Funcionales Normales

En lo que sigue, sea

$$F: OR \longrightarrow OR$$

Definición₁. Un ordinal α es un *Punto Fijo de F* syss $F(\alpha) = \alpha$. ¿Bajo qué condiciones, una funcional tiene puntos fijos?

Recordar:

- a) F es monótona syss $\forall \alpha, \beta \ \left[\alpha < \beta \rightarrow F(\alpha) < F(\beta) \right]$.
- **b)** Si F es monótona, entonces $\forall \alpha \ [\alpha \leq F(\alpha)]$.

Una funcional monótona es buen candidato a tener puntos fijos. Un ejemplo "exagerado" es la identidad, Id_{OR} , es monótona y cada ordinal es un punto fijo. Sin embargo, la monotonía no es suficiente, p.e. la sucesor (para OR), $_^+ \upharpoonright OR$, es monótona pero no tiene un solo punto fijo.

Observemos que si $\beta \in LIM$ y F es monótona, para todo $\xi < \beta$ se tiene que $F(\xi) \leq F(\beta)$ por lo que,

$$\bigcup \{ F(\xi) / \xi < \beta \} \le F(\beta) \tag{*}$$

Un resultado que nos ayudará más adelante,

Proposición₁.

- 1. Si F es monótona, entonces $\forall \alpha \ \left[F\left(\alpha \right) < F\left(\alpha^{+} \right) \right]$.
- **2.** Si F es tal, que $\forall \alpha [F(\alpha) < F(\alpha^+)]$, y cumple con (*), entonces F es monótona.

Prueba:

- 1. Inmediata de la definición de monotonía.
- **2.** Sean $\alpha \in OR$ y

$$\varphi (\beta) \leftrightharpoons [\alpha < \beta \rightarrow F(\alpha) < F(\beta)].$$

Basta probar que $\forall \beta \varphi(\beta)$ y esto lo haremos por indución para OR.

 $\varphi(0)$ Este caso es trivialmente cierto.

 $\forall \beta \ [\varphi(\beta) \to \varphi(\beta^+)]$ Sea $\beta \in OR$. Supongamos que $\varphi(\beta)$ y que $\alpha < \beta^+$. De esto último tenemos, $\alpha \leq \beta$. De la **H.I.** y de que F es funcional concluimos que $F(\alpha) \leq F(\beta)$. Finalmente, usando la primera hipótesis inicial, $F(\alpha) \leq F(\beta) < F(\beta^+)$.

 $\forall \beta \in LIM \ [(\forall \xi < \beta \ \varphi(\xi)) \rightarrow \varphi(\beta)] \]$ Sea $\beta \in LIM$ y supongamos, inductivamente, que $\forall \xi < \beta \ \varphi(\xi)$. Ahora supongamos también que $\alpha < \beta$. Puesto que $\beta \in LIM$, tenemos que $\alpha < \alpha^+ < \beta$. Con todo esto obtenemos,

$$F(\alpha) \underset{\text{H.I.}}{<} F(\alpha^{+}) \leq \bigcup \{F(\gamma) / \gamma < \beta\} \underset{(*)}{\leq} F(\beta)$$

Definición₂. La funcional F es Continua syss

$$\forall \beta \in LIM \ \left[F(\beta) = \bigcup \left\{ F(\xi) \ / \ \xi < \beta \right\} \right]$$

Si la funcional F es monótona, gracias a la observación anterior, basta pedir para ordinales límites β se tenga

$$F(\beta) \le \bigcup \{F(\xi) / \xi < \beta\}$$

para tener la continuidad de F.

Ejemplos:

- 1). $_^+ \upharpoonright OR$ es monótona, pero no es continua.
- 2). Una funcional constante, p.e. $F(\alpha) = \omega$, es continua, no es monótona y tiene a ω como único punto fijo.
- 3). La funcional suma ordinal por un ordinal dado, \sum_{γ} , es monótona y continua:

a).
$$\alpha < \beta \rightarrow \sum_{\gamma} (\alpha) < \sum_{\gamma} (\beta)$$

b).
$$\beta \in LIM \to \sum_{\gamma} (\beta) = \bigcup \left\{ \sum_{\gamma} (\xi) / \xi < \beta \right\}$$
.

4). La funcional aleph, ℵ, es monótona y continua.

Definición₃. (VEBLEN, 1908). Diremos que la funcional F es Normal syss F es monótona y continua. Es decir,

1.
$$\forall \alpha, \ \beta \ \left[\alpha < \beta \rightarrow F(\alpha) < F(\beta) \right]$$
y

2.
$$\forall \beta \in LIM \left[F(\beta) = \bigcup \left\{ F(\xi) / \xi < \beta \right\} \right]$$

Proposición₂. Una funcional normal, F, tiene puntos fijos arbitrariamente lejanos. Es decir

$$\forall \alpha \; \exists \beta \; \left[\alpha \leq \beta \; \& \; F(\beta) = \beta \right]$$

Prueba: Sea α un ordinal arbitrario. Si fuera el caso que $F(\alpha) = \alpha$, basta tomar a $\beta = \alpha$. Supongamos pues, que no es el caso.

Definimos la función g, por recursión sobre ω , como sigue,

$$g:\omega\longrightarrow OR$$

I.
$$g(0) = \alpha$$

II.
$$\forall n \in \omega, \ g(n^+) = F(g(n))$$

Sea $\beta = \bigcup \{g(n) \mid n \in \omega\}$. Afirmamos que $F(\beta) = \beta$.

Antes de pasar a probarlo, veamos algunas propiedades que se tienen gracias a las definiciones anteriores,

- **1.** $\alpha < F(\alpha)$. Pues, por la monotonía de F se tiene que $\alpha \le F(\alpha)$ y de nuestra suposición, $F(\alpha) \ne \alpha$.
- **2.** La función g es monótona (**TAREA**) y por tanto $\beta \notin \{g(n) / n \in \omega\}$.
- 3. $\alpha = g(0) \underset{p \in \omega}{<} g(p^{+}) < \bigcup \{g(n) / n \in \omega\} = \beta \leq F(\beta)$.
- **4.** $\beta \in LIM$. Pues si $\gamma \in \beta = \bigcup \{g(n) \mid n \in \omega\}$, hay un $n_0 \in \omega$ tal que $\gamma \in g(n_0)$; pero entonces

$$\gamma < \gamma^+ \le g(n_0) < \beta$$

y resulta que β es cerrado bajo sucesores.

Para ver que β es punto fijo de F, solo nos falta ver que $F(\beta) \leq \beta$.

Sea $\gamma \in F(\beta)$. Puesto que F es continua, hay un $\xi_0 < \beta$ tal, que $\gamma < F(\xi_0)$. Ahora bien, dada la definición de β , para este ξ_0 hay un $n_0 \in \omega$ con la propiedad de que $\xi_0 < g(n_0)$. Con esto tenemos la siguiente inecuación,

$$\gamma < F(\xi_0) < F(g(n_0)) = g(n_0^+) < \beta$$

Esta prueba es eficiente en el sentido de que nos proporciona el primer punto fijo de F que es mayor o igual a α (TAREA).

Proposición₃. Sean F una Funcional Normal y a un conjunto novacío de Ordinales. Así,

$$F\left(\ \bigcup a \ \right) = \bigcup \left\{ F\left(\xi\right) \ / \ \xi \in a \right\}$$

Prueba: TAREA.

Usando el resultado anterior, podemos dar otra prueba de que $F(\beta) = \beta$, en la **Proposición**₂.

TAREA

- 1. Considera la prueba de la **Proposición₂.** Prueba:
 - a) La función g es monótona. **Sug.** usar inducción y usar que $\alpha < F(\alpha)$ y que F es monótona.
 - b) β es el primer punto fijo de F que es $\geq \alpha$.
- 2. Prueba la **Proposición₃. Sug.** Si $\beta = \bigcup a$, considerar el caso en que $\beta \in a$ y en el que $\beta \notin a$.
- 3. Usando 3. da otra prueba de la **Proposición₂**.