
A^{*}=\{m \in \mathbb{N}:(m, m) \notin U\} .
$$

Since the predicate U^{c} is recursive and since the set of all recursive predicates is closed under recursive substitutions, A^{*} is recursive. So, by the hypothesis, there is an $n^{*} \in \mathbb{N}$ such that

$$
\begin{equation*}
\forall m\left[m \in A^{*} \Longleftrightarrow\left(n^{*}, m\right) \in U\right] \tag{*}
\end{equation*}
$$

If $n^{*} \in A^{*},\left(n^{*}, n^{*}\right) \in U$ by $(*)$. But then $n^{*} \notin A^{*}$ by the definition of A^{*}. On the other hand, if $n^{*} \notin A^{*},\left(n^{*}, n^{*}\right) \in U^{c}$ by $(*)$. But then $n^{*} \in A^{*}$ by the definition of A^{*}. We have arrived at a contradiction.

For the next exercise, recall the definition of standard model and true formulas of N.

Exercise 6.1.29 Recall that for any $n \in \mathbb{N}, k_{n}$ denotes the term

$$
\underbrace{S \cdots S}_{n \text { times }} 0
$$

of N. Let $\varphi\left[x_{1}, \ldots, x_{p}\right]$ be an open formula of N. Show that the predicate

$$
\left\{\bar{n} \in \mathbb{N}^{p}: \varphi_{x_{1}, \ldots, x_{p}}\left[k_{n_{1}}, \ldots, k_{n_{p}}\right] \text { is true }\right\}
$$

is recursive.

6.2 Semirecursive Predicates

A nonempty subset of \mathbb{N}^{k} is called semirecursive or recursively enumerable (r.e., for short) if it is the projection to the last k coordinate space of a $(k+1)$-ary recursive predicate, i.e., there is a recursive $Q \subset \mathbb{N}^{k+1}$ such that for every $\bar{n} \in \mathbb{N}^{k}$,

$$
P(\bar{n}) \Longleftrightarrow \exists m[Q(m, \bar{n})] .
$$

Proposition 6.2.1 Every recursive predicate is semirecursive.

Proof. Let P be a k-ary recursive predicate. Define $Q \subset \mathbb{N}^{k+1}$ by

$$
Q(m, \bar{n}) \Longleftrightarrow P(\bar{n}) .
$$

Then Q is recursive and $P(\bar{n}) \Longleftrightarrow \exists m Q(m, \bar{n})$. Hence P is semirecursive.

Proposition 6.2.2 The set of all semirecursive predicates is closed under \vee, \wedge, projections, bounded universal quantifiers, and recursive substitutions.

Proof. Let P and Q be k-ary semirecursive predicates. Fix $(k+1)$-ary recursive predicates P^{\prime} and Q^{\prime} such that for all $\bar{n} \in \mathbb{N}^{k}$,

$$
P(\bar{n}) \Longleftrightarrow \exists m P^{\prime}(m, \bar{n}) \text { and } Q(\bar{n}) \Longleftrightarrow \exists m Q^{\prime}(m, \bar{n}) .
$$

Let $f_{i}, 1 \leq i \leq k$, be l-ary recursive functions. For any $\bar{n} \in \mathbb{N}^{k}, \bar{m} \in \mathbb{N}^{l}$ note the following:

$$
\begin{aligned}
(P \vee Q)(\bar{n}) & \Longleftrightarrow \exists m\left[\left(P^{\prime} \vee Q^{\prime}\right)(m, \bar{n})\right], \\
P\left(f_{1}(\bar{m}), \ldots, f_{k}(\bar{m})\right) & \Longleftrightarrow \exists r P^{\prime}\left(r, f_{1}(\bar{m}), \ldots, f_{k}(\bar{m})\right),
\end{aligned}
$$

and

$$
(P \wedge Q)(\bar{n}) \Longleftrightarrow \exists m\left[P^{\prime}\left((m)_{0}, \bar{n}\right) \wedge Q^{\prime}\left((m)_{1}, \bar{n}\right)\right]
$$

These show that the set of all semirecursive predicates is closed under \vee, \wedge, and recursive substitutions.

We use Gödel's coding functions to show other closure properties also. Let P be a $(k+2)$-ary recursive predicate and let Q be defined by

$$
Q(\bar{n}) \Longleftrightarrow \exists l \exists m P(l, m, \bar{n}) .
$$

Then

$$
Q(\bar{n}) \Longleftrightarrow \exists m P\left((m)_{0},(m)_{1}, \bar{n}\right) .
$$

This shows that the set of all semirecursive predicates is closed under the existential quantifier.

Let P be a $(k+1)$-ary semirecursive predicate and let Q be defined by

$$
Q(m, \bar{n}) \Longleftrightarrow \forall^{<m} p P(p, \bar{n}) .
$$

Let $R \subset \mathbb{N} \times \mathbb{N}^{k+1}$ be a recursive predicate such that

$$
\forall p \forall \bar{n} \in \mathbb{N}^{k}[P(p, \bar{n}) \Longleftrightarrow \exists q R(q, p, \bar{n})] .
$$

Then

$$
Q(m, \bar{n}) \Longleftrightarrow \exists q\left[\operatorname{seq}(q) \wedge l h(q)=m \wedge \forall^{<m} p R\left((q)_{p}, p, \bar{n}\right)\right] .
$$

This shows that the set of all semirecursive predicates is closed under the bounded universal quantifier $\forall^{<}$. The result is now easily seen.

Exercise 6.2.3 A nonempty subset P of \mathbb{N} is semirecursive if and only if it is the range of a unary recursive function.

The following is an important result in recursive function theory.
Theorem 6.2.4 (Kleene) A predicate P is recursive if and only if both P and $\neg P$ are semirecursive.

Proof. If P is recursive, so is $\neg P$. By Proposition 6.2.1, both P and $\neg P$ are semirecursive.

Now let P be k-ary and both P and $\neg P$ be semirecursive. Choose $(k+1)$ ary recursive predicates Q and R such that for all $\bar{n} \in \mathbb{N}^{k}$,

$$
P(\bar{n}) \Longleftrightarrow \exists m Q(m, \bar{n}) \text { and } \neg P(\bar{n}) \Longleftrightarrow \exists m R(m, \bar{n})
$$

Then $S=Q \vee R$ is recursive. Note that

$$
\forall \bar{n} \in \mathbb{N}^{k} \exists m S(m, \bar{n})
$$

We define

$$
s(\bar{n})=\mu m S(m, \bar{n}) .
$$

The function s is recursive. Further,

$$
P(\bar{n}) \Longleftrightarrow Q(s(\bar{n}), \bar{n})
$$

This shows that P is recursive.
Remark 6.2.5 Let $P \subset \mathbb{N}^{k}$ be semirecursive and let there exist a $(k+1)$ ary recursive predicate Q such that for all \bar{n},

$$
P(\bar{n}) \Longleftrightarrow \forall m Q(\bar{n}, m)
$$

Then P is recursive. By Theorem 6.2.4, our assertion will be proved if we show that $\neg P$ is semirecursive. This follows from the following equivalence:

$$
\neg P(\bar{n}) \Longleftrightarrow \exists m \neg Q(\bar{n}, m) .
$$

Proposition 6.2.6 Let $f: \mathbb{N}^{k} \rightarrow \mathbb{N}$ be any function. Then the following statements are equivalent:
(i) The function f is recursive.
(ii) The graph of $f, \operatorname{gr}(f)$, is recursive.
(iii) The graph of f is semirecursive.

Proof. By Proposition 6.1.27 and Theorem 6.2.4, we only need to show that if $\operatorname{gr}(f)$ is semirecursive, $\neg g r(f)$ is semirecursive. This follows from the following equivalence:

$$
f(\bar{n}) \neq m \Longleftrightarrow \exists l[m \neq l \wedge f(\bar{n})=l]
$$

A function $f=\left(f_{1}, \ldots, f_{p}\right): \mathbb{N}^{k} \rightarrow \mathbb{N}^{p}$ is called recursive if each f_{i}, $1 \leq i \leq p$, is recursive.

Exercise 6.2.7 Let $f: \mathbb{N}^{k} \rightarrow \mathbb{N}^{p}$ be any function. Then the following statements are equivalent:
(i) The function f is recursive.
(ii) The graph of $f, g r(f)$, is recursive.
(iii) The graph of f is semirecursive.

6.3 Arithmetization of Theories

The next idea, arithmetization of theories, is a beautiful idea due to Gödel. It represents syntactical objects, e.g., symbols, terms, formulas, proofs, of a theory by natural numbers. Consequently, statements about syntactical objects are expressed in terms of numbers. Its importance and beauty cannot be overemphasized. It has the potential of converting a metamathematical statement into a number-theoretic statement. Thus, the problem of whether a metamathematical statement is true is translated into a number-theoretic problem. This idea also plays a significant role in the theory of computation. The same idea is now used to convert many questions concerning algorithms into proving whether a number-theoretic function or relation is recursive. To elaborate a bit more, one can code each algorithm by an integer, or one can translate questions about algorithms into number-theoretic problems.

Throughout this section, unless otherwise stated, T will denote a fixed first-order theory. To simplify the matter, we assume that T is finite and its nonlogical symbols are enumerated in some order.

In the first step we assign a symbol number to each symbol of $L(T)$.
Set $S N\left(x_{i}\right)=2 i, i \geq 0 ; S N(\neg)=1 ; S N(\vee)=3 ; S N(\exists)=5 ; S N(=)=7$; if α is the i th nonlogical symbol, we set $S N(\alpha)=7+2 i$.

Note that a number n is the symbol number of a variable if and only if it is even, i.e., $2 \mid n$. Hence, the predicate

$$
\operatorname{vble}(n) \Longleftrightarrow n \text { is the symbol number of a variable }
$$

is recursive. Since every finite set is recursive, the predicate

$$
\operatorname{sn}(n) \Longleftrightarrow n \text { is a symbol number }
$$

is easily seen to be recursive. In other words, there is an algorithm to decide whether an integer is a symbol number. Further, intuitively it is easy to see that there is an algorithm such that given a symbol number n, the algorithm recovers the symbol whose symbol number is n. Let func ${ }_{0}$ denote the set of symbol numbers of all constant symbols. We also define

$$
\operatorname{pred}(n) \Longleftrightarrow n \text { is the symbol number of a predicate symbol }
$$

and

$$
\text { func }(n) \Longleftrightarrow n \text { is the symbol number of a function symbol. }
$$

Since T is finite, these predicates are recursive.
Let t be a term and A a formula of T. We now define the Gödel number $\lceil t\rceil$ and $\lceil A\rceil$ of t and A respectively by induction on the rank of t and A.

If t is a variable or a constant, set

$$
\lceil t\rceil=\langle S N(t)\rangle .
$$

If f is an n-ary function and t_{1}, \ldots, t_{n} are terms whose Gödel numbers have been defined, we set

$$
\left\lceil f t_{1} \ldots t_{n}\right\rceil=\left\langle S N(f),\left\lceil t_{1}\right\rceil, \ldots,\left\lceil t_{n}\right\rceil\right\rangle
$$

We define

$$
\operatorname{term}(n) \Longleftrightarrow n \text { is the Gödel number of a term. }
$$

Proposition 6.3.1 The predicate term is recursive.
Proof. Note that for any n

$$
\begin{aligned}
\operatorname{term}(n) \Longleftrightarrow & \operatorname{seq}(n) \wedge\left[\left(\operatorname{lh}(n)=1 \wedge \operatorname{func}_{0}\left((n)_{0}\right)\right) \vee[\operatorname{lh}(n)>1 \wedge\right. \\
& \text { func } \left.\left.\left((n)_{0}\right) \wedge \forall 0<i<\operatorname{lh}(n)\left(\operatorname{term}\left((n)_{i}\right)\right)\right]\right] .
\end{aligned}
$$

Using closure under complete recursion (Exercise 6.1.26), it can now be seen that term is recursive. We leave the details as an exercise for the reader.

We recall that the term

$$
\underbrace{S \cdots S}_{n \text { times }} 0
$$

of N is denoted by k_{n} and that these terms are called numerals.

Lemma 6.3.2 The map

$$
\operatorname{num}(n)=\left\lceil k_{n}\right\rceil, \quad n \in \mathbb{N}
$$

is recursive.
Proof. This follows from the following identities

$$
\begin{aligned}
\operatorname{num}(0) & =\langle S N(0)\rangle \\
\operatorname{num}(n+1) & =\langle S N(S), \operatorname{num}(n)\rangle .
\end{aligned}
$$

If A is an atomic formula $p t_{1} \cdots t_{n}$, define

$$
\lceil A\rceil=\left\langle S N(p),\left\lceil t_{1}\right\rceil, \ldots,\left\lceil t_{n}\right\rceil\right\rangle .
$$

Proposition 6.3.3 The predicate

$$
\operatorname{aform}(n) \Leftrightarrow n \text { is the Gödel number of an atomic formula, }
$$

is recursive.
Proof. We have
$\operatorname{aform}(n) \Longleftrightarrow \operatorname{seq}(n) \wedge l h(n)>1 \wedge \operatorname{pred}\left((n)_{0}\right) \wedge \forall 0<i<l h(n)\left[\operatorname{term}\left((n)_{i}\right)\right]$.

If A is $\neg B$, and if $\lceil B\rceil$ has been defined,

$$
\lceil A\rceil=\langle S N(\neg),\lceil B\rceil\rangle .
$$

If A is $\vee B C$,

$$
\lceil A\rceil=\langle S N(\vee),\lceil B\rceil,\lceil C\rceil\rangle .
$$

If A is $\exists x B$,

$$
\lceil A\rceil=\langle S N(\exists),\lceil x\rceil,\lceil B\rceil\rangle .
$$

Proposition 6.3.4 The predicate

$$
\text { form }(n) \Longleftrightarrow n \text { is the Gödel number of a formula }
$$

is recursive.
Proof. We define the following predicates:

$$
A_{1}(n) \Longleftrightarrow\left[\operatorname{seq}(n) \wedge l h(n)=2 \wedge(n)_{0}=S N(\neg) \wedge \text { form }\left((n)_{1}\right)\right]
$$

$A_{2}(n) \Longleftrightarrow\left[\operatorname{seq}(n) \wedge l h(n)=3 \wedge(n)_{0}=S N(\vee) \wedge\right.$ form $\left((n)_{1}\right) \wedge$ form $\left.\left((n)_{2}\right)\right]$, and

$$
A_{3}(n) \Longleftrightarrow\left[\operatorname{seq}(n) \wedge l h(n)=3 \wedge(n)_{0}=S N(\exists) \wedge \operatorname{vble}\left((n)_{1}\right) \wedge \text { form }\left((n)_{2}\right)\right] .
$$

By closure under complete recursion (Exercise 6.1.26), it is not hard to show that these predicates are recursive. Now note that

$$
\operatorname{form}(n) \Longleftrightarrow \operatorname{aform}(n) \vee A_{1}(n) \vee A_{2}(n) \vee A_{3}(n)
$$

It follows that the predicate form (n) is resursive.
Now we systematically proceed and show that many metamathematical statements (statements about the theory itself or statements about syntactical objects such as formulas and proofs) can be turned into numbertheoretic statements. Many of the functions and predicates thus defined are recursive or semirecursive. However, we shall not verify this in full detail. Interested readers should complete the proofs as an exercise.

Proposition 6.3.5 There is a recursive function $\operatorname{sub}(l, m, n)$ such that if l is the Gödel number of a term t or a formula A, if m is the Gödel number of a variable v, and if n is the Gödel number of a term s, then $\operatorname{sub}(l, m, n)$ is the Gödel number of $t_{v}[s]$ or $A_{v}[s]$ respectively.

Proof. Define

$$
\operatorname{sub}_{1}(l, m, n)=\left\{\begin{array}{l}
n \text { if } \operatorname{vble}(l), \wedge l=m \\
l \text { otherwise }
\end{array}\right.
$$

$$
\begin{gathered}
\operatorname{sub}_{2}(l, m, n)=\left\langle(l)_{0}, \operatorname{sub}_{2}\left((l)_{1}, m, n\right), \ldots, \operatorname{sub}_{2}\left((l)_{l h(l)-1}, m, n\right)\right\rangle \\
\operatorname{sub}_{3}(l, m, n)= \begin{cases}\left\langle(l)_{0}, \operatorname{sub}_{3}\left((l)_{1}, m, n\right)\right\rangle & \text { if } \operatorname{seq}(l) \wedge l h(l)=2 \\
\left\langle(l)_{0}, \operatorname{sub}_{3}\left((l)_{1}, m, n\right), \operatorname{sub}_{3}\left((l)_{2}, m, n\right)\right\rangle & \text { if } \operatorname{seq}(l) \wedge l h(l)=3 \\
& \wedge(l)_{0} \neq S N(\exists) \\
\left\langle(l)_{0},(l)_{1}, \operatorname{sub}_{3}\left((l)_{2}, m, n\right)\right\rangle & \text { if } \operatorname{seq}(l) \wedge l h(l)=3 \\
& \wedge(l)_{0}=S N(\exists) \\
l & \wedge(l)_{1} \neq m \\
l & \text { otherwise }\end{cases}
\end{gathered}
$$

Now define

$$
\operatorname{sub}(l, m, n)= \begin{cases}\operatorname{sub}_{1}(l, m, n) \text { if } \operatorname{vble}(l) \vee \operatorname{func}_{0}(l) \\ \operatorname{sub}_{2}(l, m, n) \text { if } \operatorname{pred}\left((l)_{0}\right) \vee \operatorname{func}\left((l)_{0}\right) \\ \operatorname{sub}_{3}(l, m, n) & \text { if form }(l) \wedge \neg \operatorname{aform}(l) \\ l & \text { otherwise }\end{cases}
$$

Then $\operatorname{sub}(l, m, n)$ is a recursive function with the desired properties.
Exercise 6.3.6 For each $n \geq 1$, show that there is a recursive function $\mathrm{sb}: \mathbb{N} \times \mathbb{N}^{n} \rightarrow \mathbb{N}$ such that whenever $m=\lceil E\rceil, E$ a term or a formula of
the theory N,

$$
\operatorname{sb}\left(m, b_{0}, \ldots, b_{n-1}\right)=\left\lceil E_{x_{0}, \ldots, x_{n-1}}\left[k_{b_{0}}, \ldots, k_{b_{n-1}}\right]\right\rceil,
$$

where $x_{0}, x_{1}, \ldots, x_{n-1}$ are the first n variables in alphabetical order.
Exercise 6.3.7 For each $m, n \geq 1$, show that there is a recursive function $s_{n}^{m}: \mathbb{N} \times \mathbb{N}^{m} \rightarrow \mathbb{N}$ such that whenever $p=\lceil A\rceil, A$ a formula of the theory N,

$$
s_{n}^{m}\left(p, b_{m+1}, \ldots, b_{m+n}\right)=\left\lceil A_{x_{m+1}, \ldots, x_{m+n}}\left[k_{b_{m+1}}, \ldots, k_{b_{m+n}}\right]\right\rceil,
$$

where $x_{1}, \ldots, x_{m}, x_{m+1}, \ldots, x_{m+n}$ are the first $(m+n)$ variables in alphabetical order.

Proposition 6.3.8 There is a recursive predicate $\operatorname{fr}(m, n)$ such that if m is the Gödel number of a term or a formula E and if n is the Gödel number of a variable v, then

$$
\mathrm{fr}(m, n) \Longleftrightarrow v \text { is free in } E .
$$

Proof. Set

$$
\chi_{\mathrm{fr}}^{1}(m, n)=\chi_{\mathrm{fr}}\left((m)_{1}, n\right) \ldots \chi_{\mathrm{fr}}\left((m)_{\operatorname{lh}(m)-1}, n\right) .
$$

Now take

$$
\chi_{\mathrm{fr}}(m, n)= \begin{cases}0 & \text { if vble }(m) \wedge m=n \\ \chi_{\mathrm{fr}}^{1}(m, n) & \text { if } \operatorname{pred}\left((m)_{0}\right) \vee \operatorname{func}\left((m)_{0}\right), \\ \chi_{\mathrm{fr}}\left((m)_{1}, n\right) & \text { if }(m)_{0}=S N(\neg), \\ \chi_{\mathrm{fr}}\left((m)_{1}, n\right) \cdot \chi_{\mathrm{fr}}\left((m)_{2}, n\right), & \text { if } l h(m)=3 \\ & \wedge(m)_{0}=S N(\vee), \\ \left.\chi_{\mathrm{fr}}\left((m)_{2}, n\right)\right), & \text { if } l h(m)=3 \\ 1 & \wedge(m)_{0}=S N(\exists) \wedge(m)_{1} \neq n, \\ 1 & \text { otherwise. }\end{cases}
$$

Then χ_{fr} is a recursive function with the desired properties.
Proposition 6.3.9 There is a recursive function $\operatorname{substl}(l, m, n)$ such that if l is the Gödel number of a formula A, if m is the Gödel number of a variable v, and if n is the Gödel number of a term t, then

$$
\operatorname{substl}(l, m, n) \Longleftrightarrow t \text { is substitutable for } v \text { in } A \text {. }
$$

The proof is left as an exercise.
Exercise 6.3.10 Let I be an interpretation of a theory T^{\prime} in T. Show that there is a recursive function $f: \mathbb{N} \rightarrow \mathbb{N}$ such that if n is the Gödel number
of a formula A of T^{\prime}, then $f(n)$ is the Gödel number of its meaning A^{I} in I.
We shall now show that the set LAx_{T} of Gödel numbers of all logical axioms of T is recursive. We define four recursive predicates first:

$$
\operatorname{pax}(m) \Longleftrightarrow \exists{ }^{<m} n[\operatorname{form}(n) \wedge m=\langle S N(\vee),\langle S N(\neg), n\rangle, n\rangle]
$$

Note that for all m,

$$
\operatorname{pax}(m) \Longleftrightarrow m \text { is the Gödel number of a propositional axiom, }
$$

$$
\operatorname{idax}(m) \Longleftrightarrow \exists^{<m} n[\operatorname{vble}(n) \wedge m=\langle S N(=), n, n\rangle] .
$$

Note that

$$
\operatorname{idax}(m) \Longleftrightarrow m \text { is the Gödel number of an identity axiom. }
$$

Exercise 6.3.11 Show that the unary predicates sax and eax of Gödel numbers of all substitution axioms and of all equality axioms respectively are recursive.

We now have the following theorem.
Theorem 6.3.12 The unary predicate $\mathrm{LAx}_{T} \subset \mathbb{N}$ consisting of Gödel numbers of all logical axioms of T is recursive.

We call a theory T axiomatized if the set $\mathrm{NAx}_{T} \subset \mathbb{N}$ of Gödel numbers of all nonlogical axioms of T is recursive.

That T is axiomatized means that there is an algorithm to decide whether a formula of T is an axiom. This is a natural condition on the set of axioms for any axiomatic system.

We define

$$
\operatorname{Ax}_{T}(n) \Longleftrightarrow n \text { is the Gödel number of an axiom of } T .
$$

The following result is obvious from Theorem 6.3.12 and the definition of axiomatized theories.

Proposition 6.3.13 If T is axiomatized, Ax_{T} is recursive.
Example 6.3.14 The theory N has only finitely many nonlogical axioms. So, N is axiomatized.

Exercise 6.3.15 (i) Show that the set of Gödel numbers of formulas of N of the form

$$
A_{v}[0] \rightarrow \forall v\left(A \rightarrow A_{v}[S v]\right) \rightarrow A
$$

where A is a formula and v a variable, is recursive.
(ii) Show that Peano arithmetic is axiomatized.
(iii) Show that $Z F$ and $Z F C$ are axiomatized. (Note that the language for set theory has only one binary relation symbol. You only have to show that the set of all Gödel numbers of comprehension axioms is recursive. Show this for replacement axioms also.)

From now on, in this section, T will be a fixed finite theory.
We now introduce some recursive predicates related to rules of inference:

$$
\operatorname{cont}(n, m) \Leftrightarrow m=\langle S N(\vee), n, n\rangle
$$

If $n=\lceil B\rceil$ and $m=\lceil B \vee B\rceil$, then $\operatorname{cont}(m, n)$ holds. Further, if n is the Gödel number of a formula B and if m is the Gödel number of a formula A and if $\operatorname{cont}(m, n)$ holds, then A can be inferred from B by the contraction rule.

We define recursive predicates corresponding to other rules as follows:

$$
\begin{aligned}
& \exp (m, n) \Leftrightarrow \operatorname{form}(n) \wedge m=\left\langle S N(\vee),(m)_{1}, n\right\rangle, \\
& \operatorname{assoc}(m, n) \Leftrightarrow n=\left\langle S N(\vee),(n)_{1},\left\langle S N(\vee),\left((n)_{2}\right)_{1},\left((n)_{2}\right)_{2}\right\rangle,\right\rangle \\
& \wedge(m)_{0}=S N(\vee) \wedge\left((m)_{1}\right)_{0}=S N(\vee) \\
& \wedge\left((m)_{1}\right)_{1}=(n)_{1} \\
& \wedge\left((m)_{1}\right)_{2}=\left((n)_{2}\right)_{1} \wedge(m)_{2}=\left((n)_{2}\right)_{2}, \\
& \operatorname{cut}(l, m, n) \Leftrightarrow m=\left\langle S N(\vee),(m)_{1},(m)_{2}\right\rangle \\
& \wedge n=\left\langle S N(\vee),\left\langle S N(\neg),(m)_{1}\right\rangle,(n)_{2}\right\rangle \\
& \wedge l=\left\langle S N(\vee),(m)_{2},(n)_{2}\right\rangle,
\end{aligned}
$$

and

$$
\begin{aligned}
\operatorname{intr}(m, n) \Leftrightarrow & n=\left\langle S N(\vee),\left\langle S N(\neg),\left((n)_{1}\right)_{1}\right\rangle,(n)_{2}\right\rangle \\
& \wedge m=\left\langle S N(\vee),\left\langle S N(\neg),\left\langle S N(\exists),\left(\left((m)_{1}\right)_{1}\right)_{1},\left((n)_{1}\right)_{1}\right\rangle,(n)_{2}\right\rangle\right\rangle \\
& \wedge \operatorname{vble}\left(\left((m)_{1}\right)_{1}\right) \wedge \neg \operatorname{fr}\left(\left((m)_{1}\right)_{1},(n)_{2}\right) .
\end{aligned}
$$

Exercise 6.3.16 Show that the predicates cont, assoc, cut, and intr are recursive.

We continue the idea further. Recall that any proof in a theory is a finite sequence of formulas of the theory. Hence, the following definition is quite important. It will be used to code proofs by numbers in such a way that there is a mechanical procedure to decide whether a natural number codes a proof. Further the procedure decodes the proof.

If A_{1}, \ldots, A_{n} is a sequence of formulas of T, the number

$$
\left\langle\left\lceil A_{1}\right\rceil, \ldots,\left\lceil A_{n}\right\rceil\right\rangle
$$

will be called the Gödel number of the sequence.
Proposition 6.3.17 If T is axiomatized, the set Pr_{T} of $G o ̈ d e l ~ n u m b e r s ~ o f ~$ all proofs in T is recursive.

Proof. This follows from the following equivalence:

$$
\begin{aligned}
\operatorname{Pr}_{T}(n) \Longleftrightarrow & \operatorname{seq}(n) \wedge \forall i<\operatorname{lh}(n)\left[\operatorname{Ax}_{T}\left((n)_{i}\right)\right. \\
& \vee \exists j<i\left((\operatorname{cont} \vee \operatorname{assoc} \vee \operatorname{intr})\left((n)_{i},(n)_{j}\right)\right) \\
& \vee \exists j, k<i\left[\operatorname{cut}\left((n)_{i},(n)_{j},(n)_{k}\right)\right] .
\end{aligned}
$$

Proposition 6.3.18 If T is axiomatized, the set $\operatorname{Prf}_{T} \subset \mathbb{N} \times \mathbb{N}$, of all pairs of numbers (m, n) such that m is the Gödel number of a proof of a formula whose Gödel number is n, is recursive.

Proof. Note that for any m, n,

$$
\operatorname{Prf}_{T}(m, n) \Longleftrightarrow l h(m)>0 \wedge \operatorname{Pr}_{T}(m) \wedge(m)_{l h(m)-1}=n
$$

Theorem 6.3.19 If T is axiomatized, then the set Thm_{T} of Gödel numbers of all theorems of T is semirecursive.

Proof. This follows from the following equivalence:

$$
\operatorname{Thm}_{T}(n) \Longleftrightarrow \exists m\left[\operatorname{Prf}_{T}(m, n)\right]
$$

But is the predicate Thm_{T} recursive? Not always. However, in the next section we shall prove that if, moreover, T is complete, then Thm_{T} is recursive. Quite interestingly, in the next chapter we shall show that Thm_{N}, $\operatorname{Thm}_{P A}$, and $\operatorname{Thm}_{Z F}$ are not recursive. This is the essence of Gödel's first incompleteness theorem.

Remark 6.3.20 Let $F\left(X_{1}, \ldots, X_{n}\right) \in \mathbb{Z}\left[X_{1}, \ldots, X_{n}\right]$. We can give a similar coding scheme and assign a natural number, say $g(F)$, to F in such a way that Hilbert's tenth problem has a positive answer if and only if the set H of all those $g(F)$ for which the Diophantine equation $F=0$ has an integral solution is recursive. We invite readers to carry out such a coding. It has been shown that Hilbert's tenth problem has a negative answer.

6.4 Decidable Theories

We call a finite theory T decidable if $T h m_{T}$ is recursive. Otherwise, the theory is called undecidable.

Thus, if a theory is decidable, there is an algorithm to decide whether a formula of T is a theorem or not. Hilbert believed that there should be a decidable set of axioms of number theory (and of most of the interesting mathematical theories) such that every true formula of N is provable. Gödel shocked the mathematical world by showing the impossibility of Hilbert's dream.

Our next result is the following.
Theorem 6.4.1 Every finite, complete theory is decidable.
We need the following lemma.
Lemma 6.4.2 There is a recursive map $g: \mathbb{N} \rightarrow \mathbb{N}$ such that if n is the Gödel number of a formula A, then $g(n)$ is the Gödel number of a closed formula B such that

$$
T \vdash A \Longleftrightarrow T \vdash B .
$$

Proof. Consider the function $f: \mathbb{N} \times \mathbb{N} \rightarrow \mathbb{N}$ defined by

$$
f(0, n)=n,
$$

and for all $m \geq 0$,

$$
f(m+1, n)=\langle S N(\neg),\langle S N(\exists),\langle 2 m\rangle,\langle S N(\neg), f(m, n)\rangle\rangle\rangle .
$$

It is routine to check that f is recursive. Further, if n is the Gödel number of a formula A, then $f(m+1, n)$ is the Gödel number of $\forall x_{m} \ldots \forall x_{0} A$, where x_{0}, \ldots, x_{m} are the first $(m+1)$ variables in alphabetical order. Now set

$$
g(n)=f(n, n), \quad n \in \mathbb{N} .
$$

Using the closure theorem, generalization rule, and the closure properties of the class of recursive functions and recursive predicates, it is easy to check that the map g has the desired properties.

Proof of 6.4.1. By Theorems 6.2 .4 and 6.3 .19 , it is sufficient to show that $\neg \mathrm{Thm}_{T}$ is semirecursive. Fix any $n \in \mathbb{N}$. Now note the following:

$$
\begin{aligned}
\neg \operatorname{Thm}_{T}(n) & \Longleftrightarrow \neg \operatorname{form}(n) \vee \operatorname{Thm}_{T}(\langle S N(\neg), g(n)\rangle) \\
& \Longleftrightarrow \exists m\left[\neg \text { form }(n) \vee \operatorname{Prf}_{T}(m,\langle S N(\neg), g(n)\rangle)\right] .
\end{aligned}
$$

Since Prf_{T} is recursive and g is recursive, it follows that $\neg \mathrm{Thm}_{T}$ is semirecursive.

This is a very important theorem. It says that if T is axiomatized and Thm_{T} is not recursive, then T is not complete. Gödel uses it beautifully to establish the first incompleteness theorem.

Exercise 6.4.3 Let $p=0$ or a prime >1. Show that the theory $A C F(p)$ is axiomatized and decidable.

This theorem, in particular, says that there is an algorithm to decide whether a statement in the language of ring theory with identity is valid in \mathbb{C}.

A simple extension T^{\prime} of T is called a finite extension if at most finitely many nonlogical axioms of T^{\prime} are not theorems of T.

Theorem 6.4.4 Let T be an undecidable theory. Suppose T^{\prime} satisfies one of the following conditions:
(a) T^{\prime} is a conservative extension of T.
(b) T is an extension by definition of T^{\prime}.
(c) T is a finite consistent extension of T^{\prime}.
(d) T has a faithful interpretation in T^{\prime}.

Then T^{\prime} is undecidable.
Proof. In each case, we show that there is a recursive function $f: \mathbb{N} \rightarrow \mathbb{N}$ such that if n is the Gödel number of a formula φ of $T, f(n)$ is the Gödel number of a formula φ^{*} of T^{\prime} such that

$$
T \vdash \varphi \Longleftrightarrow T^{\prime} \vdash \varphi^{*} .
$$

Assuming this done, we complete the proof first. Suppose in some case (a)-(d), Thm $T_{T^{\prime}}$ is recursive. Then,

$$
\operatorname{Thm}_{T}(n) \Longleftrightarrow \operatorname{form}_{T}(n) \wedge \operatorname{Thm}_{T^{\prime}}(f(n))
$$

Hence, Thm_{T} is recursive by the closure properties of the set of recursive predicates. This contradicts that T is undecidable.

In case (a), we take $f(n)=n$. Since an extension by definitions of T is a conservative extension of T (Theorem 5.3.6), the result in case (b) follows from case (a).

We now prove the result in case (c). Let B_{1}, \ldots, B_{m} be an enumeration of the closures of all the nonlogical axioms of T^{\prime} which are not theorems of T. Let p be the Gödel number of $\neg B_{1} \vee \cdots \vee \neg B_{m}$. If n is the Gödel number of a formula A of T, we define

$$
f(n)=\langle S N(\vee), p, n\rangle
$$

Otherwise, we define $f(n)=0$. Since the set of Gödel numbers of formulas is a recursive set, it follows that f is recursive. By the reduction theorem (Exercise 4.4.6),

$$
\operatorname{Thm}_{T}(n) \Longleftrightarrow \operatorname{Thm}_{T^{\prime}}(f(n))
$$

To prove the result in case (d), fix a faithful interpretation I of T in T^{\prime}. It is fairly routine to see that there is a recursive function $f: \mathbb{N} \rightarrow \mathbb{N}$ such that if n is the Gödel number of a formula A of T, then $f(n)$ is the Gödel number of A^{I} (Exercise 6.3.10). Since I is a faithful interpretation,
6. Recursive Functions and Arithmetization of Theories

$$
\operatorname{Thm}_{T}(n) \Longleftrightarrow \operatorname{form}_{T}(n) \wedge \operatorname{Thm}_{T^{\prime}}(f(n)) .
$$

7

Incompleteness Theorems and Recursion Theory

This chapter gives the most important landmarks of mathematical logicthe incompleteness theorems of Gödel. We still have to do some work, which we do in the first section. As a side output, in Section 3, we initiate the study of recursion theory.

7.1 Representability

In this section, we present yet another beautiful concept, called representability, introduced by Gödel, which shows that recursive functions and predicates can be represented by formulas of the theory N.

Let $P \subset \mathbb{N}^{p}$. We say that a formula A of N with distinct variables v_{1}, \ldots, v_{p} represents P if for every sequence of numbers n_{1}, \ldots, n_{p},

$$
\left(n_{1}, \ldots, n_{p}\right) \in P \Rightarrow N \vdash A_{v_{1}, \ldots, v_{p}}\left[k_{n_{1}}, \ldots, k_{n_{p}}\right]
$$

and

$$
\left(n_{1}, \ldots, n_{p}\right) \notin P \Rightarrow N \vdash \neg A_{v_{1}, \ldots, v_{p}}\left[k_{n_{1}}, \ldots, k_{n_{p}}\right] .
$$

We say that P is representable if some formula A with distinct variables v_{1}, \ldots, v_{p} represents it.

Let $f: \mathbb{N}^{p} \rightarrow \mathbb{N}$ be a map. We say that a formula A of N with distinct variables v_{1}, \ldots, v_{p}, w represents f if for every sequence of numbers n_{1}, \ldots, n_{p},

$$
N \vdash A_{v_{1}, \ldots, v_{p}}\left[k_{n_{1}}, \ldots, k_{n_{p}}\right] \leftrightarrow w=k_{m}
$$

where $m=f\left(n_{1}, \ldots, n_{p}\right)$. We say that f is representable if some formula A with distinct variables v_{1}, \ldots, v_{p}, w represents it.

Theorem 7.1.1 Every representable predicate $P \subset \mathbb{N}^{n}$ is recursive.
Proof. Let a formula φ of N with variables x_{1}, \ldots, x_{n} represent P. Then for every $\left(a_{1}, \ldots, a_{n}\right) \in \mathbb{N}^{n}$, we have the following:

$$
P\left(a_{1}, \ldots, a_{n}\right) \Rightarrow N \vdash \varphi_{x_{1}, \ldots, x_{n}}\left[k_{a_{1}}, \ldots, k_{a_{n}}\right]
$$

and

$$
\neg P\left(a_{1}, \ldots, a_{n}\right) \Rightarrow N \vdash \neg \varphi_{x_{1}, \ldots, x_{n}}\left[k_{a_{1}}, \ldots, k_{a_{n}}\right] .
$$

Since N is consistent, we now have the following:

$$
P\left(a_{1}, \ldots, a_{n}\right) \Leftrightarrow \operatorname{Thm}_{N}\left(\left\lceil\varphi_{x_{1}, \ldots, x_{n}}\left[k_{a_{1}}, \ldots, k_{a_{n}}\right]\right\rceil\right)
$$

and

$$
\neg P\left(a_{1}, \ldots, a_{n}\right) \Leftrightarrow \operatorname{Thm}_{N}\left(\left\lceil\neg \varphi_{x_{1}, \ldots, x_{n}}\left[k_{a_{1}}, \ldots, k_{a_{n}}\right]\right\rceil\right) .
$$

Since N is axiomatized, by Theorem 6.3.19, Thm_{N} is semirecursive. Further, the maps

$$
\left(a_{1}, \ldots, a_{n}\right) \rightarrow\left\lceil\varphi_{x_{1}, \ldots, x_{n}}\left[k_{a_{1}}, \ldots, k_{a_{n}}\right]\right\rceil
$$

and

$$
\left(a_{1}, \ldots, a_{n}\right) \rightarrow\left\lceil\neg \varphi_{x_{1}, \ldots, x_{n}}\left[k_{a_{1}}, \ldots, k_{a_{n}}\right]\right\rceil
$$

are recursive. (See Exercise 6.3.6.) Hence, both P and $\neg P$ are semirecursive. The result now follows from Theorem 6.2.4.

The main theorem of this section is the following.
Theorem 7.1.2 (Representability theorem) Every recursive function and every recursive predicate is representable.

This result is proved essentially by showing that the initial functions are representable and that the set of all representable functions is closed under composition and minimalization. We will see later in this section that every representable function is recursive.

Lemma 7.1.3 Let P be a p-ary representable predicate on \mathbb{N} and x_{1}, \ldots, x_{p} distinct variables. Then there is a formula B of N such that B with x_{1}, \ldots, x_{p} represents P.

Proof. Let A with v_{1}, \ldots, v_{p} represent P. Taking a variant of A, if necessary, by the variant theorem, we can assume that x_{1}, \ldots, x_{p} do not occur in A. Now take B to be

$$
A_{v_{1}, \ldots, v_{p}}\left[x_{1}, \ldots, x_{p}\right]
$$

The following result is also proved similarly.
Lemma 7.1.4 Let f be a p-ary representable function on \mathbb{N} and x_{1}, \ldots, x_{p}, y distinct variables. Then there is a formula B of N such that B with x_{1}, \ldots, x_{p}, y represents f.

Let f be a p-ary function. We say that a term t of N with distinct variables v_{1}, \ldots, v_{p} represents f if for every n_{1}, \ldots, n_{p},

$$
N \vdash t_{v_{1}, \ldots, v_{p}}\left[k_{n_{1}}, \ldots, k_{n_{p}}\right]=k_{m},
$$

where $m=f\left(n_{1}, \ldots, n_{p}\right)$.
Lemma 7.1.5 Let a term t with distinct variables v_{1}, \ldots, v_{p} represent f : $\mathbb{N}^{p} \rightarrow \mathbb{N}$ and let w be a variable distinct from each v_{i}. Then the formula $w=t$ with v_{1}, \ldots, v_{p}, w represents f.

Proof. Let $m=f\left(n_{1}, \ldots, n_{p}\right)$. We have

$$
N \vdash t_{v_{1}, \ldots, v_{p}}\left[k_{n_{1}}, \ldots, k_{n_{p}}\right]=k_{m} .
$$

We are required to show that

$$
N \vdash w=t_{v_{1}, \ldots, v_{p}}\left[k_{n_{1}}, \ldots, k_{n_{p}}\right] \leftrightarrow w=k_{m} .
$$

This essentially follows from the equality axiom, the substitution rule, and the detachment rule.

Proposition 7.1.6 A p-ary predicate P is representable if and only if χ_{P} is representable.

Proof. Let A with distinct variables v_{1}, \ldots, v_{p} represent P. Let the variable w be distinct from each of v_{i} and let B be the formula

$$
\left(A \wedge w=k_{0}\right) \vee\left(\neg A \wedge w=k_{1}\right)
$$

Fix any $\left(n_{1}, \ldots, n_{p}\right)$. Suppose $\left(n_{1}, \ldots, n_{p}\right) \in P$. Then

$$
\begin{equation*}
N \vdash A_{v_{1}, \ldots, v_{p}}\left[k_{n_{1}}, \ldots, k_{n_{p}}\right] . \tag{1}
\end{equation*}
$$

By (1) and the the tautology theorem,

$$
N \vdash B_{v_{1}, \ldots, v_{p}}\left[k_{n_{1}}, \ldots, k_{n_{p}}\right] \leftrightarrow w=k_{0} .
$$

If $\left(n_{1}, \ldots, n_{p}\right) \notin P$,

$$
\begin{equation*}
N \vdash \neg A_{v_{1}, \ldots, v_{p}}\left[k_{n_{1}}, \ldots, k_{n_{p}}\right] \tag{2}
\end{equation*}
$$

By (2) and the tautology theorem,

$$
N \vdash B_{v_{1}, \ldots, v_{p}}\left[k_{n_{1}}, \ldots, k_{n_{p}}\right] \leftrightarrow w=k_{1} .
$$

Conversely, assume that A with distinct variables v_{1}, \ldots, v_{p}, w represents χ_{P}. Let B be the formula $A_{w}\left[k_{o}\right]$. We claim that B with v_{1}, \ldots, v_{p} represents P.

Since $\neg(S x=0)$ is an axiom of N,

$$
N \vdash \neg\left(k_{1}=k_{0}\right) .
$$

Fix any $\left(n_{1}, \ldots, n_{p}\right)$. Suppose $\left(n_{1}, \ldots, n_{p}\right) \in P$. Then

$$
N \vdash w=k_{0} \leftrightarrow A_{v_{1}, \ldots, v_{p}}\left[k_{n_{1}}, \ldots, k_{n_{p}}\right] .
$$

By the substitution rule,

$$
N \vdash k_{0}=k_{0} \leftrightarrow B_{v_{1}, \ldots, v_{p}}\left[k_{n_{1}}, \ldots, k_{n_{p}}\right] .
$$

Since $N \vdash k_{0}=k_{0}$, we have

$$
N \vdash B_{v_{1}, \ldots, v_{p}}\left[k_{n_{1}}, \ldots, k_{n_{p}}\right] .
$$

Since $N \vdash \neg\left(k_{1}=k_{0}\right)$, the other case is similarly proved.
Note that by the previous proposition, to prove the representability theorem, we only need to show that every recursive function is representable. We shall show that all initial functions are representable and that the set of all representable functions is closed under composition and minimalization.

Proposition 7.1.7 The formula $x=y$ with distinct variables represents $=$ in N.

Proof. We need to show the following:

$$
m=n \Rightarrow N \vdash k_{m}=k_{n}
$$

and

$$
m \neq n \Rightarrow N \vdash \neg\left(k_{m}=k_{n}\right) .
$$

The first assertion follows from the identity axiom and the substitution rule. By the symmetry theorem (Lemma 3.5.1), in the proof of the second assertion, we can assume that $m>n$. We proceed by induction on n. If $n=0$, for all m, this follows from the axiom (1) of N and the substitution rule. Let $m \geq n>0$ and the second assertion hold for $n-1$ and all m. Now note the following:

$$
N \vdash k_{m}=k_{n} \Rightarrow k_{m-1}=k_{n-1},
$$

by the axiom (2) of N, the closure theorem, and the substitution rule. By the induction hypothesis, we have

$$
N \vdash \neg\left(k_{m-1}=k_{n-1}\right) .
$$

Hence,

$$
N \vdash \neg\left(k_{m}=k_{n}\right),
$$

by the tautology theorem.
Proposition 7.1.8 All initial functions are representable.
Proof. (i) Let v_{1}, \ldots, v_{n} be distinct variables and let t be the term v_{i}. Fix natural numbers p_{1}, \ldots, p_{n}. Clearly

$$
N \vdash t_{v_{1}, \ldots, v_{n}}\left[k_{p_{1}}, \ldots, k_{p_{n}}\right]=k_{p_{i}} .
$$

This shows that the projection maps $\Pi_{i}^{n}, n \geq 1,1 \leq i \leq n$, are representable.
(ii) Let x and y be distinct variables and let t be the term $x+y$. We show that t with x, y represents + . We need to show that for all natural numbers m, n,

$$
\begin{equation*}
N \vdash k_{m}+k_{n}=k_{m+n} . \tag{1}
\end{equation*}
$$

We fix m and show (1) by induction on n. By the axiom (3) of N, we have

$$
N \vdash k_{m}+0=k_{m} .
$$

Now assume that

$$
\begin{equation*}
N \vdash k_{m}+k_{n}=k_{m+n} . \tag{2}
\end{equation*}
$$

By the axiom (4) of N and the substitution rule, we have

$$
N \vdash k_{m}+k_{n+1}=S\left(k_{m}+k_{n}\right) .
$$

By the equality axiom and (2), we have

$$
N \vdash S\left(k_{m}+k_{n}\right)=k_{m+n+1} .
$$

So,

$$
N \vdash k_{m}+k_{n+1}=k_{m+n+1} .
$$

(iii) Similarly, using axioms (5) and (6) of N, we show that the term $x \cdot y$ with distinct variables x and y represents \cdot, the multiplication.
(iv) Finally, we show that the formula $x<y$ with distinct variables x and y represents $<$. This in turn will show that $\chi<$ is representable and the result will be proved. We are required to show that for every natural numbers m and n,

$$
\begin{equation*}
m<n \Longrightarrow N \vdash k_{m}<k_{n} \tag{3}
\end{equation*}
$$

and

$$
\begin{equation*}
\neg(m<n) \Longrightarrow N \vdash \neg\left(k_{m}<k_{n}\right) . \tag{4}
\end{equation*}
$$

For every n, we show that (3) and (4) hold for all m. We proceed by induction on n. For $n=0$, we only need to prove (4) for all m; (4) follows from the axiom (7) of N.

Now assume that for some $n,(3)$ and (4) holds for all m. Suppose $m<$ $n+1$. If $m<n$, then

$$
N \vdash k_{m}<k_{n}
$$

and hence

$$
N \vdash k_{m}<k_{n+1}
$$

by the axiom (8), the substitution rule, and the induction hypothesis. If $m=n$,

$$
N \vdash k_{m}=k_{n}
$$

by Proposition 7.1.7. Then

$$
N \vdash k_{m}<k_{n+1}
$$

by the same arguments.
Now suppose $m \geq n+1$. Then,

$$
N \vdash \neg\left(k_{m}<k_{n}\right)
$$

by the induction hypothesis and

$$
N \vdash \neg\left(k_{m}=k_{n}\right)
$$

by Proposition 7.1.7. So,

$$
N \vdash \neg\left(k_{m}<k_{n+1}\right)
$$

using the axiom (8) of N and the tautology theorem.
Proposition 7.1.9 The set of all representable functions is closed under composition.

Proof. Let

$$
h\left(n_{1}, \ldots, n_{k}\right)=g\left(f_{1}\left(n_{1}, \ldots, n_{k}\right), \ldots, f_{m}\left(n_{1}, \ldots, n_{k}\right)\right)
$$

where g, f_{1}, \ldots, f_{m} are representable. We choose distinct variables, $u, v_{1}, \ldots, v_{m}, w_{1}, \ldots, w_{k}$ and formulas B, A_{1}, \ldots, A_{m} such that B with v_{1}, \ldots, v_{m} and u represents g and A_{i} with w_{1}, \ldots, w_{k} and v_{i} represents $f_{i}, 1 \leq i \leq m$.

Now consider the formula C defined by

$$
\exists v_{1} \cdots \exists v_{m}\left(A_{1} \wedge \cdots \wedge A_{m} \wedge B\right)
$$

We claim that C with w_{1}, \ldots, w_{k} and u represents h. Fix $\left(n_{1}, \ldots, n_{k}\right)$. Let $p_{i}=f_{i}\left(n_{1}, \ldots, n_{k}\right)$ and $q=g\left(p_{1}, \ldots, p_{m}\right)$. Then $q=h\left(n_{1}, \ldots, n_{k}\right)$. For $1 \leq i \leq m$, set

$$
A_{i}^{\prime}=\left(A_{i}\right)_{w_{1}, \ldots, w_{k}}\left[k_{n_{1}}, \ldots, k_{n_{k}}\right]
$$

and

$$
C^{\prime}=C_{w_{1}, \ldots, w_{k}}\left[k_{n_{1}}, \ldots, k_{n_{k}}\right] .
$$

By our assumptions, we have

$$
N \vdash A_{i}^{\prime} \leftrightarrow v_{i}=k_{p_{i}},
$$

$1 \leq i \leq m$. By the equivalence theorem, we have

$$
N \vdash C^{\prime} \leftrightarrow \exists v_{1} \cdots \exists v_{m}\left(v_{1}=k_{p_{1}} \wedge \cdots \wedge v_{m}=k_{p_{m}} \wedge B\right) .
$$

Let D denote the formula

$$
\exists v_{1} \cdots \exists v_{m}\left(v_{1}=k_{p_{1}} \wedge \cdots \wedge v_{m}=k_{p_{m}} \wedge B\right)
$$

By the repeated application of Proposition 4.2.23, we have

$$
N \vdash \exists v_{2} \cdots \exists v_{m}\left(v_{2}=k_{p_{2}} \wedge \cdots \wedge v_{m}=k_{p_{m}} \wedge B_{v_{1}}\left[k_{p_{1}}\right]\right) \leftrightarrow D
$$

$N \vdash B_{v_{1}, \ldots, v_{m}}\left[k_{p_{1}}, \ldots, k_{p_{m}}\right] \leftrightarrow \exists v_{m}\left(v_{m}=k_{p_{m}} \wedge B_{v_{1}, \ldots, v_{m-1}}\left[k_{p_{1}}, \ldots, k_{p_{m-1}}\right]\right)$.
By the equivalence theorem and the tautology theorem, we get

$$
N \vdash C^{\prime} \leftrightarrow B_{v_{1}, \ldots, v_{m}}\left[k_{p_{1}}, \ldots, k_{p_{m}}\right] .
$$

Since B with v_{1}, \ldots, v_{m} and u represents g and $q=g\left(p_{1}, \ldots, p_{m}\right)$, we have

$$
N \vdash B_{v_{1}, \ldots, v_{m}}\left[k_{p_{1}}, \ldots, k_{p_{m}}\right] \leftrightarrow u=k_{q} .
$$

Thus by the equivalence theorem,

$$
N \vdash C^{\prime} \leftrightarrow u=k_{q}
$$

It remains to show that the set of all representable functions is closed under minimalization.

Proposition 7.1.10 The set of all representable functions is closed under minimalization.

Proof. Let $f(m, \bar{n})$ be representable, where $\bar{n}=\left(n_{0}, \ldots, n_{p-1}\right)$. Let A with $v, v_{0}, \ldots, v_{p-1}$ and w represent f. Assume that

$$
\forall \bar{n} \exists m(f(m, \bar{n})=0)
$$

Let

$$
g(\bar{n})=\mu m(f(m, \bar{n})=0)
$$

We now show that g is representable.
Let u be a new variable and let B be the formula

$$
A_{w}[0] \wedge \forall u\left(u<v \rightarrow \neg A_{v, w}[u, 0]\right) .
$$

We claim that B with v_{0}, \ldots, v_{p-1} and v represents g.
Fix $\bar{n}=\left(n_{0}, \ldots, n_{p-1}\right) \in \mathbb{N}^{p}$. Let $m=g(\bar{n})$. Then $f(i, \bar{n})=l_{i} \neq 0$, $i<m$, and $f(m, \bar{n})=0$. Set

$$
A^{\prime}=A_{v_{0}, \ldots, v_{p-1}}\left[k_{n_{0}}, \ldots, k_{n_{p-1}}\right]
$$

and

$$
B^{\prime}=B_{v_{0}, \ldots, v_{p-1}}\left[k_{n_{0}}, \ldots, k_{n_{p-1}}\right] .
$$

We have

$$
N \vdash A_{v}^{\prime}\left[k_{i}\right] \leftrightarrow w=k_{l_{i}},
$$

$i<m$, and

$$
N \vdash A_{v}^{\prime}\left[k_{m}\right] \leftrightarrow w=0
$$

Since $l_{i} \neq 0$, we have

$$
N \vdash \neg\left(0=k_{l_{i}}\right),
$$

$i<m$. Thus, for all $i<m$, we have

$$
N \vdash \neg A_{v, w}^{\prime}\left[k_{i}, 0\right]
$$

and

$$
N \vdash A_{v, w}^{\prime}\left[k_{m}, 0\right] .
$$

Hence, by Proposition 4.3.2,

$$
N \vdash\left(A_{w}^{\prime}[0] \wedge \forall u\left(u<v \rightarrow \neg A_{v, w}^{\prime}[u, 0]\right)\right) \rightarrow v=k_{m}
$$

i.e.,

$$
N \vdash B^{\prime} \leftrightarrow v=k_{m}
$$

Our claim is proved.
We have completed the proof of the representability theorem.
Exercise 7.1.11 Show that every representable function $f: \mathbb{N}^{n} \rightarrow \mathbb{N}$ is recursive.

Remark 7.1.12 We have presented an amazing loop constructed by Gödel that has been likened to the music of Bach and the drawings of Escher [4]. To make statements about numbers, first one develops a formal language (for instance, the language of N) and expresses statements about numbers syntactically in N (or in a suitable extension of N). In this language, a statement about numbers is now a sentence of N. Then using the idea of Gödel numbers, one expresses statements about syntactical objects by numbers themselves. Finally, by the representability theorem, one represents a certain class S of statements about numbers by formulas of N. For instance, if

$$
\{n \in \mathbb{N}: n \text { is the Gödel number of a sentence in } S\}
$$

is recursive, we represent it by a formula of N. This technique enables one to hop into the theory N from the metaworld and vice versa. Thus many questions in the metaworld are expressed by formulas of N. Sometimes even a proof in the metaworld is converted into a proof inside the theory. Thus, Gödel built a very powerful tool and destroyed the beliefs of many great mathematicians of his time, including Hilbert. In the remaining part of this chapter, we present such remarkable discoveries of Gödel.

7.2 First Incompleteness Theorem

Theorem 7.2.1 (First incompleteness theorem) Every axiomatized, consistent extension of N is undecidable and so incomplete.

Proof. Toward arriving at a contradiction, assume that Thm_{T} is recursive. Fix a variable v. There is a recursive function $f: \mathbb{N} \times \mathbb{N} \rightarrow \mathbb{N}$ such that if m is the Gödel number of a formula B of T, then $f(m, n)$ is the Gödel number of $B_{v}\left[k_{n}\right]$. Then the binary predicate $U \subset \mathbb{N} \times \mathbb{N}$ defined by

$$
U(m, n) \Leftrightarrow \operatorname{Thm}_{T}(f(m, n))
$$

is recursive. So, the predicate

$$
P(m) \Leftrightarrow \neg U(m, m)
$$

is recursive.
By the representability theorem, there is a formula A of N such that A with v represents P. This means that for every $n \in \mathbb{N}$,

$$
n \in P \Rightarrow N \vdash A_{v}\left[k_{n}\right]
$$

and

$$
n \notin P \Rightarrow N \vdash \neg A_{v}\left[k_{n}\right] .
$$

Since T is an extension of N, A is a formula of T and for every $n \in \mathbb{N}$,

$$
\begin{equation*}
n \in P \Rightarrow T \vdash A_{v}\left[k_{n}\right] \tag{a}
\end{equation*}
$$

and

$$
\begin{equation*}
n \notin P \Rightarrow T \vdash \neg A_{v}\left[k_{n}\right] . \tag{b}
\end{equation*}
$$

Now let m be the Gödel number of A.
Suppose $m \in P$. Then, by $(a), T \vdash A_{v}\left[k_{m}\right]$, i.e., $U(m, m)$ holds by the definition of U. Hence, $m \notin P$ by the definition of P. This is a contradiction.

On the other hand, suppose $m \notin P$. Then, by $(b), T \vdash \neg A_{v}\left[k_{m}\right]$. Since T is consistent, this implies that $T \nvdash A_{v}\left[k_{m}\right]$. Therefore, by the definition of $U, \neg U(m, m)$ holds. But then $m \in P$ by the definition of P. We have arrived at a contradiction again.

Remark 7.2.2 Since \mathbb{N} with the usual interpretations of $S,+, \cdot$, and $<$ is a model of $P A, P A$ is consistent. Further, by Exercise 6.3.15, $P A$ is axiomatized. Hence, by Theorem 6.4.4, $P A$ is undecidable, and so incomplete by the first incompleteness theorem.

Remark 7.2.3 There is an extension by definitions of $Z F$ (or of $Z F C$) in which there is a suitable interpretation of the theory N so that we can carry out the same arguments and prove the incompleteness of $Z F$ and $Z F C$.

Remark 7.2.4 Comparison with the liar's paradox. In the above proof we have produced a formula $A[v]$ that says that the formula whose Gödel number is m is not provable for " $v=m$." This is similar to the statement "I am lying" of the liar's paradox. This argument also shows a way to make a self-referential statement inside a theory.

Remark 7.2.5 Now we can state Hilbert's problem precisely: is there an axiomatized extension P^{\prime} of $P A$ such that a sentence of P^{\prime} is true (in the standard model) if and only if it is a theorem of P^{\prime}. Since such a theory P^{\prime} is complete, the first incompleteness theorem answers Hilbert's question in the negative.

7.3 Arithmetical Sets

In this section, we present some basic results in recursion theory. We have already initiated the study of recursive and semirecursive sets. The representability theorem and the ideas contained in the proof of the first incompleteness theorem help us to continue this study further.

A set of predicates (of not necessarily fixed arity) on \mathbb{N} will be called a pointclass. For brevity, we shall write \bar{n} for $\left(n_{1}, \ldots, n_{k}\right)$. For $P \subset \mathbb{N} \times \mathbb{N}^{k}$, we define k-ary predicates $\exists^{\omega} P$ and $\forall^{\omega} P$ by

$$
\exists^{\omega} P(\bar{n}) \Longleftrightarrow \exists m P(m, \bar{n})
$$

and

$$
\forall^{\omega} P(\bar{n}) \Longleftrightarrow \forall m P(m, \bar{n})
$$

If Γ is a pointclass, we define

$$
\begin{aligned}
\neg \Gamma & =\{\neg P: P \in \Gamma\}, \\
\exists^{\omega} \Gamma & =\left\{\exists^{\omega} P: P \in \Gamma\right\},
\end{aligned}
$$

and

$$
\forall^{\omega} \Gamma=\left\{\forall^{\omega} P: P \in \Gamma\right\}
$$

Note that for any pointclass,

$$
\forall^{\omega} \Gamma=\neg \exists^{\omega} \neg \Gamma
$$

and

$$
\exists^{\omega} \Gamma=\neg \forall^{\omega} \neg \Gamma .
$$

In the sequel, these two identities and other such simple set-theoretic identities will be used without mention.

We define arithmetical pointclasses $\Sigma_{n}^{0}, \Pi_{n}^{0}$, and $\Delta_{n}^{0}, n \geq 1$, by induction as follows:

$$
\begin{aligned}
& \Sigma_{1}^{0}=\text { the poinclass of all semirecursive sets } \\
& \qquad \begin{array}{c}
\Pi_{n}^{0}=\neg \Sigma_{n}^{0} \\
\Sigma_{n+1}^{0}=\exists^{\omega} \Pi_{n}^{0}
\end{array}
\end{aligned}
$$

and

$$
\Delta_{n}^{0}=\Sigma_{n}^{0} \cap \Pi_{n}^{0}
$$

Theorem 7.3.1 The pointclass Δ_{1}^{0} consists precisely of all recursive sets and

$$
\Sigma_{1}^{0}=\exists^{\omega} \Delta_{1}^{0} \text { and } \Pi_{1}^{0}=\forall^{\omega} \Delta_{1}^{0}
$$

Proof. The first assertion is just a restatement of Kleene's theorem (Theorem 6.2.4); the second one follows from the definition of semirecursive sets and Kleene's theorem (Theorem 6.2.4), and the third one follows from the second one.

Call a pointclass Γ closed under recursive substitutions if whenever $P\left(n_{1}, \ldots, n_{k}\right) \in \Gamma$, for all recursive functions $f_{i}: \mathbb{N}^{l} \rightarrow \mathbb{N}, 1 \leq i \leq k$, the l-ary predicate Q defined by

$$
Q\left(m_{1}, \ldots, m_{l}\right) \Longleftrightarrow P\left(f_{1}\left(m_{1}, \ldots, m_{l}\right), \ldots, f_{k}\left(m_{1}, \ldots, m_{l}\right)\right)
$$

is in Γ.

Proposition 7.3.2(1) Each arithmetical pointclass is closed under \vee, \wedge (so, under finite unions and finite intersections), and recursive substitutions.
(2) For each n, Σ_{n}^{0} is closed under \exists^{ω}, Π_{n}^{0} under \forall^{ω}, and Δ_{n}^{0} under \neg.
(3) For each n,

$$
\begin{aligned}
\Sigma_{n}^{0}= & \exists^{\omega} \Delta_{n}^{0} \text { and } \Pi_{n}^{0}=\forall^{\omega} \Delta_{n}^{0} \\
& \Sigma_{n}^{0} \cup \Pi_{n}^{0} \subset \Delta_{n+1}^{0}
\end{aligned}
$$

Proof. We shall prove (1) by induction on n. The closure properties listed in (1) have already been proved for Σ_{1}^{0} in Proposition 6.2.2. Then the result for Π_{1}^{0} follows from its definition. The result for Δ_{1}^{0} is now easily seen.

Assume that $\Sigma_{n}^{0}, \Pi_{n}^{0}$, and Δ_{n}^{0} have the closure properties listed in (1). Note that a pointclass Γ is closed under \exists^{ω} if and only if $\neg \Gamma$ is closed under \forall^{ω}; a pointclass Γ is closed under recursive substitutions if and only if $\neg \Gamma$ is and if both Γ and $\neg \Gamma$ satisfy the closure properties listed in (1), so does $\Delta=\Gamma \cap \neg \Gamma$.

Now let $f_{i}: \mathbb{N}^{l} \rightarrow \mathbb{N}, 1 \leq i \leq k$, be recursive functions. Let $P\left(m_{1}, \ldots, m_{k}\right) \in \Pi_{n+1}^{0}$. We are required to show that the predicate Q defined by

$$
Q(\bar{l}) \Longleftrightarrow P\left(f_{1}(\bar{l}), \ldots, f_{k}(\bar{l})\right)
$$

is in Π_{n+1}^{0}. Get $P^{\prime} \in \Sigma_{n}^{0}$ such that $P=\forall^{\omega} P^{\prime}$. Then,

$$
Q(\bar{l}) \Longleftrightarrow \forall m P^{\prime}\left(m, f_{1}(\bar{l}), \ldots, f_{k}(\bar{l})\right)
$$

Since Σ_{n}^{0} is closed under recursive substitutions, $Q \in \Pi_{n+1}^{0}$.
Let $P, Q \in \Sigma_{n+1}^{0}$. Get $P^{\prime}, Q^{\prime} \in \Pi_{n}^{0}$ such that $P=\exists^{\omega} P^{\prime}$ and $Q=\exists^{\omega} Q^{\prime}$. The following identities are easy to check:

$$
P \vee Q \Longleftrightarrow \exists^{\omega}\left(P^{\prime} \vee Q^{\prime}\right)
$$

and

$$
(P \wedge Q)(\bar{l}) \Longleftrightarrow \exists m\left(P^{\prime}\left((m)_{0}, \bar{l}\right) \wedge Q^{\prime}\left((m)_{1}, \bar{l}\right)\right.
$$

By the induction hypothesis, it follows that Σ_{n+1}^{0} is closed under \vee and \wedge. This, in turn, implies that Π_{n+1}^{0} and Δ_{n+1}^{0} are closed under \vee and \wedge.

We shall now prove (2). The pointclass Δ_{n}^{0} is clearly closed under \neg. By Proposition 6.2.2, Σ_{1}^{0} is closed under \exists^{ω}. Let $P(p, q, \bar{l}) \in \Pi_{n}^{0}$. Then

$$
\left.\exists p \exists q P(p, q, \bar{l}) \Longleftrightarrow \exists m P\left((m)_{0},(m)_{1}, \bar{l}\right)\right)
$$

Since Π_{n}^{0} is closed under recursive substitutions, it follows that Σ_{n+1}^{0} is closed under \exists^{ω}. Hence, Π_{n+1}^{0} is closed under \forall^{ω}.

We prove (3) also by induction on n. By Propositions 6.2.1 and 6.2.2,

$$
\Sigma_{1}^{0}=\exists^{\omega} \Delta_{1}^{0}
$$

So,

$$
\Pi_{1}^{0}=\forall^{\omega} \Delta_{1}^{0}
$$

Further, Since $\Delta_{1}^{0} \subset \Pi_{1}^{0}$, we conclude that $\exists^{\omega} \Delta_{1}^{0} \subset \exists^{\omega} \Pi_{1}^{0}$. Hence, $\Sigma_{1}^{0} \subset \Sigma_{2}^{0}$ by the definition of Σ_{2}^{0}.

If P is Σ_{1}^{0} and

$$
Q(m, \bar{n}) \Longleftrightarrow P(\bar{n}),
$$

then by recursive substitutions, Q is Σ_{1}^{0} and

$$
P(\bar{n}) \Longleftrightarrow \forall m Q(m, \bar{n})
$$

showing that P is Π_{2}^{0}. Thus, $\Sigma_{1}^{0} \subset \Pi_{2}^{0}$. This shows that $\Sigma_{1}^{0} \subset \Delta_{2}^{0}$. Since Δ_{2}^{0} is closed under \neg, it follows that $\Pi_{1}^{0} \subset \Delta_{2}^{0}$ as well. This proves the result for $n=1$. (3) can be proved similarly for all n by induction.

Remark 7.3.3 The inclusion relations between these pointclasses are summed up by the following diagram:
where a pointclass in any column is contained in all pointclasses to its right.
Corollary 7.3.4 (i) Let n be even. Then

$$
\Sigma_{n}^{0}=\underbrace{\exists^{\omega} \forall^{\omega} \ldots \exists^{\omega} \forall^{\omega}}_{n \text { times }} \Delta_{1}^{0}
$$

and

$$
\Pi_{n}^{0}=\underbrace{\forall^{\omega} \exists^{\omega} \cdots \forall^{\omega} \exists^{\omega}}_{n \text { times }} \Delta_{1}^{0} .
$$

(ii) Let n be odd. Then

$$
\Sigma_{n}^{0}=\underbrace{\exists^{\omega} \forall^{\omega} \ldots \exists^{\omega}}_{n \text { times }} \Delta_{1}^{0}
$$

and

$$
\Pi_{n}^{0}=\underbrace{\forall^{\omega} \exists^{\omega} \cdots \forall^{\omega}}_{n \text { times }} \Delta_{1}^{0} .
$$

A predicate in

$$
\cup_{n} \Sigma_{n}^{0}=\cup_{n} \Delta_{n}^{0}=\cup_{n} \Pi_{n}^{0}
$$

is called an arithmetical set.
Exercise 7.3.5 Show that all the arithmetical pointclasses are closed un$\operatorname{der} \exists<, \exists \leq, \forall^{<}$, and $\forall \leq$.

Using the representability theorem and ideas contained in the proof of the first incompleteness theorem, we now show that all the inclusions in the arithmetical hierarchy are strict.

Let Γ be an arithmetical pointclass. Let $k \geq 1$. Call a $(k+1)$-ary predicate U^{k} universal for Γ if $U^{k} \in \Gamma$ and if for every k-ary predicate P in Γ there is an m such that for all $\bar{n} \in \mathbb{N}^{k}$,

$$
P(\bar{n}) \Longleftrightarrow U^{k}(m, \bar{n})
$$

Strictly speaking, we should say that U^{k} is universal for k-ary predicates in Γ. We shall not do it. It should be understood from the exponent k.

We make some simple observations now.
(a) U^{k} is universal for Σ_{n}^{0} if and only if $\neg U^{k}$ is universal for Π_{n}^{0}.
(b) Let U^{k+1} be universal for Π_{n}^{0}. Set

$$
U^{k}=\exists^{\omega} U^{k+1}
$$

We claim that U^{k} is universal for Σ_{n+1}^{0}.
Clearly $U^{k} \in \Sigma_{n+1}^{0}$. Now let P be a k-ary predicate in Σ_{n+1}^{0}. Then there is a $(k+1)$-ary predicate Q in Π_{n}^{0} such that

$$
P=\exists^{\omega} Q
$$

Since U^{k+1} is universal for Π_{n}^{0}, there is a p such that for all q and for all \bar{m},

$$
Q(q, \bar{m}) \Longleftrightarrow U^{k+1}(p, q, \bar{m})
$$

Our assertion follows.
(c) Let U^{1} be universal for Σ_{n}^{0}. Define P by

$$
P(m) \Longleftrightarrow U^{1}(m, m)
$$

Then P is Σ_{n}^{0}. We claim that it is not Δ_{n}^{0}.
Since Σ_{n}^{0} is closed under recursive substitutions, $P \in \Sigma_{n}^{0}$. We claim that $P \notin \Pi_{n}^{0}$. Suppose not. Then $\neg P \in \Sigma_{n}^{0}$. Let m be such that for all k,

$$
\neg P(k) \Longleftrightarrow U^{1}(m, k)
$$

But then

$$
P(m) \Longleftrightarrow U^{1}(m, m) \Longleftrightarrow \neg P(m)
$$

and we have arrived at a contradiction.
(d) Arguing as in (c), we see that for any n, Δ_{n}^{0} does not contain any universal set for Σ_{n}^{0} or Π_{n}^{0}.

Theorem 7.3.6 For each $k \geq 1$, there is a $(k+1)$-ary predicate U^{k} that is universal for Σ_{1}^{0}.

Proof. Let $x_{0}, x_{1}, x_{2}, x_{3}, \ldots$ be all the variables of the theory N in alphabetical order. For each $\bar{a} \in \mathbb{N}^{k}$, set

$$
\operatorname{num}(\bar{a})=\left(\operatorname{num}\left(a_{0}\right), \ldots, \operatorname{num}\left(a_{k-1}\right)\right)
$$

Define U^{k} by

$$
U^{k}(m, \bar{a}) \Longleftrightarrow \exists p \operatorname{Thm}_{N}((m, \operatorname{num}(p), \operatorname{num}(\bar{a}))),
$$

where sb is the recursive function defined in Exercise 6.3.6.
Since $\operatorname{Thm}_{N} \in \Sigma_{1}^{0}, U^{k} \in \Sigma_{1}^{0}$. Now let $P \subset \mathbb{N}^{k}$ be semirecursive. Then there is a recursive set $Q \subset \mathbb{N}^{k+1}$ such that

$$
P \Longleftrightarrow \exists^{\omega} Q
$$

By the representability theorem, there is formula A of N such that A with x_{0}, \ldots, x_{k} represents Q. Let $m=\lceil A\rceil$. Since N is consistent, we see that for all \bar{a},

$$
P(\bar{a}) \Longleftrightarrow U^{k}(m, \bar{a})
$$

The following theorem is also now easy to see.
Theorem 7.3.7 Let Γ be any of the pointclasses Σ_{n}^{0} or of $\Pi_{n}^{0}, n \geq 1$. Then, for every $k \geq 1$, there is a $(k+1)$-ary predicate $U^{k} \in \Gamma$ that is universal for Γ.

Remark 7.3.8 We now see that the hierarchy of arithmetical sets is strict, i.e., for all n, Δ_{n}^{0} is properly contained in both Σ_{n}^{0} and Π_{n}^{0}.

Hint: Suppose every Δ_{n}^{0} set is Σ_{n}^{0}. Let U^{1} be a universal Σ_{n}^{0} set. Then it is a universal Δ_{n}^{0} set too. But such a set cannot exist. (See the proof of Proposition 6.1.28.)

Proposition 7.3.9 Let Γ be any of Σ_{n}^{0} or of $\Pi_{n}^{0}, n \geq 1$. Then, for every $k \geq 1$, there are $(k+1)$-ary predicates $U_{0}^{k}, U_{1}^{k} \in \Gamma$ such that for every pair of sets $A_{0}, A_{1} \subset \mathbb{N}^{k}$ in Γ, there is an m such that

$$
\left(\forall \bar{a} \in \mathbb{N}^{k}\right)\left(A_{0}(\bar{a}) \Leftrightarrow U_{0}^{k}(m, \bar{a}) \wedge A_{1}(\bar{a}) \Leftrightarrow U_{1}^{k}(m, \bar{a})\right)
$$

Proof. Define

$$
U_{i}^{k}(m, \bar{a}) \Longleftrightarrow U^{k}\left((m)_{i}, \bar{a}\right),
$$

$i=0,1$. Since Γ is closed under recursive substitutions, each U_{0}^{k} and U_{1}^{k} is in Γ. Given $A_{0}, A_{1} \subset \mathbb{N}^{k}$ in Γ, choose m_{0}, m_{1} such that

$$
\forall \bar{a}\left(A_{i}(\bar{a}) \Longleftrightarrow U^{p}\left(m_{i}, \bar{a}\right)\right),
$$

$i=0,1$. Take $m=\left\langle m_{0}, m_{1}\right\rangle$.
The pair U_{0}^{k}, U_{1}^{k} obtained above will be called a universal pair for Γ.
Let Γ be any of Σ_{n}^{0} or of $\Pi_{n}^{0}, n \geq 1$. We say that Γ has the uniformization propery if for every $k \geq 1$ and every $P \in \Gamma, P \subset \mathbb{N}^{k} \times \mathbb{N}$, there is a $Q \subset P$ in Γ such that

$$
\left(\forall \bar{a} \in \mathbb{N}^{k}\right)(\exists m P(\bar{a}, m) \Rightarrow \exists!m Q(\bar{a}, m))
$$

where $\exists!m \ldots$ abbreviates "there is a unique $m \ldots$..." Such a set Q is called a uniformization of P.

Let Γ be any of Σ_{n}^{0} or of $\Pi_{n}^{0}, n \geq 1$. We say that Γ has the reduction property if for every $P_{1}, P_{2} \subset \mathbb{N}^{k}$ in Γ there exist $Q_{1} \subset P_{1}, Q_{2} \subset P_{2}$ in Γ such that $Q_{1} \cap Q_{2}=\emptyset$ and $Q_{1} \cup Q_{2}=P_{1} \cup P_{2}$.

Proposition 7.3.10 If Γ has the uniformization property, then it has the reduction property.

Proof. To see the result, given $P_{1}, P_{2} \subset \mathbb{N}^{k}$ in Γ, define

$$
P=\left(P_{1} \times\{1\}\right) \cup\left(P_{2} \times\{2\}\right)
$$

Then $P \in \Gamma$. Choose a uniformization $Q \subset P$ of P in Γ. Set

$$
Q_{i}(\bar{a}) \Longleftrightarrow Q(\bar{a}, i)
$$

$i=1,2$.
Let Γ be any of Σ_{n}^{0} or of $\Pi_{n}^{0}, n \geq 1$ and $\Delta=\Gamma \cap \neg \Gamma$. We say that Γ has the separation property if for every disjoint $P_{1}, P_{2} \subset \mathbb{N}^{k}$ in Γ there exists a $Q \subset \mathbb{N}^{k}$ in Δ such that

$$
P_{1} \subset Q \wedge Q \cap P_{2}=\emptyset
$$

Proposition 7.3.11 If Γ has the reduction property, then $\neg \Gamma$ has the separation property.

Proof. To see this, take $P_{1}, P_{2} \subset \mathbb{N}^{k}$ in $\neg \Gamma$ such that $P_{1} \cap P_{2}=\emptyset$. Let

$$
Q_{i}=\mathbb{N}^{k} \backslash P_{i}
$$

$i=1,2$. Then $Q_{1}, Q_{2} \in \Gamma$ and $Q_{1} \cup Q_{2}=\mathbb{N}^{k}$. Since Γ has the reduction property, there exist $R_{i} \subset Q_{i}$ in $\Gamma, i=1,2$, such that $R_{1} \cap R_{2}=\emptyset$ and $R_{1} \cup R_{2}=\mathbb{N}^{k}$. Thus $R_{1} \in \Delta$. Set $Q=\mathbb{N}^{k} \backslash R_{1}$.

Exercise 7.3.12 Let $\Gamma=\Sigma_{n}^{0}$ or $\Pi_{n}^{0}, n \geq 1$. Show that Γ cannot satisfy both the reduction property and the separation property.

Hint: Using Proposition 7.3.9, take a universal pair U_{1}^{1}, U_{2}^{1} for Γ. Let $V_{1}, V_{2} \in \Gamma$ reduce the pair U_{1}^{1}, U_{2}^{1} in the above sense. Let $W \supset V_{1}, W \cap V_{2}=$ \emptyset, and $W \in \Delta$. Show that W is universal for Δ.

Theorem 7.3.13 (Uniformization theorem.) Every arithmetical pointclass Σ_{n}^{0} has the uniformization property.

Proof. Let $P \subset \mathbb{N}^{k} \times \mathbb{N}$ be in Σ_{n}^{0}. Choose $R \subset \mathbb{N} \times \mathbb{N}^{k} \times \mathbb{N}$ in Δ_{n}^{0} such that $P=\exists^{\omega} R$. Define Q by

$$
Q^{\prime}(\bar{a}, n) \Longleftrightarrow R\left((n)_{0}, \bar{a},(n)_{1}\right) \wedge \forall^{<n} k \neg R\left((k)_{0}, \bar{a},(k)_{1}\right)
$$

and set

$$
Q(\bar{a}, m) \Longleftrightarrow \exists n\left[m=(n)_{0} \wedge Q^{\prime}(\bar{a}, n)\right] .
$$

Corollary 7.3.14 Each arithmetical pointclass $\Pi_{n}^{0}, n \geq 1$, has the separation property and each $\Sigma_{n}^{0}, n \geq 1$, has the reduction property

We close this section by proving two basic results in recursion theory. We shall set up some notation first. For $\bar{a}=\left(a_{1}, \ldots, a_{m}, a_{m+1}, \ldots, a_{m+n}\right)$, we have

$$
l_{m}(\bar{a})=\left(a_{1}, \ldots, a_{m}\right)
$$

and

$$
r_{n}(\bar{a})=\left(a_{m+1}, \ldots, a_{m+n}\right)
$$

Theorem 7.3.15 (s_{n}^{m}-Theorem) The sequence of universal sets U^{1}, U^{2}, \ldots for Σ_{1}^{0} defined in 7.3.6 satisfy the following:

$$
U^{m+n}(p, \bar{a}) \Longleftrightarrow U^{m}\left(s_{n}^{m}\left(p, r_{n}(\bar{a})\right), a_{1}, \ldots, a_{m}\right),
$$

where $\bar{a}=\left(a_{1}, \ldots, a_{m}, a_{m+1}, \ldots, a_{m+n}\right)$ and the function s_{n}^{m} is as defined in Exercise 6.3.7.

Proof. The result follows directly from the definitions of the U^{k} 's and the function s_{n}^{m}.

If P is a k-ary semirecursive predicate and m is such that for all $\bar{a} \in \mathbb{N}^{k}$,

$$
P(\bar{a}) \Longleftrightarrow U^{k}(m, \bar{a}),
$$

we say that m is a code of P.
As an application of the s_{n}^{m}-theorem we show the following:
Proposition 7.3.16 There exist recursive functions $\vee^{k}(m, n)$ and $\wedge^{k}(m, n)$ such that if m is a code of $P \subset \mathbb{N}^{k}$ and n a code of $Q \subset \mathbb{N}^{k}$, then $\vee^{k}(m, n)$ and $\wedge^{k}(m, n)$ are codes of $P \vee Q$ and $P \wedge Q$ respectively.

Proof. First we define $\vee^{k}(m, n)$. Let U^{k} 's be as defined in Theorem 7.3.6. Now define

$$
R(\bar{a}, m, n) \Longleftrightarrow U^{k}(m, \bar{a}) \vee U^{k}(n, \bar{a}) .
$$

Then there is a p such that

$$
R(\bar{a}, m, n) \Longleftrightarrow U^{k+2}(p, \bar{a}, m, n)
$$

Set

$$
\vee^{k}(m, n)=s_{2}^{k}(p, m, n)
$$

We define \wedge^{k} similarly.
We refer to the above closure properties of Σ_{1}^{0} by saying that Σ_{1}^{0} is uniformly closed under \vee and \wedge (with respect to the universal sets U^{k}).

Exercise 7.3.17 Show that Σ_{1}^{0} and Π_{1}^{0} are uniformly closed under $\exists<$, $\forall^{<}, \exists \leq$, and $\forall \leq$. Further, Σ_{1}^{0} is uniformly closed under \exists^{ω} and Π_{1}^{0} under \forall^{ω}. For instance, show that for each $k \geq 1$, there is a recursive function $\exists_{k}^{<}: \mathbb{N} \rightarrow \mathbb{N}$ such that if n codes $P(m, \bar{a})$, a $(k+1)$-ary predicate, $\exists_{k}^{<}(n)$ codes the predicate

$$
Q(p, \bar{a}) \Longleftrightarrow \exists^{<p} P(p, \bar{a})
$$

Theorem 7.3.18 (Kleene's recursion theorem) Let P be a $(k+1)$-ary predicate in Σ_{1}^{0}. Then there is a n^{*} such that for all \bar{m},

$$
P\left(n^{*}, \bar{m}\right) \Longleftrightarrow U^{k}\left(n^{*}, \bar{m}\right)
$$

Proof. Define a $(k+1)$-ary predicate Q by

$$
Q(\bar{m}, p) \Leftrightarrow P\left(s_{1}^{k}(p, p), \bar{m}\right)
$$

Then $Q \in \Sigma_{1}^{0}$. So, there there is a q such that

$$
Q(\bar{m}, p) \Longleftrightarrow U^{k+1}(q, \bar{m}, p)
$$

Take $n^{*}=s_{1}^{k}(q, q)$.
Kleene's recursion theorem is very useful in showing that certain functions and predicates are recursive.

Example 7.3.19 Let α be a unary recursive function and β and $\gamma 3$-ary recursive functions. Then the 2-ary function δ defined by

$$
\begin{aligned}
\delta(0, n) & =\alpha(n) \\
\delta(m+1, n) & =\beta(\delta(m, \gamma(\delta(m, n), m, n)), m, n))
\end{aligned}
$$

is recursive.

To show this, by Proposition 6.1.27, it suffices to show that the graph of δ is semirecursive. To show this, we define a 4 -ary semirecursive predicate G as follows:

$$
\begin{aligned}
G(l, m, n, k) \Longleftrightarrow & (m=0 \wedge k=\alpha(n)) \\
& \vee \exists \exists \exists \exists \exists \exists \exists s(m=p+1 \\
& \wedge U^{3}(l, p, n, q) \\
& \wedge r=\gamma(q, p, n) \\
& \wedge U^{3}(l, p, r, s) \\
& \wedge k=\beta(s, p, n)),
\end{aligned}
$$

where U^{3} is the universal set for Σ_{1}^{0}-sets in \mathbb{N}^{3} defined earlier. Clearly, G is a 4 -ary semirecursive predicate. Hence, by Kleene's recursion theorem,

$$
\exists l^{*} \forall m \forall n \forall k\left(G\left(l^{*}, m, n, k\right) \Longleftrightarrow U^{3}\left(l^{*}, m, n, k\right)\right)
$$

It is fairly routine to check that the 3 -ary semirecursive predicate $U^{3}\left(l^{*}, \cdot, \cdot, \cdot\right)$ is the graph of δ.
Exercise 7.3.20 Let $n \geq 1$, and let Γ equal Σ_{n}^{0} or Π_{n}^{0}, and let the U^{k} 's be the universal sets for Γ obtained in Theorem 7.3.7. Show that the s_{n}^{m} theorem (with the same function s_{n}^{m}) and Kleene's recursion theorem hold for Γ.

Remark 7.3.21 It is fairly easy to see that the s_{n}^{m}-theorem for any of these arithmetical pointclasses can be used to show their uniform closure properties, and Kleene's recursion theorem can be used to show that predicates are in these classes.

7.4 Recursive Extensions of Peano Arithemetic

The arithmetization of theories due to Gödel enables one to examine questions about a theory, such as $P A$ or $Z F$, within the theory itself. For instance, using the representability theorem, now we can express the metasentence "Peano arithmetic is consistent" by a formula of $P A$ itself and can examine whether this formula is a theorem of $P A$. This involves formalizing proofs in metatheory inside the theory itself. A key step toward this is to show that every true closed existential formula of $P A$ is a theorem of $P A$. (Recall that a sentence φ of the language for N is called true if it is valid in the standard model \mathbb{N} of the theory N.) In this section we prove this vital theorem.

Let P^{\prime} be an extension by definitions of $P A$ and let φ be a formula of P^{\prime} in which no variable other than v_{1}, \ldots, v_{n} and w are free, v_{1}, \ldots, v_{n}, w distinct. Suppose $P^{\prime} \vdash \exists w \varphi$. Let w^{\prime} be a new variable and ψ the formula

$$
\varphi \wedge \forall w^{\prime}\left(w^{\prime}<w \rightarrow \neg \varphi_{w}\left[w^{\prime}\right]\right)
$$

By Exercise 4.3.5, we have the following:
(a) $P^{\prime} \vdash \exists w \psi$.
(b) $P^{\prime} \vdash \psi \wedge \psi_{w}\left[w^{\prime \prime}\right] \rightarrow w=w^{\prime \prime}$.

Thus, we can introduce to P^{\prime} a new n-ary function symbol f with the defining axiom ψ. We shall write

$$
f v_{1} \cdots v_{n}=\mu w \varphi
$$

to express that f has been introduced as above with ψ as its defining axiom.
We say that P^{\prime} is a recursive extension of $P A$ of $P A$ if it is obtained by a finite number of extensions of $P A$ where the defining axiom for a predicate is an open formula and the defining axiom for a function symbol is a formula of the form ψ described above with φ open.

Example 7.4.1 Let $1 \leq i \leq n$ and let $\varphi\left[w, v_{1}, \ldots, v_{n}\right]$ be the formula $w=v_{i}$. Then

$$
\pi_{i}^{n} v_{1} \cdots v_{n}=\mu w \varphi
$$

introduces the projection map π_{i}^{n} in a recursive extension of $P A$.
The following exercise is quite easy to prove.
Exercise 7.4.2 Show that functions and predicates that can be introduced in a recursive extension of $P A$ are recursive.

Proposition 7.4.3 Let R be an n-ary predicate on \mathbb{N}. Then R can be introduced in a recursive extension of $P A$ if and only if χ_{R} can be introduced.

Proof. Suppose R has been introduced in a recursive extension of $P A$ with the defining axiom an open formula φ. Then we can introduce χ_{R} by

$$
\chi_{R}\left(v_{1}, \ldots, v_{n}\right)=\mu w\left(\left(\varphi\left(v_{1}, \ldots, v_{n}\right) \wedge w=0\right) \vee\left(\neg \varphi\left(v_{1}, \ldots, v_{n}\right) \wedge w=1\right)\right)
$$

Now assume that χ_{R} has been introduced in a recursive extension P^{\prime} of $P A$. Then the formula

$$
\chi_{R}\left(v_{1}, \ldots, v_{n}\right)=0
$$

introdues R.
Example 7.4.4 The functions + (addition) and \cdot (multiplication) are nonlogical symbols of $P A$. By Example 7.4.1, each projection map π_{i}^{n} can be introduced. Since $<$ is a nonlogical symbol of $P A$, by Proposition 7.4.3, $\chi_{<}$ can be introduced. Thus, all initial recursive functions can be introduced in a recursive extension of $P A$.

Example 7.4.5 Let $n \geq 1$ and $p \in \mathbb{N}$. We can introduce the n-ary constant function C_{p}^{n} by taking the formula $\varphi\left[w, v_{1}, \cdots, v_{n}\right]$ to be $w=k_{p}$.

Example 7.4.6 We can introduce - to $P A$ by

$$
x-y=\mu z(x+z=y \vee x<y)
$$

by the above method.
Proposition 7.4.7 The set of functions that can be introduced in a recursive extension of $P A$ is closed under composition.

Proof. Let f_{1}, \ldots, f_{k} be n-ary functions and g a k-ary function that have been introduced in a recursive extension P^{\prime} of $P A$. Further assume that

$$
f_{i} v_{1} \cdots v_{n}=\mu w_{i} \varphi_{i}\left[w_{i}, v_{1}, \ldots, v_{n}\right], \quad 1 \leq i \leq k
$$

and

$$
g w_{1} \cdots w_{k}=\mu w \varphi\left[w, w_{1}, \ldots, w_{k}\right] .
$$

Suppose

$$
h\left(m_{1}, \ldots, m_{n}\right)=g\left(f_{1}\left(m_{1}, \ldots, m_{n}\right), \ldots, f_{k}\left(m_{1}, \ldots, m_{n}\right)\right)
$$

It is not difficult to prove that

$$
P^{\prime} \vdash \exists w\left[w=g\left(f_{1}\left(v_{1} \ldots, v_{n}\right), \ldots, f_{k}\left(v_{1}, \ldots, v_{n}\right)\right)\right] .
$$

Hence, we can introduce h as follows:

$$
h v_{1} \cdots v_{n}=\mu w\left[w=g\left(f_{1}\left(v_{1} \ldots, v_{n}\right), \ldots, f_{k}\left(v_{1}, \ldots, v_{n}\right)\right)\right] .
$$

Remark 7.4.8 Let g be an $(n+1)$-ary function that has been introduced in a recursive extension P^{\prime} of $P A$ and let

$$
\forall m_{1} \cdots \forall m_{n} \exists l\left[g\left(m_{1}, \ldots, m_{n}, l\right)=0\right] .
$$

Define

$$
h\left(m_{1}, \ldots, m_{n}\right)=\mu l\left[g\left(m_{1}, \ldots, m_{n}, l\right)=0\right] .
$$

Suppose

$$
g v_{1} \cdots v_{n+1}=\mu w \varphi\left[w, v_{1}, \ldots, v_{n+1}\right] .
$$

If

$$
P \vdash \exists v_{n+1}\left[g v_{1} \cdots v_{n} v_{n+1}=0\right]
$$

then we can introduce h as follows:

$$
h v_{1} \cdots v_{n}=\mu v_{n+1} g v_{1} \cdots v_{n} v_{n+1}=0
$$

A great many recursive functions and recursive predicates can be introduced in a recursive extension of $P A$. Further, the set of all functions and predicates that can be introduced in a recursive extension satisfies some of the closure properties satisfied by the set of recursive functions and recursive predicates. One can easily see this by looking at the explicit definitions of many recursive functions that we have defined earlier and the proofs of closure properties of the set of all recursive functions and recursive predicates.

Exercise 7.4.9 1. Let f_{1}, \ldots, f_{k} be n-ary functions and P a k-ary predicate. Assume that f_{1}, \ldots, f_{k} and P can be introduced. Show that the n-ary predicate Q defined by

$$
Q\left(m_{1}, \ldots, m_{n}\right) \Leftrightarrow P\left(f_{1}\left(m_{1}, \ldots, m_{n}\right), \ldots, f_{k}\left(m_{1}, \ldots, m_{n}\right)\right)
$$

can be introduced.
2. Let P and Q be n-ary predicates that can be introduced. Show that the predicates $\neg P, P \vee Q, P \wedge Q, P \rightarrow Q$, and $P \leftrightarrow Q$ can be introduced.
3. Show that the set of all functions and predicates that can be introduced is closed under bounded minimalizations, and bounded quantifiers.

Exercise 7.4.10 Show that the divisibility $m \mid n$, the ordered pair function $O P$, and Gödel's β-function can be introduced in a recursive extension of $P A$.

Exercise 7.4.11 Let A_{1}, \ldots, A_{m} be pairwise disjoint subsets of \mathbb{N}^{k} whose union is \mathbb{N}^{k}. Suppose f_{1}, \ldots, f_{m} are k-ary functions. Define $g: \mathbb{N}^{k} \rightarrow \mathbb{N}$ by

$$
g(\bar{a})=\left\{\begin{array}{c}
f_{1}(\bar{a}) \text { if } \bar{a} \in A_{1}, \\
\vdots \\
f_{m}(\bar{a}) \text { if } \bar{a} \in A_{m} .
\end{array}\right.
$$

Show that if A_{1}, \ldots, A_{m} and f_{1}, \ldots, f_{m} can be introduced in a recursive extension of $P A$, then g can be introduced.

Exercise 7.4.12 Show that the set of all functions that can be introduced in a recursive extension of $P A$ is closed under primitive recursion.

Exercise 7.4.13 Show that all the finitely many functions and predicates for $P A$ that were introduced in the section on arithmetization of theories can be introduced in a recursive extension of $P A$.

We now proceed to prove that every true closed existential formula of a recursive extension P^{\prime} of $P A$ is a theorem of P^{\prime}.

In the sequel we shall use the same notation for the functions and predicates introduced. For instance, we shall use form both for the predicate form (n) as well as for the corresponding function symbol introduced, num
both for the function $\operatorname{num}(n)$ as well as for the corresponding function symbol introduced, and $\operatorname{Prf}_{P A}$ for the predicate $\operatorname{Prf}_{P A}(m, n)$ as well as for the corresponding symbol, and so on.

Let P^{\prime} be a recursive extension of $P A$. The set of R-formulas of P^{\prime} is the smallest class of formulas \mathcal{F} that contains all formulas of the form $f v_{1} \cdots v_{n}=v, p v_{1} \cdots v_{n}$, and $\neg p v_{1} \cdots v_{n}$ (f and p function and predicate symbols of P^{\prime}) and that satisfies
(a) $A, B \in \mathcal{F} \Rightarrow A \vee B, A \wedge B \in \mathcal{F}$.
(b) If $A \in \mathcal{F}$ and if x, y are distinct variables, then $\forall x(x<y \rightarrow A) \in \mathcal{F}$.
(c) If $A \in \mathcal{F}, \exists x A \in \mathcal{F}$.

A formula of $P A$ of the form $\varphi_{v_{1}, \ldots, v_{m}}\left[k_{n_{1}}, \ldots, k_{n_{m}}\right], n_{1}, \ldots, n_{m} \in \mathbb{N}$, will be called a numerical instance of φ.

Proposition 7.4.14 Let A be an R-formula of $P A$. Then every true numerical instance of A is a theorem of $P A$.

Proof. That R-formulas of the form $x=y, S x=y, x+y=z, x \cdot y=z, x<y$ and negations of these formulas satisfy the conclusion of the proposition follows from the representability of $=, S,+, \cdot$, and $<$ and the fact that $P A$ is an extension of N.

Now we show that the set \mathcal{G} of formulas that satisfy the conclusion of the proposition satisfy the three closure properties (a)-(c). If A, B satisify the conclusion, it is quite easy to check that $A \vee B$ and $A \wedge B$ also satisfy the conclusion. Thus, (a) holds for \mathcal{G}.

We now show that (c) holds for \mathcal{G}. Let A satisfy the conclusion of the proposition and let B be the formula $\exists x A$. A numerical instance B^{\prime} of B is of the form $\exists x A^{\prime}$, where A^{\prime} is obtained by substituting numerals in A for all free variables other than x. Suppose B^{\prime} is true. Then $A_{x}^{\prime}\left[k_{n}\right]$ is true for some n. By our assumption, $P A \vdash A_{x}^{\prime}\left[k_{n}\right]$. This implies that $P A \vdash B^{\prime}$ by the substitution axiom and the detachment rule.

Finally, we show that (b) holds for \mathcal{G}. Let A satisfy the conclusion of the proposition and let B be the formula $\forall x(x<y \rightarrow A)$. A numerical instance B^{\prime} of B is of the form $\forall x\left(x<k_{n} \rightarrow A^{\prime}\right)$, where A^{\prime} is obtained by substituting numerals in A for all free variables other than x and k_{n} for y. Suppose B^{\prime} is true. Then for each $i<n, A_{x}^{\prime}\left[k_{i}\right]$ is true. Hence, by our hypothesis they are theorems of $P A$. By Lemma 4.3.1, the detachment rule, and the \forall-introduction rule,

$$
P A \vdash B^{\prime} .
$$

Recall that a formula is called existential if it is in prenex form and all the quantifiers in its prefix are \exists.

Proposition 7.4.15 Let P^{\prime} be a recursive extension of $P A$. Then every existential formula A of P^{\prime} is equivalent in P^{\prime} to an R-formula.

Proof. In view of the defining condition (c) of R-formulas, it is sufficient to prove that every open formula A of P^{\prime} is equivalent in P^{\prime} to an R-formula.

Step 1: Let $t\left[x_{1}, \ldots, x_{n}\right]$ be a term of P^{\prime}, and A the formula $x=t$. The result holds for A.

We proceed by induction on the length of t. If t is a variable, then A is an R-formula. If t is a constant, then $t=x$ is an R-formula. This is equivalent to $x=t$ by the symmetry theorem. Now let $t=f t_{1} \cdots t_{n}$. Then, by Proposition 4.2.23,

$$
P^{\prime} \vdash x=t \leftrightarrow \exists y_{1} \cdots \exists y_{n}\left(y_{1}=t_{1} \wedge \cdots \wedge y_{n}=t_{n} \wedge x=f y_{1} \cdots y_{n}\right)
$$

The result now follows from the induction hypothesis, the symmetry theorem, and the definition of R-formulas.

Step 2: Let A be a formula of the form $p t_{1} \cdots t_{n}, p$ a relation symbol, and t_{1}, \cdots, t_{n} terms. We have

$$
P^{\prime} \vdash A \leftrightarrow \exists y_{1} \cdots \exists y_{n}\left(y_{1}=t_{1} \wedge \cdots \wedge y_{n}=t_{n} \wedge p y_{1} \cdots y_{n}\right) .
$$

Since each formula $y_{i}=t_{i}$ is equivalent to an R-formula, the result holds for A.

Similarly, we prove the result for formulas that are negations of atomic formulas.

The class of formulas for which the theorem holds is, by the defining condition (a) of R-formulas, closed under \vee and \wedge. Hence, the result for open formulas follows from Exercise 4.2.24.
Proposition 7.4.16 Let P^{\prime} be a recursive extension of $P A$. Then every R-formula of P^{\prime} is equivalent in P^{\prime} to an R-formula in $P A$.
Proof. Suppose $P^{\prime \prime}$ is a recursive extension of P^{\prime} obtained by adding just one nonlogical symbol. Our result will be proved if we show that every R-formula A in $P^{\prime \prime}$ is equivalent in $P^{\prime \prime}$ to an R-formula in P^{\prime}. By the equivalence theorem, it is sufficient to prove the result for A of the form $f x_{1} \cdots x_{n}=y$ or $p x_{1} \cdots x_{n}$ or their negations.

Since the defining axiom of p is an open formula of P^{\prime}, the result is easy to prove for a formula of the form $p x_{1} \cdots x_{n}$ and their negations by Proposition 7.4.15. Since a formula of the form $\neg\left(f x_{1} \cdots x_{n}=y\right)$ is equivalent in $P^{\prime \prime}$ to a formula $\exists z\left(\neg(y=z) \wedge f x_{1} \cdots x_{n}=z\right)$, the result follows for such formulas by Proposition 7.4.15.

Let A be $f x_{1} \cdots x_{n}=y$. Then A is equivalent to a formula of P^{\prime} of the form

$$
B \wedge \forall x(x<y \rightarrow C)
$$

where B and C are open. The result can be easily seen now by Proposition 7.4.15.

From the last three results, we have the following theorem.
Theorem 7.4.17 If P^{\prime} is a recursive extension of $P A$, then every true closed existential formula is a theorem of P^{\prime}.

7.5 Second Incompleteness Theorem

We are now in a position to prove that " $P A$ is consistent" is not a theorem of $P A$.

From now on, we assume that P^{\prime} is a recursive extension of $P A$ in which all the recursive functions and recursive predicates for $P A$ introduced in the section on arithmetization of theories have been introduced. We introduce some notation first.

Let t, t_{1}, \ldots, t_{n} be terms and x_{1}, \ldots, x_{n} be the first n variables in alphabetical order. We define the terms $S\left(t, t_{1}, \ldots, t_{n}\right)$ by induction:

$$
\begin{gathered}
S\left(t, t_{1}\right)=\operatorname{sub}\left(t, k_{\left\lceil x_{1}\right\rceil}, t_{1}\right), \\
S\left(t, t_{1}, t_{2}\right)=\operatorname{sub}\left(S\left(t, t_{1}\right), k_{\left\lceil x_{2}\right\rceil}, t_{2}\right)
\end{gathered}
$$

$$
S\left(t, t_{1}, \ldots, t_{n}\right)=\operatorname{sub}\left(S\left(t, t_{1}, \ldots, t_{n-1}\right), k_{\left\lceil x_{n}\right\rceil}, t_{n}\right)
$$

Since each formula in P^{\prime} has a translation in $P A$ and since P^{\prime} is a conservative extension of $P A$, we shall not distinguish between a formula of P^{\prime} and its translation in P. With these conventions, we abbreviate the formula $\exists y \operatorname{Prf}_{P A}(x, y)$ by $\operatorname{Thm}_{P A}(x)$ and

$$
\neg \forall x\left(\operatorname{form}_{P A}(x) \rightarrow \operatorname{Thm}_{P A}(x)\right)
$$

by $\operatorname{Con}_{P A}$.
By formalizing the proof of Proposition 7.4.14 inside P^{\prime}, we shall prove the following lemma.

Lemma 7.5.1 For any R-formula $A\left[x_{1}, \ldots, x_{n}\right]$ of $P A$,

$$
P^{\prime} \vdash A \rightarrow \operatorname{Thm}_{P A}\left(S\left(k_{\lceil A\rceil}, x_{1}, \ldots, x_{n}\right)\right) .
$$

Proof. We shall prove the result by induction on the length of A. We shall give only a few steps of the proof. Readers should not find it difficult to complete the proof themselves.

Let A be the formula $0=x$. We have

$$
S\left(k_{\lceil A\rceil}, x\right)=\left\langle k_{S N(=)}, \operatorname{num}(0), \operatorname{num}(x)\right\rangle .
$$

We have to show that

$$
P^{\prime} \vdash 0=x \rightarrow \operatorname{Thm}_{P A}\left(\left\langle k_{S N(=)}, \operatorname{num}(0), \operatorname{num}(0)\right\rangle\right) .
$$

By the equality theorem, this will be proved if we show that

$$
P^{\prime} \vdash \operatorname{Thm}_{P A}\left(\left\langle k_{S N(=)}, \operatorname{num}(0), \operatorname{num}(0)\right\rangle\right) .
$$

But the formula

$$
\operatorname{Thm}_{P A}\left(\left\langle k_{S N(=)}, \operatorname{num}(0), \operatorname{num}(0)\right\rangle\right)
$$

is a true closed existential formula. Hence it is a theorem of P^{\prime} by Theorem 7.4.17.

Similarly by formalizing the proofs of the representability of $S,+, \cdot$, and $<$ inside P^{\prime}, we can prove the assertion for formulas of the form $S x=y$, $x+y=z, x \cdot y=z, x<y$, etc.

We shall show only one inductive step and leave the others for the reader to prove. Let $A\left[x_{1}, \ldots, x_{n}\right]$ be of the form $\exists x B$ and the result holds for the formula B. Set

$$
t=S\left(k_{\lceil B\rceil}, x_{1}, \ldots, x_{n}\right) .
$$

Since $S\left(k_{\lceil A\rceil}, x_{1}, \ldots, x_{n}\right)=\left\langle k_{S N(\exists)}, k_{\lceil x\rceil}, t\right\rangle$ is a true closed existential formula, by Theorem 7.4.17,

$$
\begin{equation*}
P^{\prime} \vdash S\left(k_{\lceil A\rceil}, x_{1}, \ldots, x_{n}\right)=\left\langle k_{S N(\exists)}, k_{\lceil x\rceil}, t\right\rangle . \tag{a}
\end{equation*}
$$

By the induction hypothesis,

$$
P^{\prime} \vdash B \rightarrow \operatorname{Thm}_{P A}\left(\operatorname{sub}\left(t, k_{\lceil x\rceil}, \operatorname{num}(x)\right)\right)
$$

By the distribution rule, we have

$$
\begin{equation*}
P^{\prime} \vdash A \rightarrow \exists x \operatorname{Thm}_{P A}\left(\operatorname{sub}\left(t, k_{\lceil x\rceil}, \operatorname{num}(x)\right)\right) . \tag{b}
\end{equation*}
$$

Using the fact that every true existential sentence is a theorem, we can formalize the proof of "if $P^{\prime} \vdash B_{x}\left[k_{n}\right]$ for some $n, P^{\prime} \vdash \exists x B$ " inside P^{\prime}. Thus, we get

$$
\begin{equation*}
P^{\prime} \vdash \exists x \operatorname{Thm}_{P A}\left(\operatorname{sub}\left(t, k_{\lceil x\rceil}, \operatorname{num}(x)\right)\right) \rightarrow \operatorname{Thm}_{P}\left(\left\langle k_{S N(\exists)}, k_{\lceil x\rceil}, t\right\rangle\right) . \tag{c}
\end{equation*}
$$

Our assertion for A follows from (a), (b), and (c).
Essentially by formalizing the proof of the first incompleteness theorem inside P^{\prime}, we get the following very interesting result.

Theorem 7.5.2 (Second incompleteness theorem) Con $_{P A}$ is not a theorem of $P A$.

Proof. Let $A[x]$ denote the translation of the formula

$$
\neg \exists y \operatorname{Prf}_{P A}\left(\operatorname{sub}\left(x, k_{\lceil x\rceil}, \operatorname{num}(x)\right), y\right)
$$

in $P A$. Let

$$
a=\lceil A\rceil .
$$

We need to show that

$$
\begin{equation*}
P A \nvdash \operatorname{Con}_{P A} . \tag{1}
\end{equation*}
$$

Since P^{\prime} is an extension by definition of $P A$, it is sufficient to prove that

$$
\begin{equation*}
P^{\prime} \nvdash \operatorname{Con}_{P A} . \tag{2}
\end{equation*}
$$

For this, it is enough to prove that

$$
\begin{equation*}
P^{\prime} \vdash \operatorname{Con}_{P A} \rightarrow A_{x}\left[k_{a}\right], \tag{3}
\end{equation*}
$$

because by the argument contained in the proof of the first incompleteness theorem,

$$
P^{\prime} \nvdash A_{x}\left[k_{a}\right]
$$

and $A_{x}\left[k_{a}\right]$ is a tautological consequence of $\operatorname{Con}_{P A} \rightarrow A_{x}\left[k_{a}\right]$ and $\operatorname{Con}_{P A}$.
Let B be an R-formula in $P A$ that is equivalent in P^{\prime} to

$$
\left.\exists y \operatorname{Prf}_{P A}\left(\operatorname{sub}\left(x, k_{\lceil x\rceil}, \operatorname{num}(x)\right)\right), y\right)_{x}\left[k_{a}\right] .
$$

Hence, by the equivalence theorem,

$$
\begin{equation*}
P^{\prime} \vdash \neg B \leftrightarrow A_{x}\left[k_{a}\right] . \tag{4}
\end{equation*}
$$

Let $b=\lceil B\rceil$ and $c=\left\lceil A_{x}\left[k_{a}\right]\right\rceil$. By the definition of consistency and Theorem 7.4.17, we have

$$
\begin{equation*}
P^{\prime} \vdash \operatorname{Con}_{P A} \rightarrow\left(\neg \operatorname{Thm}_{P A}\left(k_{c}\right) \vee \neg \operatorname{Thm}_{P A}\left(n e g\left(k_{c}\right)\right)\right), \tag{5}
\end{equation*}
$$

where

$$
\operatorname{neg}\left(k_{c}\right)=\left\langle k_{S N(\neg)}, c\right\rangle .
$$

Thus, by the tautology theorem, it is sufficient to show that

$$
\begin{equation*}
P^{\prime} \vdash\left(\neg \operatorname{Thm}_{P A}\left(k_{c}\right) \vee \neg \operatorname{Thm}_{P A}\left(n e g\left(k_{c}\right)\right)\right) \rightarrow A_{x}\left[k_{a}\right] . \tag{6}
\end{equation*}
$$

By the tautology theorem again, it is enough to show that

$$
\begin{equation*}
P^{\prime} \vdash \neg \operatorname{Thm}_{P A}\left(k_{c}\right) \rightarrow A_{x}\left[k_{a}\right] \tag{7}
\end{equation*}
$$

and

$$
\begin{equation*}
P^{\prime} \vdash \neg \operatorname{Thm}_{P A}\left(\operatorname{neg}\left(k_{c}\right)\right) \rightarrow A_{x}\left[k_{a}\right] . \tag{8}
\end{equation*}
$$

We prove (7) as follows:
Note that

$$
k_{c}=\operatorname{sub}\left(k_{a}, k_{\lceil x\rceil}, \operatorname{num}\left(k_{a}\right)\right)
$$

is a true closed existential formula of P^{\prime}. Hence, by Theorem 7.4.17, it is a theorem of P^{\prime}. By the equality theorem and the definition of A, we now have

$$
P^{\prime} \vdash \neg A_{x}\left[k_{a}\right] \rightarrow \operatorname{Thm}_{P A}\left(k_{c}\right) .
$$

This proves (7).
To prove (8), first note that by (4),

$$
P^{\prime} \vdash B \rightarrow \neg A_{x}\left[k_{a}\right] .
$$

Hence,

$$
\operatorname{Thm}_{P A}\left(\left\langle k_{S N(\vee)}, n e g\left(k_{b}\right), n e g\left(k_{c}\right)\right\rangle\right)
$$

is a true closed existential formula. Hence, by Theorem 7.4.17,

$$
\begin{equation*}
P^{\prime} \vdash \operatorname{Thm}_{P A}\left(k_{b}\right) \rightarrow \operatorname{Thm}_{P A}\left(n e g\left(k_{c}\right)\right), \tag{9}
\end{equation*}
$$

Finally, by Lemma 7.5.1, we have,

$$
\begin{equation*}
P^{\prime} \vdash B \rightarrow \operatorname{Thm}_{P A}\left(k_{b}\right) \tag{10}
\end{equation*}
$$

Now note that

$$
\neg \operatorname{Thm}_{P A}\left(n e g\left(k_{c}\right)\right) \rightarrow A_{x}\left[k_{a}\right]
$$

is a tautological consequence of

$$
\begin{gathered}
\operatorname{Thm}_{P A}\left(k_{b}\right) \rightarrow \operatorname{Thm}_{P A}\left(n e g\left(k_{c}\right)\right), \\
B \rightarrow \operatorname{Thm}_{P A}\left(k_{b}\right),
\end{gathered}
$$

and

$$
\neg B \leftrightarrow A_{x}\left[k_{a}\right] .
$$

Hence, (8) follows from (9), (10), and (4) by the tautology theorem.
Remark 7.5.3 There is an extension by definitions of $Z F$ (or of $Z F C$) in which there is a suitable interpretation of Peano arithmetic $P A$ so that the representability theorem can be proved with the theory N replaced by $Z F$. Hence, we can express $C o n_{Z F}$ and $C o n_{Z F C}$ as formulas of $Z F$. Again, using similar ideas, we can prove the following result:

References

[1] J. Ax. The elementary theory of finite fields. Annals of Math. 88 (1968), 103-115.
[2] C. C. Chang and H. J. Keisler. Model Theory. North-Holland Publishing Company, 1990.
[3] P. Hinman. Fundamentals of Mathematical Logic. A. K. Peters Ltd., 2005.
[4] D. R. Hofstadter. Gödel, ESCHER, BACH: An Eternal Golden Braid. Vintage Books, 1989.
[5] T. Jech. Set Theory. Springer Monographs in Mathematics, 2006.
[6] K. Kunnen. Set Theory: An Introduction to Independence Proofs. North-Holland Publishing Company, 1980
[7] S. Lang. Algebra. Addison-Wesley, 1971
[8] D. Marker. Model Theory: An Introduction. GTM 217, Springer, 2002.
[9] H. J. Rogers. Theory of Recursive Functions and Effective Computability. McGraw-Hill Book Company, New York, 1967.
[10] R. Penrose. The Emperor's New Mind. Oxford University Press, Oxford, New York, Melbourne, 1990.
[11] J. R. Shoenfield. Mathematical Logic. A. K. Peters Ltd., 2001.
[12] S. M. Srivastava. A Course on Borel Sets. GTM 180, Springer, 1998.

Index

R-formula, 129
ZF, 12
ZFC, 76
\forall-introduction rule, 48
κ-categorical theory, 78
κ-theory, 10
s_{n}^{m}-theorem, 123
\exists-introduction rule, 46
abelian group, 10
algebraically closed field, 19
alphabetical order, 3
archimedean ordered field, 28
arithmetical pointclasses, 117
arithmetical set, 119
associative rule, 37,46
atomic formula, 6
Ax, J., 80
axiom of choice, 27
bound occurrence, 8
canonical structure, 66
Cantor, Georg, 28, 92
chain in a poset, 33
characteristic function, 84
characteristic of a field, 19
choice function, 27
Church's thesis, 85
closed formula, 8
closure of a formula, 8
closure theorem, 50
code, 123
compactness theorem for firstorder theories, 75
compactness theorem for propositional logic, 34
complete ordered field, 27
complete recursion, 92
complete theory, 64
completeness theorem for firstorder theories, 63
completeness theorem for propositional logic, 43
composition, 85
conjunctive normal form, 33
conservative extension, 46
consistent theory, 62
contraction rule, 37,46
countable language, 3
countable Theory, 10
cut rule, 37,46
decidable formula, 62
decidable theory, 103
decision problem, 83
deduction theorem, 54
defining axiom, 72, 73
dense linear order, 11
detachment rule, 39, 47
distribution rule, 50
divisible group, 28
downward Löwenheim-Skolem theorem, 26
elementarily equivalent structures, 24
elementary embedding, 24
elementary extension, 24
elementary formula, 7
elementary substructure, 24
embedding, 20
equality axiom, 45
equality theorem, 52
equivalence theorem, 51
equivalent formulas, 50
equivalent theories, 46
existential formula, 58
expansion of a structure, 17
expansion rule, 37,46
expression, 3
extension by definitions, 74
extension of a language, 3
extension of a theory, 46
faithful interpretation, 74
field theory, 11
fields of characteristic 0,11
finite language, 3
finite theories, 10
finitely axiomatized part, 46
finitely satisfiable, 34
first-order language, 3
first-order theory, 10
formula, 6
free occurrence, 8

Gödel number, 97
Gödel's β-function, 90
Gödel, Kurt, 64, 65, 74, 88, 96
generalization of a formula, 7
generalization rule, 48
graph, 36
group theory, 10
height of a formula, 67
Henkin extension, 67
Henkin model, 69
Henkin theory, 67
Henkin, Leo, 65
Hilbert's prgram, 116
Hilbert's tenth problem, 83, 103
Hilbert, David, 20
identity axiom, 45
incompleteness theorem, first, 115
incompleteness theorem, second, 132
inconsistent Theory, 62
individual functions, 16
individual prediactes, 16
individuals, 16
induction axiom schema, 12
initial functions, 85
instance of a formula, 9
instantiation of a formula, 7
interpretation, 31
interpretation of L in $L^{\prime}, 70$
interpretation of L in $T, 71$
interpretation of T in $T^{\prime}, 71$
interpretation of a language, 16
isomorphic structures, 21
isomorphism of structures, 21
Kleene's recursion theorem, 124
Kleene, Stephen C., 95
Kunen, Kenneth, 62
Löwenheim-Skolem theorem, 76
Lindenbaum's theorem, 64
Lindenbaum, Adolf, 64
literal, 30
logical axioms, 37
logical symbols, 3
Malcev, A., 65, 74
matrix of a formula, 58
minimalization, 85
model of a theory, 19
models of propositional logic, 32
modus ponens, 39
name, 17
nonlogical axioms, 10
nonlogical axioms, Propositional, 37
nonlogical symbols, 3
numerals, 12
numerical instance, 129
open formula, 8
ordered fields, 11
part of a theory, 46
partial order, 33
Peano arithmetic, 12
pointclass, 116
Post tautology theorem, 42, 47
Post, Emil, 42
predecessor function, 92
prefix of a formula, 58
prenex form, 58
proof in first-order theory, 46
proof in propositional logic, 37
propositiona logic, 29
propositional axiom schema, 37
propositional axioms, 45
rank of a formula, 6
rank of a term, 4
recursive extension, 126
recursive functions, 85
recursive relations, 85
recursive substitution, 86
reduction property, 122
reduction theorem, 63
relative consistency, 74
representability, 107
representability theorem, 108
restriction of a structure, 16
ring theory, 10
rules of inference, 29, 37
satisfiability, 32
sentence, 8
separation property, 122
sequence number, 90
set theory, 27
simple extension, 46
soundness theorem, 38
standard model, 77
standard model of number theory, 20
structure in propositional logic, 31
structure of a language, 16
subformula, 7
substitutability, 8
substitution axiom, 45
substitution rule, 48
substitution theorem, 49
substructure, 21
subterm, 5
symbol number, 96
symmetry theorem, 52
Tarski, Alfred, 75, 76
tautological consequence, 32,47
tautologically equivalent formulas, 32, 47
tautology, 29, 32, 47
terms of a language, 4
theorem in propositional logic, 37
theorem on constants, 56
theory, 10
theory $N, 12$
torsion-free group, 28
true formulas of number theory, 77
truth valuation, 31
Tychonoff theorem, 35
undecidable formula, 62
undecidable theory, 103
uniformization, 122
uniformization propery, 122
universal formula, 58
universal pair for $\Gamma, 122$
universal sets, 120
universe, 70
universe of a structure, 16
upward Löwenheim-Skolem Theorem, 76
validity in a structure, 18
validity in a theory, 19
validity theorem, 46
variant of a formula, 51
variant theorem, 51
Vaught, Robert, 78
well-ordered sets, 28
well-ordering priciple, 28

Zermelo-Fraenkel Set theory, 12
Zorn's lemma, 34

Universitext

Aguilar, M.; Gitler, S.; Prieto, C.: Algebraic Topology from a Homotopical Viewpoint Aksoy, A.; Khamsi, M. A.: Methods in Fixed Point Theory
Alevras, D.; Padberg M. W.: Linear Optimization and Extensions

Andersson, M.: Topics in Complex Analysis
Aoki, M.: State Space Modeling of Time Series
Arnold, V. I.: Lectures on Partial Differential Equations
Arnold, V.I.; Cooke, R.: Ordinary Differential Equations
Audin, M.: Geometry
Aupetit, B.: A Primer on Spectral Theory
Bachem, A.; Kern, W.: Linear Programming Duality
Bachmann, G.; Narici, L.; Beckenstein, E.: Fourier and Wavelet Analysis
Badescu, L.: Algebraic Surfaces
Balakrishnan, R.; Ranganathan, K.: A Textbook of Graph Theory
Balser, W.: Formal Power Series and Linear Systems of Meromorphic Ordinary Differential Equations
Bapat, R.B.: Linear Algebra and Linear Models
Benedetti, R.; Petronio, C.: Lectures on Hyperbolic Geometry
Benth, F. E.: Option Theory with Stochastic Analysis
Berberian, S. K.: Fundamentals of Real Analysis
Berger, M.: Geometry I, and II
Bhattacharya, R.; Waymire, E.C.: A Basic Course in Probability Theory
Bliedtner, J.; Hansen, W.: Potential Theory
Blowey, J. F.; Coleman, J. P.; Craig, A. W. (Eds.): Theory and Numerics of Differential Equations

Blowey, J. F.; Craig, A.; Shardlow, T. (Eds.): Frontiers in Numerical Analysis, Durham 2002, and Durham 2004
Blyth, T. S.: Lattices and Ordered Algebraic Structures
Börger, E.; Grädel, E.; Gurevich, Y.: The Classical Decision Problem
Böttcher, A; Silbermann, B.: Introduction to Large Truncated Toeplitz Matrices
Boltyanski, V.; Martini, H.; Soltan, P. S.: Excursions into Combinatorial Geometry
Boltyanskii, V. G.; Efremovich, V. A.: Intuitive Combinatorial Topology
Bonnans, J. F.; Gilbert, J. C.; Lemarchal, C.; Sagastizbal, C. A.: Numerical Optimization
Booss, B.; Bleecker, D. D.: Topology and Analysis
Borkar, V. S.: Probability Theory
Brunt B. van: The Calculus of Variations
Bühlmann, H.; Gisler, A.: A Course in Credibility Theory and its Applications
Carleson, L.; Gamelin, T. W.: Complex Dynamics
Cecil, T.E.: Lie Sphere Geometry: With Applications of Submanifolds. 2nd edition Chae, S. B.: Lebesgue Integration
Chandrasekharan, K.: Classical Fourier Transform
Charlap, L. S.: Bieberbach Groups and Flat Manifolds
Chern, S.: Complex Manifolds without Potential Theory
Chorin, A. J.; Marsden, J. E.: Mathematical Introduction to Fluid Mechanics
Cohn, H.: A Classical Invitation to Algebraic Numbers and Class Fields
Curtis, M. L.: Abstract Linear Algebra
Curtis, M. L.: Matrix Groups
Cyganowski, S.; Kloeden, P.; Ombach, J.: From Elementary Probability to Stochastic Differential Equations with MAPLE

Da Prato, G.: An Introduction to Infinite Dimensional Analysis
Dalen, D. van: Logic and Structure
Das, A.: The Special Theory of Relativity: A Mathematical Exposition
Debarre, O.: Higher-Dimensional Algebraic Geometry
Deitmar, A.: A First Course in Harmonic Analysis

Demazure, M.: Bifurcations and Catastrophes
Devlin, K. J.: Fundamentals of Contemporary Set Theory
DiBenedetto, E.: Degenerate Parabolic Equations
Diener, F.; Diener, M.(Eds.): Nonstandard Analysis in Practice
Dimca, A.: Sheaves in Topology
Dimca, A.: Singularities and Topology of Hypersurfaces
DoCarmo, M. P.: Differential Forms and Applications
Duistermaat, J. J.; Kolk, J. A. C.: Lie Groups Dumortier.: Qualitative Theory of Planar Differential Systems

Dundas, B.I.; Levine, M.; Østvaer, P. A.; Röndip, O.; Voevodsky, V.: Motivic Homotopy Theory
Edwards, R.E.: A Formal Background to Higher Mathematics Ia, and Ib
Edwards, R. E.: A Formal Background to Higher Mathematics IIa, and IIb
Emery, M.: Stochastic Calculus in Manifolds
Emmanouil, I.: Idempotent Matrices over Complex Group Algebras
Endler, O.: Valuation Theory
Engel, K.-J.; Nagel, R.: A Short Course on Operator Semigroups
Erez, B.: Galois Modules in Arithmetic
Everest, G.; Ward, T.: Heights of Polynomials and Entropy in Algebraic Dynamics
Farenick, D. R.: Algebras of Linear Transformations

Foulds, L. R.: Graph Theory Applications Franke, J.; Hrdle, W.; Hafner, C. M.: Statistics of Financial Markets: An Introduction Frauenthal, J. C.: Mathematical Modeling in Epidemiology
Freitag, E.; Busam, R.: Complex Analysis
Friedman, R.: Algebraic Surfaces and Holomorphic Vector Bundles
Fuks, D. B.; Rokhlin, V. A.: Beginner's Course in Topology
Fuhrmann, P. A.: A Polynomial Approach to Linear Algebra
Gallot, S.; Hulin, D.; Lafontaine, J.: Riemannian Geometry
Gardiner, C. F.: A First Course in Group Theory
Gårding, L.; Tambour, T.: Algebra for Computer Science
Godbillon, C.: Dynamical Systems on Surfaces

Godement, R.: Analysis I, and II
Goldblatt, R.: Orthogonality and Spacetime Geometry
Gouvêa, F. Q.: p-Adic Numbers
Gross, M. et al.: Calabi-Yau Manifolds and Related Geometries
Gustafson, K. E.; Rao, D. K. M.: Numerical Range. The Field of Values of Linear Operators and Matrices
Gustafson, S. J.; Sigal, I. M.: Mathematical Concepts of Quantum Mechanics
Hahn, A. J.: Quadratic Algebras, Clifford Algebras, and Arithmetic Witt Groups
Hájek, P.; Havránek, T.: Mechanizing Hypothesis Formation
Heinonen, J.: Lectures on Analysis on Metric Spaces
Hlawka, E.; Schoißengeier, J.; Taschner, R.: Geometric and Analytic Number Theory
Holmgren, R. A.: A First Course in Discrete Dynamical Systems
Howe, R., Tan, E. Ch.: Non-Abelian Harmonic Analysis
Howes, N. R.: Modern Analysis and Topology

Hsieh, P.-F.; Sibuya, Y. (Eds.): Basic Theory of Ordinary Differential Equations
Humi, M., Miller, W.: Second Course in Ordinary Differential Equations for Scientists and Engineers
Hurwitz, A.; Kritikos, N.: Lectures on Number Theory
Huybrechts, D.: Complex Geometry: An Introduction

Isaev, A.: Introduction to Mathematical Methods in Bioinformatics
Istas, J.: Mathematical Modeling for the Life Sciences
Iversen, B.: Cohomology of Sheaves
Jacod, J.; Protter, P.: Probability Essentials
Jennings, G. A.: Modern Geometry with Applications
Jones, A.; Morris, S. A.; Pearson, K. R.: Abstract Algebra and Famous Inpossibilities
Jost, J.: Compact Riemann Surfaces
Jost, J.: Dynamical Systems. Examples of Complex Behaviour
Jost, J.: Postmodern Analysis
Jost, J.: Riemannian Geometry and Geometric Analysis
Kac, V.; Cheung, P.: Quantum Calculus
Kannan, R.; Krueger, C. K.: Advanced Analysis on the Real Line
Kelly, P.; Matthews, G.: The NonEuclidean Hyperbolic Plane
Kempf, G.: Complex Abelian Varieties and Theta Functions
Kitchens, B. P.: Symbolic Dynamics
Klenke, A.: Probability Theory: A Comprehensive Course
Kloeden, P.; Ombach, J.; Cyganowski, S.: From Elementary Probability to Stochastic Differential Equations with MAPLE
Kloeden, P. E.; Platen; E.; Schurz, H.: Numerical Solution of SDE Through Computer Experiments
Koralov, L.; Sina, Ya. G.: Theory of Probability and Random Processes. 2nd edition

Kostrikin, A. I.: Introduction to Algebra
Krasnoselskii, M. A.; Pokrovskii, A. V.: Systems with Hysteresis
Kuo, H.-H.: Introduction to Stochastic Integration
Kurzweil, H.; Stellmacher, B.: The Theory of Finite Groups. An Introduction
Kyprianou, A.E.: Introductory Lectures on Fluctuations of Lévy Processes with Applications
Lang, S.: Introduction to Differentiable Manifolds
Lefebvre, M.: Applied Stochastic Processes
Lorenz, F.: Algebra I: Fields and Galois Theory
Lorenz, F.: Algebra II: Fields with Structure, Algebras and Advanced Topics
Luecking, D. H., Rubel, L. A.: Complex Analysis. A Functional Analysis Approach Ma, Zhi-Ming; Roeckner, M.: Introduction to the Theory of (non-symmetric) Dirichlet Forms
Mac Lane, S.; Moerdijk, I.: Sheaves in Geometry and Logic
Marcus, D. A.: Number Fields
Martinez, A.: An Introduction to Semiclassical and Microlocal Analysis
Matoušek, J.: Using the Borsuk-Ulam Theorem
Matsuki, K.: Introduction to the Mori Program
Mazzola, G.; Milmeister G.; Weissman J.: Comprehensive Mathematics for Computer Scientists 1
Mazzola, G.; Milmeister G.; Weissman J.: Comprehensive Mathematics for Computer Scientists 2
Mc Carthy, P. J.: Introduction to Arithmetical Functions
McCrimmon, K.: A Taste of Jordan Algebras
Meyer, R. M.: Essential Mathematics for Applied Field
Meyer-Nieberg, P.: Banach Lattices
Mikosch, T.: Non-Life Insurance Mathematics

Mines, R.; Richman, F.; Ruitenburg, W.: A Course in Constructive Algebra
Moise, E.E.: Introductory Problem Courses in Analysis and Topology
Montesinos-Amilibia, J. M.: Classical Tessellations and Three Manifolds

Morris, P.: Introduction to Game Theory
Mortveit, H.; Reidys, C.: An Introduction to Sequential Dynamical Systems
Nicolaescu, L.: An Invitation to Morse Theory

Nikulin, V. V.; Shafarevich, I. R.: Geometries and Groups
Oden, J. J.; Reddy, J. N.: Variational Methods in Theoretical Mechanics
Øksendal, B.: Stochastic Differential Equations. 6th edition

Øksendal, B.; Sulem, A.: Applied Stochastic Control of Jump Diffusions. 2nd edition Orlik, P.; Welker, V.: Algebraic Combinatorics

Perrin, D.: Algebraic Geometry: An Introduction

Poizat, B.: A Course in Model Theory
Polster, B.: A Geometrical Picture Book
Porter, J. R.; Woods, R. G.: Extensions and Absolutes of Hausdorff Spaces
Procesi, C.: Lie Groups
Radjavi, H.; Rosenthal, P.: Simultaneous Triangularization

Ramsay, A.; Richtmeyer, R. D.: Introduction to Hyperbolic Geometry
Rautenberg, W.: A concise Introduction to Mathematical Logic
Rees, E. G.: Notes on Geometry
Reisel, R. B.: Elementary Theory of Metric Spaces

Rey, W. J. J.: Introduction to Robust and Quasi-Robust Statistical Methods
Ribenboim, P.: Classical Theory of Algebraic Numbers
Rickart, C. E.: Natural Function Algebras
Rotman, J. J.: Galois Theory

Rubel, L. A.: Entire and Meromorphic Functions

Ruiz-Tolosa, J. R.; Castillo E.: From Vectors to Tensors
Runde, V.: A Taste of Topology
Rybakowski, K. P.: The Homotopy Index and Partial Differential Equations
Sabbah, C.: Isomonodromic Deformations and Frobenius Manifolds: An introduction Sagan, H.: Space-Filling Curves
Samelson, H.: Notes on Lie Algebras
Sauvigny, F.: Partial Differential Equations I
Sauvigny, F.: Partial Differential Equations II
Schiff, J. L.: Normal Families
Schirotzek, W.: Nonsmooth Analysis
Sengupta, J. K.: Optimal Decisions under Uncertainty
Séroul, R.: Programming for Mathematicians
Seydel, R.: Tools for Computational Finance

Shafarevich, I. R.: Discourses on Algebra
Shapiro, J. H.: Composition Operators and Classical Function Theory
Simonnet, M.: Measures and Probabilities
Smith, K. E.; Kahanpää, L.; Kekäläinen, P.; Traves, W.: An Invitation to Algebraic Geometry
Smith, K. T.: Power Series from a Computational Point of View
Smoryński, C.: Logical Number Theory I. An Introduction
Srivastava, S.M.: A Course on Mathematical Logic
Stichtenoth, H.: Algebraic Function Fields and Codes
Stillwell, J.: Geometry of Surfaces
Stroock, D. W.: An Introduction to the Theory of Large Deviations
Sunder, V.S.: An Invitation to von Neumann Algebras
Tamme, G.: Introduction to Étale Cohomology

Tondeur, P.: Foliations on Riemannian Manifolds
Toth, G.: Finite Mbius Groups, Minimal Immersions of Spheres, and Moduli
Tu, L. W.: An Introduction to Manifolds
Verhulst, F.: Nonlinear Differential Equations and Dynamical Systems
Weintraub, S. H.: Galois Theory
Wong, M. W.: Weyl Transforms
Xambó-Descamps, S.: Block Error-Correcting Codes

Zaanen, A.C.: Continuity, Integration and Fourier Theory

Zhang, F.: Matrix Theory
Zong, C.: Sphere Packings
Zong, C.: Strange Phenomena in Convex and Discrete Geometry

Zorich, V. A.: Mathematical Analysis I
Zorich, V. A.: Mathematical Analysis II

[^0]: © 2008 Springer Science+Business Media, LLC
 All rights reserved. This work may not be translated or copied in whole or in part without the written permission of the publisher (Springer Science+Business Media, LLC, 233 Spring Street, New York, NY 10013, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in connection with any form of information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed is forbidden.
 The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary rights.

