El Axioma de Constructibilidad

¿ Todo conjunto es construible?

Trivialmente $L \subseteq V$, pero \S $V \subseteq L$? es decir \S $\forall x \ [x \in L]$? o, mejor dicho, \S $\forall x \ \exists \alpha \ [x \in L_{\alpha}]$? Sabemos que,

- 1. $\forall \alpha [L_{\alpha} \subseteq R_{\alpha}]$
- **2.** (AE) Para $\alpha \ge \omega$, $|L_{\alpha}| = |L_{\alpha+1}|$, mientras que $|R_{\alpha}| = |R_{\alpha+1}| = 2^{|R_{\alpha}|}$. Por lo que $L_{\alpha+1} \subsetneq R_{\alpha+1}$.
- **3.** (AE) Hay ordinales α , a saber aquellos $\alpha = \beth_{\alpha}$, $|L_{\alpha}| = |R_{\alpha}|$.

Aunque el enunciado $\forall x \; \exists \alpha \; [x \in L_{\alpha}]$ parece improbable, este es consistente con **ZF**, como veremos más adelante. También es consistente, con **ZF**, la negación, pero esto queda fuera de nuestros propósitos. Por lo pronto,

Definición. El *Axioma de Constructibilidad* es el ∈–enunciado,

$$\forall x \, \exists \alpha \, [x \in L_{\alpha}]$$

abreviado como, V = L.

Probaremos más adelante que es consistente $\mathbf{ZF} + V = L$, mostrando que L es un modelo de esta teoría. Sabemos ahora que lo es de \mathbf{ZF} , veremos que también lo es de V = L. El hecho de que L sea modelo de V = L no es trivial, como que $L = L^1$. Es trivialmente cierto que $\forall x \in L \ \exists \alpha \ [x \in L_{\alpha}]$, pero $(V = L)^L$ dice $\forall x \in L \ \exists \alpha \in L \ [(x \in L_{\alpha})^L]$ y para tener esto último, habrá que justificarlo.

Se pueden dar modelos estandar, M, de **ZF** es decir **ZF** \vdash (**ZF**)^M tales que **ZF** $\not\vdash$ (V = M)^M. Un ejemplo es M = HOD (el universo de los conjuntos Hereditariamente Definibles con Ordinales).

Recordemos² que la funcional L_ es absoluta para modelos transitivos de **ZF** – **ZF**₅. Así, si M es un modelo transitivo de **ZF**, se tiene que $\forall \alpha \in OR^M$, $L_{\alpha}^M = L_{\alpha}$.

Hecho este comentario, podemos pasar a ver que L es un modelo del axioma de constructibilidad.

Proposición₂. $(V = L)^L$.

Prueba: Tenemos que probar que,

$$\forall x \in L \exists \alpha \in L \left[(x \in L_{\alpha})^{L} \right]$$

Fijemos un $x \in L$. Hay un $\alpha \in OR$ tal, que $x \in L_{\alpha}$. Ahora bien, puesto que $OR = OR^{L} \subseteq L$, tenemos que $\alpha \in L$. Finalmente, como L es un modelo transitivo de **ZF**, por el comentario anterior tenemos, $(x \in L_{\alpha})^{L}$.

Podemos ahora enunciar los siguientes resultados.

Corolario₃.

1).
$$\mathbf{ZF} \vdash (\mathbf{ZF} + \mathbf{V} = \mathbf{L})^{\mathbf{L}}$$

2).
$$CON(\mathbf{ZF}) \Rightarrow CON(\mathbf{ZF} + V = L)$$

3).
$$CON(\mathbf{ZF}) \Rightarrow \mathbf{ZF} \nvdash \mathbf{V} \neq \mathbf{L}$$

¹ Es cierto que $V^L = L$, pero ¿ L^L ?

² Ver **Prop₁₈** del capítulo anterior.

Para finalizar esta sección, veamos otra consecuencia de la absolutez de la funcional L_.

Proposición₄. Sea M un modelo transitivo de **ZF** - **ZF**₅. Si M es una clase propia o equivalentemente, $OR \subseteq M$, entonces $L = L^M \subseteq M$.

Prueba: Veamos primero la equivalencia de las hipótesis. Un lado es trivial, veamos el otro. Sea $\alpha \in OR$, puesto que al ser M una clase propia, se tiene que M $\nsubseteq R_{\alpha}$ y entonces hay un $x \in M$ tal que $\rho(x) \ge \alpha$. Pero entonces, gracias a la absolutez del rango, tenemos que $\alpha \le \rho(x) = \rho^M(x) \in M$ y como M es transitiva, $\alpha \in M$. También concluimos que $OR^M = OR$. Finalmente tenemos,

$$\begin{split} L^{M} &= \left\{ x \in M \: \middle / \: \left(\exists \alpha \: (x \in L_{\alpha}) \right)^{M} \right\} \: = \: \left\{ x \in M \: \middle / \: \exists \alpha \in M \: \middle (x \in L_{\alpha})^{M} \right\} \: = \\ &= \left\{ x \in M \: \middle / \: \exists \alpha \: \left(x \in L_{\alpha}^{M} \right) \right\} \: \underset{L_{\alpha}^{M} = L_{\alpha}}{=} \: \left\{ x \: \middle / \: \exists \alpha \: (x \in L_{\alpha}) \right\} \: = \: L \end{split}$$
 Por tanto, $L = L^{M} \subseteq M$.