Teorema de Reflexión

Aquí estaremos trabajando en **ZF**⁻.

Notación. De ahora en adelante, salvo que se diga otra cosa si escribimos $\varphi(y_1,...,y_n)$ quiere decir que las variables líbres de la \in -fórmula φ son exactamente $y_1,...,y_n$. En algunas ocasiones escribiremos \overrightarrow{y} en lugar de $y_1,...,y_n$.

Definición. Una lista finita de \in -fórmulas se dice que es *Cerrada bajo Subfórmulas* syss toda subfórmula de una fórmula de la lista está en la lista (y ninguna de la lista usa el cuantificador universal, \forall).

Así, si $\varphi_0, \dots, \varphi_{n-1}$ es cerrada bajo subfórmulas, entonces para cada $i \in n$, se tiene que φ_i o es atómica (ie. de la forma (x = y) o ($x \in y$)) o es una negación, ($\neg \varphi_j$) para algún $j \in n$, o una conjunción, ($\varphi_j \& \varphi_k$) con $j, k \in n$ o es una cuantificación existencial, $\exists x \varphi_j$ para algún $j \in n$.

Puesto que una fórmula es una expresión finita, de hecho, una sucesión finita de símbolos, tiene un número finito de subfórmulas; por consiguiente, toda lista finita de fórmulas se pude extender a otra lista –finita– que sea cerrada bajo subfórmulas. En el caso en que en alguna fórmula aparezca un \forall , habrá que cambiarlo por $\neg \exists \neg$, para obtener una lógicamente equivalente.

Necesitaremos el siguiente

Lema₁ (Test de Vaught-Tarski).

Sean M y N clases, con $\emptyset \neq M \subseteq N$ y sean $\varphi_1, \dots, \varphi_l$ una lista de \in -fórmulas cerradas bajo subfórmulas. Son equivalentes las siguientes afirmaciones,

- (a) $\varphi_1, ..., \varphi_l$ son absolutas M, N
- **(b)** Cada vez que φ_i sea de la forma $\exists x \varphi_j(x, y_1, ..., y_n)$, se tiene que

$$\forall y_1, \dots, y_n \in M \left[\exists x \in N \ \phi_j^N(x, y_1, \dots, y_n) \rightarrow \exists x \in M \ \phi_j^N(x, y_1, \dots, y_n) \right]$$

Prueba: Probaremos ambas implicaciones en forma directa.

(a) \Rightarrow (b) Supongamos que $\varphi_i(y_1,...,y_n) \leftrightharpoons \exists x \, \varphi_j(x,y_1,...,y_n)$. Ahora, fijemos $y_1,...,y_n \in M$ y supongamos que $\exists x \in N \, \varphi_j^N(x,y_1,...,y_n)$, es decir que $\varphi_i^N(y_1,...,y_n)$. Por (a), tenemos que $\varphi_i(y_1,...,y_n)$ es absoluta M, N y de aquí obtenemos que $\varphi_i^M(y_1,...,y_n)$, es decir,

$$\exists x \in \mathcal{M} \ \varphi_j^{\mathcal{M}} \left(x, y_1, \dots, y_n \right)$$
 (*)

Por otro lado, también por **(a)**, tenemos que $\varphi_j(x, y_1, ..., y_n)$ es absoluta M, N, es decir, $\forall x \in M \left[\varphi_j^M(x, y_1, ..., y_n) \leftrightarrow \varphi_j^N(x, y_1, ..., y_n) \right]$

De esto último y de (*), concluimos que $\exists x \in M \ \phi_i^N(x, y_1, \dots y_n)$.

(**b**) ⇒ (**a**) Probaremos algo más general, que toda fórmula tiene la propiedad: para toda φ , si φ cumple (**b**), entonces φ es absoluta M, N. Y esto se hará por Inducción sobre la formación de ∈-fórmulas.

La base de la inducción, para atómicas, es trivial, son absolutas M, N y en el paso inductivo los casos de los conectivos & y \neg son inmediados de la hipótesis inductiva. Veamos el caso de la cuantificación existencial.

Supongamos inductivamente que $\varphi(x, y_1, ..., y_n)$ es absoluta M, N y probemos que $\exists x \varphi(x, y_1, ..., y_n)$ también lo es. Fijemos $y_1, ..., y_n \in M$, tenemos

$$(\exists x \varphi(x, \overrightarrow{y}))^{M} \leftrightarrow \exists x \in M \varphi^{M}(x, \overrightarrow{y})$$

$$\leftrightarrow \exists x \in M \varphi^{N}(x, \overrightarrow{y}) \qquad \textbf{H.I.}$$

$$\leftrightarrow \exists x \in N \varphi^{N}(x, \overrightarrow{y}) \qquad \to) M \subseteq N; \leftarrow) \textbf{(b)}$$

$$\leftrightarrow (\exists x \varphi(x, \overrightarrow{y}))^{N}$$

Pasemos al Teorema de Reflexión.

Proposición₂.

Sean Z una clase no-vacía y Z_: OR → V tales, que

i).
$$\alpha < \beta \rightarrow Z_{\alpha} \subseteq Z_{\beta}$$
.

ii).
$$\beta \in LIM \rightarrow Z_{\beta} = \bigcup_{\alpha < \beta} Z_{\alpha}. Y$$

iii).
$$Z = \bigcup_{\alpha \in OR} Z_{\alpha}$$
.

Así, para cualesquiera \in -fórmulas $\varphi_1, \dots, \varphi_l$, se tiene que

$$\forall \alpha \,\exists \beta > \alpha \,\Big[\,\beta \in \text{LIM} \,\&\, Z_{\beta} \neq \emptyset \,\&\, \phi_1, \ldots, \phi_l \,\text{son absolutas}\, Z_{\beta},\, Z \,\Big]$$

Algunos comentarios son necesarios.

- 1. Se pide que Z sea una clase no-vacía, pero no que sea una clase propia. Si $Z \in V$, entonces $Z = Z_{\xi}$, para un ξ lo suficientemente grande y el resultado es trivial.
- **2.** No se está exigiendo que para todo α , $Z_{\alpha} \neq \emptyset$ ya que para algún ξ , lo suficientemente grande, se tiene que todo $\beta > \xi$, $Z_{\beta} \neq \emptyset$.
- **3.** Para la prueba usaremos el Test de Vaught–Tarski donde N = Z y encontraremos un ordinal β tal que $M = Z_{\beta}$ el cual cumpla (b). Es decir, un $\beta > \alpha$ tal que Z_{β} sea cerrado bajo los existenciales de ϕ_1, \ldots, ϕ_l .

Prueba: Sin pérdida de generalidad podemos suponer que $\phi_1, ..., \phi_l$ es una lista cerrada bajo subfórmulas.

Para cada fórmula $\varphi(y_1,...,y_n)$ de la forma $\exists x \ \psi(x,y_1,...,y_n)$, definimos la funcional G_{φ} como sigue,

$$G_{\varphi} \colon Z^{n} \longrightarrow OR$$

$$\forall \overrightarrow{y} \in Z^{n}, G_{\varphi}(\overrightarrow{y}) = \begin{cases} 0 & \text{Si } \neg \varphi^{Z}(\overrightarrow{y}) \\ \bigcap \left\{ \eta \in OR \ \middle/ \ \exists x \in Z_{\eta} \ \psi^{Z}(x, \overrightarrow{y}) \right\} & \text{Si } \varphi^{Z}(\overrightarrow{y}) \end{cases}$$

Observemos que si $\overrightarrow{y} \in Z^n$ es tal, que $\varphi^Z(\overrightarrow{y})$, entonces hay un $x \in Z_{G_{\varphi}(\overrightarrow{y})}$ tal, que $\psi^Z(x, \overrightarrow{y})$.

Ahora, para cada fórmula $\phi(y_1, ..., y_n)$, definimos la funcional F_{ϕ} de la siguiente manera,

$$F_{\phi} \colon \mathrm{OR} \longrightarrow \mathrm{OR}$$

$$\forall \xi, \ F_{\phi}(\xi) = \left\{ \begin{array}{ll} 0 & \mathrm{Si} \ \phi\left(\overrightarrow{y}\right) \ \mathrm{no} \ \mathrm{es} \ \mathrm{existencial} \\ \\ \bigcup \left\{ G_{\phi}\left(\overrightarrow{y}\right) \ \middle/ \ \overrightarrow{y} \in Z_{\xi}^{n} \right\} & \mathrm{Si} \ \phi\left(\overrightarrow{y}\right) \ \mathrm{es} \ \mathrm{existencial} \end{array} \right.$$

010:

(1) La funcional F_{ϕ} está bien definida gracias al Axioma de Sustitución — $G_{\phi_i}\left[Z^n_{\xi}\right] \in V.$

(2)
$$\xi_1 < \xi_2 \to F_{\varphi}(\xi_1) \le F_{\varphi}(\xi_2)$$
. Pues $Z_{\xi_1} \subseteq Z_{\xi_2}$.

Afirmación. Si $\beta \in \text{LIM y para cada } i \in \{1, ..., l\}$, se tiene que $\forall \xi < \beta \left[F_{\phi_i}(\xi) < \beta \right]$, entonces $\phi_1, ..., \phi_l$ son absolutas Z_{β} , Z

Aquí usaremos el Test de Vaught–Tarski. Supongamos que φ_i es un existencial, digamos $\exists x \ \varphi_j \ (x, y_1, ..., y_n)$. Fijemos $y_1, ..., y_n \in Z_\beta$ y supongamos que $\exists x \in Z \ \varphi_j^Z \ (x, y_1, ..., y_n)$, demostremos que

 $\exists x \in Z_{\beta} \ \phi_j^Z(x, y_1, ..., y_n)$. Puesto que $\beta \in \text{LIM}$ hay un $\xi_0 < \beta$ tal que $y_1, ..., y_n \in Z_{\xi_0} \subseteq Z_{\beta}$, pero entonces $0 \neq G_{\phi_i}(y_1, ..., y_n) \leq F_{\phi_i}(\xi_0)$ con $x \in Z_{F_{\phi_i}(\xi_0)}$. Finalmente, $Z_{F_{\phi_i}(\xi_0)} \subseteq Z_{\beta}$, pues $F_{\phi_i}(\xi_0) < \beta$. Así, $\exists x \in Z_{\beta} \ \phi_i^Z(x, y_1, ..., y_n)$.

Sea α un ordinal arbitrario, encontremos un ordinal $\beta > \alpha$, tal que $L_{\beta} \neq \emptyset$ y cumpla con las condiciones exigidas en la afirmación anterior. Sea ζ_0 el primero de todos los ordinales ζ , para los cuales $L_{\zeta} \neq \emptyset$. Ahora, definimos recursivamente la sucesión $\left\{\beta_{p}\right\}_{p\in\omega}$ como sigue,

$$\beta_0 = \alpha \cup \zeta_0$$

$$\forall p \in \omega, \, \beta_{p+1} = \max \left\{ \beta_p + 1, \, F_{\varphi_1}(\beta_p), \dots, \, F_{\varphi_l}(\beta_p) \right\}$$

OjO (3):
$$\alpha \le \beta_0 < \beta_1 < \beta_2 < \cdots$$

Ahora, si $\beta = \operatorname{S} up \{\beta_p \mid p \in \omega\}$ entonces β es uno que nos sirve. Tenemos de (3), que $\beta \in \operatorname{LIM}$, $\beta > \alpha$ y $\operatorname{L}_{\beta} \neq \emptyset$. Finalmente, si $\xi < \beta$, hay un $p \in \omega$ tal, que $\xi < \beta_p$ y para cada $i \in \{1, \ldots, l\}$, se tiene que

$$F_{\varphi_i}(\xi) \leq F_{\varphi_i}(\beta_p) \leq \sup_{\text{Def }\beta_{p+1}} \beta_{p+1} < \beta$$

Al suponer el **ABF**, podemos usar la proposición anterior con Z = BF = V y $Z_- = R_-$, y obtener el importante resultado siguiente,

 $\textbf{Corolario}_3(\textbf{ZF}). \text{ Para cualquier lista finita de } \in -\text{f\'ormulas } \phi_1, \ldots, \phi_l \text{ se tiene que,}$ $\forall \alpha \, \exists \beta > \alpha \, \Big[\, \phi_1, \ldots, \phi_l \text{ son absolutas para } R_\beta \, \Big]$