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Preface

This book is written on the occassion of the birth centenary year of Kurt
Gödel (1906–1978), the most exciting logician of all times, whose discov-
eries shook the foundations of mathematics. His beautiful technique to ex-
amine the whole edifice of mathematics within mathematics itself has been
likened, not only figuratively but also in precise technical terms, to the mu-
sic of Bach and drawings of Escher [4]. It had a deep impact on philosophers
and linguists. In a way, it ushered in the era of computers. His idea of arith-
metization of formal systems led to the discovery of a universal computer
program that simulates all programs. Based on his incompleteness theo-
rems, physicists have propounded theories concerning artifical intelligence
and the mind–body problem [10].

The main goal of this book is to state and prove Gödel’s completeness and
incompleteness theorems in precise mathematical terms. This has enabled
us to present a short, distinctive, modern, and motivated introduction to
mathematical logic for graduate and advanced undergraduate students of
logic, set theory, recursion theory, and computer science. Any mathemati-
cian who is interested in knowing what mathematical logic is concerned
with and who would like to learn the famous completeness and incomplete-
ness theorems of Gödel should also find this book particularly convenient.
The treatment is thoroughly mathematical, and the entire subject has been
approached like any other branch of mathematics. Serious efforts have been
made to make the book suitable for both instructional and self-reading pur-
poses. The book does not strive to be a comprehensive encyclopedia of logic,
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nor does it broaden its audience to linguists and philosophers. Still, it gives
essentially all the basic concepts and results in mathematical logic.

The main prerequisite for this book is the willingness to work at a rea-
sonable level of mathematical rigor and generality. However, a working
knowledge of elementary mathematics, particularly naive set theory and
algebra, is required. We suggest [12, pp. 1–15] for the necessary prereq-
uisites in set theory. A good source for the algebra needed to understand
some examples and applications would be [7].

Students who want to specialize in foundational subjects should read the
entire book, preferably in the order in which it is presented, and work out all
the problems. Sometimes we have only sketched the proof and left out the
routine arguments for readers to complete. Students of computer science
may leave out sections on model theory and arithmetical sets. Mathemati-
cians working in other areas and who want to know about the completeness
and incompleteness theorems alone may also omit these sections. However,
sections on model theory give applications of logic to mathematics. Chap-
ters 1 to 4, except for Section 2.4 and Sections 5.1 and 5.4, should make a
satisfactory course in mathematical logic for undergraduate students.

The book prepares students to branch out in several areas of mathemat-
ics related to foundations and computability such as logic, model theory,
axiomatic set theory, definability, recursion theory, and computability. Hin-
man’s recent book [3] is the most comprehensive one, with representation
in all these areas. Shoenfield’s [11] is still a very satisfactory book on logic.
For axiomatic set theory, we particularly recommend Kunen [6] and Jech
[5]. For model theory, the readers should also see Chang and Keisler [2] and
Marker [8]. For recursion theory we suggest [9].

Acknowledgments. I thank M. G. Nadkarni, Franco Parlamento, Ravi A.
Rao, B. V. Rao, and H. Sarbadhikari for very carefully reading the entire
manuscript and for their numerous suggestions and corrections. Thanks
are also due to my colleagues and research fellows at the Stat-Math Unit,
Indian Statistical Institute, for their encouragements and help. I fondly
acknowledge my daughter Rosy, my son Ravi, and my grandsons Pikku
and Chikku for keeping me cheerful while I was writing this book. Last but
not least, I shall ever be grateful to my wife, H. Sarbadhikari, for cheerfully
putting up with me at home as well at the office all through the period I
was working on the book.



1
Syntax of First-Order Logic

The main objects of study of mathematical logic are mathematical theories
such as set theory, number theory, and the theory of algebraic structures
such as groups, rings, fields, algebraically closed fields, etc., with the aim to
develop tools to examine their consistency, completeness, and other similar
questions concerning the foundation of these theories. In this chapter we
take the first step toward logic and precisely define the notion of a first-
order theory.

1.1 First-Order Languages

The objects of study in the natural sciences have physical existence. By
contrast, mathematical objects are concepts, e.g., “sets,” “belongs to (∈),”
“natural numbers,” “real numbers,” “complex numbers,” “lines,” “curves,”
“addition,” “multiplication,” etc.

There have to be initial concepts in a theory. To elaborate it a bit
more, note that a concept can be defined in terms of other concepts. For
instance, x−y is the unique number z such that y+z = x; or if x and y are
sets, x ⊂ y if for every element z, z ∈ x implies z ∈ y. Thus, “subtraction”
can be “defined” in terms of “addition” and “subset (⊂)” in terms of “be-
longs to (∈).” At the onset, one begins with a minimal number of undefined
concepts. For instance, in set theory, the undefined concepts are “sets” and
“belongs to”; in number theory, the undefined concepts are “natural num-
bers,” “zero,” and the “successor function”; in the theory of real numbers
(seen as an archimedean ordered field), the undefined concepts are “real
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numbers,” “zero,” “one,”“addition,” “multiplication,” and “less than.” In
these examples, we see that there are two groups of concepts: sets or natural
numbers or real numbers on the one hand; belongs to, zero, one, successor,
addition, multiplication, less than, etc. on the other. Concepts of the first
type are the main objects of study; concepts of the second type are used
to reflect basic structural properties of the objects of the first type. Then
one lists a set of axioms that give the basic structural properties of the
objects of study. It is expected that based on these undefined concepts and
the axioms, other concepts can be defined. Then the theory is developed by
introducing more and more concepts and proving more and more theorems.

Clearly, we ought to have a language to develop a theory. Like any of the
natural languages, say Latin, Sanskrit, Tamil, etc., a language suitable for
a mathematical theory also has an alphabet. But unlike natural languages,
a statement in a mathematical theory is expressed symbolically and has
an unambiguous syntactical construction. Before giving precise definitions,
we give some examples of statements in some theories that we are familiar
with.

Example 1.1.1 Consider the following statement in group theory: For
every x there exists y such that x · y = e. Here · (dot) is a symbol for the
binary group operation and e for the identity element. If we use the symbol
∀ to denote “for every” and ∃ for “there exists,” then we can represent the
above statement as follows:

∀x∃y(x · y = e).

Example 1.1.2 The following are two statements in set theory:

∀x∀y∃z(x ∈ z ∧ y ∈ z),

and
¬∃x∀y(y ∈ x).

The first statement is a symbolic representation of the statement “Given
any two sets x and y, there is a set z that contains both x and y”; the
second statement means that “There is no set x that contains all sets y”.

We see that the language for a theory should have “variables” to represent
the objects of study, e.g., sets in set theory, or elements of a group in group
theory, etc., and some logical symbols like ∃ (there exists), ∧ (and), ¬
(negation), = (equality). These symbols are common to the languages for
all theories. We call them logical symbols. On the other hand, there are
certain alphabets that represent undefined concepts of a specific theory.
For instance, in group theory we use two symbols: the dot · for the group
operation and a symbol, say e, for the identity element; in set theory we
have a binary relation symbol ∈ for the undefined concept belongs to.
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We make one more observation before giving the first definition in the
subject. Mathematicians use many logical connectives and quantifiers such
as ∨ (or), ∧ (and), ∃ (there exists), ∀ (for all), → (if · · ·, then · · ·), and ↔
(if and only if). However, in their reasoning “two statements A and B are
both true” if and only if “it is not true that any of A or B is false”; “A
implies B” if and only if “either A is false or B is true,” etc. This indicates
that some of the logical connectives and quantifiers can be defined in terms
of others. So, we can start with a few logical connectives and quantifiers.
This economy will help in making many proofs quite short.

A first-order language L consists of two types of symbols: logical
symbols and nonlogical symbols. Logical symbols consist of a sequence
of variables x0, x1, x2, . . .; logical connectives ¬ (negation) and ∨ (dis-
junction); a logical quantifier ∃ (existential quantifier) and the equality
symbol =. We call the order in which variables x0, x1, x2, . . . are listed
the alphabetical order. These are common to all first-order languages.
Depending on the theory, nonlogical symbols of L consist of an (empty or
nonempty) set of constant symbols {ci : i ∈ I}; for each positive integer
n, a set of n-ary function symbols {fj : j ∈ Jn}; and a set of n-ary
relation symbols {pk : k ∈ Kn}.

When it is clear from the context, a first-order language will simply be
called a language. Since logical symbols are the same for all languages, to
specify a language one has to specify its nonlogical symbols only. To avoid
suffixes and for ease in reading, we shall use symbols x, y, z, u, v, w, with
or without subscriptss, to denote variables. Any finite sequence of symbols
of a language L will be called an expression in L.

A language L is called countable if it has only countably many nonlog-
ical symbols; it is called finite if it has finitely many nonlogical symbols.

Example 1.1.3 The language for set theory has only one nonlogical sym-
bol: a binary relation symbol ∈ for “belongs to.”

Example 1.1.4 The language for group theory has a constant symbol e
(for the identity element) and a binary function symbol · (for the group
operation).

Example 1.1.5 The language for the theory of rings with identity has two
constant symbols 0 and 1 and two binary function symbols + and ·.

Example 1.1.6 The language for the theory of ordered fields has two con-
stant symbols 0 and 1, two binary function symbols + and ·, and a binary
relation symbol <.

A first-order language L′ is called an extension of another language L
if every constant symbol of L is a constant symbol of L′ and every n-ary
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function (relation) symbol of L is an n-ary function (relation) symbol of L′.

Example 1.1.7 The language for the theory of ordered fields is an exten-
sion of the language for the theory of rings with identity.

Exercise 1.1.8 Show that the set of all expressions of a countable lan-
guage is countable.

1.2 Terms of a Language

We now define terms of a language L. Broadly speaking, they correspond
to algebraic expressions.

The set of all terms of a language L is the smallest set T of expressions
of L that contains all variables and constant symbols and is closed under
the following operation: whenever t1, . . . , tn ∈ T , fjt1 · · · tn ∈ T , where fj

is any n-ary function symbol of L. Equivalently, all the terms of a language
can be inductively defined as follows: variables and constant symbols are
terms of rank 0; if t1, . . . , tn are terms of rank ≤ k, and if fj is an n-ary
function symbol, then fjt1 · · · tn is a term of rank at most k + 1. Thus, the
rank of a term t is the smallest natural number k such that t is of rank
≤ k.

Note that the set of variable-free terms is the smallest set T ′ of ex-
pressions of L that contains all constant symbols and is closed under the
following operation: whenever t1, . . . , tn ∈ T ′, then fjt1 · · · tn ∈ T ′, where
fj is any n-ary function symbol of L.

We shall freely use parentheses and commas in a canonical way for
easy readability. For instance, we shall often write fj(t1, . . . , tn) instead
of fjt1 · · · tn, and t+s instead of +ts. We shall also drop parentheses when
there is no possibility of confusion. Further, we shall adopt the convention
of association to the right for omitting parentheses. For instance, instead
of writing t1 · (t2 · (t3 · t4)), we shall write t1 · t2 · t3 · t4. It is important to
note that the term ((t1 · t2) · t3) · t4 is not the same as t1 · t2 · t3 · t4. This
term can only be written using parentheses, unless, of course, one writes it
as

· · ·t1t2t3t4!
Similarly, (t1 · t2) · (t3 · t4) will stand for

· · t1t2 · t3t4!

Example 1.2.1 Let L be the language for the theory of rings with identity:
L has two constant symbols, 0 and 1, and two binary function symbols, +
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and ·. Let m denote the term obtained by “adding” 1 to itself m times, i.e.,
m is the term

1 + · · · + 1
︸ ︷︷ ︸

m times

;

for any term t, let tn denote the term obtained by “multiplying” t with
itself n times, i.e., tn is the term

t · t · · · t · t
︸ ︷︷ ︸

n times

.

Then m and tn are terms of L. Also any “formal polynomial”

m0 + m1x + · · · + mnxn,

x a variable, is a term of L.

Example 1.2.2 Variables are the only terms of the language for set theory
because it has no constant and no function symbols.

We define the set of all subterms of a term t by induction as follows: t
is a subterm of t. If ft1 · · · tn, t1, . . . , tn ∈ T , is a subterm of t, so is each ti,
1 ≤ i ≤ n. An expression is a subterm of t if it is obtained as above. Thus,
the set of all subterms of a term t is the smallest set S of expressions that
contains t and such that whenever ft1 · · · tn ∈ S, then t1, . . . , tn ∈ S.

Example 1.2.3 Let t be the term x ·y ·z of the language for group theory.
Then x · y · z, x, y · z, y, and z are all the subterms of t. Note that x · y is
not a subterm of t.

Exercise 1.2.4 List all the subterms of the term

x · u + y · v + z · w

of the language for the theory of rings.

Let s be a term. We shall write s[v1, . . . , vn] to indicate that variables
occurring in s are among v1, . . . , vn. If s is a term, sv1,...,vn

[t1, . . . , tn], or
simply s[t1, . . . , tn] when there is no possibility of confusion, denotes the
expression obtained from s by simultaneously replacing all occurrences of
v1, . . . , vn in s by t1, . . . , tn respectively.

Example 1.2.5 Let s be the term x ·(y+z) of the language for the theory
of rings with identity. Then

sx,y,z[x + z, 1, y · y] = (x + z) · (1 + y · y).

Proposition 1.2.6 Let s[v1, . . . , vn] and let t1, . . . , tn be terms. The ex-
pression s[t1, . . . , tn] defined above is a term.
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Proof. We prove the result by induction on the rank of s. If s is a con-
stant symbol c, s[t1, . . . , tn] = c; if s is a variable other than the vi’s, then
s[t1, . . . , tn] = s; if s is vi for some 1 ≤ i ≤ n, s[t1, . . . , tn] = ti. Thus, the
assertion is true for terms of rank 0.

Let k be a natural number and assume that the assertion be true for all
terms s of rank ≤ k (and all variables vi and all terms ti). Let sj [v1, . . . , vn],
1 ≤ j ≤ m, be terms of rank ≤ k, t1, . . . , tn terms, and f an m-ary function
symbol. Suppose

s[v1, . . . , vn] = f(s1[v1, . . . , vn], . . . , sm[v1, . . . , vn]).

Then
s[t1, . . . , tn] = f(s1[t1, . . . , tn], . . . , sm[t1, . . . , tn]).

By the induction hypothesis, each sj [t1, . . . , tn] is a term. Hence s[t1, . . . , tn]
is a term. The proof is complete by induction on the rank of terms. 
�

Remark 1.2.7 The above method of proving statements on terms by in-
duction on the rank of terms is a fairly standard one in the subject. Some-
times, in the rest of this book, we may not give the complete argument and
just say that the result can be proved by induction on the rank of terms.

1.3 Formulas of a Language

Our next concept is that of an atomic formula of the language L.

An atomic formula of a language is defined as follows: if t and s are
terms of L, then t = s is an atomic formula of L; if p is an n-ary relation
symbol of L and t1, . . . , tn are terms, then pt1 · · · tn is an atomic formula;
these are all the atomic formulas of L.

Example 1.3.1 x · y = 1, i · (j + k) = i · j + i · k, i · i < m are atomic
formulas of the language for the theory of ordered fields.

Example 1.3.2 v ∈ w, v = w, where v, w are variables, are all the atomic
formulas of the language for set theory.

A formula of a language is inductively defined as follows: every atomic
formula is a formula—these are all the formulas of rank 0; if A and B are
formulas of rank ≤ k and v is a variable, then ¬A (the negation of A);
∃vA and ∨AB (the disjunction of A and B) are formulas of rank ≤ k + 1.
The set of strings so obtained are all the formulas of L. Thus, the set of
all formulas of L is the smallest set of all expressions of L that contains
all the atomic formulas and that is closed under negation, disjunction, and
existential quantification. Let A be a formula of L. The rank of A is the
smallest natural number k such that the rank of A is ≤ k.
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From now on, unless otherwise stated, L will denote a first-order lan-
guage, and by a term (or a formula) we shall mean a term (or a formula)
of L.

We shall generally write A ∨ B instead of ∨AB. In the case of formulas
also, we shall use parentheses and commas in a canonical way for easy
readability. We adopt the convention of association to the right for omitting
parentheses. This means that A ∨ B ∨ C is to be read as A ∨ (B ∨ C);
A∨B ∨C ∨D is to be read as A∨ (B ∨ (C ∨D)); and so on. Note that the
formula (A∨B)∨C is different from the formula A∨ (B ∨C) and that the
parentheses have to be used to write the former formula, unless, of course,
one writes it as ∨ ∨ ABC!

Remark 1.3.3 Any term or formula is of the form Au1 · · ·un where A is
a symbol and u1, · · · , un terms or formulas. It should be noted that such
a representation of a term or formula is unique. This allows us to define
functions or give proofs by induction on the length of terms or formulas.

We now define some other commonly used logical connectives and quan-
tifiers:
∀vA is an abbreviation of ¬∃v¬A; A∧B abbreviates ¬(¬A∨¬B); A → B

is an abbreviation of (¬A)∨B; and A ↔ B abbreviates (A → B)∧(B → A).
Note that according to our convention of omitting parentheses, A → B → C
is to be read as A → (B → C); A → B → C → D is to be read as
A → (B → (C → D)); and so on. The connective ∧ is called conjunction
and the quantifier ∀ the universal quantifier. Note that we could have
added all these symbols into our alphabet. There are several reasons for
not doing so. For instance, proof of some results concerning formulas will
become long if we do not exercise economy in the number of logical symbols.

A formula of the form ∃vA is called an instantiation of A, and a for-
mula of the form ∀vA is called a generalization of A. A formula is called
elementary if it is either an atomic formula or an instantiation of a for-
mula.

Exercise 1.3.4 Show that the set of all formulas is the smallest collection
F of formulas such that each elementary formula is in F and that is closed
under ¬ and ∨, i.e., whenever A,B ∈ F , then ¬A and A ∨ B are in F as
well.

A subformula of a formula A is inductively defined as follows: A is a
subformula of itself; if ¬B or ∃vB is a subformula of A, then so is B; if B∨C
is a subformula of A, then B and C are subformulas of A; nothing else is a
subformula of A. Thus, the set of subformulas of A is the smallest set S(A)
of formulas of L that contains A and satisfies the following conditions:
whenever ¬B or ∃vB is in S(A), so is B, and whenever B ∨C is in S(A),
so are B and C.

Exercise 1.3.5 List all the subformulas of the following formulas:
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1. ∀x∃y(x · y = e).
2. ∀x∀y∃z(x ∈ z ∧ y ∈ z).
3. ¬∃x∀y(y ∈ x).

(The above formulas should be considered in their unabbreviated forms.)

An occurrence of a variable v in a formula A is bound if it occurs in
a subformula of the form ∃vB; otherwise, the occurrence is called free.
A variable is said to be free in A if it has a free occurrence in A. We shall
write ϕ[v0, . . . , vn] if ϕ is a formula all of whose free variables belong to the
set {v0, . . . , vn}.

Example 1.3.6 In the formula

x ∈ y ∨ ∃x(x ∈ y),

all the occurrences of y are free, the first occurrence of x is free, and other
occurrences of x are bound.

A formula with no free variable is called a closed formula or a sen-
tence. A formula that contains no quantifiers is called an open formula.

Exercise 1.3.7 Show that the set of all open formulas is the smallest
collection O of formulas such that each atomic formula is in O and that is
closed under ¬ and ∨, i.e., whenever A,B ∈ O, then ¬A and A ∨ B are in
O as well.

Let A[x0, . . . , xn−1] be a formula whose free variables are among
x0, . . . , xn−1 and xn−1 is free in A, where x0, . . . , xn−1 are the first n vari-
ables in alphabetical order. We call

∀xn−1 · · · ∀x0A

the closure of A. Note that if A is closed, it is its own closure.
Let t be a term, v a variable, and A a formula of a language L. We

say that the term t is substitutable for v in A if for each variable w
occurring in t, no subformula of A of the form ∃wB contains an occurrence
of v that is free in A.

Example 1.3.8 In the formula

x ∈ y ∨ ∃x(x ∈ y),

we can’t substitute any term containing x for y.

If t is substitutable for v in A, then Av[t] designates the expression ob-
tained from A by simultaneously replacing each free occurrence of v in A by
t. Similarly, if terms t1, . . . , tn are substitutable in A for v1, . . . , vn respec-
tively, then Av1,...,vn

[t1, . . . , tn], or A[t1, . . . , tn], when there is no possibility
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of confusion, called an instance of A, will denote the expression obtained
from A by simultaneously replacing all free occurrences of v1, . . . , vn in A
by t1, . . . , tn respectively. Note that whenever we talk of A[t1, . . . , tn], it will
be assumed that t1, . . . , tn are substitutable in A for v1, . . . , vn respectively.

Example 1.3.9 Let A be the formula

x ∈ y ∨ ∃x(x ∈ y).

Then Ax[z] is the formula z ∈ y ∨ ∃x(x ∈ y).

Proposition 1.3.10 The sequence A[t1, . . . , tn] defined above is a formula.

Proof. As in the case of the corresponding result on terms, this result is also
proved by induction on the rank of formulas. Let A[v1, . . . , vn] be an atomic
formula. So A is a formula of the form p(s1[v1, . . . , vn], . . . , sm[v1, . . . , vn]),
where p is an m-ary predicate symbol and s1, . . . , sm terms of L (p may be
the equality symbol. In this case m = 2). Then,

A[t1, . . . , tn] = p(s1[t1, . . . , tn], . . . , sm[t1, . . . , tn]).

By Proposition 1.2.6, sj [t1, . . . , tn], 1 ≤ j ≤ m, are terms. Hence,
A[t1, . . . , tn] is a formula. Thus, the assertion is true for formulas of rank 0.

Let k be a natural number and assume that the assertion is true for all
formulas of rank ≤ k (and all variables vi and all terms ti).

Let B[v1, . . . , vn] and C[v1, . . . , vn] be formulas of rank ≤ k and let
t1, . . . , tn be substitutable for v1, . . . , vn respectively in B and C. If A is
the formula ¬B, A[t1, . . . , tn] is the expression ¬B[t1, . . . , tn], which is a
formula by the induction hypothesis. If A is B ∨ C, A[t1, . . . , tn] is the ex-
pression B[t1, . . . , tn] ∨ C[t1, . . . , tn], which is a formula by the induction
hypothesis.

Let B[v, v1, . . . , vn] be a formula of rank k and let v be distinct from the
vi’s. Suppose A is the formula ∃vB. Then A[t1, . . . , tn] is the expression
∃vB[v, t1, . . . , tn]. This is clearly a formula by the induction hypothesis.
Thus the assertion is true for all formulas of rank k + 1. Our proof is
complete by induction on the rank of formulas. 
�

Remark 1.3.11 The above method of proving results by induction on the
rank of formulas is a fairly standard method in the subject. Sometimes, in
the rest of this book, we may not give the complete argument and just say
that the result can be proved by induction on the rank of formulas.

So far, we have been describing the “syntax,” i.e., rules for arranging
symbols into terms and sentences, of a theory. Here a sentence is just a
string of symbols from the language of the theory (without having a mean-
ing). One may consider this to be a useless representation of a sentence.
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But it is far from so. Logical connectives and quantifiers have an intended
logical meaning, so that whatever A may be, ¬A ∨ A is “true”; for any
term t, t = t is “true”; A ∨ B is “true” if and only if at least one of A and
B is “true”; and so on. Thus, quite often, the structure of a formula itself
helps us to make inferences about the formula. We are now in a very good
situation: we have a precise definition of a sentence; it exists concretely,
as the string of symbols that we see; and we can make some inferences
about it from its syntactical structure. Of course, we should know what is
inference and how it is done. This will be specified later in this book.

1.4 First-Order Theories

A first-order theory or simply a theory T consists of a first-order lan-
guage L and a set of formulas of L. These formulas are called nonlogical
axioms of T . By terms or formulas of T , we shall mean terms or formulas
respectively of the language for T . The language for T will also be denoted
by L(T ). A theory is called countable if its language is countable. It is
finite if the set of all nonlogical symbols is finite. In general, a theory T
whose set of all nonlogical symbols is of cardinality κ, κ an infinite cardinal,
is called a κ-theory.

Example 1.4.1 Group theory is the theory whose nonlogical symbols
are a constant symbol e and a binary function symbol · and whose nonlog-
ical axioms are the following formulas: (Below, x, y, and z denote the first
three variables.)

1. ∀x∀y∀z(x · (y · z) = (x · y) · z).
2. ∀x(x · e = x ∧ e · x = x).
3. ∀x∃y(x · y = e ∧ y · x = e).

Example 1.4.2 The theory of abelian groups is the theory whose
nonlogical symbols are a constant symbol 0 and a binary function symbol
+ and whose nonlogical axioms are the following formulas:

1. ∀x∀y∀z(x + (y + z) = (x + y) + z).
2. ∀x(x + 0 = x ∧ 0 + x = x).
3. ∀x∃y(x + y = 0 ∧ y + x = 0).
4. ∀x∀y(x + y = y + x).

Example 1.4.3 The language for the theory of rings with identity
has two constant symbols, 0 and 1, and two binary function symbols, +
and ·. The nonlogical axioms of this theory are the axioms (1)–(4) of abelian
groups together with the following axioms:

5 ∀x∀y∀z(x · (y · z) = (x · y) · z).
6 ∀x(x · 1 = x ∧ 1 · x = x).
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7 ∀x∀y∀z(x · (y + z) = x · y + x · z).
8 ∀x∀y∀z((y + z) · x = y · x + z · x).

Example 1.4.4 The theory of fields has the same language as that
of the theory of rings with identity; its nonlogical axioms are the axioms
(1)–(8) of the the theory of rings with identity together with the following
axioms:

9 ∀x∀y(x · y = y · x).
10 ∀x(¬(x = 0) → ∃y(x · y = 1 ∧ y · x = 1)).

Example 1.4.5 Let L be a language with only one nonlogical symbol—
a binary relation symbol <. The theory LO (the theory of linearly
ordered sets) is the theory whose language is L and whose nonlogical
axioms are the following:

1 ∀x¬(x < x).
2 ∀x∀y∀z((x < y ∧ y < z) → x < z).
3 ∀x∀y(x < y ∨ x = y ∨ y < x).

Example 1.4.6 The theory of dense linearly ordered sets, denoted
by DLO, is obtained from LO by adding the following axioms:

4 ∀x∀y((x < y) → ∃z(x < z ∧ z < y)).
5 ∀x∃y(y < x).
6 ∀x∃y(x < y).

Exercise 1.4.7 Express the axioms of an equivance relation as formulas
of a suitable first-order language.

Example 1.4.8 Let F be the theory of fields. For each m ≥ 1, let Am

be the formula ¬(m = 0). The theory obtained by adding each Am to
the set of axioms of F as an axiom is called the theory of fields of
characteristic 0.

Example 1.4.9 Let F be the theory of fields. Let L be an extension of
the language for the theory of rings with identity obtained by adding a new
binary predicate symbol <. Consider the theory OF whose language is L
and whose nonlogical axioms are all the nonlogical axioms of F and the
following axioms:

11 ∀x¬(x < x).
12 ∀x∀y∀z((x < y ∧ y < z) → x < z).
13 ∀x∀y(x < y ∨ x = y ∨ y < x).
14 ∀x∀y(¬(x < y ∨ x = y) → y < x).
15 ∀x∀y(x < y → ∀z(x + z < y + z)).
16 ∀x∀y((0 < x ∧ 0 < y) → 0 < x · y).

The theory OF is known as the theory of ordered fields.
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Example 1.4.10 We now give some axioms of number theory, which plays
an important role in logic. We designate this theory by N . The nonlogical
symbols of N are a constant symbol 0, a unary function symbol S (which
designates the successor function), two binary function symbols + and ·,
and a binary relation symbol <. The nonlogical axioms of N are:

1. ∀x(¬(Sx = 0)).
2. ∀x∀y(Sx = Sy → x = y).
3. ∀x(x + 0 = x).
4. ∀x∀y(x + Sy = S(x + y)).
5. ∀x(x · 0 = 0).
6. ∀x∀y(x · Sy = (x · y) + x).
7. ∀x(¬(x < 0)).
8. ∀x∀y(x < Sy ↔ (x < y ∨ x = y)).
9. ∀x(∀y(x < y ∨ x = y ∨ y < x).

For any nonnegative integer n, the term

S · · ·S
︸ ︷︷ ︸

m times

0

will be denoted by kn. These terms are called numerals. Note that k0 is
the constant symbol 0.

Example 1.4.11 Peano arithmetic is the theory obtained from N by
deleting the last axiom and adding the following axiom schema, called the
induction axiom schema: for every formula A[v], the formula

Av[0] → ∀v(A → Av[Sv]) → A

is called an induction axiom. This theory will be denoted by PA.

Example 1.4.12 We give below the axioms of set theory. This theory is
called Zermelo–Fraenkel set theory, and is designated by ZF . To con-
vey the content of the axioms better, we shall state the axioms informally
in words also:

1. Set Existence. There exists a set. This is expressed by the following
formula:

∃x(x = x).

2. Extensionality. Two sets are the same if they have exactly same mem-
bers:

∀x∀y(∀z(z ∈ x ↔ z ∈ y) → x = y).

3. Comprehension (subset) schema. For each formula ϕ[x,w1, . . . , wn],
the following is an axiom.

∀z∀w1 · · · ∀wn(∃y∀x(x ∈ y ↔ x ∈ z ∧ ϕ)).
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This axiom says that given any “property of sets” expressed by a formula
ϕ[x,w1, . . . , wn], for any fixed parameters w1, . . . , wn and for any set
z, there is a set y that consists precisely of those x ∈ z that satisfy
ϕ[x,w1, . . . , wn].
By extensionality, it can be proved that such a set y is unique. It is
assumed that the variables x, y, z and the wi’s are distinct.

4. Replacement schema. For every formula ϕ[x, y, z, u1, . . . , un], the fol-
lowing formula is an axiom:

∀z∀u1 · · · ∀un(∀x ∈ z∃!yϕ → ∃v∀x(x ∈ z → ∃y(y ∈ v ∧ ϕ))),

where ∃!yϕ abbreviates the formula

ϕ ∧ ∀u(ϕy[u] → u = y).

This axiom together with comprehension says that the range of a “func-
tion” on a set z that is defined by a formula ϕ is a set.

5. Pairing. Given sets x and y, there is a set z that contains both x and
y:

∀x∀y∃z(x ∈ z ∧ y ∈ z).

This axiom together with comprehension helps us to talk of sets of the
form {x}, {x, y}, {x, y, z}, etc.

6. Union. Given any set x, there is a set y that contains all those z that
belong to a member of x:

∀x∃y∀z∀u(u ∈ x ∧ z ∈ u → z ∈ y).

This axiom together with comprehension will imply that the union of a
family of sets is a set.

7. Power Set. Given any set x, there is a set y that contains all subsets z
of x:

∀x∃y∀z(∀u(u ∈ z → u ∈ x) → z ∈ y).

This axiom together with comprehension will enable us to define the
power set of a set.

8. Infinity. Based on the axioms introduced so far, it can be “proved” that
the empty set exists, which we shall denote by 0. The following formula
is an axiom:

∃x(0 ∈ x ∧ ∀y(y ∈ x → y ∪ {y} ∈ x)).

Without the infinity axiom, we can’t prove the existence of an “infinite”
set; without this axiom, we can’t prove that there is a set containing all
natural numbers.

9. Foundation. This is the most unintuitive axiom. It is the following
formula:
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∀x(∃y(y ∈ x) → ∃y(y ∈ x ∧ ¬∃z(z ∈ x ∧ z ∈ y))).

It says that the binary relation ∈ is well-founded on every nonempty
set. It rules out the existence of a set that contains itself. It also has the
effect of restricting the domain of discourse of set theory to those sets
where mathematics actually takes place.



2
Semantics of First-Order Languages

In the previous chapter, we presented the syntactical notions pertaining
to first-order theories. However, in general, mathematical theories are not
developed syntactically. There is, of course, one serious exception to this:
essentially, due to its foundational nature, axiomatic set theory is developed
syntactically. Since set theory is needed for proving independence results,
the syntactical approach is quite important for mathematics. In this chapter
we give the semantics of first-order languages to connect the syntactical
description of a theory with the setting in which a mathematical theory is
generally developed.

Recall that instead of beginning with the syntactical object group theory,
in practice, one begins by defining a group as a nonempty set G with a
specified element e and a binary operation · : G × G → G satisfying the
following three conditions:

1. For every a, b, c in G,

a · (b · c) = (a · b) · c.

2. For every a ∈ G,
a · e = e · a = a.

3. For every a ∈ G, there is a b ∈ G such that

a · b = b · a = e.
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Thus a group consists of a nonempty set G with “interpretations” or
“meanings” of the nonlogical symbols · (a binary function symbol) and e
(a constant symbol) such that all the axioms of group theory are “satisfied.”
Further, a statement of the language for group theory is called a theorem
if it is satisfied in all groups. Thus, to give the connection we are looking
for, first we should define the interpretation or a structure of a language
L as a nonempty set A together with the interpretations or meanings of
all the nonlogical symbols of L. This is known as the semantics of L. Then
models of a theory T are those structures of the language for T in which
all nonlogical axioms are true.

In this chapter we shall define the structure of a language, truth or satisfi-
ability in a structure, and the model of a theory. Finally, we shall generalize
the notion of homomorphisms, isomorphisms, subgroups, subfields, etc. in
the general setting of models of a theory.

2.1 Structures of First-Order Languages

A structure or an interpretation of a first-order language L consists
of (i) a nonempty set M (called the universe of the structure), (ii) for
each constant symbol c of L, a fixed element cM ∈ M , (iii) for each n-
ary function symbol f of L, an n-ary map fM : Mn → M , and (iv) for
each n-ary relation symbol p of L, an n-ary relation pM ⊂ Mn on M . The
interpretation of = is always taken to be the equality relation in M .

The elements of the universe M are called individuals of the struc-
ture; the fM ’s the individual functions of the structure; and the pM ’s,
the individual predicates; cM , fM , and pM will be called interpretations
of the constant symbol c, of the function symbol f , and of the predicate
symbol p respectively.

Any group is a structure of the language for group theory; the usual
set of real numbers with the usual 0, 1, +, ·, and < is a structure for the
language of the theory of ordered fields. Note that which statement of L
is true in the structure and which is not, is not relevant in the notion of a
structure of L. For instance, the set of all natural numbers N = {0, 1, 2, . . .}
as the universe, 0 as the interpretation of e, and + the interpretation of · is
a structure of the language for group theory even though it is not a group.

Example 2.1.1 Let N be the set of all natural numbers and 0, 1, +, ·,
and < have the usual meanings. Further, let S(n) = n + 1, n ∈ N. This
is a structure for the language of the theory N defined in Chapter 1. This
structure will be called the standard structure of N .

Let L be an extension of L′ and M a structure of L. By ignoring the
interpretations of those nonlogical symbols of L that are not symbols of L′,
we get a structure M ′ of L′. We call M ′ the restriction of M to L′ and
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denote it by M |L′. In this case we shall also call M an expansion of M ′

to L.
Recall that all variable-free terms can be obtained starting from constant

symbols and iterating function symbols on them. So, we can define the
interpretation or meaning tM of each variable-free term t of L in M by
induction on the rank of t. The interpretation of a constant symbol c is
already given by the structure, namely cM . If t1, . . . , tn are variable-free
terms whose interpretations have been defined and if f is an n-ary function
symbol of L, then we define

(ft1 · · · tn)M = fM ((t1)M , . . . , (tn)M ).

By induction on the rank of terms, it is easy to see that we have defined
tM for each variable-free term t of L.

Example 2.1.2 Let L be the language for the theory of rings with identity.
For each positive integer m, let m denote the term obtained by “adding”
1 to itself m times. Let P (x) be a polynomial expression whose coefficients
are of the form m, i.e., P (x) is a term of the form

m0 + m1x + · · · + mnxn,

where x is a variable. Let R be a ring with identity. Then the interpreta-
tion of m in R is the element m ∈ R obtained by adding the multiplicative
identity of R to itself m times, and for any variable-free term t, the inter-
pretation of Px[t] in R is the element P (tM ) of R.

2.2 Truth in a Structure

In this section, we shall define when a formula of L is true and when it is
false in a structure of L. Note that if we have a structure of L with universe
M and we would like to know whether there is an element a ∈ M satisfying
a formula ϕ[x], we have a bit of a problem because ϕ is a syntactical object,
and elements of M are not. To circumvent this problem, given a structure
of L with universe M , we first describe an extension LM of the language L.

Given L and and a structure of L with universe M , let LM be the first-
order language obtained from L by adding a new constant symbol ia for
each a ∈ M . The symbol ia is called the name of a. We regard M itself as
the expansion of M to LM by setting the interpretation of ia to be a for
each a ∈ M .

We are now in a position to define when a formula of L is true or valid or
satisfiable in the structure M . To achieve this, we define the notion of truth
of a closed formula or a sentence of LM in the structure M . The definition is
based on the well-known intended meanings of logical connectives ∨ and ¬
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and that of the existential quantifier ∃. The notion of truth will be defined
by defining a function from the set of all closed formulas of LM to the set
{true, false} satisfying some conditions. This will be done by induction on
the rank of sentences of LM . If a sentence takes the value true, we shall say
that the sentence is true or valid in M ; otherwise, it is said to be false in M .

Recall that formulas have been defined inductively starting from atomic
formulas and iterating ¬, ∨, and ∃ on them. A variable-free atomic formula
is of the form pt1 · · · tn, where p is an n-ary relation symbol (including =)
and t1, . . . , tn are variable-free terms. We say that pt1 · · · tn is true in the
structure if

pM ((t1)M , . . . , (tn)M )

holds, i.e.,
((t1)M , . . . , (tn)M ) ∈ pM ⊂ Mn.

Otherwise, we say that pt1 · · · tn is false in the structure. A sentence ¬A is
true if and only if A is false. A sentence A∨B is true if either A is true or
B is true. Finally, a sentence ∃vA is true if Av[ia] is true for some a ∈ M .
We say that a formula A of LM is true in the structure if its closure is true
in the structure. If a formula A of L is true in a structure M of L, we also
say that A is valid in the structure and write M |= A. If A is not valid
in M , we write M �|= A.

Note that if A and B are closed formulas, then

M �|= A ⇐⇒ M |= ¬A

and
M |= A ∨ B ⇐⇒ M |= A or M |= B.

Exercise 2.2.1 Give an example of a formula (necessarily not closed) of
the language for the theory N that is neither true nor false in the standard
structure N of N . Similarly, give examples of formulas A and B of the
language for the theory N such that A∨B is valid in the standard structure
N but neither A nor B is valid in N.

Exercise 2.2.2 Show the following:

1. A sentence A∧B is valid in a structure if and only if both A and B are
valid in the structure.

2. A sentence of the form ∀vϕ[v] is valid in a structure with universe M
if and only if for each a ∈ M , the sentence ϕv[ia] of LM is valid in the
structure.

3. A sentence of the form A → B is valid in a structure if and only if either
A is false or B true in the structure.

4. A sentence of the form A ↔ B is valid in a structure if and only if either
both A and B are valid or both are not valid in the structure.
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Exercise 2.2.3 Let A[v1, . . . , vn] be a formula and t1, . . . , tn variable-free
terms of L. Show that the formulas

∀v1 · · · ∀vnA → A[t1, . . . , tn]

and
A[t1, . . . , tn] → ∃v1 · · · ∃vnA

are valid in all structures of L.

2.3 Model of a Theory

A model of a first-order theory T is a structure of L(T ) with universe M
in which all nonlogical axioms of T are valid. For instance, any group is a
model of group theory. On the other hand, the set N of natural numbers
together with the usual 0 and + as the interpretations for e and · respec-
tively is definitely a structure for the language of group theory but not a
model of group theory.

A formula A of T that is true in all models of T is called valid in T .
One writes T |= A if A is valid in T . If A is not valid in some model of T ,
we shall write T �|= A

Example 2.3.1 Let L be a first-order language with no nonlogical symbol.
For each n > 1, let An be the formula

∃x0 · · · ∃xn−1 ∧0≤i<j<n ¬(xi = xj).

Suppose T is the theory whose language is L and whose axioms are
A2, A3, . . . . Then models of T are precisely the infinite sets.

Exercise 2.3.2 A field K is called algebraically closed if every nonconstant
polynomial over K has a root in K. The characteristic of a field K is the
least integer n ≥ 2 such that

1 + · · · + 1
︸ ︷︷ ︸

n times

= 0.

If such an integer n exists, it must be prime. If K is not of characteristic n
for any n > 1, K is said to be of characteristic 0.

(i) Show that every algebraically closed field is infinite.
(ii) Define a first-order theory ACF whose models are precisely the alge-

braically closed fields.
(iii) Define a first-order theory ACF (p), p ≥ 2 a prime, whose models are

precisely the algebraically closed fields of characteristic p.
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(iv) Define a first-order theory ACF (0) whose models are precisely the
algebraically closed fields of characteristic 0.

Example 2.3.3 Show that the set of all natural numbers

N = {0, 1, . . .}

with the usual meanings of S (the successor function), +, ·, and < is a
model of the theory N and also of Peano arithmetic. This model will be
called the standard model of N or of Peano arithmetic.

Exercise 2.3.4 Let L be an extension of L′, M a structure of L, and M ′

the restriction of M to L′. Note that M and M ′ have the same individuals.
Use the same constant as a name for an individual in M and M ′. Show
that a statement of L′

M ′ is valid in M ′ if and only if it is valid in M .

In mathematical parlance, valid statements in T are called theorems.
So, in order to decide whether a statement is a theorem of T , one has to
show that it is true in all models of T . But a sentence is a well-formed
finite sequence of symbols. So it is not unreasonable to expect to give a
finitary and also constructive notion of theorem. This is where the famous
program of the great German mathematician David Hilbert enters. Hilbert
proposed to write down a set of axioms and a set of rules of inference to
infer a formula from its syntactical structure, and call a sentence a theorem
if it can be inferred from axioms by using certain logical rules of inference.
We shall elaborate on Hilbert’s program in the next few chapters.

2.4 Embeddings and Isomorphisms

In this section we introduce notions analogous to subgroups of a group,
isomorphisms of rings, isomorphic fields, etc. in the general context of first-
order logic.

In the rest of this section, unless otherwise stated, M and N will denote
structures of a fixed first-order language L.

For the sake of brevity, a sequence (a1, . . . , an) ∈ Nn will sometimes be
denoted by a and (ia1 , . . . , ian

) by ia. Further, for any map α : N → M ,
α(a) will stand for the sequence (α(a1), . . . , α(an)).

An embedding of N into M is a one-to-one map α : N → M satisfying
the following conditions:

(1) For every constant symbol c of L,

α(cN ) = cM .

(2) For every n-ary function symbol f of L and every a ∈ Nn,
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α(fN (a)) = fM (α(a)).

(2) For every n-ary relation symbol p of L and every a ∈ Nn,

pN (a) ⇐⇒ pM (α(a)),

i.e.,
a ∈ PN ⇐⇒ α(a) ∈ PM .

If, moreover, α is onto M , we call α : N → M an isomorphism. In this
case, M and N are called isomorphic structures.

If N ⊂ M and the inclusion map N ↪→ M is an embedding, then N is
called a substructure of M .

Remark 2.4.1 Let N be a subset of a structure M such that for each
constant symbol c, cM ∈ N , and for every function symbol f , N is closed
under fM . We then make N a substructure of M by setting

(i) for every constant symbol c of L,

cN = cM ,

(ii) for every n-ary relation symbol p,

pN = pM ∩ Nn,

the restriction of pM to N , and
(iii) for every n-ary function symbol f ,

fN = fM |Nn,

the restriction of fM to Nn.

Example 2.4.2 Let L be the language for group theory. If H is a subgroup
of a group G, then H is a substructure of G. If G and H are groups, then
a group isomorphism α : G → H is an isomorphism from the structure G
to the structure H.

Exercise 2.4.3 Show that any two countable models Q1 and Q2 of DLO
are isomorphic.

Hint: Let {rn} and {sm} be enumerations of Q1 and Q2 respectively.
Set n0 = 0 and m0 = 0. Suppose for some i, n0, . . . , n2i and m0, . . . ,m2i

have been defined so that the the map f defined by

f(rnj
) = smj

, 0 ≤ j ≤ 2i,

is injective and order-preserving. Now let m2i+1 be the first natural number
k such that sk is different from each of smj

, j ≤ 2i. Show that there is a



22 2. Semantics of First-Order Languages

natural number l such that rl is different from each of rnj
, j ≤ 2i, and the

extension of f sending rl to sm2i+1 is order-preserving. Set n2i+1 to be the
first such l. Thus, the map f(rnj

) = smj
, j ≤ 2i + 1, is injective and order-

preserving. Now define n2i+2 to be the first natural number l such that rl is
different from each of rnj

, j ≤ 2i+1. Again observe that there is a natural
number k such that sk is different from each of smj

, j ≤ 2i + 1, and the
extension of the above map by defining f(rn2i+2) = sk is order-preserving.
Set s2i+2 to be the least such k.

Proposition 2.4.4 Let α : N → M be an embedding, t[v1, . . . , vn] a term
of L, and a ∈ Nn. Then

α(t[ia]N ) = t[iα(a)]M .

Proof. We prove the result by induction on the rank of t. If t is a variable
vi, then both the terms equal α(ai). If t is a constant c, then the term on
the left is α(cN ) and that on the right is cM . They are equal because α is
an embedding.

Now assume that the result is true for t1, . . . , tk and t is the term
f(t1, . . . , tk). Then

α(t[ia]N ) = α(fN (t1[ia]N , . . . , tk[ia]N ))
= fM (α(t1[ia]N ), . . . , α(tk[ia]N ))
= fM (t1[iα(a)]M , . . . , tk[iα(a)]M )
= t[iα(a)]M .

The first equality holds by the definition of t[ia]N , the second equality
holds because α is an embedding, the third equality holds by the induction
hypothesis, and the fourth equality holds by the definition of t[iα(a)]M .

The proof is complete. 
�

Proposition 2.4.5 Let α : N → M be an embedding, ϕ[v1, . . . , vn] an
open formula of L, and a ∈ Nn. Then

N |= ϕ[ia] ⇐⇒ M |= ϕ[iα(a)]. (∗)

Proof. Recall that the set of all open formulas is the smallest class of for-
mulas that contains all atomic formulas and is closed under ¬ and ∨. So,
the result will be proved if we show that the set of formulas ϕ satisfying
(∗) contains all atomic formulas and is closed under ¬ and ∨.

By the definition of the truth in a structure, and the definition of em-
bedding, (∗) holds for formulas of the form t = s, as well as, for atomic
formulas of the form p(t1, . . . , tn).

Now assume that ϕ is the formula ¬ψ and the result is true for ψ. Then
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N |= ϕ[ia] ⇐⇒ N �|= ψ[ia]
⇐⇒ M �|= ψ[iα(a)]
⇐⇒ M |= ϕ[iα(a)].

The first and the last equivalences hold because the formulas ψ[ia] and
ψ[iα(a)] are closed; the second equivalence holds by the induction hypoth-
esis.

The case ϕ of the form ψ ∨ η is dealt with similarly:

N |= ϕ[ia] ⇐⇒ N |= ψ[ia] or N |= η[ia]
⇐⇒ M |= ψ[iα(a)] or M |= η[iα(a)]
⇐⇒ M |= ϕ[iα(a)].

The proof is complete. 
�

Exercise 2.4.6 Let α : N → M be a map such that for every open formula
ϕ[v1, . . . , vn] of L and every a ∈ Nn,

N |= ϕ[ia] ⇐⇒ M |= ϕ[iα(a)].

Show that ϕ is an embedding.
Hint: To show that for any constant symbol c, α(cN ) = cM , let the

formula ϕ[x] be c = x and consider ϕ[icN
]; to show that for a, b ∈ N ,

α(a) = α(b) implies a = b, let ϕ[x, y] be the formula x = y and consider
ϕ[ia, ib].

Theorem 2.4.7 Let α : N → M be an isomorphism and ϕ[v1, . . . , vn] a
formula of LN . Then for every a ∈ Nn,

N |= ϕ[ia] ⇐⇒ M |= ϕ[iα(a)]. (∗∗)

In particular, for every sentence ϕ of L, N |= ϕ if and only if M |= ϕ.

Proof. Since an isomorphism is an embedding, by the arguments contained
in the proof of Proposition 2.4.5, the set of all formulas ϕ satisfying (∗∗)
contains all atomic formulas and is closed under ¬ and ∨.

Let ϕ[v1, . . . , vn] be a formula of the form ∃vψ, v different from each
of the vi. Suppose (∗∗) holds for ψ and all (a, a1, . . . , an) ∈ Nn+1. To
complete the proof, we now have only to show that (∗∗) holds for ϕ and
every a ∈ Nn. So, we take any a ∈ Nn. Then,

N |= ϕ[ia] ⇐⇒ N |= ψ[ia, ia] for some a ∈ N
⇐⇒ M |= ψ[iα(a), iα(a)] for some a ∈ N
⇐⇒ M |= ψ[ib, iα(a)] for some b ∈ M
⇐⇒ M |= ϕ[iα(a)].

The first equivalence holds by the definition of validity in N , the second
equivalence holds by the induction hypothesis, the third equivalence holds
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because α is surjective, and the last equivalence holds by the definition of
validity in M .

The proof is complete 
�
An embedding α : N → M is called an elementary embedding if for

every formula ϕ[v1, . . . , vn] and every a ∈ Nn,

N |= ϕ[ia] ⇐⇒ M |= ϕ[iα(a)].

If N ⊂ M and the inclusion N ↪→ M is an elementary embedding, then we
say that N is an elementary substructure of M or that M is an elemen-
tary extension of N . The structures N and M are called elementarily
equivalent if for every closed formula ϕ,

N |= ϕ ⇐⇒ M |= ϕ.

We write N ≡ M if N and M are elementarily equivalent. Clearly, ≡ is an
equivalence relation on the class of all structures of L.

Remark 2.4.8 By Theorem 2.4.7, two structures N and M are elemen-
tarily equivalent if they are isomorphic. Later in this book we shall show
that any two algebraically closed fields of characteristic 0 are elementarily
equivalent. But there exist two algebraically closed fields F1 and F2 of char-
acteristic 0 such that |F1| �= |F2|. Hence, elementarily equivalent structures
need not be isomorphic.

Theorem 2.4.9 Let N be a substructure of M . Then N is an elementary
substructure of M if and only if for every formula ϕ[v, v1, . . . , vn] and for
every a ∈ Nn, if there is b ∈ M satisfying

M |= ϕ[ib, ia],

then there is b ∈ N satisfying

M |= ϕ[ib, ia].

Proof. Let N be an elementary substructure of M . Take a formula
ϕ[v, v1, . . . , vn]. Let a ∈ Nn and suppose there is b ∈ M satisfying

M |= ϕ[ib, ia].

This means that
M |= ∃vϕ[v, ia].

Since N is an elementary substructure of M , we have

N |= ∃vϕ[v, ia].

So, there is b ∈ N satsfying
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N |= ϕ[ib, ia].

Since N is an elementary substructure of M , it follows that

M |= ϕ[ib, ia].

We prove the if part of the result by showing that for every formula
ψ[v1, . . . , vn] and for every a ∈ Nn,

M |= ψ[ia] ⇐⇒ N |= ψ[ia]. (∗)

We shall prove (∗) by induction on the rank of ψ. By Proposition 2.4.5, (∗)
is true for all atomic formulas. Arguing as in the proof of that proposition,
we can show that if (∗) is true for ϕ, it is true for ¬ϕ, and if ϕ and ψ satisfy
(∗), so does ϕ ∨ ψ.

Now assume that ϕ[v1, . . . , vn] is a formula of the form ∃vψ[v, v1, . . . , vn]
and (∗) holds for ψ and every (a, a1, . . . , an) ∈ Nn+1. Take a ∈ Nn.

Suppose
N |= ϕ[ia].

Then there is b ∈ N such that

N |= ψ[ib, ia].

By the induction hypothesis,

M |= ψ[ib, ia].

So,
M |= ϕ[ia].

Now assume that
M |= ϕ[ia].

So there is b ∈ M such that

M |= ψ[ib, ia].

By our assumptions, there is b ∈ N such that

M |= ψ[ib, ia].

By the induction hypothesis,

N |= ψ[ib, ia].

Thus,
N |= ϕ[ia]. 
�
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The next result gives a method of constructing elementary substructures
of small cardinality. From this result it will follow that if a finite theory
has a model, it has a countable model. In particular, if there is an infinite
model of set theory, there is a countable model of set theory. This is an
important result in set theory. In Chapter 5, we shall give a method to
construct elementary extensions of arbitraily large cardinality.

Theorem 2.4.10 (Downward Löwenheim–Skolem theorem) Let M
be a structure of L and X ⊂ M . Suppose L has at most κ nonlogical
symbols, κ an infinite cardinal number. Then there is an elementary sub-
structure N of M such that X ⊂ N and the cardinality of N is at most
max(κ, |X|), where |X| denotes the cardinality of X.

Proof. Essentially, our N will be the smallest subset of M containing X
satsfying the following conditions:

(i) Each cM ∈ N , where c is a constant symbol of L.
(ii) The set N is closed under fM for every function symbol f of L.
(iii) Whenever a sentence of the form ∃vϕ is valid in M , there is an element

a ∈ N such that M |= ϕv[ia].

By induction on k, we shall define

N0 ⊂ N ′
1 ⊂ N1 ⊂ . . . ⊂ Nk ⊂ N ′

k ⊂ Nk+1 ⊂ . . . ⊂ M

such that each N ′
k is a substructure of N and for every formula of the form

∃vϕ[v, v1, . . . , vn] and every a ∈ N ′n
k , if M |= ∃vϕ[v, ia], there is b ∈ Nk+1

such that M |= ϕ[ib, ia]. Further, each Nk is of cardinality ≤ max(κ, |X|).
Let N0 be the smallest subset of M containing X that contains all cM ’s

and that is closed under all fM ’s. Note that |N0| ≤ max(κ, |X|) and that
N0 is a substructure of M .

Suppose Nk has been defined such that |Nk| ≤ max(κ, |X|). We define
N ′

k and Nk+1 now. Let N ′
k be the smallest subset of M containing Nk that

is closed under all fM ’s. Note that |N ′
k| ≤ max(κ, |X|).

Fix a formula of the form ϕ[v, v1, . . . , vn]. Let ψ be the formula ∃vϕ. For
a = (a1, . . . , an) ∈ (N ′

k)n, whenever

M |= ψ[ia],

there is b ∈ M such that
M |= ϕ[ib, ia].

Choose and fix one such b. Let Nk+1 be obtained from N ′
k by adding all

the b’s so chosen. Again note that |Nk+1| ≤ max(κ, |X|).
Set

N = ∪kNk.

Then
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(i) For every constant symbol c, cM ∈ N .
(ii) For every function symbol f , N is closed under fM .
(iii) |N | ≤ max(κ, |X|) and X ⊂ N .

Thus, N is a substructure of M as in Remark 2.4.1.
Let ϕ[v1, . . . , vn] be any formula and a ∈ Nn. Since N is a substructure of

M , by Theorem 2.4.9, the proof will be complete if we show that for every
formula ϕ[v, v1, . . . , vn] and for every a ∈ Nn, if there is b ∈ M satsfying

M |= ϕ[ib, ia],

then there is b ∈ N satsfying

M |= ϕ[ib, ia].

Let ϕ[v, v1, . . . , vn] be a formula, and let a ∈ Nn and b ∈ M be such that

M |= ϕ[ib, ia].

Since Nk ⊂ Nk+1 for all k, there is a natural number p such that each
ai ∈ Np. By the definition of Np+1 there is b ∈ Np+1 ⊂ N such that

M |= ϕ[ib, ia].


�

Remark 2.4.11 In the above proof we have used the following version of
the axiom of choice.

Axiom of choice: If {Xi : i ∈ I} is a family of nonempty sets, there is
a map f : I → ∪i∈IXi such that f(i) ∈ Xi for all i ∈ I.

A function f satsfying the conclusion of the axiom of choice is called a
choice function for the family {Xi : i ∈ I}. The axiom of choice asserts
only the existence of a choice function—it gives no method to produce a
choice function.

From now on, by set theory we shall mean the theory obtained by adding
the axiom of choice to the axioms of ZF . We denote this theory by ZFC.

Any model of the theory OF is called an ordered field. Let F be an
ordered field and A ⊂ F. An element u of F is called an upper bound of A
if for every a ∈ A, a ≤ u, where x ≤ y means that either x < y or x = y. If u
is an upper bound of A and no v < u is an upper bound of A, then u is called
the least upper bound of A. A complete ordered field is an ordered
field F such that every nonempty subset A of F that has an upper bound
has a least upper bound. It is known that if F1 and F2 are two complete
ordered fields, then they are isomorphic, i.e., there is a field isomorphism
f : F1 → F2 such that for every a, b ∈ F1, a < b → f(a) < f(b). We denote



28 2. Semantics of First-Order Languages

a complete ordered field by R. This is the traditional set of real numbers
and is unique modulo the isomorphism just described. Cantor proved that
R is uncountable.

Theorem 2.4.12 There is no first-order theory with language L for or-
dered fields whose models are precisely complete ordered fields.

Proof. This is because R is uncountable, and by the downward Löwenheim–
Skolem theorem, any such theory must have a countable model. 
�

Remark 2.4.13 There is no set of first-order formulas of the language L
for ordered fields expressing the least upper bound axiom: Every nonempty
set of real numbers that has an upper bound has a least upper bound.

Let G be an abelian group. For any element x ∈ G, let nx denote the
term

x + · · · + x
︸ ︷︷ ︸

n times

.

We call a group G divisible if for every n ≥ 1 and every x ∈ G there exists
a y ∈ G such that ny = x. Call G torsion-free if for every x ∈ G, x �= 0,
and every n ≥ 1, nx �= 0.

Exercise 2.4.14 1. Show that there is a sequence of formulas of the lan-
guage for group theory expressing that an abelian group is divisible.
Later we shall show that such a finite set of formulas does not exist.

2. Show that there is a sequence of formulas of the language for group
theory expressing that an abelian group is torsion-free. Later we shall
show that such a finite set of formulas does not exist.

Remark 2.4.15 1. An ordered field (A; 0, 1;+, ·;<) is called an
archimedean ordered field if for every x, y ∈ A, 0 < x, y, there is
an n such that y < nx. Later we shall show that there is no first-order
theory whose language is the same as the language for ordered fields,
and whose models are precisely archimedean ordered fields.

2. A linearly ordered set (A,<) is called well-ordered if for every non-
empty subset B of A there is an element b0 ∈ B such that for every
b ∈ B, b0 < b, i.e., every nonempty subset of A has a least element.
Using the axiom of choice, it is easy to show that a linearly ordered
set is well-ordered if and only there is a sequence {an} in A such that
an+1 < an for all n. The statement “Every nonempty set can be well-
ordered” is known as the well-ordering principle. It is known that
the well-ordering principle is equivalent to the axiom of choice. Later we
shall show that there is no first-order theory T whose language has only
one nonlogical symbol—a binary relation symbol—and whose models
are precisely well-ordered sets.
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Propositional Logic

We now turn our attention to the fundamental notion of a logical deduction
or a proof. As mentioned earlier, in mathematical parlance, statements
valid in all models of a theory are called the theorems of the theory. But
any statement is a well-formed finite sequence of symbols of the language.
So, it is natural to expect a finitary definition of a theorem depending
only on its subformulas and the syntactical construction. Note that while
computing the truth value of a statement in a structure, one uses some
rules of inference depending only on the syntactical construction of the
statement. For instance, if A or B is true in a structure, we infer that
A ∨ B is true in the structure. We have also noted that statements with
some specific syntactical structures are valid in all structures. For instance,
a statement of the form ¬A∨A is true in all structures. Statements true in
all structures of a language are called tautologies. So all tautologies ought
to be theorems. Is there a conveniently nice list of tautologies (to be called
logical axioms) and a list of rules of inference such that a statement is valid
if and only if it can be inferred from logical and nonlogical axioms using
the rules of inference from our list? It is indeed the case.

In this chapter we first develop a simpler but important form of logic
called propositional logic. The main objective of propositional logic is to
formalize reasoning involving logical connectives ∨ and ¬ only.

A language for propositional logic has a nonempty set of variables and
logical symbols ∨ and ¬ alone. Here variables stand for propositions rather
than elements of a set. Then we consider the smallest set of expressions
F , to be called formulas, of the language that contains all variables and
that is closed under ¬ and ∨. For instance, our set of variables could be
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the set of all elementary formulas of a first-order language L. Then F will
coincide with the set of all formulas of L. We may think of variables of L to
be some simple statements and formulas that can be made using variables
and logical connectives. In this setting it is more important to examine the
truth of a formula in terms of its subformulas.

In this chapter we shall introduce propositional logic in details.

3.1 Syntax of Propositional Logic

Thus language for a propositional logic L consists of

(i) variables: a nonempty set of symbols, and
(ii) logical connectives: ¬ and ∨.

Throughout this chapter, unless otherwise stated, L will denote the lan-
guage of a propositional logic. A finite sequence of symbols of L will be
called an expression in L.

Let F be the smallest set of expressions in L that contains all variables
and that contains the expression ¬A whenever A ∈ F , and contains ∨AB
whenever A and B are in F . The expressions belonging to F are called
formulas of L.

Example 3.1.1 Let R be a binary relation on a nonempty set X. Let A
stand for the proposition “R is reflexive,” B for “R is symmetric,” C for
“R is transitive,” and E for the proposition “R is an equivalence relation.”
Let the set of all variables of L be {A,B,C,E}. Then E ↔ (A ∧B ∧C) is
a formula of L standing for the statement “R is an equivalence relation if
and only if R is reflexive, symmetric, and transitive.”

Example 3.1.2 Let A stand for the statement “Humidity is high,” B for
“It will rain this afternoon,” and C for “It will rain this evening.” Let
A,B,C be all the variables of L. Then the formula A → (B ∨ C) stands
for the statement “If humidity is high, it will rain this afternoon or this
evening.”

Exercise 3.1.3 Express the following statements as formulas of a propo-
sitional logic:

1. If the prime rateinterest goes up, people are not happy.
2. If stock prices go up, people are happy.

By a literal of L we shall mean either a variable or the negation of
a variable of L. The rank of a formula is defined as in Chapter 1. As in
the case of a first-order language, we shall often write A ∨ B for ∨AB.
We shall maintain the same convention in using parentheses. Also, logical
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connectives ∧, →, and ↔ are defined similarly. We shall use letters A, B,
C, P , Q, R, and S, with or without subscripts for variables of L.

Let A be a formula of L. The set of all subformulas of A is the smallest
set S of expressions in L satisfying the following conditions:

(i) A ∈ S.
(ii) A ∈ S whenever ¬A ∈ S.
(iii) A,B ∈ S whenever A ∨ B ∈ S.

The following example, mentioned in the beginning of this chapter, is an
important example for us.

Example 3.1.4 Let L be a language for a first-order theory and L′ the
propositional logic whose variables are elementary formulas of L. Then the
set of all formulas of L′ is the same as the set of all formulas of L.

3.2 Semantics of Propositional Logic

In the next step we use the intuitive meaning of the logical connectives and
define the truth or falsity of a formula in terms of its subformulas.

A truth valuation or an interpretation or a structure of L is a map
v from the set of all variables of L to {T, F}.

Let v be an interpretation of L. We extend v (and denote the extension
by v itself) to the set of all formulas by induction as follows:

v(¬A) = T if and only if v(A) = F

and
v(A ∨ B) = T if and only if v(A) = T or v(B) = T.

If v(A) = T , we say that A is true in the structure v or that v satisfies A.
Otherwise, A is said to be false in the structure.

Note that the truth value v(A) of a formula A depends only on the
variables occurring in A.

Exercise 3.2.1 Let A,B,C be all the variables of L. For each truth valu-
ation v of L, compute the truth values of the following formulas:

1. A → B → C.
2. B → A → C.
3. A → C → B.
4. (¬A ∨ B) → ¬(A ∧ ¬B).
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Let A be a set of formulas of L. An interpretation v is called a model
of A if every A ∈ A is true in v. In this case we write v |= A. If A has a
model, we say that A is satisfiable.

Note that if a set of formulas is satisfiable, all its subsets are satisfiable.

Exercise 3.2.2 Let A, B be formulas and v a truth valuation of L. Show
the following:

(a) v(A ∧ B) = T if and only if v(A) = v(B) = T.
(b) v(A → B) = T if and only if v(A) = F or v(B) = T.
(c) v(A ↔ B) = T if and only if v(A) = v(B).

Let A, B be formulas and A a set of formulas.

(i) We say that A is a tautological consequence of A, and write A |= A
if A is true in every model v of A.

(ii) If A is a tautological consequence of the empty set of formulas, we say
that A is a tautology and write |= A. Thus, A is a tautology if and
only if v(A) = T for every truth valuation v of L.

(iii) If A ↔ B is a tautology (i.e., if v(A) = v(B) for all truth valuations
v), we say that A and B are tautologically equivalent and write
A ≡ B.

Exercise 3.2.3(a) Show that A → B → C and B → A → C are tauto-
logically equivalent.

(b) Show that A → B → C and A → C → B are not tautologically
equivalent.

(c) Show that A → B → C and (A → B) → C are not tautologically
equivalent.

(d) Show that ¬(A∨B)∨C is a tautology if and only if both ¬A∨C and
¬B ∨ C are tautologies.

(e) Show that ≡ is an equivalence relation on the set of all formulas of L.

The following result is quite easy to prove. Therefore, its proof is left as
an exercise.

Proposition 3.2.4 Let A, A1, A2, . . ., An be formulas. Then the following
statements are equivalent:

(a) A is a tautological consequence of A1, A2, . . . , An.
(b) A1 → A2 → · · · → An → A is a tautology.

Exercise 3.2.5(a) Show that

|= A ↔ ¬¬A.

(b) Show that
|= ¬(A ∨ B) ↔ ¬A ∧ ¬B.



3.3 Compactness Theorem for Propositional Logic 33

(c) Show that
|= ¬(A ∧ B) ↔ ¬A ∨ ¬B.

A formula is said to be in conjunctive normal form if it is a conjunc-
tion of disjunctions of literals, i.e., it is of the form

∧k
i=1 ∨nk

j=1 Aij ,

where each Aij is a literal.

Exercise 3.2.6 Show that for every formula A there is a formula B in
conjunctive normal form such that A and B are tautologically equivalent.

Proposition 3.2.7 Let A → A∗ be a map from the set of formulas of L
to itself such that for all formulas A and B,

(¬A)∗ = ¬(A∗) and (A ∨ B)∗ = A∗ ∨ B∗.

Assume that B is a tautological consequence of A1, . . . , An. Then B∗ is a
tautological consequence of A∗

1, . . . , A
∗
n.

Proof. Let v be a truth valuation. For every variable A, define

v′(A) = v(A∗).

It is routine to check that for every formula A,

v′(A) = v(A∗).

Since B is a tautological consequence of A1, . . . , An, it is easy to see that
v(B∗) = T if v(A∗

1) = . . . = v(A∗
n) = T . 
�

Exercise 3.2.8 Show that {A,¬(A∨B)}, {¬A,¬B,A∨B} are not satis-
fiable.

3.3 Compactness Theorem for Propositional Logic

We now present a nontrivial fact: the compactness theorem for propositional
logic.

A binary relation ≤ on a set P is called a partial order if it is reflexive,
antisymmetric, and transitive. An element p of P is called an upper bound
of a subset A of P if q ≤ p for every q ∈ A. An element p of P is called a
maximal element of P if for any q ∈ P, p ≤ q implies that p = q. A partial
order ≤ on P is called a linear order if for every p, q ∈ P, p ≤ q or q ≤ p.
A chain in a partially ordered set P is a subset Q of P such that for every
p, q ∈ Q, p ≤ q or q ≤ p, i.e., the restriction of ≤ to Q is a linear order.
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Lemma 3.3.1 (Zorn’s lemma) Let (P,≤) be a nonempty partially or-
dered set such that every chain in P has an upper bound in P. Then P has
a maximal element.

Remark 3.3.2 It can be proved that the axiom of choice and Zorn’s
lemma are equivalent in ZF . In particular, Zorn’s lemma is a theorem
of ZFC.

We call A finitely satisfiable if every finite subset of A is satisfiable.

Clearly if A is satisfiable, it is finitely satisfiable. The compactness the-
orem tells us that the converse is also true. We proceed to prove this im-
portant result now.

Lemma 3.3.3 Let A be a finitely satisfiable set of formulas and A a for-
mula of L. Then either A ∪ {A} or A ∪ {¬A} is finitely satisfiable.

Proof. Suppose A∪{A} is not finitely satisfiable. We need to show that for
every finite subset B of A, B ∪ {¬A} is satisfiable. Suppose this is not the
case for a finite B ⊂ A. Then A is a tautological consequence of B. Fix a
finite C ⊂ A. Since B∪C is finite, it is satisfiable. Let v be a truth valuation
that satisfies it. Since A is a tautological consequence of B, v(A) = T . In
particular, C ∪ {A} is satisfiable. Thus, A ∪ {A} is finitely satisfiable and
we have arrived at a contradiction. 
�

Theorem 3.3.4 (Compactness theorem for propositional logic) A
set A of formulas of L is satisfiable if and only if it is finitely satisfiable.

Proof. We need to prove the if part of the result only. Assume that A is
finitely satisfiable. We have to show that A is satisfiable. Let P denote the
set of all finitely satisfiable collections of formulas containing A. Equip P

with the partial order ⊂ (contained in). Let Q be a chain in P. Clearly,
∪Q is finitely satisfiable. So, it is an upper bound of Q in P. Thus, by
Zorn’s lemma, there is a maximal family M of finitely satisfiable formulas
containing A. By Lemma 3.3.3, for every formula A, either A ∈ M or
¬A ∈ M.

Consider the truth valuation v defined by

v(A) = T ⇐⇒ A ∈ M, (∗)

where A is a variable. We extend v to the set of all formulas such that for
all formulas A and B,

v(¬A) = T ⇐⇒ v(A) = F

and
v(A ∨ B) = T ⇐⇒ v(A) or v(B) = T.
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By induction on the length of formulas A, we now show that (∗) holds
for all formulas A. Since A ⊂ M, it will follow that v(A) = T for every
A ∈ A and the proof will be complete.

If A is a variable, the induction hypothesis holds for A by the definition
of v.

Let A be of the form ¬B and B satisfies (∗). Since v(A) = T if and only
if v(B) = F and B satisfies (∗), v(A) = T if and only if B �∈ M. But
B �∈ M if and only if A ∈ M.

Finally, let A be a formula of the form B ∨ C and let B and C satisfy
(∗). Let v(A) = T . Then either v(B) = T or v(C) = T . So, either B ∈ M
or C ∈ M. If possible, suppose B ∨ C �∈ M. Then ¬(B ∨ C) ∈ M. Since
one of B and C belongs to M, it follows that M is not finitely satisfiable.

Now assume that v(A) = F . Then v(B) = v(C) = F . So, ¬B,¬C ∈ M.
If A ∈ M, {B ∨ C,¬B,¬C} is satisfiable, which is impossible. Thus,
A �∈ M. 
�

Exercise 3.3.5 Assume that L is countable. Give a proof of the compact-
ness theorem using induction on the natural numbers that does not require
Zorn’s lemma.

Hint: Since L is countable, the set of all its formulas is countable. Let
{A0, A1, A2, . . .} be an enumeration of all its formulas. We define a sequence
of natural numbers n0, n1, n2, . . . as follows: let n0 be the first natural
number i such that Ai �∈ A and A ∪ {Ai} is finitely satisfiable. Suppose
ni, 0 ≤ i ≤ k, have been defined in such a way that A ∪ {An0 , . . . , Ank

} is
finitely satisfiable. Set B = A ∪ {Ani

: 0 ≤ i ≤ k}. Let nk+1 be the least
natural number i such that Ai �∈ B and B ∪ {Ai} is finitely satisfiable, if
such an i exists. Otherwise, set nk+1 = nk. Now consider the set M =
A ∪ {Ani

: i ∈ N}.

Remark 3.3.6 One can prove the compactness theorem quite elegantly
using Tychonoff’s theorem for compact Hausdorff spaces. We give below
the difficult part of the proof. Readers not familiar with these topics may
skip the following proof.

Equip X = {T, F}F with the product of discrete topologies on {T, F},
where F denotes the set of all variables of L. Thus, X is the set of all
structures of L. By Tychonoff’s theorem, X is compact Hausdorff.

For each finite B ⊂ A, set

FB = {v ∈ X : v(A) = T for all A ∈ B}.

It is easy to check that each FB is closed in X. They are nonempty by
hypothesis. By hypothesis again, the family

{FB : B ⊂ A finite}
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has the finite intersection property. Since X is compact, this implies that

∩{FB : B ⊂ A finite} �= ∅.

Any v in this set models A. 
�

As a corollary to the compactness theorem, we get the following useful
result.

Proposition 3.3.7 Let A be a set of formulas and A a formula. Then A is
a tautological consequence of A if and only if A is a tautological consequence
of a finite B ⊂ A.

Proof. The if part of the result is clear. So, assume that for no finite B ⊂ A,
B |= A. It follows that A∪{¬A} is finitely satisfiable. Hence, it is satisfiable
by Theorem 3.3.4. This implies that A is not a tautological consequence of
A. 
�

Exercise 3.3.8 A graph is an ordered pair G = (V,E), where V is a
nonempty set and E is a set of unordered pairs {x, y} (x �= y) of elements
of V . Elements of V are called vertices and those of E the edges of G. A
subgraph of G is a graph G′ = (V ′, E′), where V ′ ⊂ V and E′ ⊂ E. For
any natural number k ≥ 1, we say that G is k-colorable if there is a map
c : V → {1, 2, . . . , k} such that

{x, y} ∈ E ⇒ c(x) �= c(y).

Show that a graph is k-colorable if and only if each of its finite subgraphs
is k-colorable.

Hint: Let G = (V,E) be a graph. Consider the language L for proposi-
tional logic with the set of variables

{Axi : x ∈ V, 1 ≤ i ≤ k}.

Informally, we think of Axi as the statement “the vertex x is assigned the
color i.” Now consider the set Φ of formulas consisting of the following
formulas:

Ax1 ∨ . . . ∨ Axk, x ∈ V,

¬(Axi ∧ Axj), x ∈ V, 1 ≤ i < j ≤ k,

and
¬(Axi ∧ Ayi), {x, y} ∈ E, 1 ≤ i ≤ k.

Note that Φ is satisfiable means that G is k-colorable.
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3.4 Proof in Propositional Logic

In this section we define a proof in propositional logic. To define a proof syn-
tactically, we fix some tautologies and call them logical axioms. Further,
we fix some rules of inference. There is only one class of logical axioms,
called propositional axioms. These are formulas of the form ¬A ∨ A.

Rules of inference of the propositional logic are

(a) Expansion Rule. Infer B ∨ A from A.
(b) Contraction Rule. Infer A from A ∨ A.
(c) Associative Rule. Infer (A ∨ B) ∨ C from A ∨ (B ∨ C).
(d) Cut Rule. Infer B ∨ C from A ∨ B and ¬A ∨ C.

Exercise 3.4.1 Show that the conclusion of any rule of inference is a tau-
tological consequence of its hypotheses.

Let A be a set of formulas not containing any logical axiom. Elements
of A will be called nonlogical axioms. A proof in A is a finite sequence
of formulas A1, A2, . . . , An such that each Ai is either a logical axiom or a
nonlogical axiom or can be inferred from formulas Aj , j < i, using one of
the rules of inference. In this case we call the above sequence a proof of An

in A. If A has a proof in A, we say that A is a theorem of A and write
A � A. We call A inconsistent if there is a formula A such that A � A
and A � ¬A; A is called consistent if it is not inconsistent.

We shall write � A instead of ∅ � A. Note that each logical and nonlogical
axiom is a theorem.

Remark 3.4.2 It is worth noting that there is an algorithm to decide
whether a finite sequence of formulas is a proof, provided there is an algo-
rithm to decide whether a formula is a nonlogical axiom.

Lemma 3.4.3 If there is a sequence A1, A2, . . . , An such that each Ai is
either a theorem of A or can be inferred from formulas Aj, j < i, using
one of the rules of inference, then An is a theorem of A.

Proof. In the sequence A1, A2, . . . , An, replace each Ai that is a theorem
by a proof of it. The sequence thus obtained is a proof of An. 
�

Another easy but useful result is the following.

Lemma 3.4.4 Let A be a set of formulas of L and A a formula of L.
Suppose A � A. Then there is a finite B ⊂ A such that B � A.

Proof. This follows from the fact that each proof is a finite sequence of
formulas and so contains only finitely many nonlogical axioms. 
�
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Theorem 3.4.5 Let L be the language of a propositional logic and A a
formula of L. Then

� A =⇒|= A.

Proof. Let A1, A2, . . . , An be a proof of A. Thus, A = An. Fix any truth
valuation v. By induction on i, 1 ≤ i ≤ n, we show that v(Ai) = T . Note
that A1 must be a tautology. So, v(A1) = T . Let 1 ≤ i ≤ n and v(Aj) = T
for all j < i. If Ai is a tautology, then v(Ai) = T . Otherwise, by Exercise
3.4.1, Ai is a tautological consequence of {Aj : j < i}. Hence v(Ai) = T . 
�

Exactly the same proof proves the following theorem.

Theorem 3.4.6 (Soundness theorem for propositional logic) If A
is a set of formulas of L and A a formula, then

A � A =⇒ A |= A.

3.5 Metatheorems in Propositional Logic

Metatheorems in their own right are not very interesting. Their proofs are
often mechanical and sometimes quite tedious. But they are unavoidable.
Metatheorems play a key role in proving important results. In this sec-
tion we prove some metatheorems in propositional logic. These results are
needed to show that A � A ⇐⇒ A |= A. This is a very important result
because this shows that we have indeed formalized the notion of logical
deduction in propositional logic.

Lemma 3.5.1 Let A and B be formulas of L such that � A ∨ B. Then
� B ∨ A.

Proof. Consider the sequence

A ∨ B, ¬A ∨ A, B ∨ A.

The first element of it is a theorem by the hypothesis, the second one is a
propositional axiom, and the third one follows from the first two by the
cut rule. By Lemma 3.4.3, � B ∨ A. 
�

Lemma 3.5.2 A set of formulas A is inconsistent if and only if for every
formula A, A � A.

Proof. Let A be inconsistent. So there is a formula A such that both A
and ¬A are theorems of A. Now take any formula B. By the expansion
rule, � B ∨A and � B ∨ ¬A. By Lemma 3.5.1, � A ∨B and � ¬A ∨B. By
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the cut rule, � B ∨ B. By the contraction rule, � B. This proves the only
if part of the result. The if part of the result is trivial. 
�

Lemma 3.5.3 (Modus ponens) Let A and B be formulas of L such that
� A and � A → B. Then � B.

Proof. Since A is a theorem, by the expansion rule, B ∨ A is a theorem.
Hence, by Lemma 3.5.1, A ∨ B is a theorem. Now consider the sequence

A ∨ B, A → B, B ∨ B, B.

The first formula is shown above to be a theorem; the second formula
is a theorem by hypothesis; since A → B is the formula ¬A ∨ B by
definition, the third formula is inferred from the first two by the cut rule;
the last formula is inferred from the third formula by the contraction rule.
The result follows by Lemma 3.4.3. 
�

Now by induction on n, we easily get the following corollary.

Corollary 3.5.4 (Detachment rule) Let B, A1, A2, . . . , An be formulas
of L. Assume that each of A1, . . . , An and A1 → · · · → An → B is a
theorem. Then � B.

Lemma 3.5.5 If � A ∨ B, then � ¬¬A ∨ B.

Proof. Since ¬¬A∨¬A is a logical axiom, � ¬¬A∨¬A. Then � ¬A∨¬¬A
by Lemma 3.5.1. By hypothesis, � A ∨ B. Hence � B ∨ ¬¬A by the cut
rule. So, � ¬¬A ∨ B by Lemma 3.5.1. 
�

Lemma 3.5.6 Let A1, . . . , An be formulas of L (n ≥ 2) and 1 ≤ i < j ≤ n.
Suppose � Ai ∨ Aj. Then

� A1 ∨ · · · ∨ An.

Proof. We shall prove the result by induction on n. Clearly we can assume
that n ≥ 3.

If i ≥ 2, then
� A2 ∨ · · · ∨ An

by the induction hypothesis. Hence,

� A1 ∨ A2 ∨ · · · ∨ An

by the expansion rule.
Now let i = 1 and j ≥ 3. Then
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� A1 ∨ A3 ∨ · · · ∨ An

by the induction hypothesis. So,

� (A3 ∨ · · · ∨ An) ∨ A1

by Lemma 3.5.1. So,

� A2 ∨ ((A3 ∨ · · · ∨ An) ∨ A1)

by the expansion rule. Then

� (A2 ∨ (A3 ∨ · · · ∨ An)) ∨ A1

by the associative rule. Hence,

� A1 ∨ · · · ∨ An

by Lemma 3.5.1.
Finally, assume that i = 1 and j = 2. Then

� (A3 ∨ · · · ∨ An) ∨ (A1 ∨ A2)

by the expansion rule. By the associative rule,

� ((A3 ∨ · · · ∨ An) ∨ A1) ∨ A2.

By Lemma 3.5.1,
� A2 ∨ ((A3 ∨ · · · ∨ An) ∨ A1).

By the associative rule,

� (A2 ∨ · · · ∨ An) ∨ A1.

By Lemma 3.5.1 again,
� A1 ∨ · · · ∨ An.


�

Lemma 3.5.7 Let m ≥ 1, n ≥ 1, and 1 ≤ i1, i2, . . . , im ≤ n. Suppose

� Ai1 ∨ Ai2 ∨ · · · ∨ Aim
.

Then
� A1 ∨ A2 ∨ · · · ∨ An.

Proof. We shall prove the result by induction on m. In the rest of the proof,
A will designate the formula A1 ∨ · · · ∨ An.

Case 1: m = 1. Set i = i1. By hypothesis, � Ai. By the expansion rule,
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� (Ai+1 ∨ · · · ∨ An) ∨ Ai.

By Lemma 3.5.1,
� Ai ∨ Ai+1 ∨ · · · ∨ An.

Applying the expansion rule repeatedly, we get

� A1 ∨ · · · ∨ An.

Case 2: m = 2. Suppose i1 = i2. Then � Ai1 by the hypothesis and the
contraction rule. The result now follows from Case 1.

Suppose i2 < i1. Then, by the hypothesis and Lemma 3.5.1, � Ai2 ∨Ai1 .
Hence, without loss of generality, we assume that i1 < i2. The result now
follows from Lemma 3.5.6.

Case 3: m > 2. By the hypothesis and the associative law,

� (Ai1 ∨ Ai2) ∨ Ai3 ∨ · · · ∨ Aim
.

Note that m is reduced by 1. Hence, by the induction hypothesis,

� (Ai1 ∨ Ai2) ∨ A.

By Lemma 3.5.1,
� A ∨ (Ai1 ∨ Ai2).

By the associative law,
� (A ∨ Ai1) ∨ Ai2 .

By the induction hypothesis,

� (A ∨ Ai1) ∨ A.

By Lemma 3.5.1,
� A ∨ (A ∨ Ai1).

By the associative law,
� (A ∨ A) ∨ Ai1 .

By the induction hypothesis,

� (A ∨ A) ∨ A.

By the induction hypothesis,

� (A ∨ A) ∨ (A ∨ A).

Applying the contraction rule twice, we see that

� A.
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�

Lemma 3.5.8 If � ¬A ∨ C and if � ¬B ∨ C, then � ¬(A ∨ B) ∨ C.

Proof. Since ¬(A∨B)∨ (A∨B) is a propositional axiom, by Lemma 3.5.7,

� A ∨ B ∨ ¬(A ∨ B).

Since � ¬A ∨ C, by the cut rule,

� (B ∨ ¬(A ∨ B)) ∨ C.

By Lemma 3.5.1,
� C ∨ B ∨ ¬(A ∨ B).

Hence, by Lemma 3.5.7,

� B ∨ C ∨ ¬(A ∨ B).

Since � ¬B ∨ C, by the cut rule,

� (C ∨ ¬(A ∨ B)) ∨ C.

By Lemma 3.5.1,
� C ∨ C ∨ ¬(A ∨ B).

Hence
� ¬(A ∨ B) ∨ C

by Lemma 3.5.7. 
�

3.6 Post Tautology Theorem

In this section we prove the following theorem due, to Emil Post.

Theorem 3.6.1 (Post tautology theorem) If A is a formula of L, then

� A ⇐⇒|= A.

By Theorem 3.4.5, we only need to prove that

Every tautology is a theorem.

Note that if A is a tautology, so is A ∨ A. By the contraction rule, our
result will be proved if we show that every tautology of the from A ∨ A is
a theorem. We shall prove a bit more.
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Proposition 3.6.2 Let n ≥ 2, and A1 ∨ · · · ∨ An be a tautology. Then
� A1 ∨ · · · ∨ An.

Proof. Suppose each Ai is a literal, i.e., each Ai is either a variable or the
negation of a variable. Since A1∨· · ·∨An is a tautology, there is a variable B
such that both B and ¬B occur in the sequence A1, . . . , An. But � ¬B∨B.
Hence the result follows by Lemma 3.5.7.

So, we assume that for some 1 ≤ i ≤ n, Ai is not a literal. By Lemma
3.5.7, without loss of generality, we assume that A1 is not a literal. Thus
A1 is a formula in one of the three forms: B ∨ C or ¬¬B or ¬(B ∨ C).

We shall complete the proof by induction on the sum of lengths of the
Ai’s.

Case 1. A1 is of the form B∨C: Then B∨C∨A2∨· · ·∨An is a tautology.
Hence, it is a theorem by the induction hypothesis. The result in this case
follows by the associative rule.

Case 2. A1 is of the form ¬¬B: From the hypothesis, it follows that
B ∨ A2 ∨ · · · ∨ An is a tautology. Hence it is a theorem by the induction
hypothesis. The result in this case now follows from Lemma 3.5.5.

Case 3. A1 is of the form ¬(B ∨ C): Assuming the hypothesis, it is easy
to check that ¬B ∨ A2 ∨ · · · ∨ An and ¬C ∨ A2 ∨ · · · ∨ An are tautologies.
So, by the induction hypothesis, they are theorems. The result in this case
follows from Lemma 3.5.8. 
�

There is another very useful formulation of the Post tautology theorem.

Theorem 3.6.3 If � A1, . . ., � An and if B is a tautological consequence
of A1, . . . , An, then � B.

Proof. By Lemma 3.2.4, A1 → · · · → An → B is a tautology. Hence, by
the Post tautology theorem,

� A1 → · · · → An → B.

The result now follows from Corollary 3.5.4 (the detachment rule). 
�

Theorem 3.6.4 (Completeness theorem for propositional logic)
Let A be a set of formulas of L. Then

A � A ⇐⇒ A |= A.

Proof. Assume that A � A. Then there is a finite set of formulas
{B1, . . . , Bn} such that

{B1, . . . , Bn} � A.

By the soundness theorem,

{B1, . . . , Bn} |= A.

Hence,
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A |= A.

Conversely, assume that A |= A. Then, by the compactness theorem
(Proposition 3.3.7), there is a finite set B ⊂ A such that B |= A. Hence, by
Theorem 3.6.3, B � A. In particular, A � A.

Corollary 3.6.5(a) A set of formulas A is consistent if and only if it is
satisfiable.

(b) Suppose A and B are tautologically equivalent. Then � A if and only if
� B.

(c) Suppose � A ↔ B. Then � A if and only if � B.
(d) � A → B if and only if � ¬B → ¬A.
(e) � A ∧ B if and only if � A and � B.
(f) If � A → B and � B → C, then � A → C.

The simple proof of this result is left as an exercise.

Remark 3.6.6 The completeness theorem gives a trivial proof of the com-
pactness theorem. To see this, let A be a set of formulas of L, and A a
formula of L. Then

A |= A ⇒ A � A
⇒ B � A for some finite B ⊂ A
⇒ B |= A for some finite B ⊂ A.

The first implication holds by Theorem 3.6.4, the second implication
holds because every proof contains only finitely many nonlogical axioms,
and the last one holds by the soundness theorem for propositional logic.



4
Proof and Metatheorems
in First-Order Logic

In the previous chapter, we introduced the notion of proof in propositional
logic. In this chapter we shall define proof in a first-order theory and prove
several metatheorems in first-order logic.

4.1 Proof in First-Order Logic

In Chapter 1, we have already described what a first-order language is and
what its terms and formulas are. We fix a first-order language L.

The logical axioms of L are:

(a) Propositional axioms: These are formulas of the form ¬A ∨ A.
(b) Identity axioms: These are formulas of the form x = x, where x is a

variable;
(c) Equality axioms: These are formulas of the form

y1 = z1 → · · · → yn = zn → fy1 · · · yn = fz1 · · · zn

or formulas of the form

y1 = z1 → · · · → yn = zn → py1 · · · yn → pz1 · · · zn;

(d) Substitution axioms: These are formulas of the form Ax[t] → ∃xA,
where A is a formula and t a term substitutable for x in A.

The rules of inference of L are:
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(a) Expansion rule. Infer B ∨ A from A.
(b) Contraction rule. Infer A from A ∨ A.
(c) Associative rule. Infer (A ∨ B) ∨ C from A ∨ (B ∨ C).
(d) Cut rule. Infer B ∨ C from A ∨ B and ¬A ∨ C.
(e) ∃-Introduction rule: If x is not free in B, infer ∃xA → B from

A → B.

Each logical axiom is valid in every structure of L. Also, the conclusion of
each rule of inference is valid in any structure of L in which its hypotheses
are valid.

Let T be a first-order theory. A proof in T , a theorem in T , etc., are
defined as before. So, a proof in T is a finite sequence A1, . . . , An of
formulas of L(T ) such that for each i ≤ n, Ai is either an axiom (logical
or nonlogical) of L(T ) or can be inferred from {Aj : j < i} by a rule of
inference. We shall write T � A or simply � A (when T is understood) to
say that A is a theorem of T .

We prove the soundness theorem (also known as the validity theorem)
for first-order theories in exactly the same way we proved the soundness
theorem for propositional logic (Theorem 3.4.6). Recall that a formula in
a theory is valid if it is true in all models of the theory.

Theorem 4.1.1 (Validity theorem) Every theorem in T is valid in T .

A theory T ′ is called an extension of T if L(T ′) is an extension of
L(T ) and if every nonlogical axiom of T is a theorem of T ′. If L(T ′) is an
extension of L(T ) and if every nonlogical axiom of T is a nonlogical axiom
of T ′, then T is called a part of T ′; moreover, if the number of nonlogical
axioms of T is finite, it is called a finitely axiomatized part of T ′. If T
and T ′ are extensions of each other, then they are called equivalent. Note
that if T and T ′ are equivalent, then they have the same language, i.e.,
L(T ) = L(T ′). Let Γ be a set of formulas of T . The simple extension of the
theory T obtained by adding Γ as new nonlogical axioms is designated by
T [Γ ].

Exercise 4.1.2 Let T ′ be an extension of T . Show that every theorem of
T is a theorem of T ′.

An extension T ′ of T is called a conservative extension of T if every
formula of T that is a theorem of T ′ is also a theorem of T ; T ′ is a simple
extension of T if L(T ) = L(T ′) and every theorem of T is a theorem of
T ′ too.

4.2 Metatheorems in First-Order Logic

The converse of the validity theorem is also true. This is a famous result
that was first proved by Gödel and is known as the completeness theorem.
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A proof of it will be given in the next chapter. In this section we present a
few metatheorems needed to prove the completeness theorem.

Throughout this section, we fix a first-order theory T ; by a theorem we
shall mean a theorem of T , and � A will mean that A is a theorem of T .

The next few definitions are needed to adapt results from propositional
logic to first-order logic. Recall that a formula is called elementary if it is
either an atomic formula or a formula of the form ∃xB. We have already
seen that the formulas of L are precisely the formulas of the language of the
propositional logic whose variables are precisely the elementary formulas
of L. A truth valuation for L is a map v from the set of all elementary
formulas into {T, F}. We extend v to the set of all formulas of L as before.
Further, we define the notion of tautological consequences, tautology,
and Tautologically equivalent formulas, in exactly the same way as
before. For instance, A is a tautological consequence of a set A of formulas
of L if v(A) = T for every truth valuation v of L in which all formulas of
A are true.

It is also clear that the detachment rule (Theorem 3.6.3), the Post tau-
tology theorem (Theorem 3.6.1) etc. proved in the last chapter hold for
first-order theories also.

Proposition 4.2.1 (Detachment rule) Suppose

� A1, . . . ,� An

and
� A1 → · · · → An−1 → An → A.

Then
� A.

Theorem 4.2.2 (Post tautology theorem) Suppose

T � A1, . . . , T � An

and
A1, . . . , An |= A.

Then
T � A.

Theorem 4.2.3 Every tautology in a first-order theory is a theorem of the
theory.

The corollary to the tautology theorem given in the last chapter also
holds for first-order theories. In the rest of this section, we shall prove
some metatheorems involving terms, quantifiers, etc.

Lemma 4.2.4
� A → ∃v1 · · · ∃vnA.
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Proof. Applying the substitution axiom repeatedly, we get

� A → ∃vnA,

� ∃vnA → ∃vn−1∃vnA,

...

� ∃v2 . . . ∃vnA → ∃v1 · · · ∃vnA.

Since A → ∃v1 . . .∃vnA is a tautological consequence of the above
formulas, the result follows from the tautology theorem. 
�

Proposition 4.2.5 (∀-introduction rule) If � A → B and x is not free
in A, then � A → ∀xB.

Proof. By the hypothesis and the tautology theorem, we have

� ¬B → ¬A.

Then
� ∃x¬B → ¬A

by the ∃-introduction rule. So,

� A → ¬∃x¬B.

Hence,
� A → ∀xB

by the definition of ∀. 
�

Proposition 4.2.6 (Generalization rule) If � A, then � ∀xA.

Proof. By the hypothesis and the expansion rule,

� ¬∀xA → A.

Then, by the ∀-introduction rule (Proposition 4.2.5),

� ¬∀xA → ∀xA.

The result follows by the tautology theorem. 
�

Proposition 4.2.7 (Substitution rule) If B is an instance of A and if
� A, then � B.
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Proof. We first prove the result in a simple case. Suppose t is substitutable
for v in A and B is Av[t]. By the substitution axiom,

� ¬Av[t] → ∃v¬A.

So, by the tautology theorem,

� ∀vA → B.

By hypothesis and the generalization rule,

� ∀vA.

Hence
� B

by the detachment rule.
Now let B be the formula Av1,...,vn

[t1, . . . , tn]. Let w1, . . . , wn be vari-
ables, each different from v1, . . . , vn, not occurring in A or B. By repeated
application of the first part,

� Av1 [w1],

� Av1,v2 [w1, w2],

...

� Av1,...,vn
[w1, . . . , wn].

Let C designate the formula Av1,...,vn
[w1, . . . , wn]. Then B is the formula

Cw1,...,wn
[t1, . . . , tn]. By repeated application of the first part, we see that

� Cw1 [t1],

� Cw1,w2 [t1, t2],

...

� Cw1,...,wn
[t1, . . . , tn].


�

Using Lemma 4.2.4, Proposition 4.2.6 and the substitution rule (Propo-
sition 4.2.7), we get the following result.

Proposition 4.2.8 (Substitution theorem)

(a) � Av1,...,vn
[t1, . . . , tn] → ∃v1 · · · ∃vnA.

(b) � ∀v1 · · · ∀vnA → Av1,...,vn
[t1, . . . , tn].
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Proposition 4.2.9 (Closure theorem) Let B be the closure of A. Then
� A if and only if � B.

Proof. If A is a theorem, then B is a theorem by the generalization rule
(Proposition 4.2.6).

Since A = Av1,...,vn
[v1, . . . , vn], by the substitution theorem, � B → A.

So, if � B, � A by the detachment rule. 
�

Exercise 4.2.10 Let L(T ′) be an extension of L(T ). Show that the fol-
lowing statements are equivalent.

(i) The theory T ′ is a conservative extension of T .
(ii) A sentence of T is a theorem of T ′ if and only if it is a theorem of T .

Proposition 4.2.11 (Distribution rule) If � A → B, then

� ∃vA → ∃vB

and
� ∀vA → ∀vB.

Proof. By the substitution axiom,

� B → ∃vB.

By the hypothesis and the tautology theorem,

� A → ∃vB.

So,
� ∃vA → ∃vB

by the ∃-introduction rule.
By the substitution theorem,

� ∀vA → A.

By the hypothesis and the tautology theorem,

� ∀vA → B.

So,
� ∀vA → ∀vB

by the ∀-introduction rule. 
�

Formulas A and B are called equivalent in T if

T � A ↔ B.

We write A ≡T B if A and B are equivalent in T .
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Exercise 4.2.12 Show that ≡T is an equivalence relation on the set of all
formulas of T .

Proposition 4.2.13 (Equivalence theorem) Let A′ be obtained from A
by simultaneously replacing subformulas B1, . . . , Bn by B′

1, . . . , B
′
n respec-

tively. Assume that
� Bi ↔ B′

i,

1 ≤ i ≤ n. Then
� A ↔ A′.

Proof. If A is one of the formulas Bi, then there is nothing to prove. We
assume that this is not the case and prove the result by induction on the
length of A.

Let A be a formula of the form ¬B. Then A′ is ¬B′, where B′ is obtained
by replacing subformulas B1, . . . , Bn by B′

1, . . . , B
′
n respectively. Then

� B ↔ B′

by the induction hypothesis. So,

� A ↔ A′

by the tautology theorem.
The proof is similar if A is a formula of the form B ∨ C.
Now assume that A is a formula of the form ∃vB. Then by the induction

hypothesis,
� B ↔ B′,

where B′ is obtained by replacing subformulas B1, . . . , Bn by B′
1, . . . , B

′
n

respectively. The result now follows from the distribution rule. 
�

Sometimes there is difficulty in substituting a term t for a variable v in
a formula A. Our next result shows a way to circumvent this.

Let B be obtained from A by a sequence of replacements of the following
type: replace a subformula ∃vC by a formula of the form ∃wCv[w], where
w is not free in C. Then B is called a variant of the formula A.

Proposition 4.2.14 (Variant theorem) If B is a variant of A, then

� A ↔ B.

Proof. By the equivalence theorem and the tautology theorem, we only
need to show that

� ∃vC ↔ ∃wCv[w], (1)

where w is not free in C.
By the substitution axiom,
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� Cv[w] → ∃vC.

So, by the ∃-introduction rule,

� ∃wCv[w] → ∃vC. (2)

On the other hand, since w is not free in C, the formula (Cv[w])w[v] is
C. In other words, if we replace free occurrences of v in C by w and then
replace free occurrences of w by v, we get back C because w is not free in
C. Hence, by the substitution axiom,

� C → ∃wCv[w]. (3)

By the ∃-introduction rule,

� ∃vC → ∃wCv[w]. (4)

Since the formula in (1) is a tautological consequence of those in (2) and
(4), (1) follows from the tautology theorem. 
�

Proposition 4.2.15 (Symmetry theorem) For any two terms t and s,

� t = s ↔ s = t.

Proof. Let v and w be distinct variables. By the equality axioms,

� v = w → v = v → v = v → w = v.

By the identity axiom and the tautology theorem,

� v = w → w = v.

Substituting t for v and s for w, by the substitution rule,

� t = s → s = t

and
� s = t → t = s.

The result now follows from the tautology theorem. 
�

Proposition 4.2.16 (Equality theorem)

(a) Let a term s be obtained from t by replacing subterms t1, . . . , tn by
s1, . . . , sn respectively. If

� ti = si,

1 ≤ i ≤ n, then
� t = s.
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(b) Let a formula B be obtained from A by replacing some occurrences of
terms t1, . . . , tn in A not immediately following ∃ or ∀ by s1, . . . , sn

respectively. If
� ti = si,

1 ≤ i ≤ n, then
� A ↔ B.

Proof. (a) We shall prove the result by induction on the rank of t.
If t is ti for some i, s is the term si and there is nothing to be proved.

This, in particular, shows that the result is true for t of rank 0.
Let t be a term of the form fa1 · · · ak. Then, the ti’s are subterms of the

aj ’s. (Why?) Let a′
j be the term obtained from aj by replacing appropri-

ate occurrences of terms t1, . . . , tn by s1, . . . , sn respectively. Then by the
induction hypothesis,

� aj = a′
j ,

1 ≤ j ≤ k. We have the equality axiom

x1 = y1 → · · · → xk = yk → fx1 · · ·xk = fy1 · · · yk.

So, the result follows from the substitution rule and the tautology theorem.
(b) We prove the result by induction on the rank of A.
Assume A is an atomic formula of the form pa1 · · · ak. Then the ti’s are

subterms of the aj ’s. Let a′
j be the term obtained from aj by replacing

appropriate occurrences of terms t1, . . . , tn by s1, . . . , sn respectively. Then
B is the formula pa′

1 · · · a′
k. By (a),

� aj = a′
j ,

1 ≤ j ≤ k. We have the equality axiom

� x1 = y1 → · · · → xk = yk → px1 · · ·xk → py1 · · · yk.

By the substitution rule and the tautology theorem,

� pa1 · · · ak → pa′
1 · · · a′

k.

Since by the symmetry theorem,

� a′
j = aj ,

by the tautology theorem,

� pa′
1 · · · a′

k → pa1 · · · ak.

Hence,
� pa1 · · · ak ↔ pa′

1 · · · a′
k
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by the tautology theorem.
Let A be a formula of the form ∃vC. Then, by the hypothesis in (b), B

is the formula ∃vD, where D is obtained from C by replacing appropriate
occurrences of terms t1, . . . , tn by s1, . . . , sn respectively. By the induction
hypothesis,

� C ↔ D.

The result follows from the distribution rule and the tautology theorem.
The cases in which A is of the form ¬C or C ∨ D are dealt with similarly.

�

In mathematics, while proving a sentence of the form A → B, quite often
one assumes A and then proves B. This means that one adds A as a new
axiom and proves B in this extension of T . We now show that this is a
correct method of proving A → B in T .

Recall that we designated the simple extension of a theory T obtained
by adding a set Γ of formulas as new axioms by T [Γ ]. If Γ = {A1, . . . , An},
we shall write T [A1, . . . , An] instead of T (Γ ).

Proposition 4.2.17 (Deduction theorem) Let A be a closed formula.
Then

T � A → B

if and only if
T [A] � B.

Proof. Suppose
T � A → B.

Then
T [A] � A → B.

Also
T [A] � A.

So,
T [A] � B

by the detachment rule.
Now assume that

T [A] � B.

Fix a proof of A1, . . . , An of B in T [A]. By induction on i, we shall prove
that

T � A → Ai

for 1 ≤ i ≤ n, which will complete the proof.
The formula A1 is an axiom of T [A]. If A1 is an axiom of T , then

T � A1.
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Hence,
T � A → A1

by the expansion rule. In case A1 is A,

T � A → A

by the propositional axiom.
Assume the hypothesis for all j < i. If Ai is an axiom of T [A], we have

already proved that
T � A → Ai.

If Ai is inferred from {Aj : j < i} using a rule of inference other than the
∃-introduction rule, then Ai is a tautological consequence of {Aj : j < i}.
But then A → Ai is a tautological consequence of {A → Aj : j < i}. By
the induction hypothesis,

T � A → Aj

for every j < i. Hence,
T � A → Ai

by the tautology theorem.
Now assume that Ai is inferred from some Aj , j < i, by the

∃-introduction rule. So, Aj is a formula of the form B → C, Ai of the
form ∃vB → C, where v is not free in C. By the induction hypothesis,

T � A → B → C;

by the tautology theorem,

T � B → A → C.

Since A is closed, v is not free in A → C. Hence by the ∃-introduction rule,

T � ∃vB → A → C;

by the tautology theorem,

T � A → ∃vB → C,

i.e.,
T � A → Ai.


�

Corollary 4.2.18 If A1, . . . , An are closed, then

T [A1, . . . , An] � B ⇐⇒ T � A1 → · · · → An → B.
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Exercise 4.2.19 For any consistent theory T that has a model with more
than one point, show that

T [x = y] � ∀x∀y(x = y)

but
T �� x = y → ∀x∀y(x = y).

Thus, the deduction theorem is not true if the A’s are not closed.

Proposition 4.2.20 (Theorem on constants) Let T ′ be obtained from
T by adding new constants but no new nonlogical axioms. Then T ′ is a
conservative extension of T .

Proof. By the definition of conservative extension, we need to show that
for any formula ϕ of T ,

T ′ � ϕ ⇒ T � ϕ.

Suppose
T ′ � ϕ.

Hence, by the substitution rule,

T ′ � ϕv1,...,vn
[c1, . . . , cn],

where v1, . . . , vn are all the variables free in ϕ and c1, . . . , cn are new con-
stants.

Fix a proof of ϕv1,...,vn
[c1, . . . , cn] in T ′ and replace all occurrences of

c1, . . . , cn in the proof by distinct variables w1, . . . , wn respectively that
do not occur in the proof. Note that we have thus obtained a proof of
ψ = ϕv1,...,vn

[w1, . . . , wn] in T . Since ϕ = ψv1,...,vn
[w1, . . . , wn], the result

now follows from the substitution rule. 
�

Proposition 4.2.21 Let t, t1, . . . , tn and s1, . . . , sn be terms. Then

� t1 = s1 → · · · → tn = sn → t[t1, . . . , tn] = t[s1, . . . , sn].

Proof. Replace each variable occurring in a ti or in an si by a new constant.
Designate the extension of T thus obtained by T ′. Let ti become t′i, si

become s′i, and t become t′. By the theorem on constants, it suffices to
prove that

T ′ � t′1 = s′1 → · · · → t′n = s′n → t′[t′1, . . . , t
′
n] = t′[s′1, . . . , s

′
n].

By the deduction theorem, this will follow from

T ′[t′1 = s′1, . . . , t
′
n = s′n] � t′[t′1, . . . , t

′
n] = t′[s′1, . . . , s

′
n].

This follows from the equality theorem. 
�
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In the same way we prove the following result.

Proposition 4.2.22 Let t1, . . . , tn and s1, . . . , sn be terms and A a for-
mula of L. Then

� t1 = s1 → · · · → tn = sn → (A[t1, . . . , tn] ↔ A[s1, . . . , sn]).

Proposition 4.2.23 Let a variable v not occur in the term t and let A be
a formula of L such that t is substitutable for v in A. Then

� Av[t] ↔ ∃v(v = t ∧ A).

Proof. By Proposition 4.2.22,

� v = t → (A ↔ Av[t]).

So, by the tautology theorem,

� (v = t ∧ A) → Av[t].

By the ∃-introduction rule,

� ∃v(v = t ∧ A) → Av[t].

On the other hand, by the substitution axiom,

� (t = t ∧ Av[t]) → ∃v(v = t ∧ A).

Since � t = t, by the tautology theorem, it follows that

� Av[t] → ∃v(v = t ∧ A).

The result now follows from the tautology theorem. 
�

Exercise 4.2.24 Let T be a first-order theory. Let O be the smallest set of
formulas that contains all atomic formulas and their negations and that is
closed under disjunctions and conjunctions. Show that every open formula
is equivalent in T to a formula in O.

Exercise 4.2.25 Show that a formula of T of the form ¬(fx1 · · ·xn = y)
is equivalent in T to a formula of the form

∃z(¬(y = z) ∧ fx1 · · ·xn = z),

y, z, x1, . . . , xn distinct.

Exercise 4.2.26 (a) Show that

� ¬∃vA ↔ ∀v¬A.
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(b) Show that
� ¬∀vA ↔ ∃v¬A.

(c) If v is not free in B, show that

� ∃vA ∨ B ↔ ∃v(A ∨ B),

� ∀vA ∨ B ↔ ∀v(A ∨ B),

� B ∨ ∃vA ↔ ∃v(B ∨ A),

and
� B ∨ ∀vA ↔ ∀v(B ∨ A).

Exercise 4.2.27 Show the following:

(a) � ∃v(A ∨ B) ↔ ∃vA ∨ ∃vB.
(b) � ∀v(A ∧ B) ↔ ∀vA ∧ ∀vB.
(c) � ∃v(A ∧ B) → ∃vA ∧ ∃vB.
(d) � ∀vA ∨ ∀vB → ∀v(A ∨ B).

Exercise 4.2.28 Give examples A and B of formulas of N such that the
formulas

∀v(A ∨ B) → ∀vA ∨ ∀vB

and
∃vA ∧ ∃vB → ∃v(A ∧ B)

are not theorems of N .

Exercise 4.2.29 Let v and w be distinct variables. Show the following:

(a) � ∃v∃wA ↔ ∃w∃vA.
(b) � ∀v∀wA ↔ ∀w∀vA.
(c) � ∃v∀wA → ∀w∃vA.

Exercise 4.2.30 Give a formula of N of the form

∀v∃wA → ∃w∀vA

that is not a theorem.

A formula A is said to be in prenex form if it is in the form

Q1v1 · · ·QnvnB,

where each Qi is either ∃ or ∀, and B open. Then Q1v1 · · ·Qnvn is called
the prefix and B the matrix of A. A formula in prenex form is called
existential if all the quantifiers in its prefix are ∃; a formula in prenex
form is called universal if all the quantifiers in its prefix are ∀.
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Exercise 4.2.31 Show that every formula is equivalent in T to a formula
in prenex form whose matrix is of the form

∧k
i=1 ∨ni

j=1 Bij ,

where each Bij is either an elementary formula or the negation of an ele-
mentary formula.

4.3 Some Metatheorems in Arithmetic

In this section we prove a few metatheorems pertaining to the theories N
and PA. They are needed to prove the first incompleteness theorem.

Proposition 4.3.1 For any formula A of N and any n ∈ N,

N � Av[k0] → · · · → Av[kn−1] → v < kn → A.

Proof. We prove the result by induction on n. For n = 0, the result follows
since ¬(v < 0) is an axiom of N .

Let the result be true for some n. By the axiom (8) of N ,

N � v < kn+1 ↔ v < kn ∨ v = kn.

By the equality theorem,

N � v = kn → (A ↔ Av[kn]).

Hence, by the induction hypothesis and the tautology theorem,

N � Av[k0] → · · · → Av[kn−1] → Av[kn] → v < kn+1 → A.


�
Proposition 4.3.2 Let N � ¬Av[ki] for all i < n and N � Av[kn]. Then

N � A ∧ ∀w(w < v → ¬Av[w]) ↔ v = kn.

Proof. Let B denote the formula

A ∧ ∀w(w < v → ¬Av[w]).

By the equality theorem,

N � v = kn → (B ↔ Bv[kn]). (1)

By Proposition 4.3.1, we have

N � ¬(Av[w])w[k0] → · · · → ¬(Av[w])w[kn−1] → w < kn → ¬Av[w]. (2)
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Hence, by the hypothesis, the detachment rule, and the generalization rule,

N � ∀w(w < kn → ¬Av[w]). (3)

Since N � Av[kn], by (1) and (3) and the tautology theorem,

N � v = kn → B. (4)

By the substitution theorem, we have

N � ∀w(w < v → ¬Av[w]) → (kn < v → ¬Av[kn]).

But N � Av[kn]. Hence, by the tautology theorem,

N � B → ¬(kn < v). (5)

Since N � ¬Av[ki], i < n, by Proposition 4.3.1 and the detachment rule,

N � v < kn → ¬A.

Hence,
N � B → ¬(v < kn). (6)

By the axiom (9) of N ,

N � v < kn ∨ v = kn ∨ kn < v. (7)

Hence, by (4)–(7) and the tautology theorem, we get

N � B ↔ v = kn.


�

Example 4.3.3 Peano arithmetic PA is an extension of N .

This will follow if we show that the axiom (9)

x < y ∨ x = y ∨ y < x

of the theory N is a theorem of PA. We show this in three steps.

Step 1: PA � 0 = y ∨ 0 < y.

Let A be the formula 0 = y ∨ 0 < y. Then PA � Ay[0]. By the axiom (8)
of N (which is also an axiom of PA),

PA � A ↔ 0 < Sy.

Also,
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PA � 0 < Sy → Ay[Sy].

Hence,
PA � A → Ay[Sy].

So, by the induction axiom of P ,

PA � A.

Step 2: PA � x < y → Sx < Sy.

Let B be the formula x < y → Sx < Sy. By the axiom (7) of N ,

PA � By[0].

By the axiom (8) of N ,

PA � By[Sy] ↔ ((x < y ∨ x = y) → (Sx < Sy ∨ Sx = Sy)).

So, by the equality axiom,

PA � (x < y ∨ x = y) → (Sx < Sy ∨ Sx = Sy).

Hence,
PA � B → By[Sy].

By the induction axiom of PA,

PA � B.

Step 3: Let C denote the formula x < y ∨ x = y ∨ y < x. Since PA � A
(Step 1),

PA � Cx[0].

Since PA � B (Step 2), by the axiom (8) of N ,

PA � x < y → (Sx < y ∨ Sx = y)

and
PA � (y < x ∨ y = x) → y < Sx.

Hence,
PA � C → Cx[Sx].

So, by the induction axiom of P ,

PA � C.

Thus PA is a finite extension of N .
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Exercise 4.3.4 Let ϕ be a formula of PA, x, y distinct, such that y does
not occur in ϕ. Show the following:

(a) PA � ∀x(∀y(y < x → ϕx[y]) → ϕ) → ∀xϕ.
(b) PA � ∃xϕ → ∃x(ϕ ∧ ∀y(y < x → ¬ϕx[y])).

Exercise 4.3.5 Let ϕ be a formula of PA in which no variable other than
v1, . . . , vn and w are free, v1, . . . , vn, w distinct. Suppose PA � ∃wϕ. Let
w′ be a new variable and ψ the formula

ϕ ∧ ∀w′(w′ < w → ¬ϕw[w′]).

Show the following:

(a) PA � ∃wψ.
(b) PA � ψ ∧ ψw[w′′] → w = w′′.

4.4 Consistency and Completeness

A formula A is said to be undecidable in a theory T if neither A nor ¬A
is a theorem of T ; otherwise, the formula is called decidable in T .

It is not reasonable to expect that in a theory all formulas would be
decidable. For instance, the formula v = 0 of N is undecidable in N . (Why?)

A theory T is called inconsistent if every formula of T is a theorem of
T . Otherwise, the theory is called consistent.

While developing a theory axiomatically, one is naturally confronted with
the question of the consistency of the theory. Proving consistency of the-
ories is often a challenging task in mathematics. This is one of the most
important topics in axiomatic set theory. Interested readers may see the
excellent book of Kenneth Kunen [6].

Lemma 4.4.1 A theory T is inconsistent if and only if there is a formula
A such that both A and ¬A are theorems of T .

Proof. The necessary part of the result is clear. So, assume that A is such
that � A as well as � ¬A. Take any formula B. By the expansion axiom
and Lemma 3.5.1, � A ∨ B and � ¬A ∨ B. So, by the cut rule, � B ∨ B.
Hence, � B by the contraction rule. 
�

Remark 4.4.2 Since a proof is finite and in particular uses only a finite
number of axioms, a theory is consistent if and only if each of its finitely
axiomatized parts is consistent.

Lemma 4.4.3 If T has a model, then T is consistent.
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Proof. Suppose T has a model M and it is inconsistent. Take a closed
formula A. Then, both A and ¬A are theorems of T . Hence, by the validity
theorem, both are valid in M . This is a contradiction. 
�

Exercise 4.4.4 Let T ′ be an extension of T . If T ′ is consistent, show that
T is also consistent. Assume, moreover, that T ′ is a conservative extension
of T . Show that the converse is also true, i.e., if T is consistent, so is T .

The following is another useful result.

Proposition 4.4.5 Let B be the closure of A. Then T � A if and only if
T [¬B] is inconsistent.

Proof. Suppose T � A. Then by the closure theorem, T � B, and hence
T [¬B] � B. Hence, T [¬B] is inconsistent.

Now assume that T [¬B] is inconsistent. Then T [¬B] � B. So, by the
deduction theorem, T � ¬B → B. Hence, by the tautology theorem, T � B.
Thus, T � A by the closure theorem. 
�

Exercise 4.4.6 (Reduction theorem) Let Γ be a set of formulas of T .
Then

T [Γ ] � A

if and only if there exist B1, . . . , Bn, each the closure of a formula in Γ ,
such that

T � B1 → · · · → Bn → A.

Theorem 4.4.7 (Completeness theorem, first form) A formula A of
T is a theorem of T if and only if it is valid in T .

The only if part of the result is precisely the validity theorem.
There is an equivalent formulation, the form in which we shall prove it,

of this result. The proof still requires some preparation. We postpone the
proof to the next chapter.

Theorem 4.4.8 (Completeness theorem, second form) A theory T
is consistent if and only if it has a model.

We now show that the two forms are equivalent.
Assume the first form of the completeness theorem. Let T be consistent.

Let B be a closed formula that is not a theorem of T . So, by the first form,
it is not valid in T . This, in particular, gives us a model of T .

Now assume the second form of the completeness theorem. By the clo-
sure theorem, without loss of generality we assume that A is closed. By
Proposition 4.4.5,

T � A ⇔ T [¬A] is inconsistent.
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By the second form, T [¬A] is inconsistent if and only if it has no model.
Since A is closed, a model of T [¬A] is a model of T in which A is not valid.
Hence, A is a theorem of T if and only if it is valid in T .

A theory T is called complete if it is consistent and if every closed
formula is decidable in T .

Remark 4.4.9 The importance of giving a complete set of axioms in the
above sense cannot be overemphasized. Let T be a theory with a model
M . Let T ′ be the simple extension of T whose nonlogical axioms are pre-
cisely those sentences that are valid in M . We designate this theory by
Th(M). Clearly Th(M) is complete. However, we may not be able to me-
chanically decide whether a sentence is valid in M . This is obviously not a
satisfactory situation. A theory for which there is an algorithm to decide
whether a formula is an axiom is called an axiomatized theory. In an epoch
making discovery, Gödel showed that for most of the theories this is impos-
sible. After introducing the notion of an algorithm, we shall briefly study
axiomatized theories in Chapter 6.

Exercise 4.4.10 Let T be a complete theory and A, B closed formulas of
T . Show that

(a) T � A ∨ B ⇐⇒ (T � A or T � B).
(b) T � A ∧ B ⇐⇒ (T � A and T � B).

We close this section by proving the following theorem, due to Adolf
Lindenbaum, which will be used to prove the completeness theorem in the
next chapter. This will be proved by Zorn’s lemma and Proposition 4.4.5.

Theorem 4.4.11 (Lindenbaum’s theorem) Every consistent theory T
admits a simple complete extension.

Proof. Let P be the family of subsets Γ of the set of formulas of T such that
T [Γ ] is consistent. Since T is consistent, P �= ∅. (∅ ∈ P.) Partially order P

by inclusion ⊂. Let C be a chain in P and Γ = ∪C. Since every proof is
finite, Γ ∈ P. So, by Zorn’s lemma, P has a maximal element, say ∆.

Set T ′ = T [∆]. Clearly, T ′ is a simple consistent extension of T .
We claim that T ′ is complete. Let A be a closed formula of T that is

not a theorem of T ′. In particular, A �∈ ∆. We must show that T ′ � ¬A.
If not, then by Proposition 4.4.5, T ′[A] is consistent, contradicting the
maximality of ∆. 
�



5
Completeness Theorem and Model
Theory

5.1 Completeness Theorem

In this section we prove the completeness theorem for first-order logic. We
shall prove it in its second form (Theorem 4.4.8). The result for countable
theories was first proved by Gödel in 1930. The result in its complete gen-
erality was first observed by Malcev in 1936. The proof given below is due
to Leo Henkin.

Theorem 5.1.1 (Completeness theorem) Every consistent first-order
theory T has a model.

Since we have only syntactical objects at hand, a model of T has to be
built out of these. Since syntactical objects that designate individuals of a
model are variable-free terms of the language of T , it seems quite natural to
start with these. However, T may have no constants. In that case, we add
at least one constant to T and no other nonlogical axiom. By the theorem
on constants, the theory T ′ thus obtained is a conservative extension of T ,
and so consistent. Further, the restriction of any model of T ′ to L(T ) is a
model of T . Thus, without any loss of generality, we assume that T has at
least one constant symbol.

Let N be the set of all variable-free terms. Let a and b be variable-free
terms such that T � a = b. Then interpretations of a and b in any model
of T are the same individuals. This leads us to define a binary relation on
N as follows:

a ∼ b if T � a = b,
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where a, b belong to N .

Lemma 5.1.2 The binary relation ∼ is an equivalence relation on N .

Proof. (i) The relation ∼ is reflexive, i.e., for every variable-free term t,

T � t = t.

This is so by the identity axiom and the substitution rule.
(ii) It is symmetric by the symmetry theorem (Proposition 4.2.15) and

the tautology theorem.
(iii) By the equality axiom and the substitution rule,

� s = t → t = u → s = u.

Hence, the relation is transitive by the detachment rule. 
�

We set M to be the set of ∼-equivalence classes. For any a ∈ N , let [a]
denote the equivalence class containing a. Since T has constant symbols,
M is nonempty. The set M will be the universe of our intended model.

We now define the interpretations of the nonlogical symbols of T in M
in a natural way:

cM = [c]
fM ([a1], . . . , [an]) = [fa1 · · · an],

and
pM ([a1], . . . , [an]) if and only if T � pa1 · · · an.

In the above definitions, c is a constant symbol (so a variable-free term),
a1, . . . , an are variable-free terms, f an n-ary function symbol, and p an
n-ary relation symbol. The above functions and relations on M are well-
defined by the equality theorem (Proposition 4.2.16).

We have now defined a structure M for the language of T . The structure
M is called the canonical structure for the language of T . By induction
on the length of expressions, the following result is quite routine to prove.

Lemma 5.1.3 Let a be a variable-free term and A a variable-free open
formula of T . Then

(a) aM = [a].
(b) T � A ⇐⇒ M |= A.

Is the canonical structure for L(T ) a model of T? A moment’s reflection
will tell us that T ought to have many constants. For instance, suppose
T � ∃vA, where v is the only free variable in A. In order that ∃vA be valid
in M , there should be a variable-free term t such that T � Av[t].

In a very special case, we prove that the canonical structure of L(T ) is
a model of T .
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A theory T is called a Henkin theory if for every closed formula of the
form ∃xA there is a constant symbol, say c, in L(T ) such that

T � ∃xA → Ax[c].

An extension of T that is Henkin is called a Henkin extension of T .

We have the following theorems.

Theorem 5.1.4 Every theory T has a conservative Henkin extension T ′.
In particular, if T is consistent, so is T ′.

We shall give a proof of this later in the section.
So, we fix a conservative Henkin extension T ′ of T . Since T is consistent,

T ′ is consistent. By Lindenbaum’s theorem (Theorem 4.4.11), T ′ has a
complete simple extension T ′′. Since T ′′ is a simple extension of a Henkin
theory, it is clearly a Henkin theory.

So, the completeness theorem will follow from the following theorem.

Theorem 5.1.5 If T ′′ is a complete Henkin theory, then the canonical
structure for T ′′ is a model of T ′′.

Proof. By the closure theorem, the result will be proved if we show the
following:

For every closed formula A,

T ′′ � A if and only if M |= A. (∗)

The proof of (∗) proceeds by induction on the number of times the logical
symbols ∨, ¬, and ∃ occur in A. This number is called the height of A.

By definition of M , (∗) holds for all atomic A.
Suppose B is the closed formula ¬A and that (∗) holds for A. Let T ′′ � B.

Since T ′′ is consistent, it follows that T ′′ �� A. By the induction hypothesis,
it follows that M �|= A. But then M |= B. Conversely, suppose T ′′ �� B.
Since T ′′ is complete, this implies that T ′′ � A. By the induction hypothesis,
M |= A. So M �|= B.

Now suppose A = B ∨ C, and (∗) holds for B and C. We can show that
(∗) holds for A using similar arguments and Exercise 4.4.10.

Suppose B is the closed formula ∃xA and (∗) holds for all formulas of
height less than the height of B. Let T ′′ � ∃xA. Since T ′′ is a Henkin
theory, there is a constant symbol c such that

T ′′ � ∃xA → Ax[c].

By the detachment rule, it follows that

T ′′ � Ax[c].
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By the induction hypothesis, M |= Ax[c]. Let m = cM . Since cM = (im)M ,
M |= Ax[iM ]. Hence M |= B. Conversely, suppose M |= B. Then there is an
m ∈ M such that M |= Ax[im], im the name for m in the language LM . Let
m = [a] for some variable-free term a. By Lemma 5.1.3, aM = (im)M = m,
i.e., M |= a = im. Hence, M |= Ax[a]. By the induction hypothesis,

T ′′ � Ax[a].

Since Ax[a] → ∃xA is a substitution axiom, by the detachment rule,

T ′′ � B.


�

It only remains to prove Theorem 5.1.4. We first define T ′. Set T0 = T .
Suppose Tn has been defined. We define an extension Tn+1 of Tn as follows:
for each closed formula of Tn of the form ∃xA, add a new symbol, say c∃xA,
and a new axiom ∃xA → Ax[c∃xA]. The new constant symbols added to
Tn−1 to define Tn will be called special constants of level n; If c is the
special constant for ∃xA, the axiom ∃xA → Ax[c] will be called the special
axiom for c.

Now let T ′ be the theory whose language is the “union” of the languages
of the Tn’s, i.e., nonlogical symbols (nonlogical axioms) of T ′ are precisely
those that are nonlogical symbols (respectively nonlogical axioms) of some
Tn. Clearly, T ′ is a Henkin theory.

Claim. The Henkin extension T ′ of T is a conservative extension of T .

Proof of the claim. Our claim will be established if we show that for each
n, Tn+1 is a conservative extension of Tn. To see this, observe the following:
Let A be a formula of T and a theorem of T ′. Since every proof of A in
T ′ contains only finitely many axioms and finitely many special constants,
Tn � A for some n.

Let T c
n be the extension of Tn obtained by adding all special constants

of level n + 1 but no new nonlogical axiom. By the theorem on constants,
T c

n is a conservative extension of Tn. Hence, our proof will be complete if
we show that Tn+1 is a conservative extension of T c

n.
Let A be a formula of T c

n such that Tn+1 � A. By the reduction theo-
rem, there exist distinct special axioms for special constants of level n + 1,
B1, . . . , Bk, such that

T c
n � B1 → · · · → Bk → A.

Suppose B1 is the formula ∃xC → Cx[c], where c is the special constant
for ∃xC. Since the Bi’s are distinct, it follows that c does not occur in
B2, . . . , Bk.
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Let y be a variable not occurring in B1 → · · · → Bk → A. Then, by the
theorem on constants,

T c
n � (∃xC → Cx[y]) → B2 → · · · → Bk → A.

Hence, by the ∃-introduction rule,

T c
n � ∃y(∃xC → Cx[y]) → B2 → · · · → Bk → A.

Now,
T c

n � ∃xC → ∃yCx[y]

by the variant theorem. Since y does not occur in ∃xC, it follows that

T c
n � ∃y(∃xC → Cx[y]).

By the detachment rule,

T c
n � B2 → · · · → Bk → A.

Proceeding similarly, in k steps, we show that

T c
n � A.


�

The completeness theorem is a very important result in mathematical
logic. It shows that our definition of proof is a correct one. Besides, it is
quite useful. Instead of giving the tedious syntactical proofs, now one can
establish results using the notion of truth. This is often an easier job. Fur-
ther, arguments no longer depend on logical axioms and rules of inference.

The model of T obtained as above is called the Henkin model of T .

Let κ be an infinite cardinal. Recall that a theory T is called a κ-theory
if its language has at most κ nonlogical symbols.

Theorem 5.1.6 Let κ be an infinite cardinal and T a consistent κ-theory.
Then there is a model M of T such that |M | ≤ κ.

Proof. The model M obtained in the proof is of cardinality at most κ. (We
invite the reader to prove it.) 
�

Exercise 5.1.7 Let L(T ′) be an extension of L(T ). Show that T ′ is an
extension of T if and only if the restriction of every model of T ′ to L(T ) is
a model of T .

Exercise 5.1.8 Show that two theories are equivalent if and only if they
have the same models.
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Proposition 5.1.9 Any finite set of first-order sentences that is valid in
the theory T of torsion-free abelian groups is true in some abelian group
with torsion. Hence, the theory of torsion-free abelian groups is not finitely
axiomatizable.

Proof. Let A1, . . . , An be sentences of T that are valid in T . So, these are
theorems of T . Since every proof of Ai, 1 ≤ i ≤ n, contains only finitely
many axioms Pm of the form

∀x(¬(x = 0) → ¬(mx = 0)),

there is a natural number k such that Ai has a proof in T without using
axioms Pi for i > k. Since there are abelian groups such that the order of
each of its elements is ≤ k, the theory T ′ that is an extension of the theory
of abelian groups and whose new axioms are Pi, i > k, is consistent. Hence
it has a model. The result now follows. 
�
Exercise 5.1.10 Show the following:

(i) The theory of torsion-free abelian groups is not finitely axiomatizable.
(ii) The theory of divisible abelian groups is not finitely axiomatizable.
(iii) Any finite set of first-order sentences of the theory of fields that are

valid in the theory of fields of characteristic zero are valid in fields of
characteristic p for all large p.

(iv) The theory of fields of characteristic 0 is not finitely axiomatizable.

5.2 Interpretations in a Theory

In this section we define an interpretation of a theory T in another theory
T ′. Semantically, this would mean that given any model of T ′ one can define
a model of T . For instance, starting from the Peano axioms, we construct
rational numbers and show that they form a field. Thus we can say that
field theory has a model in Peano arithmetic.

Let L an L′ be first-order languages. An interpretation I of L in L′

consists of:

(a) a unary predicate symbol UI of L′, called the universe of L;
(b) for each constant symbol c of L, a constant symbol cI of L′;
(c) for each n-ary function symbol f of L, an n-ary function symbol fI of

L′;
(d) for each n-ary relation symbol p of L other than =, an n-ary relation

symbol pI of L′.

Let I be an interpretation of L in L′ as above and t a term of L. The
term, designated by tI , of L′ obtained from t by replacing each nonlogical
symbol u of L by uI is called the interpretation of t by I.
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An interpretation of L in a theory T ′ is an interpretation I of L in
L(T ′) such that

T ′ � UI(cI), (1)

T ′ � ∃xUIx, (2)

and
T ′ � UIx1 → · · · → UIxn → UIfIx1 . . . xn (3)

for each n-ary function symbol f of L.

The first condition requires that T ′ prove that the universe UI contains
cI ; the second requires that T ′ prove that UI is nonempty; the third requires
that in the theory T ′, fI be an n-ary function whose restriction to UI takes
values in UI . An interpretation I of L in T ′ may be thought of as a structure
of L in T ′ where the underlying universe is UI .

Let A be a formula of L. We now proceed to define a formula AI of L′

such that T ′ � AI will mean that A is true in the structure UI . Let AI be
the formula of L(T ′) obtained from A by replacing each nonlogical symbol
u occurring in A by uI and also replacing each subformula of A of the type
∃xB by ∃x(UIx ∧ BI). More precisely, we define AI by induction on the
rank of A. For atomic formulas, we obtain AI from A by replacing each
nonlogical symbol u occurring in A by uI . If A is ¬B or B ∨C, AI is ¬BI

or BI ∨ CI respectively. If A is ∃xB, AI is ∃x(UIx ∧ BI).
Finally, if v0, . . ., vn−1 are all the variables free in A (and hence in AI)

in alphabetical order, then AI is the formula

UIv0 → · · · → UIvn−1 → AI .

Note that if A is closed, then AI is the formula AI .

An interpretation of a theory T in a theory T ′ is an interpretation I
of L(T ) in L(T ′) such that for every nonlogical axiom A of T , T ′ � AI .

Theorem 5.2.1 If T has an interpretation in T ′ and if T ′ is consistent,
then so is T .

Proof. Let I be an interpretation of T in T ′ with universe UI . Since T ′ is
consistent, by the completeness theorem, it has a model M .

Set
N = (UI)M .

By (1) and the validity theorem, N is a nonempty set. For any relation
symbol p of T , let pN be the restriction of (pI)M to N . Now take a n-ary
function symbol f of T . By (2) and the validity theorem, N is closed under
(fI)M . We define fN to be the restriction of (fI)M to N . Thus, N is a
structure for L(T ).
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Now let A be a nonlogical axiom of T . Then T ′ � AI . Hence, by the
validity theorem, M |= AI . Now it is quite easy to check that N |= A. So
N is a model of T . 
�

5.3 Extension by Definitions

In a theory we begin with the minimal number possible of undefined con-
cepts (constant, function, and predicate symbols of the theory). Axioms of
the theory state their basic properties. But as the theory develops, more
and more concepts are introduced and they are treated as an integral part
of the theory. For instance, in number theory, subtraction is not a nonlogical
symbol of N . It is defined later. Similarly, in set theory, ⊂ (inclusion) is a
defined concept and not a nonlogical symbol of the language for set theory.
Results proved using these concepts are taken as theorems of the original
theory. In this section, we show that this is a logically correct process.

Let ϕ[v1, . . . , vn], vi’s distinct, be a formula of T . We form an extension T ′

of T by adding a new n-ary relation symbol p and adding a new nonlogical
axiom

pv1 · · · vn ←→ ϕ. (1)

The formula (1) is called the defining axiom for p.

Example 5.3.1 In ZF , if we add a binary relation symbol ⊂ and a new
axiom

x ⊂ y ←→ ∀z(z ∈ x → z ∈ y),

we get an extension by definition of ZF in which ⊂ (subset) is a defined
concept.

Proposition 5.3.2 Let ϕ[v1, . . . , vn] be a formula of T and let T ′ be ob-
tained from T by adding a new n-ary relation symbol p with

pv1 · · · vn ←→ ϕ

as its defining axiom. Then T ′ is a conservative extension of T .

Proof. Let A be a formula of T that is a theorem of T ′. By the completeness
theorem, the proof will be complete if we show that A is valid in T . Let M
be a model of T . Interpret p in M as follows: For a1, . . . , an ∈ M ,

p(a1, . . . , an) ⇐⇒ M |= ϕv1,...,vn
[ia1 , . . . , ian

].

Thus, we get a model M ′ of T ′. By the validity theorem,

M ′ |= A.

But this implies that
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M |= A.


�

Now we consider a similar method of adding a function symbol to a the-
ory. Let v0, . . . , vn−1 and w,w′ be distinct variables and ϕ[v0, . . . , vn−1, w]
a formula of T . Further, assume that

T � ∃wϕ (i)

and
T � (ϕ ∧ ϕw[w′]) → w = w′. (ii)

Informally speaking, conditions (i) and (ii) say that for all v0, . . . , vn−1,
there is a unique w “satisfying” ϕ. We form T ′ from T by adding a new
n-ary function symbol f and a new nonlogical axiom

w = fv0 · · · vn−1 ←→ ϕ. (iii)

The formula (iii) is called the defining axiom for f .

Example 5.3.3 In ZF , (after adding ⊂), consider the following formula
ϕ[x, y]:

∀z(z ∈ y ←→ z ⊂ x).

Using the power set, comprehension, and extensionality axioms, one shows
that the formula ϕ satisfies (i) and (ii) for T = ZF (in fact the extension of
ZF obtained by adding ⊂). So, one may add a new unary function symbol
P (traditionally called power set) and a new nonlogical axiom

y = P(x) ←→ ϕ.

Remark 5.3.4 Note that if n = 0, this method adds a new constant sym-
bol to T . As an example, we can add a constant symbol 0 (called empty
set) in an extension by definition of ZF . This can be seen as follows: Let
A[y] be the formula

∀x¬(x ∈ y).

Using the set existence, extensionality, and comprehension axioms of ZF ,
one shows that A satisfies conditions (i) and (ii) for T = ZF . One then
defines an extension by definition of ZF by adding a new constant symbol
0 and a new axiom

y = 0 ↔ A.

Proposition 5.3.5 Let T ′ be obtained from T by adding a new n-ary func-
tion symbol f with

w = fv0 · · · vn−1 ←→ ϕ

as its defining axiom. Then T ′ is a conservative extension of T .
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Proof. Let A be a formula of T that is a theorem of T ′. By the completeness
theorem, the proof will be complete if we show that A is valid in T . Let M
be a model of T . Interpret f in M as follows: For b, a0, . . . , an−1 ∈ M ,

b = f(a0, . . . , an−1) ⇐⇒ M |= ϕw,v0,...,vn−1 [ib, ia0 , . . . , ian−1 ].

Thus, we get a structure M ′ of L(T ′) that is an expansion of M . It is easy
to check that M ′ is a model of T ′.

By the validity theorem,
M ′ |= A.

But this implies that
M |= A.


�

We say that T ′ is an extension by definitions of T if T ′ is obtained
from T by a finite number of extensions of the two types that we have
described.

Theorem 5.3.6 If T ′ is an extension by definitions of T , then T ′ is a
conservative extension of T . In particular, T is consistent if and only if T ′

is consistent.

An interpretation I of T in T ′ is called faithful if for every formula ϕ
of T , T ′ � ϕI ⇒ T � ϕ.

Exercise 5.3.7 Suppose T has a faithful interpretation in an extension by
definitions of T ′ and T ′ is consistent. Show that T is consistent.

Remark 5.3.8 The previous exercise gives a method to prove relative con-
sistency results.

We state some interesting results without proof.

Theorem 5.3.9 Peano arithmetic PA has an interpretation in an exten-
sion by definitions of ZF . [6]

Theorem 5.3.10 Each of Peano arithmetic PA and ZF − Infinity has a
faithful interpretation in an extension by definitions of the other. In partic-
ular, PA is consistent if and only if ZF −Infinity is consistent. [6, Exercise
30, p.149].

5.4 Compactness Theorem and Applications

In this section we present the compactness theorem for first-order theories.
This was first proved for countable theories by Gödel in 1930. In its full
generality, it was proved by Malcev. Malcev was also the first who saw the
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power of this theorem. Using the completeness theorem, it is now trivial to
prove.

Theorem 5.4.1 (Compactness theorem for first-order theories)
A theory T has a model if and only if each of its finitely axiomatized parts
has a model.
Proof.

T has a model ⇔ T is consistent
⇔ each finitely axiomatized part of T is consistent
⇔ each finitely axiomatized part of T has a model.


�

We now give some applications of the compactness theorem.

Proposition 5.4.2 Let T be a theory that has arbitrarily large finite mod-
els. Then T has an infinite model.

Proof. Let {cn : n ∈ N} be a sequence of distinct symbols not appearing
in L. Let T ′ be the extension of T obtained by adding each cn as a new
constant symbol and for each m < n, the formula ¬(cn = cm) as a new
axiom.

Since T has arbitrarily large finite models, each finite part of T ′ has a
model. Hence, by the compactness theorem, T ′ has a model. Clearly, any
model of T ′ is infinite and a model of T . 
�

Remark 5.4.3 This also shows that there is no theory T whose models
are precisely the finite sets.

We can use the above idea to build models of arbitrarily large cardinali-
ties.

Theorem 5.4.4 (Tarski) Let κ be an infinite cardinal. Assume that T has
an infinite model M . Then T has a model of cardinality at least κ.

Proof. Fix a set {cα : α < κ} of cardinality κ of distinct symbols not
appearing in L. Let L′ be the extension of L obtained by adding each cα

as a constant symbol. Set

Γ = {cα �= cβ : α �= β}.

Consider the theory
T ′ = T [Γ ]

with language L′.
We claim that T ′ is finitely satisfiable. To see this, fix a finite subset Γ ′

of Γ . Let cα1 , . . . , cαk
be all the new constants that appear in a formula

in Γ ′. Since M is infinite, there exist distinct elements b1, . . . , bk of M .
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Interpret cαi
by bi, 1 ≤ i ≤ k. Then we get a model of T in which Γ ′ is

satsifiable. Thus, by the compactness theorem, T ′ has a model. Now note
that any model of T ′ is of cardinality at least κ and a model of T . 
�

Under the hypothesis of Tarski’s theorem, we can say more.

Theorem 5.4.5 (Tarski) Let κ be an infinite cardinal and T a consistent
κ-theory. Assume that T has an infinite model M . Then T has a model of
cardinality κ.

Proof. Let T ′ be the theory obtained from T as in the proof of Theorem
5.4.4. Note that T ′ is a consistent κ-theory. By Theorem 5.1.6, T ′ has a
model N of cardinality at most κ. Since any model of T ′ is of cardinality
at least κ, |N | = κ. Thus, we get a model of T of cardinality κ. 
�

Corollary 5.4.6 (Löwenheim–Skolem) Every countable consistent the-
ory has a countable model.

Remark 5.4.7 ZFC is a countable theory. Assume that ZFC is consis-
tent. Then ZFC has a countable model, say V . However, in ZFC we can
prove that the set of real numbers R is uncountable. How can a countable
model contain an uncountable set? This paradox is resolved as follows: no
bijection from N (the set of all natural numbers) onto R

V , the set of all
reals in V , is in the model V .

Theorem 5.4.8 (Upward Löwenheim–Skolem theorem) Let κ be an
infinite cardinal, L have at most κ nonlogical symbols, and let N be an
infinite structure of L of cardinality at most κ. Then there is a structure
M of cardinality κ such that N has an elementary embedding in M .

Proof. Let Nel be the theory whose language is LN and whose axioms are
formulas of the form ϕ[ia] (a ∈ Nn, n ≥ 0) that are valid in N . Since N is
a model of Nel, the theory Nel is consistent. Further, the model N of Nel

is infinite. Hence, by Theorem 5.4.5, Nel has a model M of cardinality κ.
Now define α : N → M by

α(a) = (ia)M , a ∈ N,

i.e., α(a) is the meaning of ia in M . We claim that α : N → M is an
elementary embedding.

Let a1, a2 be distinct elements of N . Then

N |= ¬(ia1 = ia2),

i.e., ¬(ia1 = ia2) is an axiom of Nel. Hence,

M |= ¬(ia1 = ia2),

i.e., α(a1) �= α(a2). Thus, α is an injection.
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Since M is a model of Nel, α is clearly an elementary embedding of N
into M . 
�

The compactness theorem gives nonstandard models of number theory,
real numbers, etc.

The set N with the usual S, +, · and < will be called standard model
of N and of PA. A formula ϕ of N or of an extension by definitions of N
will be called true if it is valid in the standard model N.

Proposition 5.4.9 There is a model M of the theory N having an element
b such that for every natural number n, (n)M < b.

Proof. Recall that the set of all natural numbers N = {0, 1, 2, . . .} is a
model of N . Take a new constant symbol c and for each natural number
m, let Am be the formula m < c. Now consider the theory

N ′ = N [{Am : m ∈ N}].

Since every finite set of natural numbers has an upper bound in N, it follows
that N ′ is finitely satisfiable. Hence, by the compactness theorem, it has a
model M . This model has the required properties with b = cM . 
�

Exercise 5.4.10 Show that there are models of N of arbitrarily large in-
finite cardinalities.

Proposition 5.4.11 There is an ordered field ∗
R that is not archimedean.

Proof. Let T be the theory of ordered fields. Consider the extension T ′ of T
obtained by adding a new constant symbol c and the following new axioms:

n1 < c, n ∈ N.

Since the real line R is a model of each finitely axiomatized part of T ′, by
the compactness theorem, T ′ is consistent. Let ∗

R be a model of T ′ and
1, b the interpretations of 1 and c respectively in this model. Then n1 < b
for all n. Thus ∗

R is not archimedean. 
�

Exercise 5.4.12 Show that there is no first-order theory whose models
are precisely archimedean ordered fields.

Exercise 5.4.13 Show that there is no first-order theory whose language
has only one nonlogical symbol, namely a binary relation symbol, and whose
models are precisely the well-ordered sets.

5.5 Complete Theories

In this section we shall study general properties of complete theories.
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Proposition 5.5.1 Let T be a consistent theory. Then the following state-
ments are equivalent:

(1) The theory T is complete.
(2) Any two models M and N of T are elementarily equivalent.
(3) For any model M of T , T is equivalent to Th(M).

Proof. We first show that (1) implies (2). Let ϕ be a sentence in T . If
T � ϕ, then M |= ϕ as well as N |= ϕ. If T � ¬ϕ, then N �|= ϕ and M �|= ϕ.
Thus (1) implies (2)

Now assume (2). Any model of Th(M) is clearly a model of T . On the
other hand, let N be a model of T . By (2), every theorem of Th(M) is
valid in N , i.e., N is a model of Th(M). So, T and Th(M) are equivalent
by Proposition 5.5.1.

We now prove that (3) implies (1). Let ϕ be a closed formula. Exactly
one of ϕ, ¬ϕ is in Th(M). Hence, by (3), one of them is a theorem of T .

�

Exercise 5.5.2 Show that there exists a nonarchimedean ordered field
elementarily equivalent to the field of reals.

Let κ be an infinite cardinal. A consistent κ-theory T is called
κ-categorical if any two models of T of cardinality κ are isomorphic.

Our interest in this concept stems from the following result of Robert
Vaught.

Theorem 5.5.3 (Vaught) Let κ be an infinite cardinal and T a consis-
tent κ-theory all of whose models are infinite. If T is κ-categorical, T is
complete.

Proof. Suppose a sentence ϕ is not decidable in T . By Proposition 4.4.5,
the theories T1 = T [ϕ] and T2 = T [¬ϕ] are consistent. Since T has no finite
models, both T1 and T2 have infinite models. So, by Theorem 5.4.5, T1 and
T2 have models M1 and M2 respectively of cardinality κ. Hence, by the
hypothesis of the theorem, they are isomorphic. But ϕ is valid in M1 and
not in M2. Thus we have arrived at a contradiction. Hence, T is complete.

�

Proposition 5.5.4 The theory DLO of order-dense, linearly ordered sets
with no first and no last elements is complete.

Proof. By Exercise 2.4.3, DLO is ℵ0-categorical, where ℵ0 is the first in-
finite cardinal. Clearly all its models are infinite. Therefore by Vaught’s
theorem (Theorem 5.5.3), DLO is a complete theory. 
�
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5.6 Applications in Algebra

Let (G,+) be a divisible torsion-free abelian group. Then for every x ∈ G
and every n ≥ 1, there is a unique y ∈ G such that ny = x. We set y = x/n.
Now for any rational number m/n, we define m

n x = m(x/n). It is easy to
check that (G,+) with this definition of scalar product is a vector space
over the field of rationals Q.

Proposition 5.6.1 Any two divisible torsion-free abelian uncountable
groups G1 and G2 of the same cardinality are isomorphic.

Proof. We treat both G1 and G2 as vector spaces over the field Q of ratio-
nals. Let Bi be a basis of of Gi, 1 ≤ i ≤ 2. Since each Gi is uncountable,
we have

|B1| = |G1| = |G2| = |B2|.
Hence, G1 and G2 are isomorphic as vector spaces. In particular, they are
isomorphic as groups. 
�

Hence by Vaught’s theorem (Theorem 5.5.3), we have the following re-
sult.

Theorem 5.6.2 The theory of divisible torsion-free abelian groups is com-
plete.

It is known that two algebraically closed fields are isomorphic if and only
if they have the same characteristic and same transcendence degree. Let κ
be an uncountable cardinal. It is known that an algebraically closed field
is of transcendence degree κ if and only if it is of cardinality κ. [7]. So we
have the following theorem.

Theorem 5.6.3 Let κ be an uncountable cardinal. Then ACF (0) and
ACF (p), p > 1, are κ-categorical.

Let F = {a1, . . . , ak} be a finite field and let 1 denote its multiplicative
identity. Then the polynomial

1 + (x − a1) · (x − a2) · · · (x − an)

has no zero in F. Hence every algebraically closed field is infinite. Thus all
models of ACF are infinite. Now by Vaught’s theorem (Theorem 5.5.3), we
have the following result.

Theorem 5.6.4 The theories ACF (0) and ACF (p), p > 1, are all com-
plete.

Theorem 5.6.5 Let ϕ be a sentence of the language of the theory of rings
with identity. Then the following statements are equivalent:

(i) ϕ is valid in the field C of complex numbers.
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(ii) ϕ is valid in all algebraically closed fields of characteristic 0.
(iii) ϕ is valid in some algebraically closed field of characteristic 0.
(iv) There is an m such that for all prime p > m, ϕ is valid in some

algebraically closed field of characteristic p.
(v) There is an m such that for all prime p > m, ϕ is valid in all alge-

braically closed fields of characteristic p.

Proof. By Proposition 5.5.1, (i) implies (ii) and also (iii) implies (ii). Now
assume (ii). Then by the completeness theorem, ϕ is theorem of ACF (0).
Since a proof of ϕ contains only finitely many nonlogical axioms, there is
an m such that for all primes p > m, ϕ is a theorem of ACF (p). Hence
(iv) is true by the validity theorem.

The statement (iv) implies (v) because each ACF (p) is complete. We
now show that (v) implies (ii). Let ACF (0) �|= ϕ, i.e., ϕ is not valid in
ACF (0). Since ACF (0) is complete, it follows that ¬ϕ is valid in ACF (0).
Since (ii) implies (v), it follows that there is an m′ such that for all primes
p > m′, ¬ϕ is valid in all algebraic closed fields of characteristic p. So, (v)
is false. 
�

We close this chapter by giving an application in algebra. We recall a
standard result from algebra.

Proposition 5.6.6 Let p be a prime, Fp the field with p elements, and Fp

its algebraic closure. Then

Fp = ∪n≥1Fpn .

In particular, every subfield of Fp generated by finitely many elements is
finite.

Proposition 5.6.7 Let p > 1 be prime and

f1(X1, . . . , Xn), . . . , fn(X1, . . . , Xn) ∈ Fp[X1, . . . , Xn].

If the map
f = (f1, . . . , fn) : Fp

n → Fp
n

is injective, it is surjective.

Proof. Suppose f is not surjective. Let {a1, . . . , ak} be the set of all coeffi-
cients of f1, . . . , fn. Let b1, . . . , bn ∈ Fp be such that (b1, . . . , bn) is not in the
range of f . Let K be the subfield of Fp generated by {a1, . . . , ak, b1, . . . , bn}.
By Proposition 5.6.6, K is finite. But now we have an injective map
f : K

n → K
n that is not surjective. This is impossible since K

n is a fi-
nite set. 
�

Theorem 5.6.8 (Ax) Let K be an algebraically closed field and

f1(X1, . . . , Xn), . . . , fn(X1, . . . , Xn) ∈ K[X1, . . . , Xn].
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If the map
f = (f1, . . . , fn) : K

n → K
n

is injective, it is surjective.

Proof. Let each fi be of degree at most d. It is not hard to see that there
is a sentence ϕ of the language of ring theory saying that if f1, . . . , fn are
polynomials of degree at most d and if the map f = (f1, . . . , fn) is injective,
then it is surjective.

Let K be of characteristic p for some prime p > 1. Then ϕ is valid in Fp

by Proposition 5.6.7. So ϕ is valid in K by Theorem 5.6.4 and Proposition
5.5.1.

Now let K be of characteristic 0. In this case the result follows from
Proposition 5.6.7 and Theorem 5.6.5. 
�



6
Recursive Functions
and Arithmetization of Theories

Let us ask the following question: is there an algorithm to decide whether an
arbitrary sentence of the theory N is a theorem? Many important math-
ematical problems are of this type. For instance, the famous Hilbert’s
tenth problem sought for an algorithm to decide whether an arbitrary
polynomial equation

F (X1, . . . , Xn) = 0

with integer coefficients (also known as a Diophantine equation) has a solu-
tion in rational numbers. Problems of this form are called decision prob-
lems.

The possibility of nonexistence of an algorithm for a decision problem
calls for defining the notion of algorithm precisely. This was considered
by several logicians including Herbrand, Church, Kleene, Gödel, and Tur-
ing. Several possible definitions were advanced, and quite remarkably, all
of them were shown to be equivalent. The notion of algorithm is quite
important for the incompleteness theorems. We shall adopt the definition
given by Gödel. He introduced a class of functions f : N

k → N
l, now called

recursive functions. These are all the functions that can be computed me-
chanically. The definition given by Gödel is quite mathematical and helps
to prove quite a strong form of incompleteness theorem.

In this chapter we shall study recursive functions. We shall also introduce
techniques to show how a general decision problem can be converted into
showing whether a partcular function is recursive.
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6.1 Recursive Functions and Recursive Predicates

Throughout this and the next section, unless otherwise stated, by a number
we shall mean a natural number, by a relation or a predicate we shall mean
an n-ary relation on N, n ≥ 1, and by a function we shall mean a function
of the form f : N

m → N
n, m,n ≥ 1. A sequence of numbers (n0, . . . , nk−1)

will usually be denoted by n. Further, we shall not distinguish between a k-
ary relation and a subset of N

k. In fact, in our context, it is more convenient
and natural to treat a subset of N

k as a k-ary relation. Thus, for P,Q ⊂ N
k,

¬P = P c = N
k \ P, P ∨ Q = P ∪ Q, P ∧ Q = P ∩ Q,

and
P → Q = P c ∪ Q, P ↔ Q = (P → Q) ∩ (Q → P ).

If Q ⊂ N
k+1, we have the following equivalence:

∃mQ(m,n) ↔ (π1Q)(n),

where π1Q denotes the projection of Q to the last N
k coordinate space.

The characteristic function χA of A ⊂ X is defined by

χA(x) =
{

0 if x ∈ A,
1 otherwise.

We caution the reader that some authors define χA(x) to be 1 if x ∈ A
and 0 otherwise.

Let P be a k-ary relation. We define a (k − 1)-ary function by

µmP (m,n) =
{

0 if ∀m¬P (m,n),
first m such that P (m,n) holds otherwise,

where n = (n0, . . . , nk−2). In paricular, if k is 1, this defines the following
natural number:

µmP (m) =
{

0 if ∀m¬P (m),
first m such that P (m) holds otherwise.

The operation µ is called minimalization. In the sequel, we shall also
need bounded minimalization µ< and bounded quantifiers ∃<, ∀<,
∃≤, and ∀≤. We define

µ<mP (m,n) ↔ µk[P (k, n) ∨ k = m],

∃<mP (m,n) ↔ ∃k[k < m ∧ P (k, n)],

and
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∀<mP (m,n) ↔ ∀k[k < m → P (k, n)].

The bounded quantifiers ∃≤ and ∀≤ are similarly defined.
We give below examples of some simple functions.
Successor Function: S(n) = n + 1;
Constant Functions: For any k ≥ 1 and any p ≥ 0,

Ck
p (n1, . . . , nk) ≡ p;

Projection Functions: For any k ≥ 1 and 1 ≤ i ≤ k,

πk
i (n1, . . . , nk) = ni.

The functions + (addition), · (multiplication), χ<, and πk
i , k ≥ 1, 1 ≤

i ≤ k, will be called initial functions.

Now we fix some constructive schemes for defining a function f from
given functions.

Composition: Given h(n1, . . . , nm) and gi(l1, . . . , lk), 1 ≤ i ≤ m, define

f(l1, . . . , lk) = h(g1(l1, . . . , lk), . . . , gm(l1, . . . , lk)).

Minimalization: Given a function g of (m + 1) variables such that
for every (n1, . . . , nm), there is a k such that g(k, n1, . . . , nm) = 0, we
define f by

f(n1, . . . , nm) = µk[g(k, n1, . . . , nm) = 0].

A function f is called recursive if it can be defined by successive appli-
cations of composition and minimalization starting with initial functions.
More precisely, the set of recursive functions is the smallest collection of
functions that contains all initial functions and that is closed under com-
position and minimalization. A relation R is called recursive if its char-
acteristic function χR is recursive.

Note that by definition, < is a binary recursive predicate.
It has been accepted that a function is “computable mechanically” if and

only if it is recursive. The statement in italics is known as Church’s thesis.
Once again we mention that several natural definitions of mechanically
computable functions were given. All definitions are shown to be equivalent.

We shall see that many decision problems can be turned into showing
whether a function f : N

m → N
n is computable.

Remark 6.1.1 It is quite easy to see that the sets of recursive functions
and recursive predicates are countable. So, there are functions and pred-
icates that are not recursive. However, it is not easy to give examples of
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such functions and prediactes. This is because nonrecursive functions and
nonrecursive predicates are, in some sense, nonconstructive.

Now we proceed systematically to give examples and closure properties
of recursive functions and predicates.

If π : N
k → N

n is the projection to the first n coordinate spaces and if f
is a an n-ary recursive function, so is the k-ary map g defined by

g(u) = f(π(u)).

Lemma 6.1.2 If P (n) is a k-ary recursive predicate and if fi(u), 1 ≤ j≤k,
are recursive, then the predicate

Q(u) ⇐⇒ P (f1(u), . . . , fk(u))

is recursive. In particular, if π is a permutation of {0, 1, . . . , n − 1} and P
an n-ary recursive predicate, then so is the predicate Q defined by

Q(l0, . . . , ln−1) ↔ P (lπ(0), . . . , lπ(n−1)).

Proof. Since the set of all recursive functions is closed under composition,
the result follows from the following identity:

χQ(u) = χP (f1(u), . . . , fk(u)).


�

The above closure property of the set of all recursive predicates is called
closure under recursive substitutions.

Lemma 6.1.3 If P (m,n) is a recursive predicate such that for every n,
P (m,n) holds for some m, then

f(n) = µmP (m,n)

is recursive.

Proof. The result follows from the identity

f(n) = µm[χP (m,n) = 0]

and the minimalization rule. 
�

Lemma 6.1.4 Every constant function Ck
p , k ≥ 1, p ≥ 0, is recursive. In

particular, ∅ and each N
k are recursive.

Proof. For each k, we prove the result by induction on p. Since
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Ck
0 (n) = µm[πk+1

1 (m,n) = 0],

Ck
0 is recursive. Assume that Ck

p is recursive. Now,

Ck
p+1 = µm[Ck

p < m].

The result follows by the induction hypothesis. 
�

In what follows, instead of giving complete proofs, we shall define func-
tions and predicates in such a way that it would not be hard to show that
they are recursive.

Example 6.1.5 The successor function S(n) = n + 1 is recursive. This
follows from the identity

S(n) = π1
1(n) + C1

1 (n).

Example 6.1.6 The binary predicates ≤, >, and ≥ are recursive. This fol-
lows from the following equvalences and the closure properties of recursive
predicates already proved:

m ≤ n ⇐⇒ m < n + 1,

m > n ⇐⇒ n < m,

m = n,

and
m ≥ n ⇐⇒ m + 1 > n.

Proposition 6.1.7 If P and Q are n-ary recursive predicates, so are ¬P
and P ∨ Q. It follows that the predicates P ∧ Q, P → Q, and P ↔ Q are
also recursive if P and Q are. In particular each finite subset of N

k, k ≥ 1,
is recursive.

Proof. The result follows from the following identity:

χ¬P (p) = χ<(0, χP (p)) and χP∨Q(p) = χP (p) · χQ(p),

where p = (p1, . . . , pn). 
�

Example 6.1.8 We define m · n as follows:

m
·

n =
{

m − n if m ≥ n,
0 otherwise.

The function m · n is recursive. To see this, note the following identity:
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m
·

n = µk[n + k = m ∨ m < n].

Exercise 6.1.9 Show that the following functions are recursive:

(i) |m − n|.
(ii) min(m,n).
(iii) max(m,n).
(iv)

α(n) =
{

1 if n = 0,
0 if n > 0.

(v)

sg(n) =
{

0 if n = 0,
1 if n > 0.

Exercise 6.1.10 Show that the set of all recursive functions is closed un-
der bounded minimalization; the set of all recursive predicates is closed
under bounded quantifiers.

Remark 6.1.11 In the next chapter, we shall show that the set of all
recursive predicates is not closed under existential and universal quantifiers.

Exercise 6.1.12 Let A1, . . . , Am be pairwise disjoint recursive subsets of
N

k whose union is N
k. Suppose f1, . . . , fm are k-ary recursive functions.

Define g : N
k → N by

g(a) =

⎧

⎪
⎨

⎪
⎩

f1(a) if a ∈ A1,
...

fm(a) if a ∈ Am.

Show that g is recursive.

We now proceed to show that we can effectively code a finite sequence of
numbers, a finite sequence of finite sequences of numbers, etc. by numbers.
This remarkable idea is due to Gödel, and he turned it into a powerful tool
for proving his incompleteness theorems.

Exercise 6.1.13 The following predicates are recursive:

(i) (Divisibility) m|n ↔ ∃≤nk[m · k = n].
(ii) (Prime) Prime(p) ↔ p is a prime.
(iii) (Relatively prime) RP (m,n) ↔ m �= 0∧n �= 0∧∀p ≤ m[(Prime(p)∧

p|m) → ¬p|n].

For an ordered pair (m,n) of natural numbers, we define

OP (m,n) = (m + n) · (m + n + 1) + n + 1.
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Clearly, OP (m,n) is recursive.

Lemma 6.1.14 The function OP is one-to-one.

Proof. Let OP (m,n) = OP (m′, n′). We first show that m + n = m′ + n′.
Suppose not. Without any loss of generality, we assume that m + n <
m′ + n′. Now

OP (m,n) ≤ (m + n + 1)2 ≤ (m′ + n′)2 < OP (m′, n′).

This is a contradiction.
Since m + n = m′ + n′ and OP (m,n) = OP (m′, n′), from the definition

of OP , it follows that n = n′. This, in turn, implies that m = m′ too. 
�

We shall need the following two simple lemmas from number theory.

Lemma 6.1.15 Let m1, . . . ,mk and n1, . . . , nl be sequences of numbers
such that ∀i∀j[RP (mi, nj)]. Then there is a number x such that ∀i[mi|x]
and ∀j[RP (x, nj)].

Proof. Take x to be the product of all the mi’s. If a prime p divides x, it
divides some mi. Hence, ¬p|nj for all j. The result follows. 
�

Lemma 6.1.16 ∀m,n∀j[m|n → RP (1 + (j + m)n, 1 + jn)].

Proof. Let p be a prime number such that p|1+(j+m)n as well as p|1+jn.
Then p|mn. Since p is a prime, either p|m or p|n. If p|m, then p|n also
because m|n. Hence, p|n. But then ¬(p|1 + jn). This contradiction proves
our result. 
�

The following result is due to Gödel.

Theorem 6.1.17 There is a 2-ary function β(n, i) satisfying the following
properties:

(a) β is recursive.
(b) β(0, i) = 0 for all i.
(c) n �= 0 → β(n, i) < n for all i.
(d) For every finite sequence n = (n0, . . . , nk−1) of positive length, there is

an n such that
∀i < k[β(n, i) = ni].

Proof. Define

β(n, i) = µ<nx∃<ny∃<nz[n = OP (y, z) ∧ (1 + (OP (x, i) + 1) · z)|y],

i.e., β(n, i) is the first natural number x < n for which there exist y, z < n
satisfying n = OP (y, z) and y|1 + (OP (x, i) + 1) · z. If such an x does not
exist, β(n, i) = n · 1.
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Properties (a)–(c) of β follow from the definition. To prove (d), take a
finite sequence n = (n0, . . . , nk−1) of positive length. Let

u = max{OP (ni, i) + 1 : i < k},

and z the product of all nonzero numbers less than u. Then, by Lemma
6.1.16,

j < l < u =⇒ RP (1 + jz, 1 + lz).

For i < k, set
mi = 1 + (OP (ni, i) + 1)z.

Let {lj} be an enumeration of all numbers of the form 1 + vz, where 0 <
v < u and v �= OP (ni, i) + 1 for all i < k. Then, by Lemma 6.1.15, there is
a number y such that

∀j < u[1 + jz|y ⇐⇒ ∃i(j = OP (ni, i) + 1)].

Set n = OP (y, z).
It remains to show that β(n, i) = ni for all i. This will follow if we show

that ni is the smallest number x such that

1 + (OP (x, i) + 1)z|y.

Note that this will follow if for all x < ni, OP (x, i) < u and OP (x, i) �=
OP (nj , j) for all j. This can easily be seen using the fact that OP is one-
to-one (Lemma 6.1.14). 
�

The function β defined above is called Gödel’s β-function.

For each n ≥ 1 and each finite sequence (k1, . . . , kn), we define

〈k1, . . . , kn〉 = µm[β(m, 0) = n ∧ β(m, 1) = k1 ∧ · · · ∧ β(m,n) = kn].

We shall call such a number a sequence number.

The empty sequence of natural numbers will be denoted by 〈 〉, and its
sequence number equals 0 by definition.

We now introduce some relations and functions of sequence numbers:
seq will denote the set of all sequence numbers, lh(n) = β(n, 0) (the

length of the sequence coded by n), (n)i = β(n, i + 1) (the ith element of
the sequence coded by n), and concatenation

〈m0, . . . ,ml · 1〉 ∗ 〈n1, . . . , nk · 1〉 = 〈m0, . . . ,ml · 1, n0, . . . , nk · 1〉.

Proposition 6.1.18 The following functions and predicates are recursive:
n −→ lh(n), (n, i) −→ (n)i, seq, and the concatenation (m,n) → m ∗ n.
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Proof. Since lh(n) = β(n, 0) and (n)i = β(n, i+1) and since β is recursive,
the functions lh(n) and (n)i are recursive. That seq is recursive follows
from the following equivalence:

seq(n) ⇐⇒ ∃<nu0, . . . , ulh(n) · 1∀0 ≤ i < lh(n)[β(n, i) = ui].

Let m = 〈m0, . . . ,mlh(m)−1〉 and n = 〈n0, . . . , nlh(n)−1〉. Then

m ∗ n = µu[seq(u) ∧ lh(u) = lh(m) + lh(n)
∧∀i < lh(m)((u)i = mj) ∧ ∀j < lh(n)((u)l+j = nj)].

Hence the concatenation function ∗ is recursive. 
�

We introduce yet another operation on recursive functions.
Primitive Recursion: Given an m-ary function g and an (m + 2)-ary

function h, we define an (m + 1)-ary function f by

f(0, n) = g(n),
f(k + 1, n) = h(f(k, n), k, n).

The scheme of primitive recursion is a general form of definition of func-
tions by induction. It should be noted that m may be 0 and that a 0-ary
function is nothing but a constant. Thus given a natural number p and a
2-ary function h, this procedure defines a sequence {xk} by induction: set
x0 = p and xk+1 = h(xk, k). Intuitively it should be obvious that if g and
h are “computable,” so is f .

Proposition 6.1.19 If g is an m-ary and h an (m+2)-ary recursive func-
tion and if f is defined by primitive recursion as above, then f is recursive.

Proof. The function f : N
m+1 → N is defined by

f(0, n) = g(n),
f(k + 1, n) = h(f(k, n), k, n).

We first define a function F : N
m+1 → N as follows:

F (p, n) = µk[lh(k) = p + 1 ∧ (k)0 = g(n)
∧ ∀i < p((k)i+1 = h((k)i, i, n)].

By the closure properties of recursive functions and recursive predicates,
F is recursive. Now note that for all p ≥ 0,

f(p, n) = (F (p, n))p.

The result can now easily be seen. 
�

Exercise 6.1.20 Let R be the smallest set of functions that contains the
successor function S, constant functions Cn

k , and the projection maps πn
i ,
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and that is closed under composition, minimalization, and primitive recur-
sion. Show that a function is recursive if and only if it belongs to R.

The previous exercise gives a more traditional definition of recursive func-
tions. Further, coding a sequence, sequence of sequences, etc. is achieved
more easily with this definition. However, our definition of recursive func-
tions is chosen to give the best-known form of Gödel’s theorem.

Example 6.1.21 The exponentiation function mn inductively defined by

m0 = 1,
mn+1 = mn · m,

is recursive.

Exercise 6.1.22 The function n! is recursive.

Exercise 6.1.23 Show that the predecessor function p(n) defined be-
low is recursive:

p(0) = 0,
p(n + 1) = n.

Exercise 6.1.24 Show that the functions max {m,n}, min {m,n}, and for
any k > 1, max {n1, . . . , nk} and min {n1, . . . , nk} are recursive.

Exercise 6.1.25 Let 2 = p0, p1, p2, . . . be the increasing enumeration of
all prime numbers. Show that n → pn is recursive.

Exercise 6.1.26 (Closure under complete recursion) Let f(m,n) be
recursive and g(m,n) be defined by the equation

g(m,n) = f(〈g(0, n), . . . , g(m − 1, n), n).

Show that g is recursive. (What is g(0, n?)

Proposition 6.1.27 A function f : N
k → N is recursive if and only if its

graph gr(f) is recursive, where for any n ∈ N
k,

(n,m) ∈ gr(f) ⇐⇒ f(n) = m.

Proof. If f is recursive, gr(f) is recursive because = is recursive and the
set of all recursive predicates is closed under recursive substitutions. Con-
versely, if gr(f) is recursive, f is recursive because of the following identity:

f(n) = µm[(n,m) ∈ gr(f)].


�
We prove the following result using the well-known diagonal argument of

Cantor. Gödel uses it beautifully to prove the first incompleteness theorem.
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Proposition 6.1.28 There is no recursive set U ⊂ N × N such that for
every recursive set A ⊂ N there is an n ∈ N satisfying

∀m[m ∈ A ⇐⇒ (n,m) ∈ U ],

i.e., there is no recursive set U ⊂ N×N whose vertical sections exactly list
all recursive subsets of N.

Proof. Suppose such a recursive set U exists. Define

A∗ = {m ∈ N : (m,m) �∈ U}.

Since the predicate U c is recursive and since the set of all recursive pred-
icates is closed under recursive substitutions, A∗ is recursive. So, by the
hypothesis, there is an n∗ ∈ N such that

∀m[m ∈ A∗ ⇐⇒ (n∗,m) ∈ U ]. (∗)

If n∗ ∈ A∗, (n∗, n∗) ∈ U by (∗). But then n∗ �∈ A∗ by the definition of
A∗. On the other hand, if n∗ �∈ A∗, (n∗, n∗) ∈ U c by (∗). But then n∗ ∈ A∗

by the definition of A∗. We have arrived at a contradiction. 
�

For the next exercise, recall the definition of standard model and true
formulas of N .

Exercise 6.1.29 Recall that for any n ∈ N, kn denotes the term

S · · ·S
︸ ︷︷ ︸

n times

0

of N . Let ϕ[x1, . . . , xp] be an open formula of N . Show that the predicate

{n ∈ N
p : ϕx1,...,xp

[kn1 , . . . , knp
] is true}

is recursive.

6.2 Semirecursive Predicates

A nonempty subset of N
k is called semirecursive or recursively enu-

merable (r.e., for short) if it is the projection to the last k coordinate space
of a (k +1)-ary recursive predicate, i.e., there is a recursive Q ⊂ N

k+1 such
that for every n ∈ N

k,

P (n) ⇐⇒ ∃m[Q(m,n)].

Proposition 6.2.1 Every recursive predicate is semirecursive.



94 6. Recursive Functions and Arithmetization of Theories

Proof. Let P be a k-ary recursive predicate. Define Q ⊂ N
k+1 by

Q(m,n) ⇐⇒ P (n).

Then Q is recursive and P (n) ⇐⇒ ∃mQ(m,n). Hence P is semirecursive.

�

Proposition 6.2.2 The set of all semirecursive predicates is closed under
∨, ∧, projections, bounded universal quantifiers, and recursive substitutions.

Proof. Let P and Q be k-ary semirecursive predicates. Fix (k + 1)-ary
recursive predicates P ′ and Q′ such that for all n ∈ N

k,

P (n) ⇐⇒ ∃mP ′(m,n) and Q(n) ⇐⇒ ∃mQ′(m,n).

Let fi, 1 ≤ i ≤ k, be l-ary recursive functions. For any n ∈ N
k, m ∈ N

l

note the following:

(P ∨ Q)(n) ⇐⇒ ∃m[(P ′ ∨ Q′)(m,n)],

P (f1(m), . . . , fk(m)) ⇐⇒ ∃rP ′(r, f1(m), . . . , fk(m)),

and
(P ∧ Q)(n) ⇐⇒ ∃m[P ′((m)0, n) ∧ Q′((m)1, n)].

These show that the set of all semirecursive predicates is closed under ∨,
∧, and recursive substitutions.

We use Gödel’s coding functions to show other closure properties also.
Let P be a (k + 2)-ary recursive predicate and let Q be defined by

Q(n) ⇐⇒ ∃l∃mP (l,m, n).

Then
Q(n) ⇐⇒ ∃mP ((m)0, (m)1, n).

This shows that the set of all semirecursive predicates is closed under the
existential quantifier.

Let P be a (k + 1)-ary semirecursive predicate and let Q be defined by

Q(m,n) ⇐⇒ ∀<mpP (p, n).

Let R ⊂ N × N
k+1 be a recursive predicate such that

∀p∀n ∈ N
k[P (p, n) ⇐⇒ ∃qR(q, p, n)].

Then

Q(m,n) ⇐⇒ ∃q[seq(q) ∧ lh(q) = m ∧ ∀<mpR((q)p, p, n)].
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This shows that the set of all semirecursive predicates is closed under the
bounded universal quantifier ∀<. The result is now easily seen. 
�
Exercise 6.2.3 A nonempty subset P of N is semirecursive if and only if
it is the range of a unary recursive function.

The following is an important result in recursive function theory.

Theorem 6.2.4 (Kleene) A predicate P is recursive if and only if both
P and ¬P are semirecursive.

Proof. If P is recursive, so is ¬P . By Proposition 6.2.1, both P and ¬P
are semirecursive.

Now let P be k-ary and both P and ¬P be semirecursive. Choose (k+1)-
ary recursive predicates Q and R such that for all n ∈ N

k,

P (n) ⇐⇒ ∃mQ(m,n) and ¬P (n) ⇐⇒ ∃mR(m,n).

Then S = Q ∨ R is recursive. Note that

∀n ∈ N
k∃mS(m,n).

We define
s(n) = µmS(m,n).

The function s is recursive. Further,

P (n) ⇐⇒ Q(s(n), n).

This shows that P is recursive. 
�
Remark 6.2.5 Let P ⊂ N

k be semirecursive and let there exist a (k + 1)-
ary recursive predicate Q such that for all n,

P (n) ⇐⇒ ∀mQ(n,m).

Then P is recursive. By Theorem 6.2.4, our assertion will be proved if we
show that ¬P is semirecursive. This follows from the following equivalence:

¬P (n) ⇐⇒ ∃m¬Q(n,m).

Proposition 6.2.6 Let f : N
k → N be any function. Then the following

statements are equivalent:

(i) The function f is recursive.
(ii) The graph of f , gr(f), is recursive.
(iii) The graph of f is semirecursive.

Proof. By Proposition 6.1.27 and Theorem 6.2.4, we only need to show
that if gr(f) is semirecursive, ¬gr(f) is semirecursive. This follows from
the following equivalence:
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f(n) �= m ⇐⇒ ∃l[m �= l ∧ f(n) = l].


�

A function f = (f1, . . . , fp) : N
k → N

p is called recursive if each fi,
1 ≤ i ≤ p, is recursive.

Exercise 6.2.7 Let f : N
k → N

p be any function. Then the following
statements are equivalent:

(i) The function f is recursive.
(ii) The graph of f , gr(f), is recursive.
(iii) The graph of f is semirecursive.

6.3 Arithmetization of Theories

The next idea, arithmetization of theories, is a beautiful idea due to Gödel.
It represents syntactical objects, e.g., symbols, terms, formulas, proofs, of a
theory by natural numbers. Consequently, statements about syntactical ob-
jects are expressed in terms of numbers. Its importance and beauty cannot
be overemphasized. It has the potential of converting a metamathematical
statement into a number-theoretic statement. Thus, the problem of whether
a metamathematical statement is true is translated into a number-theoretic
problem. This idea also plays a significant role in the theory of computa-
tion. The same idea is now used to convert many questions concerning
algorithms into proving whether a number-theoretic function or relation is
recursive. To elaborate a bit more, one can code each algorithm by an inte-
ger, or one can translate questions about algorithms into number-theoretic
problems.

Throughout this section, unless otherwise stated, T will denote a fixed
first-order theory. To simplify the matter, we assume that T is finite and
its nonlogical symbols are enumerated in some order.

In the first step we assign a symbol number to each symbol of L(T ).
Set SN(xi) = 2i, i ≥ 0; SN(¬) = 1; SN(∨) = 3; SN(∃) = 5; SN(=)=7;

if α is the ith nonlogical symbol, we set SN(α) = 7 + 2i.
Note that a number n is the symbol number of a variable if and only if

it is even, i.e., 2|n. Hence, the predicate

vble(n) ⇐⇒ n is the symbol number of a variable

is recursive. Since every finite set is recursive, the predicate

sn(n) ⇐⇒ n is a symbol number
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is easily seen to be recursive. In other words, there is an algorithm to
decide whether an integer is a symbol number. Further, intuitively it is
easy to see that there is an algorithm such that given a symbol number n,
the algorithm recovers the symbol whose symbol number is n. Let func0

denote the set of symbol numbers of all constant symbols. We also define

pred(n) ⇐⇒ n is the symbol number of a predicate symbol

and

func(n) ⇐⇒ n is the symbol number of a function symbol.

Since T is finite, these predicates are recursive.
Let t be a term and A a formula of T . We now define the Gödel number

�t� and �A� of t and A respectively by induction on the rank of t and A.
If t is a variable or a constant, set

�t� = 〈SN(t)〉.

If f is an n-ary function and t1, . . . , tn are terms whose Gödel numbers
have been defined, we set

�ft1 . . . tn� = 〈SN(f), �t1� , . . . , �tn�〉.

We define

term(n) ⇐⇒ n is the Gödel number of a term.

Proposition 6.3.1 The predicate term is recursive.

Proof. Note that for any n

term(n) ⇐⇒ seq(n) ∧ [(lh(n) = 1 ∧ func0((n)0)) ∨ [lh(n) > 1∧
func((n)0) ∧ ∀0 < i < lh(n)(term((n)i))]].

Using closure under complete recursion (Exercise 6.1.26), it can now be
seen that term is recursive. We leave the details as an exercise for the
reader. 
�

We recall that the term
S · · ·S
︸ ︷︷ ︸

n times

0

of N is denoted by kn and that these terms are called numerals.

Lemma 6.3.2 The map

num(n) = �kn� , n ∈ N,



98 6. Recursive Functions and Arithmetization of Theories

is recursive.

Proof. This follows from the following identities

num(0) = 〈SN(0)〉
num(n + 1) = 〈SN(S),num(n)〉.


�

If A is an atomic formula pt1 · · · tn, define

�A� = 〈SN(p), �t1� , . . . , �tn�〉.

Proposition 6.3.3 The predicate

aform(n) ⇔ n is the Gödel number of an atomic formula,

is recursive.

Proof. We have

aform(n) ⇐⇒ seq(n)∧ lh(n) > 1∧pred((n)0)∧∀0 < i < lh(n)[term((n)i)].


�

If A is ¬B, and if �B� has been defined,

�A� = 〈SN(¬), �B�〉.

If A is ∨BC,
�A� = 〈SN(∨), �B� , �C�〉.

If A is ∃xB,
�A� = 〈SN(∃), �x� , �B�〉.

Proposition 6.3.4 The predicate

form(n) ⇐⇒ n is the Gödel number of a formula

is recursive.

Proof. We define the following predicates:

A1(n) ⇐⇒ [seq(n) ∧ lh(n) = 2 ∧ (n)0 = SN(¬) ∧ form((n)1)],

A2(n) ⇐⇒ [seq(n) ∧ lh(n) = 3 ∧ (n)0 = SN(∨) ∧ form((n)1) ∧ form((n)2)],

and

A3(n) ⇐⇒ [seq(n) ∧ lh(n) = 3 ∧ (n)0 = SN(∃) ∧ vble((n)1) ∧ form((n)2)].
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By closure under complete recursion (Exercise 6.1.26), it is not hard to
show that these predicates are recursive. Now note that

form(n) ⇐⇒ aform(n) ∨ A1(n) ∨ A2(n) ∨ A3(n).

It follows that the predicate form(n) is resursive. 
�

Now we systematically proceed and show that many metamathematical
statements (statements about the theory itself or statements about syn-
tactical objects such as formulas and proofs) can be turned into number-
theoretic statements. Many of the functions and predicates thus defined are
recursive or semirecursive. However, we shall not verify this in full detail.
Interested readers should complete the proofs as an exercise.

Proposition 6.3.5 There is a recursive function sub(l,m, n) such that if
l is the Gödel number of a term t or a formula A, if m is the Gödel number
of a variable v, and if n is the Gödel number of a term s, then sub(l,m, n)
is the Gödel number of tv[s] or Av[s] respectively.

Proof. Define

sub1(l,m, n) =
{

n if vble(l),∧l = m,
l otherwise,

sub2(l,m, n) = 〈(l)0, sub2((l)1,m, n), . . . , sub2((l)lh(l) · 1,m, n)〉,

sub3(l,m, n)=

⎧

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎩

〈(l)0, sub3((l)1,m, n)〉 if seq(l) ∧ lh(l)=2,
〈(l)0, sub3((l)1,m, n), sub3((l)2,m, n)〉

if seq(l) ∧ lh(l)=3
∧(l)0 �= SN(∃),

〈(l)0, (l)1, sub3((l)2,m, n)〉 if seq(l) ∧ lh(l)=3
∧(l)0 = SN(∃)
∧(l)1 �= m,

l otherwise.

Now define

sub(l,m, n) =

⎧

⎪
⎪
⎨

⎪
⎪
⎩

sub1(l,m, n) if vble(l) ∨ func0(l),
sub2(l,m, n) if pred((l)0) ∨ func((l)0),
sub3(l,m, n) if form(l) ∧ ¬aform(l),
l otherwise.

Then sub(l,m, n) is a recursive function with the desired properties. 
�

Exercise 6.3.6 For each n ≥ 1, show that there is a recursive function
sb : N × N

n → N such that whenever m = �E�, E a term or a formula of
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the theory N ,

sb(m, b0, . . . , bn−1) =
⌈

Ex0,...,xn−1 [kb0 , . . . , kbn−1 ]
⌉

,

where x0, x1, . . . , xn−1 are the first n variables in alphabetical order.

Exercise 6.3.7 For each m,n ≥ 1, show that there is a recursive function
sm

n : N×N
m → N such that whenever p = �A�, A a formula of the theory N ,

sm
n (p, bm+1, . . . , bm+n) =

⌈

Axm+1,...,xm+n
[kbm+1 , . . . , kbm+n

]
⌉

,

where x1, . . . , xm, xm+1, . . . , xm+n are the first (m + n) variables in alpha-
betical order.

Proposition 6.3.8 There is a recursive predicate fr(m,n) such that if m
is the Gödel number of a term or a formula E and if n is the Gödel number
of a variable v, then

fr(m,n) ⇐⇒ v is free in E.

Proof. Set

χ1
fr(m,n) = χfr((m)1, n) . . . χfr((m)lh(m) 1, n).

Now take

χfr(m,n) =

⎧

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎩

0 if vble(m) ∧ m = n,

χ1
fr(m,n) if pred((m)0) ∨ func((m)0),

χfr((m)1, n) if (m)0 = SN(¬),
χfr((m)1, n) · χfr((m)2, n), if lh(m) = 3

∧(m)0 = SN(∨),
χfr((m)2, n)), if lh(m) = 3

∧(m)0 = SN(∃) ∧ (m)1 �= n,

1 otherwise.

Then χfr is a recursive function with the desired properties. 
�

Proposition 6.3.9 There is a recursive function substl(l,m, n) such that
if l is the Gödel number of a formula A, if m is the Gödel number of a
variable v, and if n is the Gödel number of a term t, then

substl(l,m, n) ⇐⇒ t is substitutable for v in A.

The proof is left as an exercise.

Exercise 6.3.10 Let I be an interpretation of a theory T ′ in T . Show that
there is a recursive function f : N → N such that if n is the Gödel number
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of a formula A of T ′, then f(n) is the Gödel number of its meaning AI in I.

We shall now show that the set LAxT of Gödel numbers of all logical
axioms of T is recursive. We define four recursive predicates first:

pax(m) ⇐⇒ ∃<mn[form(n) ∧ m = 〈SN(∨), 〈SN(¬), n〉, n〉].

Note that for all m,

pax(m) ⇐⇒ m is the Gödel number of a propositional axiom,

idax(m) ⇐⇒ ∃<mn[vble(n) ∧ m = 〈SN(=), n, n〉].
Note that

idax(m) ⇐⇒ m is the Gödel number of an identity axiom.

Exercise 6.3.11 Show that the unary predicates sax and eax of Gödel
numbers of all substitution axioms and of all equality axioms respectively
are recursive.

We now have the following theorem.

Theorem 6.3.12 The unary predicate LAxT ⊂ N consisting of Gödel
numbers of all logical axioms of T is recursive.

We call a theory T axiomatized if the set NAxT ⊂ N of Gödel numbers
of all nonlogical axioms of T is recursive.

That T is axiomatized means that there is an algorithm to decide whether
a formula of T is an axiom. This is a natural condition on the set of axioms
for any axiomatic system.

We define

AxT (n) ⇐⇒ n is the Gödel number of an axiom of T.

The following result is obvious from Theorem 6.3.12 and the definition of
axiomatized theories.

Proposition 6.3.13 If T is axiomatized, AxT is recursive.

Example 6.3.14 The theory N has only finitely many nonlogical axioms.
So, N is axiomatized.

Exercise 6.3.15 (i) Show that the set of Gödel numbers of formulas of
N of the form

Av[0] → ∀v(A → Av[Sv]) → A,

where A is a formula and v a variable, is recursive.
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(ii) Show that Peano arithmetic is axiomatized.
(iii) Show that ZF and ZFC are axiomatized. (Note that the language

for set theory has only one binary relation symbol. You only have to
show that the set of all Gödel numbers of comprehension axioms is
recursive. Show this for replacement axioms also.)

From now on, in this section, T will be a fixed finite theory.
We now introduce some recursive predicates related to rules of inference:

cont(n,m) ⇔ m = 〈SN(∨), n, n〉.
If n = �B� and m = �B ∨ B�, then cont(m,n) holds. Further, if n is the
Gödel number of a formula B and if m is the Gödel number of a formula A
and if cont(m,n) holds, then A can be inferred from B by the contraction
rule.

We define recursive predicates corresponding to other rules as follows:

exp(m,n) ⇔ form(n) ∧ m = 〈SN(∨), (m)1, n〉,

assoc(m,n) ⇔ n = 〈SN(∨), (n)1, 〈SN(∨), ((n)2)1, ((n)2)2〉, 〉
∧(m)0 = SN(∨) ∧ ((m)1)0 = SN(∨)
∧((m)1)1 = (n)1
∧((m)1)2 = ((n)2)1 ∧ (m)2 = ((n)2)2,

cut(l,m, n) ⇔ m = 〈SN(∨), (m)1, (m)2〉
∧n = 〈SN(∨), 〈SN(¬), (m)1〉, (n)2〉
∧l = 〈SN(∨), (m)2, (n)2〉,

and

intr(m,n) ⇔ n = 〈SN(∨), 〈SN(¬), ((n)1)1〉, (n)2〉
∧m = 〈SN(∨), 〈SN(¬), 〈SN(∃), (((m)1)1)1, ((n)1)1〉, (n)2〉〉
∧vble(((m)1)1) ∧ ¬fr(((m)1)1, (n)2).

Exercise 6.3.16 Show that the predicates cont, assoc, cut, and intr are
recursive.

We continue the idea further. Recall that any proof in a theory is a finite
sequence of formulas of the theory. Hence, the following definition is quite
important. It will be used to code proofs by numbers in such a way that
there is a mechanical procedure to decide whether a natural number codes
a proof. Further the procedure decodes the proof.

If A1, . . . , An is a sequence of formulas of T , the number

〈�A1� , . . . , �An�〉
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will be called the Gödel number of the sequence.

Proposition 6.3.17 If T is axiomatized, the set PrT of Gödel numbers of
all proofs in T is recursive.

Proof. This follows from the following equivalence:

PrT (n) ⇐⇒ seq(n) ∧ ∀i < lh(n)[AxT ((n)i)
∨∃j < i((cont ∨ assoc ∨ intr)((n)i, (n)j))
∨∃j, k < i[cut((n)i, (n)j , (n)k)].


�
Proposition 6.3.18 If T is axiomatized, the set PrfT ⊂ N×N, of all pairs
of numbers (m,n) such that m is the Gödel number of a proof of a formula
whose Gödel number is n, is recursive.

Proof. Note that for any m, n,

PrfT (m,n) ⇐⇒ lh(m) > 0 ∧ PrT (m) ∧ (m)lh(m) · 1 = n.


�
Theorem 6.3.19 If T is axiomatized, then the set ThmT of Gödel num-
bers of all theorems of T is semirecursive.

Proof. This follows from the following equivalence:

ThmT (n) ⇐⇒ ∃m[PrfT (m,n)].


�
But is the predicate ThmT recursive? Not always. However, in the next

section we shall prove that if, moreover, T is complete, then ThmT is re-
cursive. Quite interestingly, in the next chapter we shall show that ThmN ,
ThmPA, and ThmZF are not recursive. This is the essence of Gödel’s first
incompleteness theorem.

Remark 6.3.20 Let F (X1, . . . , Xn) ∈ Z[X1, . . . , Xn]. We can give a sim-
ilar coding scheme and assign a natural number, say g(F ), to F in such a
way that Hilbert’s tenth problem has a positive answer if and only if the
set H of all those g(F ) for which the Diophantine equation F = 0 has an
integral solution is recursive. We invite readers to carry out such a coding.
It has been shown that Hilbert’s tenth problem has a negative answer.

6.4 Decidable Theories

We call a finite theory T decidable if ThmT is recursive. Otherwise, the
theory is called undecidable.
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Thus, if a theory is decidable, there is an algorithm to decide whether a
formula of T is a theorem or not. Hilbert believed that there should be a
decidable set of axioms of number theory (and of most of the interesting
mathematical theories) such that every true formula of N is provable. Gödel
shocked the mathematical world by showing the impossibility of Hilbert’s
dream.

Our next result is the following.

Theorem 6.4.1 Every finite, complete theory is decidable.

We need the following lemma.

Lemma 6.4.2 There is a recursive map g : N → N such that if n is the
Gödel number of a formula A, then g(n) is the Gödel number of a closed
formula B such that

T � A ⇐⇒ T � B.

Proof. Consider the function f : N × N → N defined by

f(0, n) = n,

and for all m ≥ 0,

f(m + 1, n) = 〈SN(¬), 〈SN(∃), 〈2m〉, 〈SN(¬), f(m,n)〉〉〉.

It is routine to check that f is recursive. Further, if n is the Gödel number
of a formula A, then f(m + 1, n) is the Gödel number of ∀xm . . . ∀x0A,
where x0, . . . , xm are the first (m + 1) variables in alphabetical order. Now
set

g(n) = f(n, n), n ∈ N.

Using the closure theorem, generalization rule, and the closure properties
of the class of recursive functions and recursive predicates, it is easy to
check that the map g has the desired properties. 
�
Proof of 6.4.1. By Theorems 6.2.4 and 6.3.19, it is sufficient to show that
¬ThmT is semirecursive. Fix any n ∈ N. Now note the following:

¬ThmT (n) ⇐⇒ ¬form(n) ∨ ThmT (〈SN(¬), g(n)〉)
⇐⇒ ∃m[¬form(n) ∨ PrfT (m, 〈SN(¬), g(n)〉)].

Since PrfT is recursive and g is recursive, it follows that ¬ThmT is semi-
recursive. 
�

This is a very important theorem. It says that if T is axiomatized and
ThmT is not recursive, then T is not complete. Gödel uses it beautifully to
establish the first incompleteness theorem.

Exercise 6.4.3 Let p = 0 or a prime > 1. Show that the theory ACF (p)
is axiomatized and decidable.
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This theorem, in particular, says that there is an algorithm to decide
whether a statement in the language of ring theory with identity is valid
in C.

A simple extension T ′ of T is called a finite extension if at most finitely
many nonlogical axioms of T ′ are not theorems of T .

Theorem 6.4.4 Let T be an undecidable theory. Suppose T ′ satisfies one
of the following conditions:

(a) T ′ is a conservative extension of T .
(b) T is an extension by definition of T ′.
(c) T is a finite consistent extension of T ′.
(d) T has a faithful interpretation in T ′.

Then T ′ is undecidable.

Proof. In each case, we show that there is a recursive function f : N → N

such that if n is the Gödel number of a formula ϕ of T , f(n) is the Gödel
number of a formula ϕ∗ of T ′ such that

T � ϕ ⇐⇒ T ′ � ϕ∗.

Assuming this done, we complete the proof first. Suppose in some case
(a)–(d), ThmT ′ is recursive. Then,

ThmT (n) ⇐⇒ formT (n) ∧ ThmT ′(f(n)).

Hence, ThmT is recursive by the closure properties of the set of recursive
predicates. This contradicts that T is undecidable.

In case (a), we take f(n) = n. Since an extension by definitions of T is a
conservative extension of T (Theorem 5.3.6), the result in case (b) follows
from case (a).

We now prove the result in case (c). Let B1, . . . , Bm be an enumeration
of the closures of all the nonlogical axioms of T ′ which are not theorems
of T . Let p be the Gödel number of ¬B1 ∨ · · · ∨ ¬Bm. If n is the Gödel
number of a formula A of T , we define

f(n) = 〈SN(∨), p, n〉.

Otherwise, we define f(n) = 0. Since the set of Gödel numbers of formulas
is a recursive set, it follows that f is recursive. By the reduction theorem
(Exercise 4.4.6),

ThmT (n) ⇐⇒ ThmT ′(f(n)).

To prove the result in case (d), fix a faithful interpretation I of T in T ′.
It is fairly routine to see that there is a recursive function f : N → N such
that if n is the Gödel number of a formula A of T , then f(n) is the Gödel
number of AI (Exercise 6.3.10). Since I is a faithful interpretation,
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ThmT (n) ⇐⇒ formT (n) ∧ ThmT ′(f(n)).


�



7
Incompleteness Theorems
and Recursion Theory

This chapter gives the most important landmarks of mathematical logic—
the incompleteness theorems of Gödel. We still have to do some work, which
we do in the first section. As a side output, in Section 3, we initiate the
study of recursion theory.

7.1 Representability

In this section, we present yet another beautiful concept, called repre-
sentability, introduced by Gödel, which shows that recursive functions and
predicates can be represented by formulas of the theory N .

Let P ⊂ N
p. We say that a formula A of N with distinct variables

v1, . . . , vp represents P if for every sequence of numbers n1, . . . , np,

(n1, . . . , np) ∈ P ⇒ N � Av1,...,vp
[kn1 , . . . , knp

]

and
(n1, . . . , np) �∈ P ⇒ N � ¬Av1,...,vp

[kn1 , . . . , knp
].

We say that P is representable if some formula A with distinct variables
v1, . . . , vp represents it.

Let f : N
p → N be a map. We say that a formula A of N with dis-

tinct variables v1, . . . , vp, w represents f if for every sequence of numbers
n1, . . . , np,
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N � Av1,...,vp
[kn1 , . . . , knp

] ↔ w = km,

where m = f(n1, . . . , np). We say that f is representable if some formula
A with distinct variables v1, . . . , vp, w represents it.

Theorem 7.1.1 Every representable predicate P ⊂ N
n is recursive.

Proof. Let a formula ϕ of N with variables x1, . . . , xn represent P . Then
for every (a1, . . . , an) ∈ N

n, we have the following:

P (a1, . . . , an) ⇒ N � ϕx1,...,xn
[ka1 , . . . , kan

]

and
¬P (a1, . . . , an) ⇒ N � ¬ϕx1,...,xn

[ka1 , . . . , kan
].

Since N is consistent, we now have the following:

P (a1, . . . , an) ⇔ ThmN (�ϕx1,...,xn
[ka1 , . . . , kan

]�)

and
¬P (a1, . . . , an) ⇔ ThmN (�¬ϕx1,...,xn

[ka1 , . . . , kan
]�).

Since N is axiomatized, by Theorem 6.3.19, ThmN is semirecursive. Fur-
ther, the maps

(a1, . . . , an) → �ϕx1,...,xn
[ka1 , . . . , kan

]�

and
(a1, . . . , an) → �¬ϕx1,...,xn

[ka1 , . . . , kan
]�

are recursive. (See Exercise 6.3.6.) Hence, both P and ¬P are semirecursive.
The result now follows from Theorem 6.2.4. 
�

The main theorem of this section is the following.

Theorem 7.1.2 (Representability theorem) Every recursive function
and every recursive predicate is representable.

This result is proved essentially by showing that the initial functions are
representable and that the set of all representable functions is closed under
composition and minimalization. We will see later in this section that every
representable function is recursive.

Lemma 7.1.3 Let P be a p-ary representable predicate on N and
x1, . . . , xp distinct variables. Then there is a formula B of N such that
B with x1, . . . , xp represents P .

Proof. Let A with v1, . . . , vp represent P . Taking a variant of A, if necessary,
by the variant theorem, we can assume that x1, . . . , xp do not occur in A.
Now take B to be
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Av1,...,vp
[x1, . . . , xp].


�

The following result is also proved similarly.

Lemma 7.1.4 Let f be a p-ary representable function on N and
x1, . . . , xp, y distinct variables. Then there is a formula B of N such that
B with x1, . . . , xp, y represents f .

Let f be a p-ary function. We say that a term t of N with distinct
variables v1, . . . , vp represents f if for every n1, . . . , np,

N � tv1,...,vp
[kn1 , . . . , knp

] = km,

where m = f(n1, . . . , np).

Lemma 7.1.5 Let a term t with distinct variables v1, . . . , vp represent f :
N

p → N and let w be a variable distinct from each vi. Then the formula
w = t with v1, . . . , vp, w represents f .

Proof. Let m = f(n1, . . . , np). We have

N � tv1,...,vp
[kn1 , . . . , knp

] = km.

We are required to show that

N � w = tv1,...,vp
[kn1 , . . . , knp

] ↔ w = km.

This essentially follows from the equality axiom, the substitution rule, and
the detachment rule. 
�

Proposition 7.1.6 A p-ary predicate P is representable if and only if χP

is representable.

Proof. Let A with distinct variables v1, . . . , vp represent P . Let the variable
w be distinct from each of vi and let B be the formula

(A ∧ w = k0) ∨ (¬A ∧ w = k1).

Fix any (n1, . . . , np). Suppose (n1, . . . , np) ∈ P . Then

N � Av1,...,vp
[kn1 , . . . , knp

]. (1)

By (1) and the the tautology theorem,

N � Bv1,...,vp
[kn1 , . . . , knp

] ↔ w = k0.

If (n1, . . . , np) �∈ P ,



110 7. Incompleteness Theorems and Recursion Theory

N � ¬Av1,...,vp
[kn1 , . . . , knp

]. (2)

By (2) and the tautology theorem,

N � Bv1,...,vp
[kn1 , . . . , knp

] ↔ w = k1.

Conversely, assume that A with distinct variables v1, . . . , vp, w represents
χP . Let B be the formula Aw[ko]. We claim that B with v1, . . . , vp repre-
sents P .

Since ¬(Sx = 0) is an axiom of N ,

N � ¬(k1 = k0).

Fix any (n1, . . . , np). Suppose (n1, . . . , np) ∈ P . Then

N � w = k0 ↔ Av1,...,vp
[kn1 , . . . , knp

].

By the substitution rule,

N � k0 = k0 ↔ Bv1,...,vp
[kn1 , . . . , knp

].

Since N � k0 = k0, we have

N � Bv1,...,vp
[kn1 , . . . , knp

].

Since N � ¬(k1 = k0), the other case is similarly proved. 
�

Note that by the previous proposition, to prove the representability the-
orem, we only need to show that every recursive function is representable.
We shall show that all initial functions are representable and that the set of
all representable functions is closed under composition and minimalization.

Proposition 7.1.7 The formula x = y with distinct variables represents
= in N .

Proof. We need to show the following:

m = n ⇒ N � km = kn

and
m �= n ⇒ N � ¬(km = kn).

The first assertion follows from the identity axiom and the substitution
rule. By the symmetry theorem (Lemma 3.5.1), in the proof of the second
assertion, we can assume that m > n. We proceed by induction on n. If
n = 0, for all m, this follows from the axiom (1) of N and the substitution
rule. Let m ≥ n > 0 and the second assertion hold for n − 1 and all m.
Now note the following:
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N � km = kn ⇒ km−1 = kn−1,

by the axiom (2) of N , the closure theorem, and the substitution rule. By
the induction hypothesis, we have

N � ¬(km−1 = kn−1).

Hence,
N � ¬(km = kn),

by the tautology theorem. 
�
Proposition 7.1.8 All initial functions are representable.

Proof. (i) Let v1, . . . , vn be distinct variables and let t be the term vi. Fix
natural numbers p1, . . . , pn. Clearly

N � tv1,...,vn
[kp1 , . . . , kpn

] = kpi
.

This shows that the projection maps Πn
i , n ≥ 1, 1 ≤ i ≤ n, are repre-

sentable.
(ii) Let x and y be distinct variables and let t be the term x + y. We

show that t with x, y represents +. We need to show that for all natural
numbers m, n,

N � km + kn = km+n. (1)

We fix m and show (1) by induction on n. By the axiom (3) of N , we have

N � km + 0 = km.

Now assume that
N � km + kn = km+n. (2)

By the axiom (4) of N and the substitution rule, we have

N � km + kn+1 = S(km + kn).

By the equality axiom and (2), we have

N � S(km + kn) = km+n+1.

So,
N � km + kn+1 = km+n+1.

(iii) Similarly, using axioms (5) and (6) of N , we show that the term x ·y
with distinct variables x and y represents ·, the multiplication.

(iv) Finally, we show that the formula x < y with distinct variables x
and y represents <. This in turn will show that χ< is representable and
the result will be proved. We are required to show that for every natural
numbers m and n,
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m < n =⇒ N � km < kn (3)

and
¬(m < n) =⇒ N � ¬(km < kn). (4)

For every n, we show that (3) and (4) hold for all m. We proceed by
induction on n. For n = 0, we only need to prove (4) for all m; (4) follows
from the axiom (7) of N .

Now assume that for some n, (3) and (4) holds for all m. Suppose m <
n + 1. If m < n, then

N � km < kn

and hence
N � km < kn+1

by the axiom (8), the substitution rule, and the induction hypothesis. If
m = n,

N � km = kn

by Proposition 7.1.7. Then

N � km < kn+1

by the same arguments.
Now suppose m ≥ n + 1. Then,

N � ¬(km < kn)

by the induction hypothesis and

N � ¬(km = kn)

by Proposition 7.1.7. So,

N � ¬(km < kn+1)

using the axiom (8) of N and the tautology theorem. 
�

Proposition 7.1.9 The set of all representable functions is closed under
composition.

Proof. Let

h(n1, . . . , nk) = g(f1(n1, . . . , nk), . . . , fm(n1, . . . , nk)),

where g, f1, . . . , fm are representable. We choose distinct variables,
u, v1, . . . , vm, w1, . . . , wk and formulas B, A1, . . . , Am such that B with
v1, . . . , vm and u represents g and Ai with w1, . . . , wk and vi represents
fi, 1 ≤ i ≤ m.

Now consider the formula C defined by
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∃v1 · · · ∃vm(A1 ∧ · · · ∧ Am ∧ B).

We claim that C with w1, . . . , wk and u represents h. Fix (n1, . . . , nk). Let
pi = fi(n1, . . . , nk) and q = g(p1, . . . , pm). Then q = h(n1, . . . , nk). For
1 ≤ i ≤ m, set

A′
i = (Ai)w1,...,wk

[kn1 , . . . , knk
]

and
C ′ = Cw1,...,wk

[kn1 , . . . , knk
].

By our assumptions, we have

N � A′
i ↔ vi = kpi

,

1 ≤ i ≤ m. By the equivalence theorem, we have

N � C ′ ↔ ∃v1 · · · ∃vm(v1 = kp1 ∧ · · · ∧ vm = kpm
∧ B).

Let D denote the formula

∃v1 · · · ∃vm(v1 = kp1 ∧ · · · ∧ vm = kpm
∧ B).

By the repeated application of Proposition 4.2.23, we have

N � ∃v2 · · · ∃vm(v2 = kp2 ∧ · · · ∧ vm = kpm
∧ Bv1 [kp1 ]) ↔ D,

...

N � Bv1,...,vm
[kp1 , . . . , kpm

] ↔ ∃vm(vm = kpm
∧Bv1,...,vm−1 [kp1 , . . . , kpm−1 ]).

By the equivalence theorem and the tautology theorem, we get

N � C ′ ↔ Bv1,...,vm
[kp1 , . . . , kpm

].

Since B with v1, . . . , vm and u represents g and q = g(p1, . . . , pm), we have

N � Bv1,...,vm
[kp1 , . . . , kpm

] ↔ u = kq.

Thus by the equivalence theorem,

N � C ′ ↔ u = kq.


�

It remains to show that the set of all representable functions is closed
under minimalization.

Proposition 7.1.10 The set of all representable functions is closed under
minimalization.
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Proof. Let f(m,n) be representable, where n = (n0, . . . , np−1). Let A with
v, v0, . . . , vp−1 and w represent f . Assume that

∀n∃m(f(m,n) = 0).

Let
g(n) = µm(f(m,n) = 0).

We now show that g is representable.
Let u be a new variable and let B be the formula

Aw[0] ∧ ∀u(u < v → ¬Av,w[u, 0]).

We claim that B with v0, . . . , vp−1 and v represents g.
Fix n = (n0, . . . , np−1) ∈ N

p. Let m = g(n). Then f(i, n) = li �= 0,
i < m, and f(m,n) = 0. Set

A′ = Av0,...,vp−1 [kn0 , . . . , knp−1 ]

and
B′ = Bv0,...,vp−1 [kn0 , . . . , knp−1 ].

We have
N � A′

v[ki] ↔ w = kli ,

i < m, and
N � A′

v[km] ↔ w = 0.

Since li �= 0, we have
N � ¬(0 = kli),

i < m. Thus, for all i < m, we have

N � ¬A′
v,w[ki, 0]

and
N � A′

v,w[km, 0].

Hence, by Proposition 4.3.2,

N � (A′
w[0] ∧ ∀u(u < v → ¬A′

v,w[u, 0])) → v = km,

i.e.,
N � B′ ↔ v = km.

Our claim is proved. 
�

We have completed the proof of the representability theorem.

Exercise 7.1.11 Show that every representable function f : N
n → N is

recursive.
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Remark 7.1.12 We have presented an amazing loop constructed by Gödel
that has been likened to the music of Bach and the drawings of Escher [4].
To make statements about numbers, first one develops a formal language
(for instance, the language of N) and expresses statements about numbers
syntactically in N (or in a suitable extension of N). In this language, a
statement about numbers is now a sentence of N . Then using the idea
of Gödel numbers, one expresses statements about syntactical objects by
numbers themselves. Finally, by the representability theorem, one repre-
sents a certain class S of statements about numbers by formulas of N . For
instance, if

{n ∈ N : n is the Gödel number of a sentence in S}

is recursive, we represent it by a formula of N . This technique enables one
to hop into the theory N from the metaworld and vice versa. Thus many
questions in the metaworld are expressed by formulas of N . Sometimes
even a proof in the metaworld is converted into a proof inside the theory.
Thus, Gödel built a very powerful tool and destroyed the beliefs of many
great mathematicians of his time, including Hilbert. In the remaining part
of this chapter, we present such remarkable discoveries of Gödel.

7.2 First Incompleteness Theorem

Theorem 7.2.1 (First incompleteness theorem) Every axiomatized,
consistent extension of N is undecidable and so incomplete.

Proof. Toward arriving at a contradiction, assume that ThmT is recursive.
Fix a variable v. There is a recursive function f : N × N → N such that
if m is the Gödel number of a formula B of T , then f(m,n) is the Gödel
number of Bv[kn]. Then the binary predicate U ⊂ N × N defined by

U(m,n) ⇔ ThmT (f(m,n))

is recursive. So, the predicate

P (m) ⇔ ¬U(m,m)

is recursive.
By the representability theorem, there is a formula A of N such that A

with v represents P . This means that for every n ∈ N,

n ∈ P ⇒ N � Av[kn]

and
n �∈ P ⇒ N � ¬Av[kn].
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Since T is an extension of N , A is a formula of T and for every n ∈ N,

n ∈ P ⇒ T � Av[kn] (a)

and
n �∈ P ⇒ T � ¬Av[kn]. (b)

Now let m be the Gödel number of A.
Suppose m ∈ P . Then, by (a), T � Av[km], i.e., U(m,m) holds by the

definition of U . Hence, m �∈ P by the definition of P . This is a contradiction.
On the other hand, suppose m �∈ P . Then, by (b), T � ¬Av[km]. Since

T is consistent, this implies that T �� Av[km]. Therefore, by the definition
of U , ¬U(m,m) holds. But then m ∈ P by the definition of P . We have
arrived at a contradiction again. 
�

Remark 7.2.2 Since N with the usual interpretations of S, +, ·, and <
is a model of PA, PA is consistent. Further, by Exercise 6.3.15, PA is ax-
iomatized. Hence, by Theorem 6.4.4, PA is undecidable, and so incomplete
by the first incompleteness theorem.

Remark 7.2.3 There is an extension by definitions of ZF (or of ZFC)
in which there is a suitable interpretation of the theory N so that we can
carry out the same arguments and prove the incompleteness of ZF and
ZFC.

Remark 7.2.4 Comparison with the liar’s paradox. In the above
proof we have produced a formula A[v] that says that the formula whose
Gödel number is m is not provable for “v = m.” This is similar to the
statement “I am lying” of the liar’s paradox. This argument also shows a
way to make a self-referential statement inside a theory.

Remark 7.2.5 Now we can state Hilbert’s problem precisely: is there an
axiomatized extension P ′ of PA such that a sentence of P ′ is true (in the
standard model) if and only if it is a theorem of P ′. Since such a theory P ′

is complete, the first incompleteness theorem answers Hilbert’s question in
the negative.

7.3 Arithmetical Sets

In this section, we present some basic results in recursion theory. We have
already initiated the study of recursive and semirecursive sets. The repre-
sentability theorem and the ideas contained in the proof of the first incom-
pleteness theorem help us to continue this study further.

A set of predicates (of not necessarily fixed arity) on N will be called a
pointclass. For brevity, we shall write n for (n1, . . . , nk). For P ⊂ N×N

k,
we define k-ary predicates ∃ωP and ∀ωP by
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∃ωP (n) ⇐⇒ ∃mP (m,n)

and
∀ωP (n) ⇐⇒ ∀mP (m,n).

If Γ is a pointclass, we define

¬Γ = {¬P : P ∈ Γ},

∃ωΓ = {∃ωP : P ∈ Γ},
and

∀ωΓ = {∀ωP : P ∈ Γ}.
Note that for any pointclass,

∀ωΓ = ¬∃ω¬Γ

and
∃ωΓ = ¬∀ω¬Γ.

In the sequel, these two identities and other such simple set-theoretic iden-
tities will be used without mention.

We define arithmetical pointclasses Σ0
n, Π0

n, and ∆0
n, n ≥ 1, by in-

duction as follows:

Σ0
1 = the poinclass of all semirecursive sets,

Π0
n = ¬Σ0

n,

Σ0
n+1 = ∃ωΠ0

n,

and
∆0

n = Σ0
n ∩ Π0

n.

Theorem 7.3.1 The pointclass ∆0
1 consists precisely of all recursive sets

and
Σ0

1 = ∃ω∆0
1 and Π0

1 = ∀ω∆0
1.

Proof. The first assertion is just a restatement of Kleene’s theorem
(Theorem 6.2.4); the second one follows from the definition of semirecur-
sive sets and Kleene’s theorem (Theorem 6.2.4), and the third one follows
from the second one. 
�

Call a pointclass Γ closed under recursive substitutions if whenever
P (n1, . . . , nk) ∈ Γ , for all recursive functions fi : N

l → N, 1 ≤ i ≤ k, the
l-ary predicate Q defined by

Q(m1, . . . ,ml) ⇐⇒ P (f1(m1, . . . ,ml), . . . , fk(m1, . . . ,ml))

is in Γ .
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Proposition 7.3.2(1) Each arithmetical pointclass is closed under ∨, ∧
(so, under finite unions and finite intersections), and recursive substi-
tutions.

(2) For each n, Σ0
n is closed under ∃ω, Π0

n under ∀ω, and ∆0
n under ¬.

(3) For each n,
Σ0

n = ∃ω∆0
n and Π0

n = ∀ω∆0
n,

Σ0
n ∪ Π0

n ⊂ ∆0
n+1.

Proof. We shall prove (1) by induction on n. The closure properties listed
in (1) have already been proved for Σ0

1 in Proposition 6.2.2. Then the result
for Π0

1 follows from its definition. The result for ∆0
1 is now easily seen.

Assume that Σ0
n, Π0

n, and ∆0
n have the closure properties listed in (1).

Note that a pointclass Γ is closed under ∃ω if and only if ¬Γ is closed under
∀ω; a pointclass Γ is closed under recursive substitutions if and only if ¬Γ
is and if both Γ and ¬Γ satisfy the closure properties listed in (1), so does
∆ = Γ ∩ ¬Γ .

Now let fi : N
l → N, 1 ≤ i ≤ k, be recursive functions. Let

P (m1, . . . ,mk) ∈ Π0
n+1. We are required to show that the predicate Q

defined by
Q(l) ⇐⇒ P (f1(l), . . . , fk(l))

is in Π0
n+1. Get P ′ ∈ Σ0

n such that P = ∀ωP ′. Then,

Q(l) ⇐⇒ ∀mP ′(m, f1(l), . . . , fk(l)).

Since Σ0
n is closed under recursive substitutions, Q ∈ Π0

n+1.
Let P,Q ∈ Σ0

n+1. Get P ′, Q′ ∈ Π0
n such that P = ∃ωP ′ and Q = ∃ωQ′.

The following identities are easy to check:

P ∨ Q ⇐⇒ ∃ω(P ′ ∨ Q′)

and
(P ∧ Q)(l) ⇐⇒ ∃m(P ′((m)0, l) ∧ Q′((m)1, l).

By the induction hypothesis, it follows that Σ0
n+1 is closed under ∨ and ∧.

This, in turn, implies that Π0
n+1 and ∆0

n+1 are closed under ∨ and ∧.
We shall now prove (2). The pointclass ∆0

n is clearly closed under ¬. By
Proposition 6.2.2, Σ0

1 is closed under ∃ω. Let P (p, q, l) ∈ Π0
n. Then

∃p∃qP (p, q, l) ⇐⇒ ∃mP ((m)0, (m)1, l)).

Since Π0
n is closed under recursive substitutions, it follows that Σ0

n+1 is
closed under ∃ω. Hence, Π0

n+1 is closed under ∀ω.
We prove (3) also by induction on n. By Propositions 6.2.1 and 6.2.2,

Σ0
1 = ∃ω∆0

1.
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So,
Π0

1 = ∀ω∆0
1.

Further, Since ∆0
1 ⊂ Π0

1 , we conclude that ∃ω∆0
1 ⊂ ∃ωΠ0

1 . Hence, Σ0
1 ⊂ Σ0

2

by the definition of Σ0
2 .

If P is Σ0
1 and

Q(m,n) ⇐⇒ P (n),

then by recursive substitutions, Q is Σ0
1 and

P (n) ⇐⇒ ∀mQ(m,n),

showing that P is Π0
2 . Thus, Σ0

1 ⊂ Π0
2 . This shows that Σ0

1 ⊂ ∆0
2. Since ∆0

2

is closed under ¬, it follows that Π0
1 ⊂ ∆0

2 as well. This proves the result
for n = 1. (3) can be proved similarly for all n by induction. 
�

Remark 7.3.3 The inclusion relations between these pointclasses are
summed up by the following diagram:

Σ0
1 Π0

2 Σ0
3 . . .

∆0
1 ∆0

2 ∆0
3 . . .

Π0
1 Σ0

2 Π0
3 . . .

where a pointclass in any column is contained in all pointclasses to its right.

Corollary 7.3.4 (i) Let n be even. Then

Σ0
n = ∃ω∀ω · · · ∃ω∀ω

︸ ︷︷ ︸

n times

∆0
1

and
Π0

n = ∀ω∃ω · · · ∀ω∃ω
︸ ︷︷ ︸

n times

∆0
1.

(ii) Let n be odd. Then

Σ0
n = ∃ω∀ω · · · ∃ω

︸ ︷︷ ︸

n times

∆0
1

and
Π0

n = ∀ω∃ω · · · ∀ω
︸ ︷︷ ︸

n times

∆0
1.

A predicate in
∪nΣ0

n = ∪n∆0
n = ∪nΠ0

n

is called an arithmetical set.

Exercise 7.3.5 Show that all the arithmetical pointclasses are closed un-
der ∃<, ∃≤, ∀<, and ∀≤.
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Using the representability theorem and ideas contained in the proof of
the first incompleteness theorem, we now show that all the inclusions in
the arithmetical hierarchy are strict.

Let Γ be an arithmetical pointclass. Let k ≥ 1. Call a (k+1)-ary predicate
Uk universal for Γ if Uk ∈ Γ and if for every k-ary predicate P in Γ there
is an m such that for all n ∈ N

k,

P (n) ⇐⇒ Uk(m,n).

Strictly speaking, we should say that Uk is universal for k-ary predicates
in Γ . We shall not do it. It should be understood from the exponent k.

We make some simple observations now.
(a) Uk is universal for Σ0

n if and only if ¬Uk is universal for Π0
n.

(b) Let Uk+1 be universal for Π0
n. Set

Uk = ∃ωUk+1.

We claim that Uk is universal for Σ0
n+1.

Clearly Uk ∈ Σ0
n+1. Now let P be a k-ary predicate in Σ0

n+1. Then there
is a (k + 1)-ary predicate Q in Π0

n such that

P = ∃ωQ.

Since Uk+1 is universal for Π0
n, there is a p such that for all q and for all

m,
Q(q,m) ⇐⇒ Uk+1(p, q,m).

Our assertion follows.
(c) Let U1 be universal for Σ0

n. Define P by

P (m) ⇐⇒ U1(m,m).

Then P is Σ0
n. We claim that it is not ∆0

n.
Since Σ0

n is closed under recursive substitutions, P ∈ Σ0
n. We claim that

P �∈ Π0
n. Suppose not. Then ¬P ∈ Σ0

n. Let m be such that for all k,

¬P (k) ⇐⇒ U1(m, k).

But then
P (m) ⇐⇒ U1(m,m) ⇐⇒ ¬P (m),

and we have arrived at a contradiction.
(d) Arguing as in (c), we see that for any n, ∆0

n does not contain any
universal set for Σ0

n or Π0
n.
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Theorem 7.3.6 For each k ≥ 1, there is a (k + 1)-ary predicate Uk that
is universal for Σ0

1 .

Proof. Let x0, x1, x2, x3, . . . be all the variables of the theory N in alpha-
betical order. For each a ∈ N

k, set

num(a) = (num(a0), . . . ,num(ak−1)).

Define Uk by

Uk(m,a) ⇐⇒ ∃pThmN ((m,num(p),num(a))),

where sb is the recursive function defined in Exercise 6.3.6.
Since ThmN ∈ Σ0

1 , Uk ∈ Σ0
1 . Now let P ⊂ N

k be semirecursive. Then
there is a recursive set Q ⊂ N

k+1 such that

P ⇐⇒ ∃ωQ.

By the representability theorem, there is formula A of N such that A with
x0, . . . , xk represents Q. Let m = �A�. Since N is consistent, we see that
for all a,

P (a) ⇐⇒ Uk(m,a).


�
The following theorem is also now easy to see.

Theorem 7.3.7 Let Γ be any of the pointclasses Σ0
n or of Π0

n, n ≥ 1.
Then, for every k ≥ 1, there is a (k + 1)-ary predicate Uk ∈ Γ that is
universal for Γ .

Remark 7.3.8 We now see that the hierarchy of arithmetical sets is strict,
i.e., for all n, ∆0

n is properly contained in both Σ0
n and Π0

n.
Hint: Suppose every ∆0

n set is Σ0
n. Let U1 be a universal Σ0

n set. Then
it is a universal ∆0

n set too. But such a set cannot exist. (See the proof of
Proposition 6.1.28.)

Proposition 7.3.9 Let Γ be any of Σ0
n or of Π0

n, n ≥ 1. Then, for every
k ≥ 1, there are (k + 1)-ary predicates Uk

0 , Uk
1 ∈ Γ such that for every pair

of sets A0, A1 ⊂ N
k in Γ , there is an m such that

(∀a ∈ N
k)(A0(a) ⇔ Uk

0 (m,a) ∧ A1(a) ⇔ Uk
1 (m,a)).

Proof. Define
Uk

i (m,a) ⇐⇒ Uk((m)i, a),

i = 0, 1. Since Γ is closed under recursive substitutions, each Uk
0 and Uk

1 is
in Γ . Given A0, A1 ⊂ N

k in Γ , choose m0,m1 such that

∀a(Ai(a) ⇐⇒ Up(mi, a)),
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i = 0, 1. Take m = 〈m0,m1〉. 
�

The pair Uk
0 , Uk

1 obtained above will be called a universal pair for Γ .

Let Γ be any of Σ0
n or of Π0

n, n ≥ 1. We say that Γ has the uniformiza-
tion propery if for every k ≥ 1 and every P ∈ Γ , P ⊂ N

k × N, there is a
Q ⊂ P in Γ such that

(∀a ∈ N
k)(∃mP (a,m) ⇒ ∃!mQ(a,m)),

where ∃!m. . . abbreviates “there is a unique m. . ..” Such a set Q is called
a uniformization of P .

Let Γ be any of Σ0
n or of Π0

n, n ≥ 1. We say that Γ has the reduction
property if for every P1, P2 ⊂ N

k in Γ there exist Q1 ⊂ P1, Q2 ⊂ P2 in Γ
such that Q1 ∩ Q2 = ∅ and Q1 ∪ Q2 = P1 ∪ P2.

Proposition 7.3.10 If Γ has the uniformization property, then it has the
reduction property.

Proof. To see the result, given P1, P2 ⊂ N
k in Γ , define

P = (P1 × {1}) ∪ (P2 × {2}).

Then P ∈ Γ . Choose a uniformization Q ⊂ P of P in Γ . Set

Qi(a) ⇐⇒ Q(a, i),

i = 1, 2. 
�

Let Γ be any of Σ0
n or of Π0

n, n ≥ 1 and ∆ = Γ ∩ ¬Γ . We say that Γ
has the separation property if for every disjoint P1, P2 ⊂ N

k in Γ there
exists a Q ⊂ N

k in ∆ such that

P1 ⊂ Q ∧ Q ∩ P2 = ∅.

Proposition 7.3.11 If Γ has the reduction property, then ¬Γ has the sep-
aration property.

Proof. To see this, take P1, P2 ⊂ N
k in ¬Γ such that P1 ∩ P2 = ∅. Let

Qi = N
k \ Pi,

i = 1, 2. Then Q1, Q2 ∈ Γ and Q1 ∪ Q2 = N
k. Since Γ has the reduction

property, there exist Ri ⊂ Qi in Γ , i = 1, 2, such that R1 ∩ R2 = ∅ and
R1 ∪ R2 = N

k. Thus R1 ∈ ∆. Set Q = N
k \ R1. 
�

Exercise 7.3.12 Let Γ = Σ0
n or Π0

n, n ≥ 1. Show that Γ cannot satisfy
both the reduction property and the separation property.



7.3 Arithmetical Sets 123

Hint: Using Proposition 7.3.9, take a universal pair U1
1 , U1

2 for Γ . Let
V1, V2 ∈ Γ reduce the pair U1

1 , U1
2 in the above sense. Let W ⊃ V1, W∩V2 =

∅, and W ∈ ∆. Show that W is universal for ∆.

Theorem 7.3.13 (Uniformization theorem.) Every arithmetical point-
class Σ0

n has the uniformization property.

Proof. Let P ⊂ N
k ×N be in Σ0

n. Choose R ⊂ N×N
k ×N in ∆0

n such that
P = ∃ωR. Define Q by

Q′(a, n) ⇐⇒ R((n)0, a, (n)1) ∧ ∀<nk¬R((k)0, a, (k)1)

and set
Q(a,m) ⇐⇒ ∃n[m = (n)0 ∧ Q′(a, n)].


�

Corollary 7.3.14 Each arithmetical pointclass Π0
n, n ≥ 1, has the sepa-

ration property and each Σ0
n, n ≥ 1, has the reduction property

We close this section by proving two basic results in recursion theory.
We shall set up some notation first. For a = (a1, . . . , am, am+1, . . . , am+n),
we have

lm(a) = (a1, . . . , am)

and
rn(a) = (am+1, . . . , am+n)

Theorem 7.3.15 (sm
n -Theorem) The sequence of universal sets

U1, U2, . . . for Σ0
1 defined in 7.3.6 satisfy the following:

Um+n(p, a) ⇐⇒ Um(sm
n (p, rn(a)), a1, . . . , am),

where a = (a1, . . . , am, am+1, . . . , am+n) and the function sm
n is as defined

in Exercise 6.3.7.

Proof. The result follows directly from the definitions of the Uk’s and the
function sm

n . 
�

If P is a k-ary semirecursive predicate and m is such that for all a ∈ N
k,

P (a) ⇐⇒ Uk(m,a),

we say that m is a code of P .

As an application of the sm
n -theorem we show the following:

Proposition 7.3.16 There exist recursive functions ∨k(m,n) and
∧k(m,n) such that if m is a code of P ⊂ N

k and n a code of Q ⊂ N
k,

then ∨k(m,n) and ∧k(m,n) are codes of P ∨ Q and P ∧ Q respectively.
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Proof. First we define ∨k(m,n). Let Uk’s be as defined in Theorem 7.3.6.
Now define

R(a,m, n) ⇐⇒ Uk(m,a) ∨ Uk(n, a).

Then there is a p such that

R(a,m, n) ⇐⇒ Uk+2(p, a,m, n).

Set
∨k(m,n) = sk

2(p,m, n).

We define ∧k similarly. 
�

We refer to the above closure properties of Σ0
1 by saying that Σ0

1 is
uniformly closed under ∨ and ∧ (with respect to the universal sets Uk).

Exercise 7.3.17 Show that Σ0
1 and Π0

1 are uniformly closed under ∃<,
∀<, ∃≤, and ∀≤. Further, Σ0

1 is uniformly closed under ∃ω and Π0
1 under

∀ω. For instance, show that for each k ≥ 1, there is a recursive function
∃<

k : N → N such that if n codes P (m, a), a (k + 1)-ary predicate, ∃<
k (n)

codes the predicate
Q(p, a) ⇐⇒ ∃<pP (p, a).

Theorem 7.3.18 (Kleene’s recursion theorem) Let P be a (k+1)-ary
predicate in Σ0

1 . Then there is a n∗ such that for all m,

P (n∗,m) ⇐⇒ Uk(n∗,m).

Proof. Define a (k + 1)-ary predicate Q by

Q(m, p) ⇔ P (sk
1(p, p),m).

Then Q ∈ Σ0
1 . So, there there is a q such that

Q(m, p) ⇐⇒ Uk+1(q,m, p).

Take n∗ = sk
1(q, q). 
�

Kleene’s recursion theorem is very useful in showing that certain func-
tions and predicates are recursive.

Example 7.3.19 Let α be a unary recursive function and β and γ 3-ary
recursive functions. Then the 2-ary function δ defined by

δ(0, n) = α(n),
δ(m + 1, n) = β(δ(m, γ(δ(m,n),m, n)),m, n)),

is recursive.
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To show this, by Proposition 6.1.27, it suffices to show that the graph of
δ is semirecursive. To show this, we define a 4-ary semirecursive predicate
G as follows:

G(l,m, n, k) ⇐⇒ (m = 0 ∧ k = α(n))
∨∃p∃q∃r∃s(m = p + 1
∧U3(l, p, n, q)
∧r = γ(q, p, n)
∧U3(l, p, r, s)
∧k = β(s, p, n)),

where U3 is the universal set for Σ0
1 -sets in N

3 defined earlier. Clearly, G
is a 4-ary semirecursive predicate. Hence, by Kleene’s recursion theorem,

∃l∗∀m∀n∀k(G(l∗,m, n, k) ⇐⇒ U3(l∗,m, n, k)).

It is fairly routine to check that the 3-ary semirecursive predicate
U3(l∗, ·, ·, ·) is the graph of δ.

Exercise 7.3.20 Let n ≥ 1, and let Γ equal Σ0
n or Π0

n, and let the Uk’s
be the universal sets for Γ obtained in Theorem 7.3.7. Show that the sm

n -
theorem (with the same function sm

n ) and Kleene’s recursion theorem hold
for Γ .

Remark 7.3.21 It is fairly easy to see that the sm
n -theorem for any of

these arithmetical pointclasses can be used to show their uniform closure
properties, and Kleene’s recursion theorem can be used to show that pred-
icates are in these classes.

7.4 Recursive Extensions of Peano Arithemetic

The arithmetization of theories due to Gödel enables one to examine
questions about a theory, such as PA or ZF , within the theory itself.
For instance, using the representability theorem, now we can express the
metasentence “Peano arithmetic is consistent” by a formula of PA itself
and can examine whether this formula is a theorem of PA. This involves
formalizing proofs in metatheory inside the theory itself. A key step toward
this is to show that every true closed existential formula of PA is a theorem
of PA. (Recall that a sentence ϕ of the language for N is called true if it
is valid in the standard model N of the theory N .) In this section we prove
this vital theorem.

Let P ′ be an extension by definitions of PA and let ϕ be a formula of
P ′ in which no variable other than v1, . . . , vn and w are free, v1, . . . , vn, w
distinct. Suppose P ′ � ∃wϕ. Let w′ be a new variable and ψ the formula

ϕ ∧ ∀w′(w′ < w → ¬ϕw[w′]).
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By Exercise 4.3.5, we have the following:

(a) P ′ � ∃wψ.
(b) P ′ � ψ ∧ ψw[w′′] → w = w′′.

Thus, we can introduce to P ′ a new n-ary function symbol f with the
defining axiom ψ. We shall write

fv1 · · · vn = µwϕ

to express that f has been introduced as above with ψ as its defining axiom.

We say that P ′ is a recursive extension of PA of PA if it is obtained
by a finite number of extensions of PA where the defining axiom for a
predicate is an open formula and the defining axiom for a function symbol
is a formula of the form ψ described above with ϕ open.

Example 7.4.1 Let 1 ≤ i ≤ n and let ϕ[w, v1, . . . , vn] be the formula
w = vi. Then

πn
i v1 · · · vn = µwϕ

introduces the projection map πn
i in a recursive extension of PA.

The following exercise is quite easy to prove.

Exercise 7.4.2 Show that functions and predicates that can be introduced
in a recursive extension of PA are recursive.

Proposition 7.4.3 Let R be an n-ary predicate on N. Then R can be in-
troduced in a recursive extension of PA if and only if χR can be introduced.

Proof. Suppose R has been introduced in a recursive extension of PA with
the defining axiom an open formula ϕ. Then we can introduce χR by

χR(v1, . . . , vn) = µw((ϕ(v1, . . . , vn) ∧ w = 0) ∨ (¬ϕ(v1, . . . , vn) ∧ w = 1)).

Now assume that χR has been introduced in a recursive extension P ′ of
PA. Then the formula

χR(v1, . . . , vn) = 0

introdues R. 
�

Example 7.4.4 The functions + (addition) and · (multiplication) are non-
logical symbols of PA. By Example 7.4.1, each projection map πn

i can be
introduced. Since < is a nonlogical symbol of PA, by Proposition 7.4.3, χ<

can be introduced. Thus, all initial recursive functions can be introduced
in a recursive extension of PA.

Example 7.4.5 Let n ≥ 1 and p ∈ N. We can introduce the n-ary constant
function Cn

p by taking the formula ϕ[w, v1, · · · , vn] to be w = kp.
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Example 7.4.6 We can introduce · to PA by

x
·

y = µz(x + z = y ∨ x < y)

by the above method.

Proposition 7.4.7 The set of functions that can be introduced in a recur-
sive extension of PA is closed under composition.

Proof. Let f1, . . . , fk be n-ary functions and g a k-ary function that have
been introduced in a recursive extension P ′ of PA. Further assume that

fiv1 · · · vn = µwiϕi[wi, v1, . . . , vn], 1 ≤ i ≤ k,

and
gw1 · · ·wk = µwϕ[w,w1, . . . , wk].

Suppose

h(m1, . . . ,mn) = g(f1(m1, . . . ,mn), . . . , fk(m1, . . . ,mn)).

It is not difficult to prove that

P ′ � ∃w[w = g(f1(v1 . . . , vn), . . . , fk(v1, . . . , vn))].

Hence, we can introduce h as follows:

hv1 · · · vn = µw[w = g(f1(v1 . . . , vn), . . . , fk(v1, . . . , vn))].


�

Remark 7.4.8 Let g be an (n + 1)-ary function that has been introduced
in a recursive extension P ′ of PA and let

∀m1 · · · ∀mn∃l[g(m1, . . . ,mn, l) = 0].

Define
h(m1, . . . ,mn) = µl[g(m1, . . . ,mn, l) = 0].

Suppose
gv1 · · · vn+1 = µwϕ[w, v1, . . . , vn+1].

If
P � ∃vn+1[gv1 · · · vnvn+1 = 0],

then we can introduce h as follows:

hv1 · · · vn = µvn+1gv1 · · · vnvn+1 = 0.
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A great many recursive functions and recursive predicates can be intro-
duced in a recursive extension of PA. Further, the set of all functions and
predicates that can be introduced in a recursive extension satisfies some of
the closure properties satisfied by the set of recursive functions and recur-
sive predicates. One can easily see this by looking at the explicit definitions
of many recursive functions that we have defined earlier and the proofs of
closure properties of the set of all recursive functions and recursive predi-
cates.

Exercise 7.4.9 1. Let f1, . . . , fk be n-ary functions and P a k-ary pred-
icate. Assume that f1, . . . , fk and P can be introduced. Show that the
n-ary predicate Q defined by

Q(m1, . . . ,mn) ⇔ P (f1(m1, . . . ,mn), . . . , fk(m1, . . . ,mn))

can be introduced.
2. Let P and Q be n-ary predicates that can be introduced. Show that the

predicates ¬P , P ∨ Q, P ∧ Q, P → Q, and P ↔ Q can be introduced.
3. Show that the set of all functions and predicates that can be introduced

is closed under bounded minimalizations, and bounded quantifiers.

Exercise 7.4.10 Show that the divisibility m|n, the ordered pair function
OP , and Gödel’s β-function can be introduced in a recursive extension of
PA.

Exercise 7.4.11 Let A1, . . . , Am be pairwise disjoint subsets of N
k whose

union is N
k. Suppose f1, . . . , fm are k-ary functions. Define g : N

k → N by

g(a) =

⎧

⎪
⎨

⎪
⎩

f1(a) if a ∈ A1,
...

fm(a) if a ∈ Am.

Show that if A1, . . . , Am and f1, . . . , fm can be introduced in a recursive
extension of PA, then g can be introduced.

Exercise 7.4.12 Show that the set of all functions that can be introduced
in a recursive extension of PA is closed under primitive recursion.

Exercise 7.4.13 Show that all the finitely many functions and predicates
for PA that were introduced in the section on arithmetization of theories
can be introduced in a recursive extension of PA.

We now proceed to prove that every true closed existential formula of a
recursive extension P ′ of PA is a theorem of P ′.

In the sequel we shall use the same notation for the functions and pred-
icates introduced. For instance, we shall use form both for the predicate
form(n) as well as for the corresponding function symbol introduced, num
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both for the function num(n) as well as for the corresponding function sym-
bol introduced, and PrfPA for the predicate PrfPA(m,n) as well as for the
corresponding symbol, and so on.

Let P ′ be a recursive extension of PA. The set of R-formulas of P ′

is the smallest class of formulas F that contains all formulas of the form
fv1 · · · vn = v, pv1 · · · vn, and ¬pv1 · · · vn (f and p function and predicate
symbols of P ′) and that satisfies

(a) A,B ∈ F ⇒ A ∨ B,A ∧ B ∈ F .
(b) If A ∈ F and if x, y are distinct variables, then ∀x(x < y → A) ∈ F .
(c) If A ∈ F , ∃xA ∈ F .

A formula of PA of the form ϕv1,...,vm
[kn1 , . . . , knm

], n1, . . . , nm ∈ N, will
be called a numerical instance of ϕ.

Proposition 7.4.14 Let A be an R-formula of PA. Then every true nu-
merical instance of A is a theorem of PA.

Proof. That R-formulas of the form x = y, Sx = y, x+y = z, x·y = z, x < y
and negations of these formulas satisfy the conclusion of the proposition
follows from the representability of =, S, +, ·, and < and the fact that PA
is an extension of N .

Now we show that the set G of formulas that satisfy the conclusion
of the proposition satisfy the three closure properties (a)–(c). If A, B
satisify the conclusion, it is quite easy to check that A ∨ B and A ∧ B
also satisfy the conclusion. Thus, (a) holds for G.

We now show that (c) holds for G. Let A satisfy the conclusion of the
proposition and let B be the formula ∃xA. A numerical instance B′ of B is
of the form ∃xA′, where A′ is obtained by substituting numerals in A for
all free variables other than x. Suppose B′ is true. Then A′

x[kn] is true for
some n. By our assumption, PA � A′

x[kn]. This implies that PA � B′ by
the substitution axiom and the detachment rule.

Finally, we show that (b) holds for G. Let A satisfy the conclusion of
the proposition and let B be the formula ∀x(x < y → A). A numerical
instance B′ of B is of the form ∀x(x < kn → A′), where A′ is obtained
by substituting numerals in A for all free variables other than x and kn

for y. Suppose B′ is true. Then for each i < n, A′
x[ki] is true. Hence, by

our hypothesis they are theorems of PA. By Lemma 4.3.1, the detachment
rule, and the ∀-introduction rule,

PA � B′.


�

Recall that a formula is called existential if it is in prenex form and all
the quantifiers in its prefix are ∃.
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Proposition 7.4.15 Let P ′ be a recursive extension of PA. Then every
existential formula A of P ′ is equivalent in P ′ to an R-formula.

Proof. In view of the defining condition (c) of R-formulas, it is sufficient to
prove that every open formula A of P ′ is equivalent in P ′ to an R-formula.

Step 1: Let t[x1, . . . , xn] be a term of P ′, and A the formula x = t. The
result holds for A.

We proceed by induction on the length of t. If t is a variable, then A
is an R-formula. If t is a constant, then t = x is an R-formula. This is
equivalent to x = t by the symmetry theorem. Now let t = ft1 · · · tn. Then,
by Proposition 4.2.23,

P ′ � x = t ↔ ∃y1 · · · ∃yn(y1 = t1 ∧ · · · ∧ yn = tn ∧ x = fy1 · · · yn).

The result now follows from the induction hypothesis, the symmetry theo-
rem, and the definition of R-formulas.

Step 2: Let A be a formula of the form pt1 · · · tn, p a relation symbol,
and t1, · · · , tn terms. We have

P ′ � A ↔ ∃y1 · · · ∃yn(y1 = t1 ∧ · · · ∧ yn = tn ∧ py1 · · · yn).

Since each formula yi = ti is equivalent to an R-formula, the result holds
for A.

Similarly, we prove the result for formulas that are negations of atomic
formulas.

The class of formulas for which the theorem holds is, by the defining
condition (a) of R-formulas, closed under ∨ and ∧. Hence, the result for
open formulas follows from Exercise 4.2.24. 
�
Proposition 7.4.16 Let P ′ be a recursive extension of PA. Then every
R-formula of P ′ is equivalent in P ′ to an R-formula in PA.

Proof. Suppose P ′′ is a recursive extension of P ′ obtained by adding just
one nonlogical symbol. Our result will be proved if we show that every
R-formula A in P ′′ is equivalent in P ′′ to an R-formula in P ′. By the
equivalence theorem, it is sufficient to prove the result for A of the form
fx1 · · ·xn = y or px1 · · ·xn or their negations.

Since the defining axiom of p is an open formula of P ′, the result is easy to
prove for a formula of the form px1 · · ·xn and their negations by Proposition
7.4.15. Since a formula of the form ¬(fx1 · · ·xn = y) is equivalent in P ′′ to
a formula ∃z(¬(y = z)∧fx1 · · ·xn = z), the result follows for such formulas
by Proposition 7.4.15.

Let A be fx1 · · ·xn = y. Then A is equivalent to a formula of P ′ of the
form

B ∧ ∀x(x < y → C),

where B and C are open. The result can be easily seen now by Proposition
7.4.15. 
�



7.5 Second Incompleteness Theorem 131

From the last three results, we have the following theorem.

Theorem 7.4.17 If P ′ is a recursive extension of PA, then every true
closed existential formula is a theorem of P ′.

7.5 Second Incompleteness Theorem

We are now in a position to prove that “PA is consistent” is not a theorem
of PA.

From now on, we assume that P ′ is a recursive extension of PA in which
all the recursive functions and recursive predicates for PA introduced in the
section on arithmetization of theories have been introduced. We introduce
some notation first.

Let t, t1, . . . , tn be terms and x1, . . . , xn be the first n variables in alpha-
betical order. We define the terms S(t, t1, . . . , tn) by induction:

S(t, t1) = sub(t, k�x1	, t1),

S(t, t1, t2) = sub(S(t, t1), k�x2	, t2)

...

S(t, t1, . . . , tn) = sub(S(t, t1, . . . , tn−1), k�xn	, tn).

Since each formula in P ′ has a translation in PA and since P ′ is a
conservative extension of PA, we shall not distinguish between a formula
of P ′ and its translation in P . With these conventions, we abbreviate the
formula ∃yPrfPA(x, y) by ThmPA(x) and

¬∀x(formPA(x) → ThmPA(x))

by ConPA.
By formalizing the proof of Proposition 7.4.14 inside P ′, we shall prove

the following lemma.

Lemma 7.5.1 For any R-formula A[x1, . . . , xn] of PA,

P ′ � A → ThmPA(S(k�A	, x1, . . . , xn)).

Proof. We shall prove the result by induction on the length of A. We shall
give only a few steps of the proof. Readers should not find it difficult to
complete the proof themselves.

Let A be the formula 0 = x. We have

S(k�A	, x) = 〈kSN(=),num(0),num(x)〉.

We have to show that
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P ′ � 0 = x → ThmPA(〈kSN(=),num(0),num(0)〉).

By the equality theorem, this will be proved if we show that

P ′ � ThmPA(〈kSN(=),num(0),num(0)〉).

But the formula

ThmPA(〈kSN(=),num(0),num(0)〉)

is a true closed existential formula. Hence it is a theorem of P ′ by Theorem
7.4.17.

Similarly by formalizing the proofs of the representability of S, +, ·, and
< inside P ′, we can prove the assertion for formulas of the form Sx = y,
x + y = z, x · y = z, x < y, etc.

We shall show only one inductive step and leave the others for the reader
to prove. Let A[x1, . . . , xn] be of the form ∃xB and the result holds for the
formula B. Set

t = S(k�B	, x1, . . . , xn).

Since S(k�A	, x1, . . . , xn) = 〈kSN(∃), k�x	, t〉 is a true closed existential for-
mula, by Theorem 7.4.17,

P ′ � S(k�A	, x1, . . . , xn) = 〈kSN(∃), k�x	, t〉. (a)

By the induction hypothesis,

P ′ � B → ThmPA(sub(t, k�x	,num(x))).

By the distribution rule, we have

P ′ � A → ∃xThmPA(sub(t, k�x	,num(x))). (b)

Using the fact that every true existential sentence is a theorem, we can
formalize the proof of “if P ′ � Bx[kn] for some n, P ′ � ∃xB” inside P ′.
Thus, we get

P ′ � ∃xThmPA(sub(t, k�x	,num(x))) → ThmP (〈kSN(∃), k�x	, t〉). (c)

Our assertion for A follows from (a), (b), and (c). 
�

Essentially by formalizing the proof of the first incompleteness theorem
inside P ′, we get the following very interesting result.

Theorem 7.5.2 (Second incompleteness theorem) ConPA is not a
theorem of PA.

Proof. Let A[x] denote the translation of the formula
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¬∃yPrfPA(sub(x, k�x	,num(x)), y)

in PA. Let
a = �A� .

We need to show that
PA �� ConPA. (1)

Since P ′ is an extension by definition of PA, it is sufficient to prove that

P ′ �� ConPA. (2)

For this, it is enough to prove that

P ′ � ConPA → Ax[ka], (3)

because by the argument contained in the proof of the first incompleteness
theorem,

P ′ �� Ax[ka]

and Ax[ka] is a tautological consequence of ConPA → Ax[ka] and ConPA.
Let B be an R-formula in PA that is equivalent in P ′ to

∃yPrfPA(sub(x, k�x	,num(x))), y)x[ka].

Hence, by the equivalence theorem,

P ′ � ¬B ↔ Ax[ka]. (4)

Let b = �B� and c = �Ax[ka]�. By the definition of consistency and
Theorem 7.4.17, we have

P ′ � ConPA → (¬ThmPA(kc) ∨ ¬ThmPA(neg(kc))), (5)

where
neg(kc) = 〈kSN(¬), c〉.

Thus, by the tautology theorem, it is sufficient to show that

P ′ � (¬ThmPA(kc) ∨ ¬ThmPA(neg(kc))) → Ax[ka]. (6)

By the tautology theorem again, it is enough to show that

P ′ � ¬ThmPA(kc) → Ax[ka] (7)

and
P ′ � ¬ThmPA(neg(kc)) → Ax[ka]. (8)

We prove (7) as follows:
Note that
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kc = sub(ka, k�x	,num(ka))

is a true closed existential formula of P ′. Hence, by Theorem 7.4.17, it is
a theorem of P ′. By the equality theorem and the definition of A, we now
have

P ′ � ¬Ax[ka] → ThmPA(kc).

This proves (7).
To prove (8), first note that by (4),

P ′ � B → ¬Ax[ka].

Hence,
ThmPA(〈kSN(∨), neg(kb), neg(kc)〉)

is a true closed existential formula. Hence, by Theorem 7.4.17,

P ′ � ThmPA(kb) → ThmPA(neg(kc)), (9)

Finally, by Lemma 7.5.1, we have,

P ′ � B → ThmPA(kb). (10)

Now note that
¬ThmPA(neg(kc)) → Ax[ka]

is a tautological consequence of

ThmPA(kb) → ThmPA(neg(kc)),

B → ThmPA(kb),

and
¬B ↔ Ax[ka].

Hence, (8) follows from (9), (10), and (4) by the tautology theorem. 
�

Remark 7.5.3 There is an extension by definitions of ZF (or of ZFC)
in which there is a suitable interpretation of Peano arithmetic PA so that
the representability theorem can be proved with the theory N replaced by
ZF . Hence, we can express ConZF and ConZFC as formulas of ZF . Again,
using similar ideas, we can prove the following result:

ZF �� ConZF .
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